1
|
Khan A, Oliveira J, Lee YS, Guest JD, Silvera R, Pressman Y, Pearse DD, Nettina AE, Goldschmidt-Clermont PJ, Al-Ali H, Williams I, Levi AD, Dietrich WD. Human Schwann Cell-Derived Extracellular Vesicle Isolation, Bioactivity Assessment, and Omics Characterization. Int J Nanomedicine 2025; 20:4123-4144. [PMID: 40201152 PMCID: PMC11977562 DOI: 10.2147/ijn.s500159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose Schwann cell-derived extracellular vesicles (SCEVs) have demonstrated favorable effects in spinal cord, peripheral nerve, and brain injuries. Herein, a scalable, standardized, and efficient isolation methodology of SCEVs obtaining a high yield with a consistent composition as measured by proteomic, lipidomic, and miRNA analysis of their content is described for future clinical use. Methods Human Schwann cells were obtained ethically from nine donors and cultured in a defined growth medium optimized for proliferation. At confluency, the culture was replenished with an isolation medium for 48 hours, then collected and centrifuged sequentially at low and ultra-high speeds to collect purified EVs. The EVs were characterized with mass spectrometry to identify and quantify proteins, lipidomic analysis to assess lipid composition, and next-generation sequencing to confirm miRNA profiles. Each batch of EVs was assessed to ensure their therapeutic potential in promoting neurite outgrowth and cell survival. Results High yields of SCEVs were consistently obtained with similar comprehensive molecular profiles across samples, indicating the reproducibility and reliability of the isolation method. Bioactivity to increase neurite process growth was confirmed in vitro. The predominance of triacylglycerol and phosphatidylcholine suggested its role in cellular membrane dynamics essential for axon regeneration and inflammation mitigation. Of the 2517 identified proteins, 136 were closely related to nervous system repair and regeneration. A total of 732 miRNAs were cataloged, with the top 30 miRNAs potentially contributing to axon growth, neuroprotection, myelination, angiogenesis, the attenuation of neuroinflammation, and key signaling pathways such as VEGFA-VEGFR2 and PI3K-Akt signaling, which are crucial for nervous system repair. Conclusion The study establishes a robust framework for SCEV isolation and their comprehensive characterization, which is consistent with their therapeutic potential in neurological applications. This work provides a valuable proteomic, lipidomic, and miRNA dataset to inform future advancements in applying SCEV to the experimental treatment of neurological injuries and diseases.
Collapse
Affiliation(s)
- Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julia Oliveira
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Risset Silvera
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana E Nettina
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Hassan Al-Ali
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indigo Williams
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
- Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: Small molecules with big impacts in liver injury. J Cell Physiol 2023; 238:32-69. [PMID: 36317692 DOI: 10.1002/jcp.30908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Qiao P, Zhu J, Lu X, Jin Y, Wang Y, Shan Q, Wang Y. miR-140-3p suppresses the proliferation and migration of macrophages. Genet Mol Biol 2022; 45:e20210160. [PMID: 35724302 PMCID: PMC9218872 DOI: 10.1590/1678-4685-gmb-2021-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages benefit myelin debris removal, blood vessel formation, and Schwann
cell activation following peripheral nerve injury. Identifying factors that
modulate macrophage phenotype may advantage the repair and regeneration of
injured peripheral nerves. microRNAs (miRNAs) are important regulators of many
physiological and pathological processes, including peripheral nerve
regeneration. Herein, we investigated the regulatory roles of miR-140-3p, a
miRNA that was differentially expressed in injured rat sciatic nerves, in
macrophage RAW264.7 cells. Observations from EdU proliferation assay
demonstrated that elevated miR-140-3p decreased the proliferation rates of
RAW264.7 cells while suppressed miR-140-3p increased the proliferation rates of
RAW264.7 cells. Transwell-based migration assay showed that up-regulated and
down-regulated miR-140-3p led to elevated and reduced migration abilities,
respectively. However, the abundances of numerous phenotypic markers of M1 and
M2 macrophages were not significantly altered by miR-140-3p mimic or inhibitor
transfection. Bioinformatic analysis and miR-140-3p-induced gene suppression
examination suggested that Smad3 might be the target gene of
miR-140-3p. These findings illuminate the inhibitory effects of miR-140-3p on
the proliferation and migration of macrophages and contribute to the cognition
of the essential roles of miRNAs during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Pingping Qiao
- Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu, China
| | - Jun Zhu
- The Affiliated Hospital of Nantong University, Department of Thoracic Surgery, Nantong, Jiangsu, China
| | - Xiaoheng Lu
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yifei Jin
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yifan Wang
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Qianqian Shan
- The Affiliated Hospital of Nantong University, Department of Radiotherapy and Oncology, Nantong, Jiangsu, China
| | - Yaxian Wang
- Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu, China
| |
Collapse
|
4
|
Hou F, Li X, Wang Y, Xiao X. MicroRNA-183 accelerates the proliferation of hepatocyte during liver regeneration through targeting programmed cell death protein 6. Genes Genomics 2022; 44:1017-1029. [PMID: 35190998 DOI: 10.1007/s13258-022-01223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Liver regeneration is a highly orchestrated process concerning the modulation of various microRNAs (miRs). miR-183 was recently found to be involved in the process of liver regeneration, that miR-183 was remarkably up-regulated at 2-6 h after partial hepatectomy. OBJECTIVE This study was aimed to explore the mechanism of miR-183 in on liver regeneration. METHODS After partial hepatectomy (PH) or transfection, we measured the changes of miR-183 and programmed cell death protein 6 (PDCD6) levels in rats and the hepatocytes. The histopathology was observed with hematoxylin-eosin staining. The miR-183 mimic and inhibitor plasmids were intravenously injected into rats, and the liver weight/body weight ratio was calculated. The prediction of TargetScan and the validation of luciferase activity assay were employed to confirm the targeting relationship between miR-183 and PDCD6. The viability, apoptosis and cell cycle of transfected rat hepatocyte BRL-3A were determined via MTT and flow cytometry assays. RESULTS MiR-183 expression showed a contrary tendency with that of PDCD6 during liver regeneration. Enhanced miR-183 in rats could notably increase liver/body weight ratio, while its inhibition did conversely. Overexpressed PDCD6, a target of miR-183, repressed the viability and cell cycle in hepatocytes, whereas its silence led to contrary results. Overexpressed miR-183 in BRL-3A cells enhanced cell viability and promoted the cell cycle yet suppressed apoptosis, whereas its inhibition showed contrary results, which were offset by PDCD6. CONCLUSIONS Collectively, miR-183 promoted liver regeneration via targeting PDCD6.
Collapse
Affiliation(s)
- Fangxing Hou
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Xing Li
- Oncology Chemotherapy Department, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Yanfeng Wang
- Department of Pathology, Beidahuang Industry Group General Hospital, No. 235, hashuang Road, Nangang District, Harbin, 150000, China.
| | - Xiangzuo Xiao
- Department of Radiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
5
|
Nie X, Liu H, Wei X, Li L, Lan L, Fan L, Ma H, Liu L, Zhou Y, Hou R, Chen WD. miRNA-382-5p Suppresses the Expression of Farnesoid X Receptor to Promote Progression of Liver Cancer. Cancer Manag Res 2021; 13:8025-8035. [PMID: 34712060 PMCID: PMC8547345 DOI: 10.2147/cmar.s324072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background The dysregulation of microRNAs (miRNAs) and hepatotoxicity due to the aberrant accumulation of bile acids (BAs) are notorious causes that predispose an individual to the development of hepatocellular carcinoma (HCC). Farnesoid X receptor (FXR), encoded by NR1H4 gene, has been identified as a crucial BA receptor to maintain the homeostasis of BA pool and its expression is decreased in HCC. miR-382-5p plays an important role in the pathogenesis of many human malignancies and was reported to promote the proliferation and differentiation of normal liver cells and liver regeneration. However, there is still some controversy about its role in HCC microenvironment. This study aims to explore the expression pattern of miR-382-5p in HCC and its role in regulating FXR during the development of HCC. Methods Tissues collected from 30 HCC patients were subjected to extraction of total RNA and quantitative real-time PCR (qRT-PCR) for the analyses of miR-382-5p expression and NR1H4 mRNA levels, and their expressions were verified by analyzing the online HCC-related GSE datasets. The role of miR-382-5p in regulating cellular proliferation and expression of FXR in different HCC cell lines was analyzed by qRT-PCR, Western Blot, real-time cellular analysis (RTCA) and luciferase reporter assays. The role of miR-382-5p in regulating downstream genes of FXR in HCC cells was also analyzed. Results miR-382-5p was upregulated in HCC tissues and inversely associated with the downregulation of NR1H4 mRNA levels. The luciferase reporter assay proved that miR-382-5p directly targeted the 3ʹ-untranslated region (3ʹ-UTR) of human NR1H4 mRNA. Overexpression of miR-382-5p led to a malignant proliferation of HCC cells by suppressing the expression of FXR. In contrast, blocking the endogenous miR-382-5p was sufficient to suppress the cellular proliferation rate of HCC through increasing FXR expression. Additionally, miR-382-5p inhibited the expression of some target genes of FXR, including SHP, FGF19 and SLC51A, and this inhibitory effect was FXR-dependent. Conclusion Therefore, miR-382-5p promotes the progression of HCC in vitro by suppressing FXR and could serve as a valuable therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Lanqing Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Lei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Ruifang Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, People's Republic of China
| |
Collapse
|
6
|
Jiang S, Tian G, Yang Z, Gao X, Wang F, Li J, Tian Z, Huang B, Wei F, Sang X, Shao L, Zhou J, Wang Z, Liu S, Sui X, Guo Q, Guo W, Li X. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioact Mater 2021; 6:2711-2728. [PMID: 33665503 PMCID: PMC7895679 DOI: 10.1016/j.bioactmat.2021.01.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. hWJMSC-Exos can promote cell proliferation, migration and polarization in vitro. hWJMSC-Exos can enhance the repair effect of ACECM scaffold in vivo. hWJMSC-Exos can inhibit inflammation in the joint cavity. hWJMSC-Exos contain a variety of miRNAs that promote osteochondral regeneration.
Collapse
Affiliation(s)
- Shuangpeng Jiang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.,Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Guangzhao Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Gao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Fuxin Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhuang Tian
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bo Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fu Wei
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinyu Sang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Liuqi Shao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jian Zhou
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhenyong Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weimin Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
7
|
Yang JQ, Jiang N, Li ZP, Guo S, Chen ZY, Li BB, Chai SB, Lu SY, Yan HF, Sun PM, Zhang T, Sun HW, Yang JW, Zhou JL, Yang HM, Cui Y. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:74-82. [PMID: 34756233 DOI: 10.1016/j.lssr.2020.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions. Simulated microgravity can recreate the changes experienced by the human body in a weightless environment in space to a certain extent, providing technical support for the exploration of its mechanism and a practical method for other scientific research. METHODS AND MATERIALS In the present study, we reviewed and discussed the latest research on the effects of weightlessness or simulated microgravity on the digestive system, as well as the current challenges and future expectations for progress in medical science and further space exploration. RESULTS A series of studies have investigated the effects of weightlessness on the human digestive system. On one hand, weightlessness and the changing space environment may exert certain adverse effects on the human body. Studies based on cells or animals have demonstrated the complex effects on the human digestive system in response to weightlessness. On the other hand, a microgravity environment also facilitates the ideation of novel concepts for research in the domain of life science. CONCLUSION The effects of weightlessness on the digestive system are considerably complicated. The emergence of methods that help simulate a weightless environment provides a more convenient alternative for assessing the impact and the mechanism underlying the effect of weightlessness on the human body. In addition, the simulated microgravity environment facilitates the ideation of novel concepts for application in regenerative medicine and other fields of life science.
Collapse
Affiliation(s)
- Jia-Qi Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Nan Jiang
- The Center for Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zheng-Peng Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Zheng-Yang Chen
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Bin-Bin Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Sheng-Yu Lu
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, the Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| | - He-Ming Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| |
Collapse
|
8
|
Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis 2020; 11:620. [PMID: 32796834 PMCID: PMC7429500 DOI: 10.1038/s41419-020-02876-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) has a critical role in the development of chronic kidney disease (CKD). Building on our previous findings, we explored the role of miR-382 in facilitating the transition of AKI to CKD using the Aristolochic acid (AA) nephropathy model, which was induced by intraperitoneal injection of aristolochic acid I salt (10 or 20 mg/kg). The effects of genetic depletion, pharmacologic inhibition, or overexpression of miR-382 on the PTEN/AKT signaling pathway were examined in vivo and in vitro. Changes in renal pathology and renal epithelial polarity were evaluated. A luciferase reporter assay was performed to investigate the reciprocal suppression relationship between miR-382 and PTEN. Renal fibrosis developed 14 d after AA exposure in a dose- and time-dependent manner. Renal abundance of miR-382 was upregulated following AA treatment, while genetic depletion or pharmacological inhibition of miR-382 partially reversed renal tubulointerstitial fibrosis. Expression of PTEN, a target of miR-382, was downregulated and subsequently its downstream AKT signaling pathway was activated during AKI to CKD transition induced by AA. Inhibition of PTEN in vitro resulted in the acquisition of the EMT phenotypes. Furthermore, upregulation of miR-382 in renal epithelial cells was partially mediated by the activation of NF-kB signaling, with a substantial elevation of proinflammatory cytokines. An in vivo study revealed that either miR-382 knockdown or miR-382 knockout was pivotal for inflammatory suppression, while an in vitro experiment confirmed that upregulation of miR-382 in cultured MTEC cells under AA exposure was remarkably reversed by NF-kB siRNA. These data indicated a novel role for the NF-κB/miR-382/PTEN/AKT axis in the pathogenesis of tubulointerstitial fibrosis following AA-induced acute renal tubular epithelial injury. Targeting miR-382 may lead to a potential novel therapeutic approach for retarding the AKT to CKD transition.
Collapse
|
9
|
Hu ZQ, Lu Y, Cui D, Ma CY, Shao S, Chen P, Tao R, Wang JJ. MicroRNAs and long non-coding RNAs in liver surgery: Diagnostic and therapeutic merits. Hepatobiliary Pancreat Dis Int 2020; 19:218-228. [PMID: 32414577 DOI: 10.1016/j.hbpd.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatectomy and liver transplantation (LT) are the two most commonly performed surgical procedures for various hepatic lesions. microRNA (miRNA) and long non-coding RNA (lncRNA) have been gradually unveiled their roles as either biomarkers for early diagnosis or potentially therapeutic tools to manipulate gene expression in many disease entities. This review aimed to discuss the effects of miRNA or lncRNA in the hepatectomy and LT fields. DATA SOURCES We did a literature search from 1990 through January 2018 to summarize the currently available evidence with respect to the effects of miRNA and lncRNA in liver regeneration after partial hepatectomy, as well as their involvement in several key issues related to LT, including ischemia-reperfusion injury, allograft rejection, tolerance, recurrence of original hepatic malignancies, etc. RESULTS: Certain miRNAs and lncRNAs are actively involved in the regulation of various aspects of liver resection and transplantation. During the process of liver regeneration after hepatectomy, the expression of miRNAs and lncRNAs shows dynamic changes. CONCLUSIONS It is now clear that miRNAs and lncRNAs orchestrate in various aspects of the pathophysiological process of LT and hepatectomy. Better understanding of the underlying mechanism and future clinical trials may strengthen their positions as either biomarkers or potential therapeutic targets in the management of complications after liver surgery.
Collapse
Affiliation(s)
- Zhi-Qiu Hu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Yi Lu
- Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China; Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Di Cui
- Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Chen-Yang Ma
- Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Su Shao
- Department of General Surgery, Chun'an 1st People's Hospital, Hangzhou 311700, China
| | - Ping Chen
- Department of Obstetrics and Gynecology, Shaoxing 2nd Hospital, Shaoxing 312000, China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China; Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Jian-Jun Wang
- Department of General Surgery, Chun'an 1st People's Hospital, Hangzhou 311700, China.
| |
Collapse
|
10
|
Chen X, Huang Y, Shi D, Nie C, Luo Y, Guo L, Zou Y, Xie C. LncRNA ZNF667-AS1 Promotes ABLIM1 Expression by Adsorbing micro RNA-1290 to Suppress Nasopharyngeal Carcinoma Cell Progression. Onco Targets Ther 2020; 13:4397-4409. [PMID: 32606725 PMCID: PMC7248807 DOI: 10.2147/ott.s245554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Recently, long non-coding RNAs (lncRNAs) have been elucidated to play essential roles in cancers, and the recognition of lncRNA expression patterns in nasopharyngeal carcinoma (NPC) may be helpful for indicating novel mechanisms underlying NPC carcinogenesis. Herein, we conducted this study to probe into the function of lncRNA ZNF667-AS1 in NPC progression with the involvement of microRNA-1290 (miR-1290) and actin-binding LIM protein 1 (ABLIM1). Materials and Methods In silico analysis screened differentially expressed genes and miRNAs in NPC and predicted potential mechanisms. ZNF667-AS1 expression was detected in NPC tissues and cells. The gain-and-loss function assays were performed to explore the effects of lncRNA ZNF667-AS1 and miR-1290 in NPC cell biological behaviors. In vivo experiments were further conducted to confirm the in vitro results. Results In silico analysis predicted that ZNF667-AS1 was diminished in NPC, which may downregulate ABLIM1 through sponging miR-1290. ZNF667-AS1 was poorly expressed in NPC tissues and cells, and overexpression of ZNF667-AS1 inhibited growth of NPC cells. ZNF667-AS1 competitively bound with miR-1290, thereby upregulating ABLIM1. miR-1290 resulted in the promotion of NPC cell progression by suppressing ABLIM1. Overexpression of ZNF667-AS1 or suppression of miR-1290 inhibited tumorigenicity of NPC cells in vivo. Conclusion This study highlights that lncRNA ZNF667-AS1 promotes ABLIM1 expression by sponging miR-1290 to suppress NPC cell progression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology, Guangdong Women and Children Hospital, Guang Zhou, Guangdong, 511400, People's Republic of China.,Department of Otorhinolaryngology, People's Hospital of Longhua,Guangdong,People's Republic of China
| | - Yaping Huang
- Department of Otorhinolaryngology, Guangdong Women and Children Hospital, Guang Zhou, Guangdong, 511400, People's Republic of China
| | - Dianyu Shi
- Department of Otorhinolaryngology, People's Hospital of Longhua,Guangdong,People's Republic of China
| | - Chuan Nie
- Department of Neonatology, Guangdong Women and Children Hospital, Guang Zhou 511400, Guangdong, People's Republic of China
| | - Yiping Luo
- Department of Internal Medicine, Guangdong Women and Children Hospital, Guang Zhou 511400, Guangdong, People's Republic of China
| | - Liangfen Guo
- Department of Otorhinolaryngology, Guangdong Women and Children Hospital, Guang Zhou, Guangdong, 511400, People's Republic of China
| | - Yu Zou
- Department of Otorhinolaryngology, Guangdong Women and Children Hospital, Guang Zhou, Guangdong, 511400, People's Republic of China
| | - Chun Xie
- Department of Stomatology, People's Hospital of Longhua, Shenzhen 518109, Guangdong, People's Republic of China
| |
Collapse
|
11
|
Bell CC, Chouhan B, Andersson LC, Andersson H, Dear JW, Williams DP, Söderberg M. Functionality of primary hepatic non-parenchymal cells in a 3D spheroid model and contribution to acetaminophen hepatotoxicity. Arch Toxicol 2020; 94:1251-1263. [PMID: 32112222 PMCID: PMC7225187 DOI: 10.1007/s00204-020-02682-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
In addition to hepatocytes, the liver comprises a host of specialised non-parenchymal cells which are important to consider in the development of in vitro models which are both physiologically and toxicologically relevant. We have characterized a 3D co-culture system comprising primary human hepatocytes (PHH) and non-parenchymal cells (NPC) and applied it to the investigation of acetaminophen-induced toxicity. Firstly, we titrated ratios of PHH:NPC and confirmed the presence of functional NPCs via both immunohistochemistry and activation with both LPS and TGF-β. Based on these data we selected a ratio of 2:1 PHH:NPC for further studies. We observed that spheroids supplemented with NPCs were protected against acetaminophen (APAP) toxicity as determined by ATP (up to threefold difference in EC50 at day 14 compared to hepatocytes alone) and glutathione depletion, as well as miR-122 release. APAP metabolism was also altered in the presence of NPCs, with significantly lower levels of APAP-GSH detected. Expression of several CYP450 enzymes involved in the bioactivation of APAP was also lower in NPC-containing spheroids. Spheroids containing NPCs also expressed higher levels of miRNAs which have been implicated in APAP-induced hepatotoxicity, including miR-382 and miR-155 which have potential roles in liver regeneration and inflammation, respectively. These data indicate that the interaction between hepatocytes and NPCs can have significant metabolic and toxicological consequences important for the correct elucidation of hepatic safety mechanisms.
Collapse
Affiliation(s)
- Catherine C Bell
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Bhavik Chouhan
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda C Andersson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Håkan Andersson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - James W Dear
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic P Williams
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Magnus Söderberg
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
12
|
Zhang C, Ye B, Wei J, Wang Q, Xu C, Yu G. MiR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-α TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4110-4118. [PMID: 31682476 DOI: 10.1080/21691401.2019.1683566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abnormally expressed miR-199a-5p (miR-199a) has been frequently reported in multiple types of malignancies. Nevertheless, its effect in liver regeneration (LR) is largely still unclear. Herein, we investigated the function of miR-199a in hepatocyte proliferation during LR. As a result, miR-199a expression was significantly increased 12-30 h, in rat hepatic tissue, after partial hepatectomy (PH). The down-regulated expression of miR-199a inhibited proliferation as well as promoted cell apoptosis of BRL-3A. Additionally, TNF-α was found as a target of miR-199a. The administration of TNF-α siRNA regulated the effects of miR-199a on hepatocyte proliferation as well as miR-199a-modulated TNF-α/TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathways. Taken together, these present findings suggested that miR-199a promoted hepatocyte proliferation as well as LR via targeting TNF-α/TNFR1/TRADD/CASPASE8/CASPASE3.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jiaojiao Wei
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qiwen Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan International Joint Laboratory for Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
13
|
Bangru S, Kalsotra A. Cellular and molecular basis of liver regeneration. Semin Cell Dev Biol 2020; 100:74-87. [PMID: 31980376 DOI: 10.1016/j.semcdb.2019.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in genetics and genomics have reinvigorated the field of liver regeneration. It is now possible to combine lineage-tracing with genome-wide studies to genetically mark individual liver cells and their progenies and detect precise changes in their genome, transcriptome, and proteome under normal versus regenerative settings. The recent use of single-cell RNA sequencing methodologies in model organisms has, in some ways, transformed our understanding of the cellular and molecular biology of liver regeneration. Here, we review the latest strides in our knowledge of general principles that coordinate regeneration of the liver and reflect on some conflicting evidence and controversies surrounding this topic. We consider the prominent mechanisms that stimulate homeostasis-related vis-à-vis injury-driven regenerative responses, highlight the likely cellular sources/depots that reconstitute the liver following various injuries and discuss the extrinsic and intrinsic signals that direct liver cells to proliferate, de-differentiate, or trans-differentiate while the tissue recovers from acute or chronic damage.
Collapse
Affiliation(s)
- Sushant Bangru
- Departments of Biochemistry and Pathology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA
| | - Auinash Kalsotra
- Departments of Biochemistry and Pathology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
14
|
Chen X, Jiang C, Sun R, Yang D, Liu Q. Circular Noncoding RNA NR3C1 Acts as a miR-382-5p Sponge to Protect RPE Functions via Regulating PTEN/AKT/mTOR Signaling Pathway. Mol Ther 2020; 28:929-945. [PMID: 32017889 DOI: 10.1016/j.ymthe.2020.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/22/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a universal leading cause for irreversible blindness in the elderly population. Dedifferentiation of retinal pigment epithelium (RPE) cells initiates early pathological events in atrophic AMD. Herein, we aim to investigate effects of a circular RNA derived from the NR3C1 gene (circNR3C1) on regulating RPE function and AMD pathogenesis. circNR3C1 expression was consistently upregulated along with RPE differentiation and was downregulated in dysfunctional RPE and blood serum of AMD patients. Silencing of circNR3C1 reduced RPE characteristic transcripts and proteins, interrupted phagocytosis, accelerated intracellular reactive oxygen species (ROS) generation, and promoted RPE proliferation in vitro. circN3C1 silencing also decreased expressions of RPE characteristic markers and disturbed the ultrastructure of RPE in vivo, as shown by a thickened RPE with twisted basal infoldings and outer segments. Mechanistically, circNR3C1 acted as an endogenous microRNA-382-5p (miR-382-5p) sponge to sequester its activity, which increased phosphatase and tensin homolog on chromosome 10 (PTEN) expression and inhibited the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway. miR-382-5p overexpression and PTEN silencing mimicked effects of circNR3C1 silencing on RPE phenotypes in vivo and in vitro. In conclusion, circNR3C1 prevents AMD progression and protects RPE by directly sponging miR-382-5p to block its interaction with PTEN and subsequently blocks the AKT/mTOR pathway. Pharmacological circNR3C1 supplementations are promising therapeutic options for atrophic AMD.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Ruxu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Daidi Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
Zhang Y, Zheng Y, Zhu G. MiR-203a-3p targets PTEN to promote hepatocyte proliferation by regulating PI3K/Akt pathway in BRL-3A cells. Biosci Biotechnol Biochem 2019; 84:725-733. [PMID: 31814541 DOI: 10.1080/09168451.2019.1694860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study was designed to investigate the role of miR-203a-3p in hepatocyte proliferation. Data analysis showed that up-regulation of miR-203a-3p increased the cell viability and cell proliferation, and inhibited apoptosis. Further experiments demonstrated that PTEN was a target gene of miR-203a-3p, and miR-203a-3p targeted PTEN to regulate the above functions. Overexpression of PTEN partially reversed the inhibition of PTEN and the activation of p-Akt/Akt induced by miR-203a-3p mimic. Our study revealed that miR-203a-3p might activate PI3K/Akt signaling pathway by inhibiting PTEN expression, thereby promoting cell proliferation.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Pancreatic Vascular Surgery, Jingmen First People's Hospital, Jingmen City, China
| | - Yunping Zheng
- Department of Traumatic Hand and Foot Surgery, Jingmen First People's Hospital, Jingmen City, China
| | - Guanmei Zhu
- Department of Urology, Jingmen First People's Hospital, Jingmen City, China
| |
Collapse
|
16
|
Huo KG, Richer C, Berillo O, Mahjoub N, Fraulob-Aquino JC, Barhoumi T, Ouerd S, Coelho SC, Sinnett D, Paradis P, Schiffrin EL. miR-431-5p Knockdown Protects Against Angiotensin II-Induced Hypertension and Vascular Injury. Hypertension 2019; 73:1007-1017. [PMID: 30929512 DOI: 10.1161/hypertensionaha.119.12619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular injury is an early manifestation in hypertension and a cause of end-organ damage. MicroRNAs play an important role in cardiovascular disease, but their implication in vascular injury in hypertension remains unclear. This study revealed using an unbiased approach, microRNA and mRNA sequencing with molecular interaction analysis, a microRNA-transcription factor coregulatory network involved in vascular injury in mice made hypertensive by 14-day Ang II (angiotensin II) infusion. A candidate gene approach identified upregulated miR-431-5p encoded in the conserved 12qF1 (14q32 in humans) microRNA cluster, whose expression correlated with blood pressure, and which has been shown to be upregulated in human atherosclerosis, as a potential key regulator in Ang II-induced vascular injury. Gain- and loss-of-function in human vascular smooth muscle cells demonstrated that miR-431-5p regulates in part gene expression by targeting ETS homologous factor. In vivo miR-431-5p knockdown delayed Ang II-induced blood pressure elevation and reduced vascular injury in mice, which demonstrated its potential as a target for treatment of hypertension and vascular injury.
Collapse
Affiliation(s)
- Ku-Geng Huo
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, Research Center, Centre Hospitalier Universitaire Sainte-Justine (C.R., D.S.), Université de Montréal, Montreal, Quebec, Canada
| | - Olga Berillo
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Nada Mahjoub
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Julio C Fraulob-Aquino
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Tlili Barhoumi
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Sofiane Ouerd
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Suellen C Coelho
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Research Center, Centre Hospitalier Universitaire Sainte-Justine (C.R., D.S.), Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine (D.S.), Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Paradis
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- From the Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (K.-G.H., O.B., N.M., J.C.F.-A., T.B., S.O., S.C.C., P.P., E.L.S.), McGill University, Montreal, Quebec, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Li Y, Yang Z, Wang Y, Wang Y. Long noncoding RNA ZNF667-AS1 reduces tumor invasion and metastasis in cervical cancer by counteracting microRNA-93-3p-dependent PEG3 downregulation. Mol Oncol 2019; 13:2375-2392. [PMID: 31420931 PMCID: PMC6822248 DOI: 10.1002/1878-0261.12565] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022] Open
Abstract
Zinc finger protein 667-antisense RNA 1 (ZNF667-AS1), located on human chromosome 19q13.43, is a member of the C2H2 zinc finger protein family. Herein, we aimed to analyze the interactions between ZNF667-AS1, microRNA-93-3p (miR-93-3p), and paternally expressed gene 3 (PEG3) and to explore their roles in the tumorigenesis of cervical cancer (CC). Differentially expressed long noncoding RNAs and miRNAs related to CC were determined using gene expression datasets sourced from the Gene Expression Omnibus database. Subsequently, the regulatory relationships between ZNF667-AS1 and miR-93-3p and between miR-93-3p and PEG3 were identified using the dual-luciferase reporter gene assay. In addition, the expression of miR-93-3p and ZNF667-AS1 was up- or downregulated in CC cells (HeLa), in order to assess their effects on cell cycle distribution and cell invasion in vitro, and tumor growth and metastasis in vivo. MiR-93-3p was found to be highly expressed, while ZNF667-AS1 and PEG3 were poorly expressed in CC. ZNF667-AS1 could competitively bind to miR-93-3p, which targeted PEG3. In addition, miR-93-3p downregulation and ZNF667-AS1 overexpression led to increased expression of PEG3, tissue inhibitor of metalloproteinases, and p16 and decreased expression of cyclin D1, matrix metalloproteinase-2 and -9. MiR-93-3p inhibition and ZNF667-AS1 elevation also inhibited cell cycle entry and cell invasion in vitro, but repressed tumor growth and metastasis in vivo. These key findings demonstrated that upregulation of ZNF667-AS1 could suppress the progression of CC via the modulation of miR-93-3p-dependent PEG3, suggesting a potential therapeutic target for the treatment of CC.
Collapse
Affiliation(s)
- Yong‐Jie Li
- Department of Obstetrics and GynecologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityHenan University People's HospitalChina
| | - Zhe Yang
- Department of Obstetrics and GynecologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityHenan University People's HospitalChina
| | - Yi‐Ying Wang
- Department of Obstetrics and GynecologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityHenan University People's HospitalChina
| | - Yue Wang
- Department of Obstetrics and GynecologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityHenan University People's HospitalChina
| |
Collapse
|
18
|
Bai H, Guo J, Chang C, Guo X, Xu C, Jin W. Comprehensive analysis of lncRNA-miRNA-mRNA during proliferative phase of rat liver regeneration. J Cell Physiol 2019; 234:18897-18905. [PMID: 30916358 PMCID: PMC6617821 DOI: 10.1002/jcp.28529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022]
Abstract
This study aims to reveal the regulatory mechanism of lncRNAs-miRNAs-mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA-miRNA-mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.
Collapse
Affiliation(s)
- Haijing Bai
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Xinxiang, Henan, China
| |
Collapse
|
19
|
Gao X, Zhao P, Hu J, Zhu H, Zhang J, Zhou Z, Zhao J, Tang F. MicroRNA-194 protects against chronic hepatitis B-related liver damage by promoting hepatocyte growth via ACVR2B. J Cell Mol Med 2018; 22:4534-4544. [PMID: 30044042 PMCID: PMC6111826 DOI: 10.1111/jcmm.13714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/03/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent infection with the hepatitis B virus leads to liver cirrhosis and hepatocellular carcinoma. MicroRNAs (miRNAs) play an important role in a variety of biological processes; however, the role of miRNAs in chronic hepatitis B (CHB)-induced liver damage remains poorly understood. Here, we investigated the role of miRNAs in CHB-related liver damage. Microarray analysis of the expression of miRNAs in 22 CHB patients and 33 healthy individuals identified miR-194 as one of six differentially expressed miRNAs. miR-194 was up-regulated in correlation with increased liver damage in the plasma or liver tissues of CHB patients. In mice subjected to 2/3 partial hepatectomy, miR-194 was up-regulated in liver tissues in correlation with hepatocyte growth and in parallel with the down-regulation of the activin receptor ACVR2B. Overexpression of miR-194 in human liver HL7702 cells down-regulated ACVR2B mRNA and protein expression, promoted cell proliferation, acceleratedG1 to S cell cycle transition, and inhibited apoptosis, whereas knockdown of miR-194 had the opposite effects. Luciferase reporter assays confirmed that ACVR2B is a direct target of miR-194, and overexpression of ACVR2B significantly repressed cell proliferation and G1 to S phase transition and induced cell apoptosis. ACVR2B overexpression abolished the effect of miR-194, indicating that miR-194 promotes hepatocyte proliferation and inhibits apoptosis by down-regulating ACVR2B. Taken together, these results indicate that miR-194 plays a crucial role in hepatocyte proliferation and liver regeneration by targeting ACVR2B and may represent a novel therapeutic target for the treatment of CHB-related liver damage.
Collapse
Affiliation(s)
- Xue Gao
- Department of Pathology302 HospitalBeijingChina
| | - Pan Zhao
- Clinical Trial CenterBeijing 302 HospitalBeijingChina
| | - Jie Hu
- Liver Surgery DepartmentZhongshan HospitalFudan UniversityShanghaiChina
- Liver Cancer InstituteFudan UniversityShanghaiChina
| | - Hongguang Zhu
- Department of PathologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyHuashan HospitalFudan UniversityShanghaiChina
| | - Jiming Zhang
- Department of Infectious DiseasesHuashan HospitalFudan UniversityShanghaiChina
| | - Zhongwen Zhou
- Department of PathologyHuashan HospitalFudan UniversityShanghaiChina
| | | | - Feng Tang
- Department of PathologyHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Partial Hepatectomy-Induced Upregulation of miR-1907 Accelerates Liver Regeneration by Activation Autophagy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3817057. [PMID: 30151380 PMCID: PMC6091409 DOI: 10.1155/2018/3817057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
Liver regeneration after partial hepatectomy (PH) is a highly orchestrated biological process in which synchronized hepatocyte proliferation is induced after massive liver mass loss. Hepatocyte proliferation could be regulated by multiple signals, such as miRNAs and autophagy, but underlying mechanism remains unclear. Here a functional miRNA during liver regeneration was identified and its underlying mechanism was delineated in vitro and in vivo. We found that miR-1907 was highly upregulated during liver regeneration after 2/3 PH at various timepoints. The level of miR-1907 was also increased in normal liver cell line treated with HGF at different concentrations. Functionally, miR-1907 enhanced hepatocyte proliferation in vitro and in vivo, and the liver/body weight ratio in miR-1907-overexpressed mice was significantly higher in comparison to the control mice after 2/3 PH. Forced expression of miR-1907 promoted autophagy activation of hepatocyte. Importantly, autophagy inhibition significantly attenuated miR-1907-induced hepatocyte proliferation and the liver/body weight ratio. Finally, GSK3β, a suppressor of autophagy signaling, was identified as the direct target gene of miR-1907. Taken together, miR-1907 accelerates hepatocyte proliferation during liver regeneration by activating autophagy; thus pharmacological intervention regulating miR-1907/autophagy axis may be therapeutically beneficial in liver transplantation and liver failure by inducing liver regeneration.
Collapse
|
21
|
Zhang C, Chang C, Gao H, Wang Q, Zhang F, Xu C. MiR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway. Cell Signal 2018; 50:80-89. [PMID: 29958992 DOI: 10.1016/j.cellsig.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Increasing evidence indicates that miR-429 is involved in tumor suppression in various human cancers. However, its role in liver regeneration remains unexplored. Liver regeneration is a highly orchestrated process that can be regulated by microRNAs (miRNAs), although the mechanisms are largely unclear. In this study, we aimed to identify the role of miR-429 in hepatocyte proliferation during liver regeneration. First, we performed microarray analysis and qRT-PCR. Results indicated that miR-429 level in rat liver markedly decreased 30 h after partial hepatectomy, and miR-429 overexpression disrupted BRL-3A proliferation and the transition of G1 to S phase in rat hepatocyte and promoted hepatocyte apoptosis. By contrast, miR-429 down-regulation had inverse effects. MiR-429 negatively regulated JUN expression in vitro and in vivo. After using JUN siRNA, we found that JUN inhibition mediates the effect of miR-429 in hepatocyte proliferation and growth and miR-429 negatively regulates JUN/MYC/BCL2/CCND1 signaling pathways. Our results also indicated that miR-429 inhibits hepatocyte proliferation and liver regeneration by targeting JUN/MYC/BCL2/CCND1.
Collapse
Affiliation(s)
- Chunyan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hang Gao
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qiwen Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
22
|
Wang S, Wen X, Han X, Wang Y, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Repression of microRNA-382 inhibits glomerular mesangial cell proliferation and extracellular matrix accumulation via FoxO1 in mice with diabetic nephropathy. Cell Prolif 2018; 51:e12462. [PMID: 29701296 PMCID: PMC6528942 DOI: 10.1111/cpr.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a nerve damaging disorder, characterized by glomerular mesangial cell expansion and accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate mesangial cell proliferation and ECM accumulation when promoting or suppressing endogenous miR-382 in glomerular mesangial cells of DN. MATERIALS AND METHODS Model establishment consisted of DN induction by streptozotocin (STZ) in mice. The underlying regulatory mechanisms of miR-382 were analysed in concert with the treatment of miR-382 mimics, miR-382 inhibitors or siRNA against FoxO1 in cultured glomerular mesangial cells isolated from DN mice. RESULTS FoxO1 was identified as the downregulated gene in DN based on the microarray data of GSE1009. We found that miR-382 was significantly upregulated in renal tissues of DN mice and its downregulation dephosphorylated FoxO1, reduced glomerular mesangial cell proliferation and ECM accumulation in vitro. The determination of luciferase activity suggested that miR-382 negatively targeted FoxO1. Expectedly, distinct levels of phosphorylated FoxO1 were observed in the renal cortices of DN mice, while the silencing of FoxO1 was found to increase glomerular mesangial cell proliferation and ECM accumulation in vitro. Reduced glomerular mesangial cell proliferation and ECM accumulation elicited by miR-382 inhibitors were reversed by silencing FoxO1. CONCLUSIONS This study demonstrates miR-382 suppression exerts a potent anti-proliferative effect that may be applied to inhibit glomerular mesangial cell proliferation and ECM accumulation in DN.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina,Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze LakeSchool of Life SciencesHuaiyin Normal UniversityHuaianChina
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
23
|
Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality. Sci Rep 2018; 8:6250. [PMID: 29674689 PMCID: PMC5908868 DOI: 10.1038/s41598-018-24727-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2018] [Indexed: 01/06/2023] Open
Abstract
miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.
Collapse
|
24
|
Zhang L, Liu X, Liu J, Ma X, Zhou Z, Song Y, Cao B. miR-26a promoted endometrial epithelium cells (EECs) proliferation and induced stromal cells (ESCs) apoptosis via the PTEN-PI3K/AKT pathway in dairy goats. J Cell Physiol 2018; 233:4688-4706. [PMID: 29115668 DOI: 10.1002/jcp.26252] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
Abstract
Changes in endometrial cell morphology and function are absolutely necessary for successful embryo implantation. In this study, miR-26a was widely expressed in dairy goats, and was found to be regulated by β-estradiol (E2) and progesterone (P4) in endometrial epithelium cells (EECs) as well as stromal cells (ESCs). Furthermore, miR-26a played a role in the regulation of cells proliferation and apoptosis by directly regulating PTEN and indirectly regulating the PI3K/AKT pathway in EECs but not in ESCs of dairy goats in vitro. In addition, miR-26a regulated the expression of osteopontin (OPN), vascular endothelial growth factor (VEGF), Cyclooxygenase-2 (COX-2), and prolactin (PRL) in endometrial cells. Therefore, we could get a conclusion that miR-26a had very complex and diverse functions in the endometrial cells during the development of endometrial receptivity in dairy goats. This study provided an efficient platform for studying the regulatory effect of miR-26a on endometrial cells during the development of endometrial receptivity in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Junze Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Zhanqin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | | |
Collapse
|
25
|
Hu J, Li P, Song Y, Ge YX, Meng XM, Huang C, Li J, Xu T. Progress and prospects of circular RNAs in Hepatocellular carcinoma: Novel insights into their function. J Cell Physiol 2017; 233:4408-4422. [PMID: 28833094 DOI: 10.1002/jcp.26154] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most predominant subjects of liver malignancies, which arouses global concern in the recent years. Advanced studies have found that Circular RNAs (circRNAs) are differentially expressed in HCC, with its regulatory capacity in HCC pathogenesis and metastasis. However, the underlying mechanism remains largely unknown. In this review, we summarized the functions and mechanisms of those aberrantly expressed circRNAs in HCC tissues. We hope to enlighten more comprehensive studies on the detailed mechanisms of circRNAs and explore their potential values in clinic applications. It revealed that hsa_circ_0004018 can be used as a potential biomarker in HCC diagnosis, with its superior sensitivity to alpha-fetoprotein (AFP). Notably, the correlation of circRNA abundance in the proliferation of liver regeneration (LR) has recently been clarified and different circRNA profiles served as candidates for nonalcoholic steatohepatitis (NASH) diagnosis also be discussed. Therefore, the improved understanding of circRNAs in HCC pathogenesis and metastasis proposed a novel basis for the early diagnosis in HCC patients, which provides a useful resource to explore the pathogenesis of HCC.
Collapse
Affiliation(s)
- Ji Hu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Peng Li
- Department of Medical, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Song
- Department of Pain treatment, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun-Xuan Ge
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Kachaylo E, Tschuor C, Calo N, Borgeaud N, Ungethüm U, Limani P, Piguet AC, Dufour JF, Foti M, Graf R, Clavien PA, Humar B. PTEN Down-Regulation Promotes β-Oxidation to Fuel Hypertrophic Liver Growth After Hepatectomy in Mice. Hepatology 2017; 66:908-921. [PMID: 28437835 DOI: 10.1002/hep.29226] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/17/2017] [Accepted: 04/14/2017] [Indexed: 12/25/2022]
Abstract
UNLABELLED In regenerating liver, hepatocytes accumulate lipids before the major wave of parenchymal growth. This transient, regeneration-associated steatosis (TRAS) is required for liver recovery, but its purpose is unclear. The tumor suppressor phosphatase and tensin homolog (PTEN) is a key inhibitor of the protein kinase B/mammalian target of rapamycin axis that regulates growth and metabolic adaptations after hepatectomy. In quiescent liver, PTEN causes pathological steatosis when lost, whereas its role in regenerating liver remains unknown. Here, we show that PTEN down-regulation promotes liver growth in a TRAS-dependent way. In wild-type mice, PTEN reduction occurred after TRAS formation, persisted during its disappearance, and correlated with up-regulated β-oxidation at the expense of lipogenesis. Pharmacological modulation revealed an association of PTEN with TRAS turnover and hypertrophic liver growth. In liver-specific Pten-/- mice shortly after induction of knockout, hypertrophic regeneration was accelerated and led to hepatomegaly. The resulting surplus liver mass was functional, as demonstrated by raised survival in a lethal model of resection-induced liver failure. Indirect calorimetry revealed lipid oxidation as the primary energy source early after hepatectomy. The shift from glucose to lipid usage was pronounced in Pten-/- mice and correlated with the disappearance of TRAS. Partial inhibition of β-oxidation led to persisting TRAS in Pten-/- mice and abrogated hypertrophic liver growth. PTEN down-regulation may promote β-oxidation through β-catenin, whereas hypertrophy was dependent on mammalian target of rapamycin complex 1. CONCLUSION PTEN down-regulation after hepatectomy promotes the burning of TRAS-derived lipids to fuel hypertrophic liver regeneration. Therefore, the anabolic function of PTEN deficiency in resting liver is transformed into catabolic activities upon tissue loss. These findings portray PTEN as a node coordinating liver growth with its energy demands and emphasize the need of lipids for regeneration. (Hepatology 2017;66:908-921).
Collapse
Affiliation(s)
- Ekaterina Kachaylo
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Christoph Tschuor
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nathalie Borgeaud
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Udo Ungethüm
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Perparim Limani
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Anne-Christine Piguet
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Jean-Francois Dufour
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Rolf Graf
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Pierre A Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Bostjan Humar
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Abstract
Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis. In recent years, there has been substantial progress in innovative techniques to measure miRNAs along with advances in targeted delivery of agents modulating their expression. This has expanded the scope of miRNAs from being important mediators of cell signaling to becoming viable quantitative biomarkers and therapeutic targets. Currently, miRNA therapeutics are in clinical trials for multiple disease areas and vast numbers of patents have been filed for miRNAs involved in various pathological states. In this review, we summarize miRNAs involved in organ injury and repair, specifically with regard to organs that are the most susceptible to injury: the liver, heart and kidney. In addition, we review the current state of knowledge on miRNA biology, miRNA biomarkers and nucleotide-based therapeutics designed to target miRNAs to prevent organ injury and promote repair.
Collapse
Affiliation(s)
- Cory V Gerlach
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Institutes of Medicine, Room 562, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Chen Y, Xu J, Yang C, Zhang H, Wu F, Chen J, Li K, Wang H, Li Y, Li Y, Dai Z. Upregulation of miR-223 in the rat liver inhibits proliferation of hepatocytes under simulated microgravity. Exp Mol Med 2017. [PMID: 28642576 PMCID: PMC5519018 DOI: 10.1038/emm.2017.80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term spaceflight affects numerous organ systems in the body, including metabolic dysfunction. Recently, ample evidence has demonstrated that the liver is a vulnerable organ during spaceflight. However, the changes in hepatocyte proliferation and cell cycle control under microgravity remain largely unexplored. In the present study, we first confirmed that the serum levels of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase, biochemical markers of liver function, were altered in rats under tail suspension (TS) conditions to simulate microgravity, as shown in previous reports. Next, we demonstrated that the cell proliferation activity, determined by Ki67, PCNA and PH3, was significantly decreased at the different TS time points (TS for 14, 28 and 42 days) compared with that in the control group. Consistently, the positive cell cycle regulators Ccna2, Ccnd1, Cdk1, Cdk2 and cyclin D3 were also significantly decreased in the TS groups as shown by quantitative real-time PCR and western blotting analysis. Subsequent analysis revealed that the aberrant hepatocyte proliferation inhibition under simulated microgravity was associated with the upregulation of miR-223 in the liver. We further found that miR-223 inhibited the proliferation of Hepa1-6 cells and identified CDK2 and CUL1 as its direct targets. In addition, the decreased expression of CDK2 and CUL1 was negatively correlated with the level of p27 in vitro and in vivo, which may have been responsible for retarding hepatocyte proliferation. Collectively, these data indicate that upregulation of miR-223 was associated with the inhibition of liver cell growth and reveal the role of miR-223 in rat hepatocyte proliferation disorders and the pathophysiological process under simulated microgravity.
Collapse
Affiliation(s)
- Yongjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ji Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jian Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Li
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
29
|
Cheng R, Dang R, Zhou Y, Ding M, Hua H. MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Hum Cell 2017; 30:192-200. [PMID: 28251559 DOI: 10.1007/s13577-017-0163-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/19/2017] [Indexed: 01/11/2023]
Abstract
To investigate the effects of miR-98 on TGF-β1-induced cardiac fibrosis in human cardiac fibroblasts (HCFs), and to establish the mechanism underlying these effects, HCFs were transfected with miR-98 inhibitor or mimic, and then treated with or without TGF-β1. The level of miR-98 was determined by qRT-PCR in TGF-β1-induced HCFs. Cell differentiation and collagen accumulation of HCFs were detected by qRT-PCR and Western blot assays, respectively. The mRNA and protein expressions of TGFBR1 were determined by qRT-PCR and Western blotting. In this study, the outcomes showed that TGF-β1 could dramatically decrease the level of miR-98 in a time- and concentration-dependent manner. Upregulation of miR-98 dramatically improved TGF-β1-induced increases in cell differentiation and collagen accumulation of HCFs. Moreover, bioinformatics analysis predicted that the TGFBR1 was a potential target gene of miR-98. Luciferase reporter assay demonstrated that miR-98 could directly target TGFBR1. Inhibition of TGFBR1 had the similar effect as miR-98 overexpression. Downregulation of TGFBR1 in HCFs transfected with miR-98 inhibitor partially reversed the protective effect of miR-98 overexpression on TGF-β1-induced cardiac fibrosis in HCFs. Upregulation of miR-98 ameliorates TGF-β1-induced differentiation and collagen accumulation of HCFs by downregulation of TGFBR1. These results provide further evidence for protective effect of miR-98 overexpression on TGF-β1-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Ranran Cheng
- Affiliated Hospital, Medical Department, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China.
- College of Medicine, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China.
| | - Ruiying Dang
- Emergency Department, Affiliated Hospital, Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei, People's Republic of China
| | - Yan Zhou
- Affiliated Hospital, Medical Department, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China
- College of Medicine, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China
| | - Min Ding
- College of Medicine, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China
| | - Huikun Hua
- College of Medicine, Hebei University of Engineering, Handan, 056002, Hebei, People's Republic of China
| |
Collapse
|
30
|
Wang XP, Zhou J, Han M, Chen CB, Zheng YT, He XS, Yuan XP. MicroRNA-34a regulates liver regeneration and the development of liver cancer in rats by targeting Notch signaling pathway. Oncotarget 2017; 8:13264-13276. [PMID: 28129650 PMCID: PMC5355094 DOI: 10.18632/oncotarget.14807] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the role of microRNA-34a (miR-34a) in regulating liver regeneration (LR) and the development of liver cancer in rats by targeting Notch signaling pathway. METHODS Thirty male Sprague-Dawley (SD) rats were randomly assigned into partial hepatectomy (PH) group and sham hepatectomy (SH) group. Hematoxylin and eosin (HE) staining was used to observe the histological change in liver tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels. Dual-luciferase reporter gene assay was performed to examine whether miR-34a targeted Notch1 gene. Human liver cancer Huh7 cells were transfected and divided into blank, negative control (NC), miR-34a mimics and miR-34a inhibitors groups. MTT and flow cytometry were used to detect cell growth, and cell cycle and apoptosis, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied detect to the expressions of miR-34a and Notch receptor mRNA. Western blotting was performed to detect the protein expressions of Notch receptors, P21, Bax, Bcl-2 and Bcl-xL. Tumor xenograft in nude mice was done to observe tumor formation in different groups. RESULTS Compared to the SH group, miR-34a expression in liver tissues in the PH group decreased first and then increased to the normal level during LR. In early stage of LR, the expressions of Notch receptors and miR-34a were negatively correlated. Compared to the blank and NC groups, the cell growth was inhibited, cell cycle was mainly arrested in the G2/M phase and cell apoptosis rate increased in the miR-34a mimics group. Moreover, the expressions of miR-34a, P21 and Bax were up-regulated, while the expressions of Notch receptors, and Bcl-2 and Bcl-xL were down-regulated in this group. Additionally, the tumor growth in the miR-34a mimics group was reduced. The miR-34a inhibitors group showed contrary tendencies. CONCLUSION Our study demonstrates that miR-34a regulated LR and the development of liver cancer by inhibiting Notch signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Jian Zhou
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Ming Han
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Chuan-Bao Chen
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Yi-Tao Zheng
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Xiao-Shun He
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Xiao-Peng Yuan
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| |
Collapse
|
31
|
Li L, Guo J, Chen Y, Chang C, Xu C. Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genomics 2017; 18:80. [PMID: 28086788 PMCID: PMC5237265 DOI: 10.1186/s12864-016-3476-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rat liver regeneration (LR) proceeds along a process of highly organized and ordered tissue growth in response to the loss or injury of liver tissue, during which many physiological processes may play important roles. The molecular mechanism of hepatocyte proliferation, energy metabolism and substance metabolism during rat LR had been elucidated. Further, the correlation of circular RNA (circRNA) abundance with proliferation has recently been clarified. However, the regulatory capacity of circRNA in rat LR remains a fascinating topic. RESULTS To investigate the regulatory mechanism of circRNA during priming phase of rat LR, high-throughput RNA sequencing technology was performed to unbiasedly profile the expression of circRNA during priming phase of rat LR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis was conducted to predict the functions of differentially expressed circRNAs and their host linear transcripts. Co-expression networks of circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed LR-related circRNAs and the condition of their miRNA binding sites. To excavate the key circRNAs in the early phase of rat LR, we comprehensively evaluated and integrated the relationship of expression level between the circRNAs and the linear transcripts as well as the distribution of miRNA binding sites in circRNA sequences. CONCLUSIONS This paper is the first to employ the comprehensive circRNA expression profile and to investigate circRNA-miRNA interactions during priming phase of rat LR. Two thousand four hundred twelve circRNAs were detected, and 159 circRNAs deriving from 116 host linear transcripts differentially expressed (p < 0.05). Six significantly changed circRNAs during priming phase of rat LR were screened as key circle molecules, and then were validated by qRT-PCR. This study will lay the foundation for revealing the functional roles of circRNAs during rat LR and help solve the remaining clinical problems.
Collapse
Affiliation(s)
- Lifei Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Xinxiang, 453007, Henan Province, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Xinxiang, 453007, Henan Province, China
| | - Yanhui Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Xinxiang, 453007, Henan Province, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan Province, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Xinxiang, 453007, Henan Province, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan Province, China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Xinxiang, 453007, Henan Province, China.
| |
Collapse
|
32
|
Lauschke VM, Mkrtchian S, Ingelman-Sundberg M. The role of microRNAs in liver injury at the crossroad between hepatic cell death and regeneration. Biochem Biophys Res Commun 2016; 482:399-407. [PMID: 27789285 DOI: 10.1016/j.bbrc.2016.10.084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 02/07/2023]
Abstract
The liver fulfills critical metabolic functions, such as controlling blood sugar and ammonia levels, and is of central importance for lipid metabolism and detoxification of environmental and chemical agents, including drugs. Liver injuries of different etiology can elicit a spectrum of responses. Some hepatocytes initiate molecular programs resulting in cell death, whereas others undergo cellular divisions to regenerate the damaged organ. Interestingly, recent research indicates that microRNAs serve as very rapid as well as long-term regulators in these processes. In this review, we discuss their importance in liver disease etiology and progression as well as for therapy with particular focus on metabolic and inflammatory conditions. Furthermore, we highlight the central role of microRNAs in controlling hepatocyte differentiation and plasticity, which are required for successful regeneration, but under certain conditions, such as chronic liver insults, can result in the formation of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institute, Stockholm, Sweden.
| | - Souren Mkrtchian
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institute, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
33
|
Zhang W, Liu J, Qiu J, Fu X, Tang Q, Yang F, Zhao Z, Wang H. MicroRNA-382 inhibits prostate cancer cell proliferation and metastasis through targeting COUP-TFII. Oncol Rep 2016; 36:3707-3715. [PMID: 27748848 DOI: 10.3892/or.2016.5141] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in cancer that are implicated in regulation of various cellular processes. miR-382 has been proposed as a tumor suppressor by several recent studies. However, the function of miR-382 in prostate cancer remains unknown. In this study, we aimed to investigate the potential function of miR-382 in prostate cancer. We found that miR-382 was significantly decreased in prostate cancer specimens and cancer cell lines. The overexpression of miR-382 in prostate cancer cells markedly inhibited cell proliferation, migration, and invasion. In contrast, miR-382 suppression exhibited an opposite effect. Target analysis predicted that chicken ovalbumin upstream promoter transcription factor II (COUP‑TFII) was a direct target of miR-382. This prediction was experimentally confirmed by dual-luciferase reporter assay, real-time quantitative polymerase chain reaction, and western blot analysis. Our results further demonstrated that miR-382 inhibited the downstream genes of COUP‑TFII, including Snail and matrix metalloproteinase 2 (MMP2). Moreover, the restoration of COUP‑TFII expression significantly blocked the inhibitory effect of miR-382 on cell proliferation, migration, and invasion, and Snail expression. Taken together, this study suggests that miR-382 inhibits prostate cancer cell proliferation and metastasis through inhibiting COUP‑TFII, representing an important new mechanism for understanding prostate cancer pathogenesis and providing a novel therapeutic candidate target for prostate cancer therapy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianzhou Liu
- Department of Urology, Central Hospital of Baoji, Baoji, Shaanxi 721008, P.R. China
| | - Jianxin Qiu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoliang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhiguang Zhao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
34
|
Zhong C, Wang K, Liu Y, Lv D, Zheng B, Zhou Q, Sun Q, Chen P, Ding S, Xu Y, Huang H. miR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med 2016; 20:1191-7. [PMID: 27061862 PMCID: PMC4882982 DOI: 10.1111/jcmm.12858] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiac fibrosis is a fundamental constituent of a variety of cardiac dysfunction, making it a leading cause of death worldwide. However, no effective treatment for cardiac fibrosis is available. Therefore, novel therapeutics for cardiac fibrosis are highly needed. Recently, miR‐19b has been found to be able to protect hydrogen peroxide (H2O2)‐induced apoptosis and improve cell survival in H9C2 cardiomyocytes, while down‐regulation of miR‐19b had opposite effects, indicating that increasing miR‐19b may be a new therapeutic strategy for attenuating cellular apoptosis during myocardial ischaemia–reperfusion injury. However, considering the fact that microRNAs might exert a cell‐specific role, it is highly interesting to determine the role of miR‐19b in cardiac fibroblasts. Here, we found that miR‐19b was able to promote cardiac fibroblast proliferation and migration. However, miR‐19b mimics and inhibitors did not modulate the expression level of collagen I. Pten was identified as a target gene of miR‐19b, which was responsible for the effect of miR‐19b in controlling cardiac fibroblast proliferation and migration. Our data suggest that the role of miR‐19b is cell specific, and systemic miR‐19b targeting in cardiac remodelling might be problematic. Therefore, it is highly needed and also urgent to investigate the role of miR‐19b in cardiac remodelling in vivo.
Collapse
Affiliation(s)
- Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Kun Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Ying Liu
- Department of Cardiology, Shanghai Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongchao Lv
- School of Life Science, Shanghai University, Shanghai, China
| | - Bo Zheng
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Qiulian Zhou
- School of Life Science, Shanghai University, Shanghai, China
| | - Qi Sun
- School of Life Science, Shanghai University, Shanghai, China
| | - Ping Chen
- School of Life Science, Shanghai University, Shanghai, China
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| |
Collapse
|