1
|
Lenskaya V, Yang RK, Aung PP, Prieto VG, Nagarajan P, Cho WC. NSD3::FGFR1 : A Novel Gene Fusion First to Be Described in Merkel Cell Carcinoma. Am J Dermatopathol 2025; 47:400-403. [PMID: 40036479 DOI: 10.1097/dad.0000000000002953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
ABSTRACT Merkel cell carcinomas (MCCs) exhibit diverse molecular profiles, often categorized by their association with Merkel cell polyoma virus (MCPyV). MCPyV-associated MCCs typically display a low tumor mutational burden (TMB), lacking both somatic mutations and ultraviolet signature. By contrast, MCPyV-negative MCCs commonly arise in sun-exposed skin and frequently exhibit a high TMB, along with TERT promoter mutation (TPM) and somatic mutations, particularly in TP53 and RB1 . Gene fusions are exceedingly rare in MCCs, and their specific frequency and fusion transcripts remain largely unexplored. Here, we present a unique case of MCPyV-associated MCC characterized by NSD3::FGFR1 fusion, representing a novel fusion transcript not previously reported in MCCs. A 72-year-old White man presented with a cyst-like nodule on the left elbow, which had progressively increased in size over a span of 6 months. Excisional biopsy specimen revealed a neuroendocrine carcinoma diffusely expressing CK20 (perinuclear dot-like), synaptophysin, CD56, NSE, and MCPyV, consistent with MCC. Next-generation sequencing identified a NSD3::FGFR1 fusion without any additional somatic mutations, including TP53 and RB1 mutations, or TPM. Although NSD3::FGFR1 fusion has been sporadically reported in other solid tumors, such as pulmonary squamous cell carcinoma, its identification in an MCC is unprecedented to our knowledge. This novel finding not only underscores the uniqueness of our case but also contributes to the evolving understanding of the molecular landscape of MCCs, particularly MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Volha Lenskaya
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | |
Collapse
|
2
|
Catozzi A, Peiris Pagès M, Humphrey S, Revill M, Morgan D, Roebuck J, Chen Y, Davies-Williams B, Brennan K, Mukarram Hossain ASM, Makeev VJ, Satia K, Sfyri PP, Galvin M, Coles D, Lallo A, Pearce SP, Kerr A, Priest L, Foy V, Carter M, Caeser R, Chan JM, Rudin CM, Blackhall F, Frese KK, Dive C, Simpson KL. Functional characterization of the ATOH1 molecular subtype indicates a pro-metastatic role in small cell lung cancer. Cell Rep 2025; 44:115603. [PMID: 40305287 PMCID: PMC12116416 DOI: 10.1016/j.celrep.2025.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/09/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Molecular subtypes of small cell lung cancer (SCLC) have been described based on differential expression of the transcription factors (TFs) ASCL1, NEUROD1, and POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC circulating tumor cell-derived explant (CDX) model biobank. Here, we show that ATOH1 protein is detected in 7 of 81 preclinical models and 16 of 102 clinical samples of SCLC. In CDX models, ATOH1 directly regulates neurogenesis and differentiation programs, consistent with roles in normal tissues. In ex vivo cultures of ATOH1+ CDXs, ATOH1 is required for cell survival. In vivo, ATOH1 depletion slows tumor growth and suppresses liver metastasis. Our data validate ATOH1 as a bona fide lineage-defining TF of SCLC with cell survival and pro-metastatic functions. Further investigation exploring ATOH1-driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
Collapse
Affiliation(s)
- Alessia Catozzi
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Maria Peiris Pagès
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Sam Humphrey
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Mitchell Revill
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Derrick Morgan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Jordan Roebuck
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Yitao Chen
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Bethan Davies-Williams
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Kevin Brennan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - A S Md Mukarram Hossain
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Vsevolod J Makeev
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Karishma Satia
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Pagona P Sfyri
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Melanie Galvin
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Darryl Coles
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Alice Lallo
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK
| | - Simon P Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Lynsey Priest
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Victoria Foy
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Mathew Carter
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph M Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK
| | - Kristopher K Frese
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK.
| | - Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester and London, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
3
|
Cunningham CR, Dimopoulos YP, García-Quiñones IM, Milton DR, Delgado-Vélez M, Cho WC, Prieto VG, Lasalde-Dominicci JA, Ballester LY, Aung PP. Nicotinic Acetylcholine Receptor Expression in Merkel Cell Carcinoma Is Associated With Clinical and Histopathologic Parameters. J Cutan Pathol 2025; 52:317-323. [PMID: 39814046 DOI: 10.1111/cup.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored. In this study, we investigated if MCC expresses nAChRs and if nAChR expression correlates with patient characteristics. METHODS The study included 71 MCC cases diagnosed with sufficient tissue available to perform immunohistochemical analysis. The median follow-up was 29.8 months (range, 2.7-234.1). We performed immunohistochemistry using antibodies against the α3, α5, and α7nAChR subunits. RESULTS Our results show that the majority of MCC cases expressed α3, α5, and α7-nAChR subunits. Of the 71 cases, 59 (83%) expressed α3-nAChR, 71 (100%) expressed α5-nAChR, and 63 (88%) expressed α7-nAChR. Location of immunoreactivity differed between cases and included cytoplasmic only and nuclear/peri-nuclear, with variation in the intensity of staining. There were significant correlations between the intensity or location of immunoreactivity and clinical and histopathologic parameters. CONCLUSIONS These findings seem to support that MCC displays the features of neural crest cells, and suggest the potential for nAChR-targeted therapy.
Collapse
Affiliation(s)
- Christopher R Cunningham
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yiannis P Dimopoulos
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manuel Delgado-Vélez
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico, USA
- Department of Pharmaceutical Sciences, University of Puerto Rico, School of Pharmacy, San Juan, Puerto Rico, USA
| | - Woo Cheal Cho
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Singh H, Mohanto S, Kumar A, Mishra AK, Kumar A, Mishra A, Ahmed MG, Singh MK, Yadav AP, Chopra S, Chopra H. Genetic and molecular profiling in Merkel Cell Carcinoma: Focus on MCPyV oncoproteins and emerging diagnostic techniques. Pathol Res Pract 2025:155869. [PMID: 40023704 DOI: 10.1016/j.prp.2025.155869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Merkel Cell Carcinoma (MCC) is an uncommon yet highly malignant form of skin cancer, frequently linked to the Merkel cell polyomavirus (MCPyV). This review comprehensively covers data from year 2000 to 2024, employing keywords such as MCC, MCPyV Oncoproteins, Immunohistochemistry, Southern Blot, Western Blot, Polymerase Chain Reaction (PCR), Digital Droplet PCR (ddPCR), Next-Generation Sequencing (NGS), and In Situ Hybridization (ISH). The search engines utilized were Google, PubMed Central, Scopus, and other journal databases like ScienceDirect. This review is essential for researchers and the broader medical community as it consolidates two decades of research on the genetic and molecular profiling of MCC, particularly focusing on MCPyV's role in its pathogenesis. It highlights the diagnostic advancements and therapeutic potential of targeting viral oncoproteins and provides insights into the development of both in vivo and in vitro models for better understanding MCC. The findings emphasize the significance of early detection, molecular diagnostics, and personalized treatment approaches, aiming to improve outcomes for patients with this malignant malignancy.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Anil Kumar
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad, Uttar Pradesh 244001, India
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mukesh Kr Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | | | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
5
|
Comut E, Karstarli Bakay OS, Demirkan NC. What is the predominant etiological factor for Merkel cell carcinoma in Turkey: viral infection or sun exposure? BMC Cancer 2025; 25:336. [PMID: 40001006 PMCID: PMC11853799 DOI: 10.1186/s12885-025-13706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin carcinoma. The pathogenesis involves Merkel cell polyomavirus (MCPyV) and ultraviolet radiation exposure. Studies on MCC in Turkey are scarce, with essential data on local etiopathogenic and prognostic factors still lacking. We aimed to analyze the clinical and histopathologic features, biomarkers, and to evaluate these findings alongside Turkish literature to infer the etiopathogenesis, prognosis, and possible treatment options for the disease. METHODS We analyzed the clinicopathologic features of 7 MCC patients diagnosed at the Pathology Department of Pamukkale University between 2003 and 2024 in this retrospective study. Clinical data was retrieved from the hospital's electronic records. Formalin-fixed, paraffin-embedded tumor specimens stained with hematoxylin-eosin were examined microscopically. MCPyV, Retinoblastoma 1 (RB1), p53, PRAME, PD-L1, and MMR proteins were evaluated immunohistochemically. Research on MCC from Turkey was sourced from Turkish databases (ULAKBIM, Turkiye Atif Dizini, DergiPark, Turk Medline) and international databases (Pubmed, Google Scholar, Scopus, Embase). The literature review identified original research, case reports, theses, and conference presentations. RESULTS The patients in our series, all aged over 50 (mean age 76.1 ± 14.8), with a slight predominance of one gender (F: M = 1.33:1). During a mean follow-up of 16.1 months, 42.9% (3/7) had lymph node metastases, and 57.1% (4/7) showed distant metastases. PRAME was positive in 42.9% of the cases (3/7). The total number of MCC cases reported from Turkey was estimated at 227 ± 46, with MCPyV status available in a subset, showing a positivity rate of 70.3%. PD-L1 expression was observed in the tumor microenvironment in 55% of virus-positive MCC cases from Turkey. CONCLUSIONS The 9% incidence of gluteal localization in Turkish MCC cases, considering its geographical significance, is noteworthy. Notably, all MCC cases from Turkey in which microsatellite instability status has been assessed were found to be microsatellite stable. PRAME should be investigated in larger series for its potential role in the shared oncogenic pathways of MCC.
Collapse
Affiliation(s)
- Erdem Comut
- Faculty of Medicine, Department of Pathology, Pamukkale University, Denizli, 20000, Turkey.
| | - Ozge S Karstarli Bakay
- Faculty of Medicine, Department of Dermatology, Pamukkale University, Denizli, 20000, Turkey
| | - Nese Calli Demirkan
- Faculty of Medicine, Department of Pathology, Pamukkale University, Denizli, 20000, Turkey
| |
Collapse
|
6
|
Gelb T, Garman KA, Urban D, Coxon A, Gryder B, Hill NT, Miao L, Lee T, Lee O, Chakka S, Braisted J, Jarvis JE, Glavin R, Raj TS, Xiao Y, Difilippantonio S, Wang AQ, Shen M, Cheng KCC, Lal-Nag M, Hall MD, Brownell I. High-throughput screening identifies Aurora kinase B as a critical therapeutic target for Merkel cell carcinoma. Nat Commun 2025; 16:1583. [PMID: 39939315 PMCID: PMC11822212 DOI: 10.1038/s41467-025-56504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer. Most MCCs contain Merkel cell polyomavirus (virus-positive MCC; VP-MCC), and the remaining are virus-negative (VN-MCC). Immune checkpoint inhibitors are the first-line treatment for metastatic MCC, but durable responses are achieved in less than 50% of patients. To identify new treatments, we screen ~4,000 compounds for their ability to reduce MCC viability and demonstrate that VP-MCC and VN-MCC exhibit distinct response profiles. Aurora kinase inhibitors selectively reduce VP-MCC viability, with RNAi screening independently identifying AURKB as an essential gene for MCC survival, especially in VP-MCC. AZD2811, a selective AURKB inhibitor, induces mitotic dysregulation and apoptosis in MCC cells, with greater efficacy in VP-MCC. In mice, AZD2811 nanoparticles inhibit tumor growth and increase survival in both VP-MCC and VN-MCC xenograft models. Overall, our unbiased screens identify AURKB as a promising therapeutic target and AZD2811NP as a potential treatment for MCC.
Collapse
Affiliation(s)
- Tara Gelb
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Khalid A Garman
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Amy Coxon
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Berkley Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Natasha T Hill
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingling Miao
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tobie Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Olivia Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Sirisha Chakka
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - John Braisted
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jordan E Jarvis
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rachael Glavin
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Trisha S Raj
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Xiao
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Ken Chih-Chien Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Madhu Lal-Nag
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Yang J, Lim JT, Santiago Raj PV, Corona MG, Chen C, Khawaja H, Pan Q, Paine-Murrieta GD, Schnellmann RG, Roe DJ, Gokhale PC, DeCaprio JA, Padi M. Integrative analysis reveals therapeutic potential of pyrvinium pamoate in Merkel cell carcinoma. J Clin Invest 2025; 135:e177724. [PMID: 39933141 PMCID: PMC11957690 DOI: 10.1172/jci177724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens on normal human fibroblasts by performing RNA-seq. Our data uncovered changes in expression and regulation of Wnt signaling pathway members. Building on this observation, we bioinformatically evaluated various Wnt pathway perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its antitumor activity in other cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium targets multiple MCC vulnerabilities. Pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and noncanonical Wnt signaling but also inhibits cancer cell growth by activating p53-mediated apoptosis, disrupting mitochondrial function, and inducing endoplasmic reticulum stress. Finally, we demonstrated that pyrvinium reduces tumor growth in an MCC mouse xenograft model. These findings offer a deeper understanding of the role of Wnt signaling in MCC and highlight the utility of pyrvinium as a potential treatment for MCC.
Collapse
Affiliation(s)
- Jiawen Yang
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - James T. Lim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Paul Victor Santiago Raj
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
| | | | - Chen Chen
- University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Hunain Khawaja
- University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Qiong Pan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona R. Ken Coit College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona, USA
- The University of Arizona College of Medicine, Tucson, Arizona, USA
- The University of Arizona, BIO5 Institute, Tucson, Arizona, USA
- Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Denise J. Roe
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Prafulla C. Gokhale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megha Padi
- University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Yeni Erdem B, Baykal C, Ozluk Y, Ahmed MA, Kozanoglu E, Saip P, Buyukbabani N, Ozturk Sari S. Evaluating CK20 and MCPyV Antibody Clones in Diagnosing Merkel Cell Carcinoma. Endocr Pathol 2025; 36:1. [PMID: 39841326 PMCID: PMC11754318 DOI: 10.1007/s12022-024-09845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Merkel cell carcinoma (MCC) is diagnosed through histopathological and immunohistochemical examination of biopsies from skin or other organs. Its distinguishing features include perinuclear dot-like staining with Cytokeratin 20 (CK20) and detection of Merkel cell polyomavirus (MCPyV) using various methods. However, CK20 and MCPyV negative MCC cases have been reported at varying rates. In this single center cross-sectional study, we aimed to determine which clones are more effective in diagnosing MCC by comparing the performance of CK20 antibody clones Ks20.8 and SP33, as well as MCPyV antibody clones Ab3 and CM2B4. Fifty-four patients diagnosed with MCC were included. Among these, 42 cases were primary cutaneous, and 12 cases were nodal MCC. Fifty-two (96.3%) cases were positive with both CK20 clones, while two cases were negative. Clone SP33 stained areas of necrosis, whereas Ks20.8 showed no aberrant staining. MCPyV was detected in 44 cases (81.5%) using clone Ab3 and 39 cases (72.2%) using clone CM2B4. Staining with MCPyV clone Ab3 was diffuse and strong in most cases, while approximately 30% of CM2B4-positive cases exhibited low percentages and/or weak staining, complicating the evaluation. The two CK20-negative cases were also negative with both MCPyV clones. Our data demonstrated that CK20 clone Ks20.8 may be preferred for MCC diagnosis due to its consistent performance and lack of aberrant staining. Similarly, MCPyV clone Ab3 appears superior to CM2B4 for identifying MCPyV-positive cases.
Collapse
Affiliation(s)
- Begum Yeni Erdem
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
| | - Can Baykal
- Department of Dermatology and Venereology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
| | - Yasemin Ozluk
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
| | - Melin A Ahmed
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
| | - Erol Kozanoglu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
| | - Pinar Saip
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
| | - Nesimi Buyukbabani
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey
- Department of Pathology, Koc University Hospital, Davutpasa Caddesi, Zeytinburnu, Istanbul, 34010, Turkey
| | - Sule Ozturk Sari
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Millet Caddesi, Fatih, Istanbul, 34093, Turkey.
| |
Collapse
|
9
|
Tribble JT, Pfeiffer RM, Brownell I, Cahoon EK, Sargen MR, Shiels MS, Luo Q, Cohen C, Drezner K, Hernandez B, Moreno A, Pawlish K, Saafir-Callaway B, Engels EA, Volesky-Avellaneda KD. Merkel Cell Carcinoma and Immunosuppression, UV Radiation, and Merkel Cell Polyomavirus. JAMA Dermatol 2025; 161:47-55. [PMID: 39602110 PMCID: PMC11736500 DOI: 10.1001/jamadermatol.2024.4607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Importance Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer. Quantifying the contribution of major potentially modifiable risk factors to the burden of MCC may inform prevention efforts. Objective To estimate the population attributable fraction of MCC cases in the US that were attributable to major immunosuppressing conditions (eg, HIV, solid organ transplant, chronic lymphocytic leukemia [CLL]), ambient UV radiation [UVR] exposure, and Merkel cell polyomavirus [MCPyV]). Design, Setting, and Participants This epidemiological assessment combined data from population-based registries and case series and included cases of MCC that were diagnosed from January 2001 to December 2019 diagnosed in people with HIV, solid organ transplant recipients, and patients with CLL who were identified through population-based cancer registries and linkages with HIV and transplant registries. UVR-based on cloud-adjusted daily ambient UVR irradiance was merged with cancer registry data on the county of residence at diagnosis. Studies reporting the prevalence of MCPyV in MCC specimens collected in the US were combined via a meta-analysis. Exposures HIV, solid organ transplant, CLL, UVR, and MCPyV. Main Outcomes and Measures Population attributable fraction of MCC cases attributable to major risk factors. Results A total of 38 020 MCCs were diagnosed in the US among xx patients (14 325 [38%] female individuals; 1586 [4%] Hispanic, 561 [1%] non-Hispanic Black, and 35 171 [93%] non-Hispanic White individuals). Compared with the general US population, MCC incidence was elevated among people with HIV (standardized incidence ratio [SIR], 2.78), organ transplant recipients (SIR, 13.1), and patients with CLL (SIR, 5.75). Due to the rarity of these conditions, only 0.2% (95% CI, 0.1%-0.3%) of MCC cases were attributable to HIV, 1.5% (95% CI, 1.4%-1.7%) to solid organ transplant, and 0.8% (95% CI, 0.5%-1.3%) to CLL. Compared with individuals of racial and ethnic minority groups, MCC incidence was elevated among non-Hispanic White individuals at lower and higher ambient UVR exposure levels (incidence rate ratios: 4.05 and 4.91, respectively, for MCC on the head and neck). Overall, 65.1% (95% CI, 63.6%-66.7%) of MCCs were attributable to UVR. Based on a meta-analysis of 19 case series, 63.8% (95% CI, 54.5%-70.9%) of MCCs were attributable to MCPyV. Studies were identified from a MEDLINE search performed on October 12, 2023. Conclusions and Relevance The results of this study suggest that most MCC cases in the US were attributable to ambient UVR exposure or MCPyV, with a small fraction due to immunosuppressive conditions. Efforts to lower MCC incidence could focus on limiting UVR exposure.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/epidemiology
- Carcinoma, Merkel Cell/virology
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/etiology
- Ultraviolet Rays/adverse effects
- Skin Neoplasms/epidemiology
- Skin Neoplasms/virology
- Skin Neoplasms/immunology
- Skin Neoplasms/etiology
- Merkel cell polyomavirus/isolation & purification
- Female
- Male
- Middle Aged
- Immunocompromised Host
- Aged
- Risk Factors
- United States/epidemiology
- Polyomavirus Infections/epidemiology
- Polyomavirus Infections/virology
- Polyomavirus Infections/immunology
- Registries
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Adult
- Organ Transplantation
- HIV Infections/epidemiology
- HIV Infections/immunology
- Incidence
- Aged, 80 and over
Collapse
Affiliation(s)
- Jacob T. Tribble
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Elizabeth K. Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Michael R. Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Meredith S. Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Qianlai Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Colby Cohen
- Florida Department of Health, Tallahassee, Florida
| | - Kate Drezner
- HIV/AIDS, Hepatitis, STD, and TB Administration, DC Health, Washington, DC
| | | | - Adrianne Moreno
- Cancer Epidemiology and Surveillance Branch, Texas Department of States Health Services, Austin
| | - Karen Pawlish
- Cancer Epidemiology Services, New Jersey Department of Health, Trenton
| | | | - Eric A. Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Karena D. Volesky-Avellaneda
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
10
|
Schmocker RK, Nodit L, Ward AJ, Lewis JM, McLoughlin JM, Enomoto LM. Merkel Cell Polyomavirus Antibody in Tumor and Plasma Specimens in Patients with Merkel Cell Carcinoma. Ann Surg Oncol 2025; 32:464-473. [PMID: 39373930 DOI: 10.1245/s10434-024-16292-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV antibodies (MCPyV-Ab) in plasma correlate with survival, while MCPyV-Ab within the tumor has never been investigated. This study evaluated plasma MCPyV-Ab and tumor MCPyV-Ab titers to evaluate their role in outcomes and prognostication. METHODS A single-institution, prospective database was retrospectively reviewed for patients diagnosed with MCC from 2014 to 2021. MCPyV-Ab plasma and tumor titers, as well as patient and treatment factors, were collected. Two-year overall survival (OS) and disease-free survival (DFS) were examined based on MCPyV-Ab presence in tumor. RESULTS Forty patients were identified, with a median follow-up of 27.6 months. Patients were stratified into four groups based on the presence of MCPyV-Ab in plasma (P+, P-) and tumor (T+, T-). Most patients (60.0%) were P-/T-. Of the remaining patients, 22.5% were P+/T+, 12.5% were P-/T+, and 5.0% were P+/T-. Two-year DFS of the P-/T- group was 16.6 months, which was not different from the other groups (p = 0.79). Two-year OS of P-/T- was 18.3 months, and 2-year OS of P-/T+ was 28.1 months, which was similar between groups (p = 0.80). CONCLUSIONS Most patients P+ for MCPyV had antibody-positive tumors (T+), and P- patients were also T-; however, there was a subset of patients where plasma and tumor antibody findings were incongruent. Patients with MCPyV-Ab in either plasma or tumor had a trend toward improved 2-year DFS and OS, but was limited by a small cohort. This study offers an exploratory investigation into the relationship between plasma and tumor antibodies to MCPyV on which to base future work.
Collapse
Affiliation(s)
- Ryan K Schmocker
- University Surgical Oncology, UT Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA
| | - Laurentia Nodit
- University Pathologists, University of Tennessee, Knoxville, TN, USA
| | - Andrew J Ward
- University Surgical Oncology, UT Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - James M Lewis
- University Surgical Oncology, UT Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA
| | - James M McLoughlin
- University Surgical Oncology, UT Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA
| | - Laura M Enomoto
- University Surgical Oncology, UT Graduate School of Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
11
|
Joseph NM, Umetsu SE, Kim GE, Terry M, Perry A, Bergsland E, Kakar S. Progression of Low-Grade Neuroendocrine Tumors (NET) to High-Grade Neoplasms Harboring the NEC-Like Co-alteration of RB1 and TP53. Endocr Pathol 2024; 35:325-337. [PMID: 39556303 DOI: 10.1007/s12022-024-09835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
High-grade or grade 3 epithelial neuroendocrine neoplasms (G3 NEN) are now divided into grade 3 well-differentiated neuroendocrine tumor (G3 NET) and neuroendocrine carcinoma (NEC), both defined by Ki-67 > 20% and/or > 20 mitoses per 2 mm2. NET and NEC are thought to be distinct tumors with different genetic profiles: NEC classically harbors co-alteration of TP53 and RB1, whereas NET genetics are site-dependent with frequent alterations in MEN1, ATRX, DAXX, and TSC1/2 in pancreatic NETs. Progression from NET to NEC is considered rare and is not well described. While both TP53 and RB1 alterations were initially thought to be rare in NET, recent work has demonstrated the former in up to 35% of high-grade G3 NET and the latter in rare high-grade NEN that progressed from NET. Here, we describe the clinical, pathologic, and molecular features associated with tumor evolution in a series of five patients that had low-grade NET that progressed to high-grade NEN with co-alteration of RB1 and TP53, similar to NEC. Morphology of the high-grade neoplasms remained well-differentiated in some cases despite RB1/TP53 co-alteration and had some NEC-like features in other cases. All five patients died of disease, with a mean overall survival of 41 months from the first metastatic disease and 12 months from acquisition of RB1/TP53 co-alteration. Our data demonstrate that low-grade NET can progress via the acquisition of both TP53 and RB1 alteration, similar to NEC, but whether this represents a transformation from NET to NEC remains unclear.
Collapse
Affiliation(s)
- Nancy M Joseph
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA.
| | - Sarah E Umetsu
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Grace E Kim
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Merryl Terry
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Emily Bergsland
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Sanjay Kakar
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| |
Collapse
|
12
|
Kervarrec T, Cheok Lei K, Sohier P, Macagno N, Jullie ML, Frouin E, Goto K, Taniguchi K, Hamard A, Taillandier A, Tallet A, Bonenfant C, Sahin Y, Barry F, Taibjee S, Cokelaere K, Houben R, Schrama D, Nardin C, Aubin F, Doucet L, Pissaloux D, Tirode F, Fouchardière ADL, Balme B, Laurent-Roussel S, Becker JC, von Deimling A, Samimi M, Cribier B, Battistella M, Calonje E, Guyétan S. Wnt/β-Catenin-Activated Nonpilomatrical Carcinoma of the Skin: A Case Series. Mod Pathol 2024; 37:100586. [PMID: 39094735 DOI: 10.1016/j.modpat.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Among skin epithelial tumors, recurrent mutations in the APC/CTNNB1 genes resulting in activation of the Wnt/β-catenin pathway have been reported predominantly in neoplasms with matrical differentiation. In the present study, we describe the morphologic, immunohistochemical, and genetic features of 16 primary cutaneous carcinomas harboring mutations activating the Wnt/β-catenin pathway without evidence of matrical differentiation, as well as 4 combined tumors in which a similar Wnt/β-catenin-activated carcinoma component was associated with Merkel cell carcinoma (MCC) or pilomatrical carcinoma. Among the pure tumor cases, 6 of 16 patients were women with a median age of 80 years (range, 58-98 years). Tumors were located on the head and neck (n = 7, 44%), upper limb (n = 4, 25%), trunk (n = 3, 18%), and leg (n = 2, 13%). Metastatic spread was observed in 4 cases resulting in death from disease in 1 patient. Microscopically, all cases were poorly differentiated neoplasms infiltrating the dermis and/or subcutaneous tissue. In 13 cases, solid "squamoid" areas were associated with a basophilic component characterized by rosette/pseudoglandular formation resulting in a biphasic appearance. Three specimens consisted only of poorly differentiated carcinoma lacking rosette formation. Immunohistochemical studies showed frequent expression of EMA (100%), BerEP4 (100%), cytokeratin 7 (94%), chromogranin A (44%), synaptophysin (82%), and cytokeratin 20 (69%). Complete loss of Rb expression was observed in all but 1 case. Nuclear β-catenin and CDX2 expressions were detected in all cases. Recurrent pathogenic somatic mutations were observed in APC (60%), CTNNB1 (40%), and RB1 (n = 47%). Global methylation analysis confirmed that cases with rosette formation constituted a homogeneous tumor group distinct from established skin tumor entities (pilomatrical carcinoma, MCC, and squamous cell carcinoma), although the 3 other cases lacking such morphologic features did not. In addition, we identified 4 combined neoplasms in which there was a component showing a similar poorly differentiated rosette-forming carcinoma demonstrating Rb loss and β-catenin activation associated with either MCC (n = 3) or pilomatrical carcinoma (n = 1). In conclusion, we describe a distinctive neoplasm, for which we propose the term "Wnt/β-catenin-activated rosette-forming carcinoma," morphologically characterized by the association of rosette formation, squamous and/or neuroendocrine differentiation, diffuse CDX2 expression, Rb loss, and mutations in CTNNB1/APC genes.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; "Biologie des infections à polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France; CARADERM Network.
| | - Kuan Cheok Lei
- Translational Skin Cancer Research, Department of Dermatology and German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, Essen, Germany, and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Pierre Sohier
- CARADERM Network; Faculté de Médecine, Université Paris Cité, Paris, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Nicolas Macagno
- CARADERM Network; Department of Pathology, Timone University Hospital, Marseille, France
| | - Marie-Laure Jullie
- CARADERM Network; Department of Pathology, Hopital Haut-Leveque, CHU de Bordeaux, Pessac, France
| | - Eric Frouin
- CARADERM Network; Department of Pathology, University Hospital of Poitiers, Poitiers, France; Department of Pathology, University Hospital of Nimes, Nimes, France
| | - Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan; Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, Japan; Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan; Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | - Kohei Taniguchi
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Aymeric Hamard
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Antoine Taillandier
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christine Bonenfant
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Yusuf Sahin
- Department of Pathology, University Hospital of Poitiers, Poitiers, France
| | - Fatoumata Barry
- Department of Pathology, University Hospital of Poitiers, Poitiers, France
| | - Saleem Taibjee
- Poundbury Cancer Institute, Dorchester, Dorset, United Kingdom
| | | | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Charlee Nardin
- Dermatology Department, INSERM 1098, Université de Franche Comté, CHU Besançon, Besançon, France
| | - Francois Aubin
- Dermatology Department, INSERM 1098, Université de Franche Comté, CHU Besançon, Besançon, France
| | - Laurent Doucet
- Department of Pathology, Université de Brest, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France; University of Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France; University of Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France; University of Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Brigitte Balme
- Dermatology Unit, Hospices Civils de Lyon, University Hospital Lyon Sud, Pierre Benite, France
| | | | - Jürgen C Becker
- Translational Skin Cancer Research, Department of Dermatology and German Cancer Consortium (DKTK), Partner Site Essen, University Medicine Essen, Essen, Germany, and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Department of Dermatology, University Clinic Essen, Essen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mahtab Samimi
- "Biologie des infections à polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France; Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Bernard Cribier
- CARADERM Network; Dermatology Clinic, Hôpitaux Universitaires & Université de Strasbourg, Hôpital Civil, Strasbourg, France
| | - Maxime Battistella
- CARADERM Network; Department of Pathology, APHP Hôpital Saint Louis, Université Paris 7, Paris, France
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas' Hospital, London, United Kingdom
| | - Serge Guyétan
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; "Biologie des infections à polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| |
Collapse
|
13
|
D’Angelo SP, Lebbé C, Nghiem P, Brohl AS, Mrowiec T, Leslie T, Georges S, Güzel G, Shah P. Biomarker Analyses Investigating Disease Biology and Associations with Outcomes in the JAVELIN Merkel 200 Trial of Avelumab in Metastatic Merkel Cell Carcinoma. Clin Cancer Res 2024; 30:4352-4362. [PMID: 39047170 PMCID: PMC11443199 DOI: 10.1158/1078-0432.ccr-23-0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Avelumab (anti-PD-L1) became the first approved treatment for metastatic Merkel cell carcinoma (mMCC) based on results from the phase II JAVELIN Merkel 200 trial. In this study, we report exploratory biomarker analyses from the trial. PATIENTS AND METHODS Patients with mMCC (n = 88) with or without prior first-line chemotherapy received avelumab 10 mg/kg every 2 weeks. We conducted analyses on somatic mutations, mutational signatures, and tumor mutational burden using paired whole-exome sequencing. Additionally, we examined gene and gene set expression, immune content from RNA sequencing profiles, as well as tumor PD-L1 and CD8 statuses from IHC and CD8 status from digital pathology. RESULTS Tumors positive for Merkel cell polyomavirus (MCPyV) were characterized by an absence of driver mutations and a low tumor mutational burden, consistent with previous studies. A novel MCPyV-specific host gene expression signature was identified. MCPyV+ tumors had increased levels of immunosuppressive M2 macrophages in the tumor microenvironment, which seemed to correlate with PD-L1 expression; high CD8+ T-cell density in these tumors did not predict response to avelumab. Conversely, in patients with MCPyV- tumors, higher CD8+ T-cell density seemed to be associated with response to avelumab. Mutations in several genes were associated with treatment outcomes. Compared with tumors sampled before chemotherapy, tumors sampled after chemotherapy had downregulated gene signatures for immune responses, including reduced expression of IFNγ-related pathways. Levels of activated dendritic cells in responding patients were higher in patients assessed after versus before chemotherapy. CONCLUSIONS Exploratory analyses provide insights into mMCC biology and potential associations with response to avelumab. Chemotherapy seems to negatively modulate the immune microenvironment.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- Male
- Aged
- Middle Aged
- Mutation
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Aged, 80 and over
- Merkel cell polyomavirus
- Exome Sequencing
- Treatment Outcome
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
Collapse
Affiliation(s)
- Sandra P. D’Angelo
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York.
| | - Céleste Lebbé
- INSERM U976, Université Paris Cite, Dermato-Oncology and CIC AP-HP, Hôpital Saint Louis, Cancer Institute APHP, Nord-Université, Paris, France.
| | - Paul Nghiem
- University of Washington Medical Center at South Lake Union, Seattle, Washington.
| | | | - Thomas Mrowiec
- The healthcare business of Merck KGaA, Darmstadt, Germany.
| | | | | | - Gülseren Güzel
- The healthcare business of Merck KGaA, Darmstadt, Germany.
| | | |
Collapse
|
14
|
Sun L, Verhaegen ME, McGue J, Olivei AC, Dlugosz AA, Frankel TL, Harms PW. Development of a Multiplex Immunofluorescence Assay for Tumor Microenvironment Studies of Human and Murine Merkel Cell Carcinoma. J Transl Med 2024; 104:102128. [PMID: 39182611 PMCID: PMC11502254 DOI: 10.1016/j.labinv.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma. Checkpoint inhibitor immunotherapy plays an essential role in management of advanced MCC; however, predictors of immunotherapy response remain poorly defined. Syngeneic mouse models suitable for testing novel immunotherapy and combination therapy approaches are likely to soon become available and will require assays for evaluating the tumor microenvironment (TME). Multiplex immunofluorescence (mIF) is a powerful approach to characterize the TME for understanding immunotherapy responses and immune surveillance. In this method article, we provide detailed instructions on assay development for mIF, using as examples 2 new mIF panels for TME investigations of human and murine MCC tumors. Specifically, we demonstrate panels that allow simultaneous visualization of the Merkel cell master transcription factor SOX2 for tumor cell identification, alongside T-cell markers (CD3, CD8, and FOXP3), macrophage markers (F4/80 for mouse and CD163 for human tumors), together with the checkpoint marker PD-L1 for human tumors, and the myeloid-derived suppressor cell marker Arg1 for mouse tumors. We provide detailed protocols for investigators to incorporate these mIF panels into their investigations of human and murine MCC. We also provide fundamental guidance for mIF assay development that will be broadly useful for investigators who consider modifying the panels presented in this study or developing their own mIF panels.
Collapse
Affiliation(s)
- Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Monique E Verhaegen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Alberto C Olivei
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Saadh MJ, Mustafa AN, Taher SG, Adil M, Athab ZH, Baymakov S, Alsaikhan F, Bagheri H. Association of polyomavirus infection with lung cancer: A systematic review and meta-analysis. Pathol Res Pract 2024; 262:155521. [PMID: 39182450 DOI: 10.1016/j.prp.2024.155521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
AIM The objective of this study was to investigate the pooled prevalence and possible association between polyomavirus infection and lung cancer. METHODS A systematic publication search was conducted by identifying relevant cross-sectional and case-control studies from major online databases. Heterogeneity, OR, and corresponding 95 % CI were applied to all studies through meta-analysis and forest plot. Random effects models were used to calculate the overall pooled prevalence. Visual inspection of a funnel plot plotting the log-transformed OR and its associated standard error of the log (OR) was combined with the Begg and Egger test to examine the presence and influence of publication bias. Analyzes were performed using Stata software v.14.1. RESULTS 23 articles (33 datasets) were included in the meta-analysis, of which 14 datasets were case/control and the rest were cross-sectional studies. The pooled polyomavirus infection rate in lung cancer patients was 0.06 % (0.02-0.11 %). In subgroup analysis, the pooled prevalence of JCV, MCPyV, KI, SV40, BKV, WU, MU, and STL was 21 %, 7 %, 6 %, 2 %, 0 %, 0 %, 0 %, and 0 % respectively. An association has been found between polyomavirus infection and lung cancer [summary OR 6.33 (95 % CI (1.76-22.77); I2=67.45 %)]. The subgroup analysis, based on the virus type, showed a strong association between MCPyV and lung cancer [summary OR 13.61 (95 % CI 2.41-76.59; I2=40.0 %)]. despite the high prevalence of JCV DNA in lung cancer tissue, analysis of case-control studies showed that JCV is not associated with lung cancer and does not increase the risk of lung cancer. CONCLUSION This study showed a significant association between polyomaviruses infection with lung cancer. The results also revealed a pooled prevalence of 6 % for polyomaviruses in lung tumor patients. Altogether, the findings of the present work suggest that Merkel cell polyomavirus infection is a potential risk factor for lung cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Sada Gh Taher
- National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Sayfiddin Baymakov
- Department of General Surgery and Military-Field surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Vetter VK, Haberecker M, Huber FA, Pauli C. Aberrant positivity for BCOR immunohistochemistry in merkel cell carcinoma - a potential diagnostic pitfall. Diagn Pathol 2024; 19:130. [PMID: 39334415 PMCID: PMC11437883 DOI: 10.1186/s13000-024-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKRGOUND Merkel cell carcinoma (MCC) is a rare, aggressive primary cutaneous neuroendocrine carcinoma, frequently associated with clonal Merkel cell polyomavirus integration. MCC can pose significant diagnostic challenges due to its diverse clinical presentation and its broad histological differential diagnosis. Histologically, MCC presents as a small-round-blue cell neoplasm, where the differential diagnosis includes basal cell carcinoma, melanoma, hematologic malignancies, round cell sarcoma and metastatic small cell carcinoma of any site. We here report strong aberrant immunoreactivity for BCOR in MCC, a marker commonly used to identify round cell sarcomas and other neoplasms with BCOR alterations. METHODS Based on strong BCOR expression in three index cases of MCC, clinically mistaken as sarcoma, a retrospective analysis of three patient cohorts, comprising 31 MCC, 19 small cell lung carcinoma (SCLC) and 5 cases of neoplasms with molecularly confirmed BCOR alteration was conducted. Immunohistochemical staining intensity and localization for BCOR was semi-quantitatively analyzed. RESULTS Three cases, clinically and radiologically mimicking a sarcoma were analyzed in our soft tissue and bone pathology service. Histologically, the cases showed sheets of a small round blue cell neoplasm. A broad panel of immunohistochemistry was used for lineage classification. Positivity for synaptophysin, CK20 and Merkel cell polyoma virus large T-antigen lead to the diagnosis of a MCC. Interestingly, all cases showed strong positive nuclear staining for BCOR, which was included for the initial work-up with the clinical differential of a round cell sarcoma. We analyzed a larger retrospective MCC cohort and found aberrant weak to strong BCOR positivity (nuclear and/or cytoplasmic) in up to 90% of the cases. As a positive control, we compared the expression to a small group of BCOR-altered neoplasms. Furthermore, we investigated a cohort of SCLC as another neuroendocrine neoplasm and found in all cases a diffuse moderate to strong BCOR positivity. CONCLUSIONS This study demonstrates that neuroendocrine neoplasms, such as MCC and SCLC can express strong aberrant BCOR. This might represent a diagnostic challenge or pitfall, in particular when MCC is clinically mistaken as a soft tissue or a bone sarcoma.
Collapse
Affiliation(s)
- Viola Katharina Vetter
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland
| | - Florian Alexander Huber
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8006, Switzerland.
- Medical Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Reinstein ZZ, Zhang Y, Ospina OE, Nichols MD, Chu VA, de Mingo Pulido A, Prieto K, Nguyen JV, Yin R, Segura CM, Usman A, Sell B, Ng S, de la Iglesia JV, Chandra S, Sosman JA, Cho RJ, Cheng JB, Ivanova E, Koralov SB, Slebos RJC, Chung CH, Khushalani NI, Messina JL, Sarnaik AA, Zager JS, Sondak VK, Vaske C, Kim S, Brohl AS, Mi X, Pierce B, Wang X, Fridley BL, Tsai KY, Choi J. Preexisting Skin-Resident CD8 and γδ T-cell Circuits Mediate Immune Response in Merkel Cell Carcinoma and Predict Immunotherapy Efficacy. Cancer Discov 2024; 14:1631-1652. [PMID: 39058036 PMCID: PMC11954000 DOI: 10.1158/2159-8290.cd-23-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 07/28/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with a ∼50% response rate to immune checkpoint blockade (ICB) therapy. To identify predictive biomarkers, we integrated bulk and single-cell RNA sequencing (RNA-seq) with spatial transcriptomics from a cohort of 186 samples from 116 patients, including bulk RNA-seq from 14 matched pairs pre- and post-ICB. In nonresponders, tumors show evidence of increased tumor proliferation, neuronal stem cell markers, and IL1. Responders have increased type I/II interferons and preexisting tissue resident (Trm) CD8 or Vδ1 γδ T cells that functionally converge with overlapping antigen-specific transcriptional programs and clonal expansion of public T-cell receptors. Spatial transcriptomics demonstrated colocalization of T cells with B and dendritic cells, which supply chemokines and costimulation. Lastly, ICB significantly increased clonal expansion or recruitment of Trm and Vδ1 cells in tumors specifically in responders, underscoring their therapeutic importance. These data identify potential clinically actionable biomarkers and therapeutic targets for MCC. Significance: MCC serves as a model of ICB response. We utilized the largest-to-date, multimodal MCC dataset (n = 116 patients) to uncover unique tumor-intrinsic properties and immune circuits that predict response. We identified CD8 Trm and Vδ1 T cells as clinically actionable mediators of ICB response in major histocompatibility complex-high and -low MCCs, respectively.
Collapse
Affiliation(s)
- Zachary Z. Reinstein
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oscar E. Ospina
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matt D. Nichols
- Department of Tumor Metastasis & Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Victoria A. Chu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alvaro de Mingo Pulido
- Department of Tumor Metastasis & Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Karol Prieto
- Department of Tumor Metastasis & Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan V. Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Carlos Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ahmed Usman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brittney Sell
- Department of Tumor Metastasis & Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Spencer Ng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Janis V. de la Iglesia
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sunandana Chandra
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey A. Sosman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Raymond J. Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey B. Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Ellie Ivanova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
| | - Robbert J. C. Slebos
- Department of Head & Neck Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christine H. Chung
- Department of Head & Neck Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jane L. Messina
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Amod A. Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan S. Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Vernon K. Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Sungjune Kim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew S. Brohl
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xinlei Mi
- Department of Preventive Medicine - Biostatistics Quantitative Data Sciences Core, Northwestern University, Chicago, IL, USA
| | - Brian Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brooke L. Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kenneth Y. Tsai
- Department of Tumor Metastasis & Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Melanoma & Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
18
|
Kato J, Hida T, Idogawa M, Tokino T, Uhara H. Genomic profiles of Merkel cell carcinoma in Japan. J Dermatol 2024; 51:1259-1261. [PMID: 39058281 DOI: 10.1111/1346-8138.17401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Junji Kato
- Department of Dermatology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
19
|
Highland B, Morrow WP, Arispe K, Beaty M, Maracaja D. Merkel Cell Carcinoma With Extensive Bone Marrow Metastasis and Peripheral Blood Involvement: A Case Report With Immunohistochemical and Mutational Studies. Appl Immunohistochem Mol Morphol 2024; 32:382-388. [PMID: 38990715 DOI: 10.1097/pai.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive skin cancer of neuroendocrine origin that is typically associated with either the presence of Merkel cell polyomavirus or chronic exposure to ultraviolet (UV) light. We report a case of relapsed MCC that presented with new symptoms of fatigue, back pain, and myeloid left shift identified during scheduled follow-up. The patient was found to have circulating neoplastic cells in the peripheral blood and bone marrow metastasis. Immunohistochemistry for synaptophysin, CD56, INSM-1, CK20, CD117 were positive, whereas CD34, TdT, Chromogranin, CD10, myeloperoxidase, CD3 and CD19 were negative. Flow cytometry of the peripheral blood confirmed the presence of an abnormal nonhematopoietic cell population expressing CD56 positivity. A next-generation sequencing (NGS) panel revealed the presence of variants in RB1, TP53, and other genes, some of which have not been previously described in MCC. This rare presentation highlights the challenges in the diagnosis and management of MCC.
Collapse
Affiliation(s)
| | | | - Karen Arispe
- Department of Pathology, Wake Forest School of Medicine
| | - Michael Beaty
- Department of Pathology, Wake Forest School of Medicine
| | | |
Collapse
|
20
|
Harley RJ, Lyden M, Aribindi S, Socolovsky L, Harley EH. Head and Neck Merkel Cell Carcinoma: Therapeutic Benefit of Adjuvant Radiotherapy for Nodal Disease. Laryngoscope 2024; 134:3587-3594. [PMID: 38401116 DOI: 10.1002/lary.31333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/26/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES To evaluate the therapeutic effect of post-operative radiotherapy (PORT) with respect to nodal status among patients with head and neck Merkel cell carcinoma (HNMCC). METHODS In this retrospective study, we queried Surveillance, Epidemiology, and End Results (SEER) dataset from 2000 through 2019. We included all adult patients who received primary surgical resection for histologically confirmed treatment naive HNMCC. Entropy balancing was used to reweight observations such that there was covariate balance between patients who received PORT and patients who received surgical resection alone. Doubly robust estimation was achieved by incorporating weights into a multivariable cox proportional hazards model. Planned post hoc subgroup analysis was performed to evaluate the impact of PORT by pathological node status. RESULTS Among 752 patients (mean age, 73.3 years [SD 10.8]; 64.2% male; 91.2% White; 41.9% node-positive), 60.4% received PORT. Among node-positive patients, we found that PORT was associated with improved overall survival (OS) (aHR, 0.55; 95% CI, 0.37-0.81; p = 0.003) and improved disease-specific survival (DSS) (aHR, 0.57; 95% CI, 0.35-0.92; p = 0.022). Among node-negative patients, we found that PORT was not associated with OS and was associated with worse DSS (aHR, 2.34; 95% CI, 1.30-4.23; p = 0.005). CONCLUSIONS We found that PORT was associated with improved OS and DSS for node-positive patients and worse DSS for node-negative patients. For HNMCC treated with primary surgical resection, these data confirm the value of PORT for pathologically node-positive patients and support the use of single modality surgical therapy for pathologically node-negative patients without other adverse risk factors. LEVEL OF EVIDENCE 4 Laryngoscope, 134:3587-3594, 2024.
Collapse
Affiliation(s)
- Randall J Harley
- Department of Otolaryngology - Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| | - Megan Lyden
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| | - Seetha Aribindi
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| | - Leandro Socolovsky
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| | - Earl H Harley
- Department of Otolaryngology - Head and Neck Surgery, Georgetown University Hospital, Washington, District of Columbia, U.S.A
| |
Collapse
|
21
|
Miller DM, Shalhout SZ, Wright KM, Miller MA, Kaufman HL, Emerick KS, Reeder HT, Silk AW, Thakuria M. The prognostic value of the Merkel cell polyomavirus serum antibody test: A dual institutional observational study. Cancer 2024; 130:2670-2682. [PMID: 38696121 DOI: 10.1002/cncr.35314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an aggressive cancer with often poor outcomes. Limited biomarkers exist for predicting clinical outcomes. The Merkel cell polyomavirus (MCPyV) serum antibody test (AMERK) has shown potential for indicating better recurrence-free survival in a single-institution study. The study aimed to evaluate the link between initial AMERK serostatus and survival. Secondary objectives included examining the relationship between initial AMERK titer levels and tumor burden. METHODS A retrospective cohort study across two institutions analyzed patients tested with AMERK within 90 days of MCC diagnosis. Regression models assessed the association of survival outcomes with serostatus, considering various factors. The relationship between AMERK titer and tumor burden indicators was evaluated using ANOVA. Significance testing was exploratory, without a fixed significance level. RESULTS Of 261 MCC patients tested, 49.4% were initially seropositive (titer ≥75). Multivariable analysis showed that seropositivity improved recurrence, event-free, overall, and MCC-specific survival rates. Strong associations were found between initial AMERK titer and clinical, tumor, and nodal stages, tumor size, and disease extent. Notably, improved survival with seropositivity was observed only in patients with localized disease at initial presentation. CONCLUSION Circulating antibodies to MCPyV oncoproteins, as indicated by the AMERK test, are linked with better survival in MCC patients with localized disease at presentation. This could enhance patient risk profiling and treatment personalization. The study's retrospective nature and exploratory analysis are key limitations. PLAIN LANGUAGE SUMMARY Merkel cell carcinoma (MCC) is a potentially aggressive skin cancer, and tools to predict patient outcomes are limited. A blood test called anti-Merkel cell panel (AMERK), which checks for specific antibodies related to this cancer, might give us some clues. In this study, we looked at 261 MCC patients who took the AMERK test within 90 days of diagnosis. We found that patients with an initial positive AMERK result tended to have better outcomes, especially if their cancer was in the early stages. However, it is important to note that this study has limitations, including using retrospective data and exploratory analyses.
Collapse
Affiliation(s)
- David M Miller
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sophia Z Shalhout
- Harvard Medical School, Boston, Massachusetts, USA
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Department of Otolaryngology, Head and Neck Surgery, Division of Surgical Oncology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Kayla M Wright
- Mike Toth Head and Neck Cancer Research Center, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Matt A Miller
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin S Emerick
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology, Head and Neck Surgery, Division of Surgical Oncology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Harrison T Reeder
- Harvard Medical School, Boston, Massachusetts, USA
- Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ann W Silk
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Manisha Thakuria
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Kakish H, Sun J, Ammori JB, Hoehn RS, Rothermel LD. First-line Immunotherapy for Metastatic Merkel Cell Carcinoma: Analysis of Real-world Survival Data and Practice Patterns. Am J Clin Oncol 2024; 47:357-362. [PMID: 38587336 DOI: 10.1097/coc.0000000000001098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
OBJECTIVES Immune checkpoint inhibitors are a promising new therapy for advanced Merkel Cell Carcinoma (MCC). We investigated real-world utilization and survival outcomes of first-line immunotherapies in a contemporary cohort. METHODS Using the National Cancer Database (NCDB), we identified 759 patients with MCC between 2015 and 2020 with stage IV disease and known status of first-line systemic therapy. Univariable and multivariable analyses were used to determine predictors of immunotherapy usage. Overall survival (OS) was compared for patients receiving immunotherapy, chemotherapy, or no systemic therapies. RESULTS We identified 759 patients meeting our inclusion criteria: 329 patients received immunotherapy, 161 received chemotherapy, and 269 received no systemic therapy. Adjusting for demographic, clinical, and facility factors, high facility volume significantly predicted first-line immunotherapy use (OR 1.99; P =0.017). Median OS was 16.2, 12.3, and 8.7 months, among patients who received immunotherapy, chemotherapy, or no systemic therapy, respectively ( P <0.001). On Cox multivariable survival analysis, first-line immunotherapy treatment (HR=0.79, P =0.041) and treatment at high-volume centers (HR=0.58, P =0.004) were associated with improved OS. CONCLUSIONS Consistent with clinical trial results, first-line immunotherapy associated with improvement in median overall survival for patients with stage IV MCC, significantly outperforming chemotherapy in this real-world cohort. Treatment at high-volume centers associated with first-line immunotherapy utilization suggesting that familiarity with this rare disease is important to achieving optimal outcomes for metastatic MCC.
Collapse
Affiliation(s)
- Hanna Kakish
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - James Sun
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - John B Ammori
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Richard S Hoehn
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
23
|
Pedersen EA, Verhaegen ME, Joseph MK, Harms KL, Harms PW. Merkel cell carcinoma: updates in tumor biology, emerging therapies, and preclinical models. Front Oncol 2024; 14:1413793. [PMID: 39136002 PMCID: PMC11317257 DOI: 10.3389/fonc.2024.1413793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma thought to arise via either viral (Merkel cell polyomavirus) or ultraviolet-associated pathways. Surgery and radiotherapy have historically been mainstays of management, and immunotherapy has improved outcomes for advanced disease. However, there remains a lack of effective therapy for those patients who fail to respond to these established approaches, underscoring a critical need to better understand MCC biology for more effective prognosis and treatment. Here, we review the fundamental aspects of MCC biology and the recent advances which have had profound impact on management. The first genetically-engineered mouse models for MCC tumorigenesis provide opportunities to understand the potential MCC cell of origin and may prove useful for preclinical investigation of novel therapeutics. The MCC cell of origin debate has also been advanced by recent observations of MCC arising in association with a clonally related hair follicle tumor or squamous cell carcinoma in situ. These studies also suggested a role for epigenetics in the origin of MCC, highlighting a potential utility for this therapeutic avenue in MCC. These and other therapeutic targets form the basis for a wealth of ongoing clinical trials to improve MCC management. Here, we review these recent advances in the context of the existing literature and implications for future investigations.
Collapse
Affiliation(s)
| | | | - Mallory K. Joseph
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Kelly L. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Paul W. Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Drexler K, Bollmann L, Karrer S, Berneburg M, Haferkamp S, Niebel D. Retrospective Single-Center Case Study of Clinical Variables and the Degree of Actinic Elastosis Associated with Rare Skin Cancers. BIOLOGY 2024; 13:529. [PMID: 39056721 PMCID: PMC11274094 DOI: 10.3390/biology13070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Rare skin cancers include epithelial, neuroendocrine, and hematopoietic neoplasias as well as cutaneous sarcomas. Ultraviolet (UV) radiation and sunburns are important drivers for the incidence of certain cutaneous sarcomas; however, the pathogenetic role of UV light is less clear in rare skin cancers compared to keratinocyte cancer and melanoma. In this study, we compared the degree of actinic elastosis (AE) as a surrogate for lifetime UV exposure among selected rare skin cancers (atypical fibroxanthoma [AFX], pleomorphic dermal sarcoma [PDS], dermatofibrosarcoma protuberans [DFSP], Kaposi sarcoma [KS], Merkel cell carcinoma [MCC], and leiomyosarcoma [LMS]) while taking into account relevant clinical variables (age, sex, and body site). (2) Methods: We newly established a semi-quantitative score for the degree of AE ranging from 0 = none to 3 = total loss of elastic fibers (basophilic degeneration) and multiplied it by the perilesional vertical extent (depth), measured histometrically (tumor-associated elastosis grade (TEG)). We matched the TEG of n = 210 rare skin cancers from 210 patients with their clinical variables. (3) Results: TEG values were correlated with age and whether tumors arose on UV-exposed body sites. TEG values were significantly higher in AFX and PDS cases compared to all other analyzed rare skin cancer types. As expected, TEG values were low in DFSP and KS, while MCC cases exhibited intermediate TEG values. (4) Conclusions: High cumulative UV exposure is more strongly associated with AFX/PDS and MCC than with other rare skin cancers. These important results expand the available data associated with rare skin cancers while also offering insight into the value of differentiating among these tumor types based on their relationship with sun exposure, potentially informing preventative, diagnostic and/or therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Dennis Niebel
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (K.D.)
| |
Collapse
|
25
|
Cazzato G, Tamma R, Fanelli M, Colagrande A, Marzullo A, Cascardi E, Trilli I, Lorusso L, Lettini T, Ingravallo G, Ribatti D. Mast cell density in Merkel cell carcinoma and its correlation with prognostic features and MCPyV status: a pilot study. Clin Exp Med 2024; 24:151. [PMID: 38967728 PMCID: PMC11226501 DOI: 10.1007/s10238-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, primitive neuroendocrine carcinoma of the skin, the origin of which is not yet fully understood. Numerous independent prognostic factors have been investigated in an attempt to understand which are the most important parameters to indicate in the histological diagnostic report of MCC. Of these, mast cells have only been studied in one paper before this one. We present a retrospective descriptive study of 13 cases of MCC, received at the Department of Pathology over a 20-year period (2003-2023 inclusive) on which we performed a study using whole-slide (WSI) morphometric analysis scanning platform Aperio Scanscope CS for the detection and spatial distribution of mast cells, using monoclonal anti-tryptase antibody and anti-CD34 monoclonal antibody to study the density of microvessels. In addition, we analyzed MCPyV status with the antibody for MCPyV large T-antigen (Clone CM2B4). We found statistically significant correlation between mast cell density and local recurrence/distant metastasis/death-of-disease (p = 0.008). To our knowledge, we firstly reported that MCPyV ( -) MCC shows higher mast cells density compared to MCPyV ( +) MCC, the latter well known to be less aggressive. Besides, the median vascular density did not show no significant correlation with recurrence/metastasis/death-of-disease, (p = 0.18). Despite the small sample size, this paper prompts future studies investigating the role of mast cell density in MCC.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Margherita Fanelli
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Eliano Cascardi
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Teresa Lettini
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
26
|
Sol S, Boncimino F, Todorova K, Waszyn SE, Mandinova A. Therapeutic Approaches for Non-Melanoma Skin Cancer: Standard of Care and Emerging Modalities. Int J Mol Sci 2024; 25:7056. [PMID: 39000164 PMCID: PMC11241167 DOI: 10.3390/ijms25137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Skin cancer encompasses a range of cutaneous malignancies, with non-melanoma skin cancers (NMSCs) being the most common neoplasm worldwide. Skin exposure is the leading risk factor for initiating NMSC. Ultraviolet (UV) light induces various genomic aberrations in both tumor-promoting and tumor-suppressing genes in epidermal cells. In conjunction with interactions with a changed stromal microenvironment and local immune suppression, these aberrations contribute to the occurrence and expansion of cancerous lesions. Surgical excision is still the most common treatment for these lesions; however, locally advanced or metastatic disease significantly increases the chances of morbidity or death. In recent years, numerous pharmacological targets were found through extensive research on the pathogenic mechanisms of NMSCs, leading to the development of novel treatments including Hedgehog pathway inhibitors for advanced and metastatic basal cell carcinoma (BCC) and PD-1/PD-L1 inhibitors for locally advanced cutaneous squamous cell carcinoma (cSCC) and Merkel cell carcinoma (MCC). Despite the efficacy of these new drugs, drug resistance and tolerability issues often arise with long-term treatment. Ongoing studies aim to identify alternative strategies with reduced adverse effects and increased tolerability. This review summarizes the current and emerging therapies used to treat NMSC.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Thevenin KR, Tieche IS, Di Benedetto CE, Schrager M, Dye KN. The small tumor antigen of Merkel cell polyomavirus accomplishes cellular transformation by uniquely localizing to the nucleus despite the absence of a known nuclear localization signal. Virol J 2024; 21:125. [PMID: 38831469 PMCID: PMC11149282 DOI: 10.1186/s12985-024-02395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Merkel Cell Carcinoma (MCC) is an aggressive skin cancer that is three times deadlier than melanoma. In 2008, it was found that 80% of MCC cases are caused by the genomic integration of a novel polyomavirus, Merkel Cell Polyomavirus (MCPyV), and the expression of its small and truncated large tumor antigens (ST and LT-t, respectively). MCPyV belongs to a family of human polyomaviruses; however, it is the only one with a clear association to cancer. METHODS To investigate the role and mechanisms of various polyomavirus tumor antigens in cellular transformation, Rat-2 and 293A cells were transduced with pLENTI MCPyV LT-t, MCPyV ST, TSPyV ST, HPyV7 ST, or empty pLENTI and assessed through multiple transformation assays, and subcellular fractionations. One-way ANOVA tests were used to assess statistical significance. RESULTS Soft agar, proliferation, doubling time, glucose uptake, and serum dependence assays confirmed ST to be the dominant transforming protein of MCPyV. Furthermore, it was found that MCPyV ST is uniquely transforming, as the ST antigens of other non-oncogenic human polyomaviruses such as Trichodysplasia Spinulosa-Associated Polyomavirus (TSPyV) and Human Polyomavirus 7 (HPyV7) were not transforming when similarly assessed. Identification of structural dissimilarities between transforming and non-transforming tumor antigens revealed that the uniquely transforming domain(s) of MCPyV ST are likely located within the structurally dissimilar loops of the MCPyV ST unique region. Of all known MCPyV ST cellular interactors, 62% are exclusively or transiently nuclear, suggesting that MCPyV ST localizes to the nucleus despite the absence of a canonical nuclear localization signal. Indeed, subcellular fractionations confirmed that MCPyV ST could achieve nuclear localization through a currently unknown, regulated mechanism independent of its small size, as HPyV7 and TSPyV ST proteins were incapable of nuclear translocation. Although nuclear localization was found to be important for several transforming properties of MCPyV ST, some properties were also performed by a cytoplasmic sequestered MCPyV ST, suggesting that MCPyV ST may perform different transforming functions in individual subcellular compartments. CONCLUSIONS Together, these data further elucidate the unique differences between MCPyV ST and other polyomavirus ST proteins necessary to understand MCPyV as the only known human oncogenic polyomavirus.
Collapse
Affiliation(s)
- Kaira R Thevenin
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Isabella S Tieche
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Cody E Di Benedetto
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Matt Schrager
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA
| | - Kristine N Dye
- Department of Health Sciences, Stetson University, 421 N Woodland Blvd, DeLand, FL, 32723, USA.
- Department of Biology, Stetson University, DeLand, FL, 32723, USA.
| |
Collapse
|
28
|
Bahar F, DeCaprio JA. Why do we distinguish between virus-positive and virus-negative Merkel cell carcinoma? Br J Dermatol 2024; 190:785-786. [PMID: 38391034 DOI: 10.1093/bjd/ljae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Furkan Bahar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
29
|
Ashby HE, Jones GN, Leedhanachoke O, Jen P, Helphenstine N, Al Akhrass F. Merkel Cell Carcinoma Masquerading Clinically as a Cyst in a Young Patient. Int Med Case Rep J 2024; 17:289-293. [PMID: 38596400 PMCID: PMC11001544 DOI: 10.2147/imcrj.s449543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an extremely rare and aggressive tumor. Here we report an unusual MCC that manifested as an abruptly enlarging, painful skin lesion over the right antecubital fossa and masqueraded as an epidermal cyst in a 42-year-old male. The lesion was surgically excised and subjected to histopathologic and immunohistochemical examinations. The subsequent analysis allowed for the diagnosis of MCC. Clinicians should always be cognizant of MCC, which can be easily misdiagnosed. Early diagnosis and appropriate treatment are keys to improving the survival rates of MCC patients.
Collapse
Affiliation(s)
| | - Grayson N Jones
- Department of Pathology, Pikeville Medical Center, Pikeville, KY, USA
| | - Oon Leedhanachoke
- Department of General Surgery, Pikeville Medical Center, Pikeville, KY, USA
| | - Phillip Jen
- Department of BioMedical Science, University of Pikeville, Pikeville, KY, USA
| | - Noah Helphenstine
- Department of BioMedical Science, University of Pikeville, Pikeville, KY, USA
| | - Fadi Al Akhrass
- Department of Infectious Diseases, Pikeville Medical Center, Pikeville, KY, USA
| |
Collapse
|
30
|
Tabachnick-Cherny S, Pulliam T, Rodriguez H, Fan X, Hippe DS, Jones DC, Moshiri AS, Smythe KS, Kulikauskas R, Zaba L, Paulson K, Nghiem P. Characterization of Immunosuppressive Myeloid Cells in Merkel Cell Carcinoma: Correlation with Resistance to PD-1 Pathway Blockade. Clin Cancer Res 2024; 30:1189-1199. [PMID: 37851052 PMCID: PMC10947966 DOI: 10.1158/1078-0432.ccr-23-1957] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer. Although essentially all MCCs are antigenic through viral antigens or high tumor mutation burden, MCC has a response rate of only approximately 50% to PD-(L)1 blockade suggesting barriers to T-cell responses. Prior studies of MCC immunobiology have focused on CD8 T-cell infiltration and their exhaustion status, while the role of innate immunity, particularly myeloid cells, in MCC remains underexplored. EXPERIMENTAL DESIGN We utilized single-cell transcriptomics from 9 patients with MCC and multiplex IHC staining of 54 patients' preimmunotherapy tumors, to identify myeloid cells and evaluate association with immunotherapy response. RESULTS Single-cell transcriptomics identified tumor-associated macrophages (TAM) as the dominant myeloid component within MCC tumors. These TAMs express an immunosuppressive gene signature characteristic of monocytic myeloid-derived suppressor cells and importantly express several targetable immune checkpoint molecules, including PD-L1 and LILRB receptors, that are not present on tumor cells. Analysis of 54 preimmunotherapy tumor samples showed that a subset of TAMs (CD163+, CD14+, S100A8+) selectively infiltrated tumors that had significant CD8 T cells. Indeed, higher TAM prevalence was associated with resistance to PD-1 blockade. While spatial interactions between TAMs and CD8 T cells were not associated with response, myeloid transcriptomic data showed evidence for cytokine signaling and expression of LILRB receptors, suggesting potential immunosuppressive mechanisms. CONCLUSIONS This study further characterizes TAMs in MCC tumors and provides insights into their possible immunosuppressive mechanism. TAMs may reduce the likelihood of treatment response in MCC by counteracting the benefit of CD8 T-cell infiltration. See related commentary by Silk and Davar, p. 1076.
Collapse
Affiliation(s)
| | - Thomas Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Haroldo Rodriguez
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Xinyi Fan
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Ata S Moshiri
- Department of Dermatology, New York University, New York, NY, USA
| | | | - Rima Kulikauskas
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Lisa Zaba
- Department of Dermatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kelly Paulson
- Paul G Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Nakamura M, Yoshimitsu M, Magara T, Kano S, Kato H, Morita A. Analyses of tertiary lymphoid structures observed in cases of Merkel cell carcinoma showing spontaneous regression. Exp Dermatol 2024; 33:e15062. [PMID: 38532566 DOI: 10.1111/exd.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Merkel cell carcinoma (MCC) is a high-grade skin cancer, but spontaneous regression is observed at a markedly higher frequency than in other carcinomas. Although spontaneous regression is a phenomenon that greatly impacts treatment planning, we still cannot predict it. We previously reported on the prognostic impact of the presence or absence of tertiary lymphoid structures (TLS) and of Merkel cell polyomavirus (MCPyV) infection. To learn more about the spontaneous regression of MCC, detailed analyses were performed focusing on spontaneous regression cases. We collected 71 Japanese patients with MCC including 6 cases of spontaneous regression. Samples were analysed by immunostaining, spatial single-cell analysis using PhenoCycler, and RNA sequencing using the next-generation sequencer (NGS). All 6 cases of spontaneous regression were positive for MCPyV. TLS was positive in all 5 cases analysed. Spatial single-cell analyses revealed that PD-L1-positive tumour cells were in close proximity to CD20-positive B cell and CD3-, 4-positive T cells. Gene set enrichment analysis between MCPyV-positive and TLS-positive samples and other samples showed significantly high enrichment of "B-cell-mediated immunity" gene sets in the MCPyV-positive and TLS-positive groups. In conclusion, TLS may play an important role in the spontaneous regression of MCC.
Collapse
Affiliation(s)
- Motoki Nakamura
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Maki Yoshimitsu
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Magara
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Kano
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
32
|
Pulliam T, Jani S, Jing L, Ryu H, Jojic A, Shasha C, Zhang J, Kulikauskas R, Church C, Garnett-Benson C, Gooley T, Chapuis A, Paulson K, Smith KN, Pardoll DM, Newell EW, Koelle DM, Topalian SL, Nghiem P. Circulating cancer-specific CD8 T cell frequency is associated with response to PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101412. [PMID: 38340723 PMCID: PMC10897614 DOI: 10.1016/j.xcrm.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.
Collapse
Affiliation(s)
- Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saumya Jani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ana Jojic
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn Shasha
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jiajia Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rima Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aude Chapuis
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Paulson
- Paul G. Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA 98104, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evan W Newell
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Suzanne L Topalian
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
33
|
Catozzi A, Peiris-Pagès M, Humphrey S, Revill M, Morgan D, Roebuck J, Chen Y, Davies-Williams B, Lallo A, Galvin M, Pearce SP, Kerr A, Priest L, Foy V, Carter M, Caeser R, Chan J, Rudin CM, Blackhall F, Frese KK, Dive C, Simpson KL. Functional Characterisation of the ATOH1 Molecular Subtype Indicates a Pro-Metastatic Role in Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580247. [PMID: 38405859 PMCID: PMC10888785 DOI: 10.1101/2024.02.16.580247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Molecular subtypes of Small Cell Lung Cancer (SCLC) have been described based on differential expression of transcription factors (TFs) ASCL1, NEUROD1, POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC Circulating tumour cell-Derived eXplant (CDX) model biobank. Here we show that ATOH1 protein was detected in 7/81 preclinical models and 16/102 clinical samples of SCLC. In CDX models, ATOH1 directly regulated neurogenesis and differentiation programs consistent with roles in normal tissues. In ex vivo cultures of ATOH1-positive CDX, ATOH1 was required for cell survival. In vivo, ATOH1 depletion slowed tumour growth and suppressed liver metastasis. Our data validate ATOH1 as a bona fide oncogenic driver of SCLC with tumour cell survival and pro-metastatic functions. Further investigation to explore ATOH1 driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.
Collapse
Affiliation(s)
- Alessia Catozzi
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Maria Peiris-Pagès
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mitchell Revill
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Jordan Roebuck
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Yitao Chen
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Bethan Davies-Williams
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alice Lallo
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Foy
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
34
|
Hansen UK, Church CD, Carnaz Simões AM, Frej MS, Bentzen AK, Tvingsholm SA, Becker JC, Fling SP, Ramchurren N, Topalian SL, Nghiem PT, Hadrup SR. T antigen-specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma. J Clin Invest 2024; 134:e177082. [PMID: 38618958 PMCID: PMC11014655 DOI: 10.1172/jci177082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.
Collapse
Affiliation(s)
- Ulla Kring Hansen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Candice D. Church
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Marcus Svensson Frej
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- PokeAcell Aps, BioInnovation Institute, Copenhagen, Denmark
| | - Amalie Kai Bentzen
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri A. Tvingsholm
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jürgen C. Becker
- Department of Translational Skin Cancer Research, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | | | - Suzanne L. Topalian
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Paul T. Nghiem
- Department of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sine Reker Hadrup
- Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Weilandt J, Peitsch WK. Moderne Diagnostik und Therapie des Merkelzellkarzinoms. J Dtsch Dermatol Ges 2023; 21:1524-1548. [PMID: 38082520 DOI: 10.1111/ddg.15214_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/21/2023] [Indexed: 12/18/2023]
Abstract
ZusammenfassungDas Merkelzellkarzinom (MCC) ist ein seltener, aggressiver Hauttumor mit epithelialer und neuroendokriner Differenzierung, dessen Inzidenz in den letzten Jahrzehnten deutlich zugenommen hat. Risikofaktoren sind fortgeschrittenes Lebensalter, heller Hauttyp, UV‐Exposition und Immunsuppression. Pathogenetisch wird ein durch das Merkelzell‐Polyomavirus (MCPyV) hervorgerufener Typ von einem UV‐induzierten Typ mit hoher Tumormutationslast unterschieden.Klinisch präsentiert sich das MCC als meist schmerzloser, schnell wachsender, rötlich‐violetter Tumor mit glänzender Oberfläche, der bevorzugt im Kopf‐Hals‐Bereich und an den distalen Extremitäten lokalisiert ist. Eine sichere Diagnose kann nur anhand histologischer und immunhistochemischer Merkmale gestellt werden. Bei Erstdiagnose weisen 20%–26% der Patienten lokoregionäre Metastasen und 8%–14% Fernmetastasen auf, weshalb eine Ausbreitungsdiagnostik unabdingbar ist. Bei fehlenden klinischen Hinweisen auf Metastasen wird eine Sentinel‐Lymphknotenbiopsie empfohlen.Wesentliche Säulen der Therapie sind die Operation, die adjuvante oder palliative Strahlentherapie und in fortgeschrittenen inoperablen Stadien die medikamentöse Tumortherapie. Die Einführung von Immuncheckpoint‐Inhibitoren führte zu einem Paradigmenwechsel, da sich hiermit ein wesentlich langfristigeres Ansprechen und bessere Überlebensraten als mit Chemotherapie erreichen lassen. Zur Therapie des metastasierten MCC ist in Deutschland der PD‐L1‐Inhibitor Avelumab zugelassen, aber auch die PD‐1‐Antikörper Pembrolizumab und Nivolumab werden mit Erfolg eingesetzt. Adjuvante und neoadjuvante Therapiekonzepte, Immunkombinationstherapien und zielgerichtete Therapien als Monotherapie oder in Kombination mit Immuncheckpoint‐Inhibitoren befinden sich in klinischer Prüfung.
Collapse
Affiliation(s)
- Juliane Weilandt
- Klinik für Dermatologie und Phlebologie, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Wiebke K Peitsch
- Klinik für Dermatologie und Phlebologie, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| |
Collapse
|
36
|
Weilandt J, Peitsch WK. Modern diagnostics and treatment of Merkel cell carcinoma. J Dtsch Dermatol Ges 2023; 21:1524-1546. [PMID: 37875785 DOI: 10.1111/ddg.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/21/2023] [Indexed: 10/26/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with epithelial and neuroendocrine differentiation, the incidence of which has increased substantially during the last decades. Risk factors include advanced age, fair skin type, UV exposure, and immunosuppression. Pathogenetically, a type caused by the Merkel cell polyomavirus is distinguished from a UV-induced type with a high tumor mutational burden. Clinically, MCC presents as a mostly painless, rapidly growing, reddish-violet tumor with a shiny surface, which is preferentially localized in the head-neck region and at the distal extremities. A reliable diagnosis can only be made based on histological and immunohistochemical features. At initial diagnosis, 20-26% of patients show locoregional metastases and 8-14% distant metastases, making staging examinations indispensable. If there is no clinical evidence of metastases, a sentinel lymph node biopsy is recommended. Essential columns of therapy are surgery, adjuvant or palliative radiotherapy and, in advanced inoperable stages, medicamentous tumor therapy. The introduction of immune checkpoint inhibitors has led to a paradigm shift, as they provide a considerably longer duration of response and better survival rates than chemotherapy. The PD-L1 inhibitor avelumab is approved for treatment of metastatic MCC in Germany, but the PD-1 antibodies pembrolizumab and nivolumab are also used with success. Adjuvant and neoadjuvant treatment concepts, immune combination therapies and targeted therapies as monotherapy or in combination with immune checkpoint inhibitors are in the clinical trial phase.
Collapse
Affiliation(s)
- Juliane Weilandt
- Department of Dermatology and Phlebology, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Wiebke K Peitsch
- Department of Dermatology and Phlebology, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| |
Collapse
|
37
|
Ugwu N, Cheraghlou S, Weiss J. Primary Merkel cell carcinoma is associated with increased, extended risk of subsequent melanoma and nonepithelial skin cancer. J Am Acad Dermatol 2023; 89:1060-1061. [PMID: 37451621 DOI: 10.1016/j.jaad.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Nelson Ugwu
- Harvard Combined Dermatology Residency Training Program, Boston, Massachusetts
| | - Shayan Cheraghlou
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Jonathan Weiss
- Department of Dermatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts.
| |
Collapse
|
38
|
Fojnica A, Ljuca K, Akhtar S, Gatalica Z, Vranic S. An Updated Review of the Biomarkers of Response to Immune Checkpoint Inhibitors in Merkel Cell Carcinoma: Merkel Cell Carcinoma and Immunotherapy. Cancers (Basel) 2023; 15:5084. [PMID: 37894451 PMCID: PMC10605355 DOI: 10.3390/cancers15205084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Merkel cell carcinoma (MCC) is primarily a disease of the elderly Caucasian, with most cases occurring in individuals over 50. Immune checkpoint inhibitors (ICI) treatment has shown promising results in MCC patients. Although ~34% of MCC patients are expected to exhibit at least one of the predictive biomarkers (PD-L1, high tumor mutational burden/TMB-H/, and microsatellite instability), their clinical significance in MCC is not fully understood. PD-L1 expression has been variably described in MCC, but its predictive value has not been established yet. Our literature survey indicates conflicting results regarding the predictive value of TMB in ICI therapy for MCC. Avelumab therapy has shown promising results in Merkel cell polyomavirus (MCPyV)-negative MCC patients with TMB-H, while pembrolizumab therapy has shown better response in patients with low TMB. A study evaluating neoadjuvant nivolumab therapy found no significant difference in treatment response between the tumor etiologies and TMB levels. In addition to ICI therapy, other treatments that induce apoptosis, such as milademetan, have demonstrated positive responses in MCPyV-positive MCC, with few somatic mutations and wild-type TP53. This review summarizes current knowledge and discusses emerging and potentially predictive biomarkers for MCC therapy with ICI.
Collapse
Affiliation(s)
- Adnan Fojnica
- Institute of Virology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Kenana Ljuca
- Health Center of Sarajevo Canton, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Saghir Akhtar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73019, USA;
- Reference Medicine, Phoenix, AZ 85040, USA
| | - Semir Vranic
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
39
|
DeCoste RC, Carter MD, Ly TY, Gruchy JR, Nicolela AP, Pasternak S. Merkel cell carcinoma: an update. Hum Pathol 2023; 140:39-52. [PMID: 36898590 DOI: 10.1016/j.humpath.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Merkel cell carcinoma (MCC) is an uncommon primary cutaneous neuroendocrine carcinoma associated with an adverse prognosis. In recent years, our understanding of MCC biology has markedly progressed. Since the discovery of the Merkel cell polyomavirus, it has become clear that MCC represents an ontogenetically dichotomous group of neoplasms with overlapping histopathology. Specifically, most MCCs arise secondary to viral oncogenesis, while a smaller subset is the direct result of UV-associated mutations. The distinction of these groups bears relevance in their immunohistochemical and molecular characterization, as well as in disease prognosis. Further recent developments relate to the landmark utilization of immunotherapeutics in MCC, providing optimistic options for the management of this aggressive disease. In this review, we discuss both fundamental and emerging concepts in MCC, with a particular focus on topics of practical relevance to the surgical or dermatopathologist.
Collapse
Affiliation(s)
- Ryan C DeCoste
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada.
| | - Michael D Carter
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Thai Yen Ly
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Jennette R Gruchy
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Anna P Nicolela
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, K7L 3N6, Canada
| | - Sylvia Pasternak
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| |
Collapse
|
40
|
Durand MA, Drouin A, Mouchard A, Durand L, Esnault C, Berthon P, Tallet A, Le Corre Y, Hainaut-Wierzbicka E, Blom A, Saiag P, Beneton N, Bens G, Nardin C, Aubin F, Dinulescu M, Collin C, Fromont-Hankard G, Cribier B, Laurent-Roussel S, Cokelaere K, Houben R, Schrama D, Peixoto P, Hervouet E, Bachiri K, Kantar D, Coyaud E, Guyétant S, Samimi M, Touzé A, Kervarrec T. Distinct Regulation of EZH2 and its Repressive H3K27me3 Mark in Polyomavirus-Positive and -Negative Merkel Cell Carcinoma. J Invest Dermatol 2023; 143:1937-1946.e7. [PMID: 37037414 DOI: 10.1016/j.jid.2023.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer for which Merkel cell polyomavirus integration and expression of viral oncogenes small T and Large T have been identified as major oncogenic determinants. Recently, a component of the PRC2 complex, the histone methyltransferase enhancer of zeste homolog 2 (EZH2) that induces H3K27 trimethylation as a repressive mark has been proposed as a potential therapeutic target in MCC. Because divergent results have been reported for the levels of EZH2 and trimethylation of lysine 27 on histone 3, we analyzed these factors in a large MCC cohort to identify the molecular determinants of EZH2 activity in MCC and to establish MCC cell lines' sensitivity to EZH2 inhibitors. Immunohistochemical expression of EZH2 was observed in 92% of MCC tumors (156 of 170), with higher expression levels in virus-positive than virus-negative tumors (P = 0.026). For the latter, we showed overexpression of EZHIP, a negative regulator of the PRC2 complex. In vitro, ectopic expression of the large T antigen in fibroblasts led to the induction of EZH2 expression, whereas the knockdown of T antigens in MCC cell lines resulted in decreased EZH2 expression. EZH2 inhibition led to selective cytotoxicity on virus-positive MCC cell lines. This study highlights the distinct mechanisms of EZH2 induction between virus-negative and -positive MCC.
Collapse
Affiliation(s)
- Marie-Alice Durand
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Aurélie Drouin
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Alice Mouchard
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France; Department of Dermatology, CHRU of Tours, University of Tours, Chambray-lès-Tours, France
| | - Laurine Durand
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Clara Esnault
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Patricia Berthon
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, CHU of Tours, University of Tours, Tours, France
| | - Yannick Le Corre
- Dermatology Department, CHU of Angers, LUNAM University, Angers, France
| | | | - Astrid Blom
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, CARADERM Network, Boulogne-Billancourt, France; Research unit EA 4340, University of Versailles-Saint-Quentin-en-Yvelines, Paris-Saclay University, Boulogne-Billancourt, France
| | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, CARADERM Network, Boulogne-Billancourt, France; Research unit EA 4340, University of Versailles-Saint-Quentin-en-Yvelines, Paris-Saclay University, Boulogne-Billancourt, France
| | - Nathalie Beneton
- Dermatology Department, CHU of Le Mans, University of Le Mans, Le Mans, France
| | - Guido Bens
- Dermatology department, CHR Orleans, Orleans, France
| | - Charlee Nardin
- Dermatology, CHU Besançon, Besançon, France; INSERM 1098, Université Bourgogne Franche-Comté, Besançon, France
| | - François Aubin
- Dermatology, CHU Besançon, Besançon, France; INSERM 1098, Université Bourgogne Franche-Comté, Besançon, France
| | - Monica Dinulescu
- Dermatology department, CHU Rennes, Institut Dermatologique du Grand Ouest (IDGO), Rennes, France
| | - Christine Collin
- Platform of Somatic Tumor Molecular Genetics, CHU of Tours, University of Tours, Tours, France
| | | | - Bernard Cribier
- Dermatology Department, CHU of Strasbourg, University of Strasbourg, Strasbourg, France
| | | | | | - Roland Houben
- Department of Dermatology, Venerology and Allergology, University Hospital of Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venerology and Allergology, University Hospital of Würzburg, Würzburg, Germany
| | - Paul Peixoto
- INSERM, EFS-BFC, UMR 1098 RIGHT, University Bourgogne-Franche-Comté, Besançon, France; EPIgenetics and GENe Expression Technical Platform (EPIGENExp), University Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- INSERM, EFS-BFC, UMR 1098 RIGHT, University Bourgogne-Franche-Comté, Besançon, France; EPIgenetics and GENe Expression Technical Platform (EPIGENExp), University Bourgogne Franche-Comté, Besançon, France
| | - Kamel Bachiri
- Department of Biology, Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, CHU Lille, Université de Lille, Lille, France
| | - Diala Kantar
- Department of Biology, Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, CHU Lille, Université de Lille, Lille, France
| | - Etienne Coyaud
- Department of Biology, Inserm U1192, Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, CHU Lille, Université de Lille, Lille, France
| | - Serge Guyétant
- Pathology Department, CHU of Tours, University of Tours, Tours, France; Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Mahtab Samimi
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France; Department of Dermatology, CHRU of Tours, University of Tours, Chambray-lès-Tours, France
| | - Antoine Touzé
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France
| | - Thibault Kervarrec
- Team "Biologie des Infections à Polyomavirus", ISP UMR 1282, INRAE, University of Tours, Tours, France; Pathology Department, CHU of Tours, University of Tours, Tours, France.
| |
Collapse
|
41
|
Gambichler T, Majchrzak-Stiller B, Peters I, Becker JC, Strotmann J, Abu Rached N, Müller T, Uhl W, Buchholz M, Braumann C. The effect of GP-2250 on cultured virus-negative Merkel cell carcinoma cells: preliminary results. J Cancer Res Clin Oncol 2023; 149:10831-10840. [PMID: 37311987 PMCID: PMC10423113 DOI: 10.1007/s00432-023-04960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Even in the novel immunotherapy era, Merkel cell carcinoma (MCC) remains challenging in its treatment. Apart from Merkel cell polyomavirus (MCPyV) associated MCC, this cancer is linked in about 20% of cases to ultraviolet-induced mutational burden frequently causing aberrations in Notch and PI3K/AKT/mTOR signalling pathways. The recently developed agent GP-2250 is capable to inhibit growth of cells of different cancers, including pancreatic neuroendocrine tumors. The objective of the present study was to investigate the effects of GP-2250 on MCPyV-negative MCC cells. METHODS Methods We employed three cell lines (MCC13, MCC14.2, MCC26) which were exposed to different GP-2250doses. GP-2250's effects on cell viability, proliferation, and migration were evaluated by means of MTT, BrdU, and scratch assays, respectively. Flow cytometry was performed for the evaluation of apoptosis and necrosis. Western blotting was implemented for the determination of AKT, mTOR, STAT3, and Notch1 protein expression. RESULTS Cell viability, proliferation, and migration decreased with increasing GP-2250 doses. Flow cytometry revealed a dose response to GP-2250 in all three MCC cell lines. While the viable fraction decreased, the share of necrotic and in a smaller amount the apoptotic cells increased. Regarding Notch1, AKT, mTOR, and STAT3 expression a comparatively time- and dose-dependent decrease of protein expression in the MCC13 and MCC26 cell lines was observed. By contrast, Notch1, AKT, mTOR, and STAT3 expression in MCC14.2 was scarcely altered or even increased by the three dosages of GP-2250 applied. CONCLUSIONS The present study indicates GP-2250 having anti-neoplastic effects in MCPyV-negative tumor cells in regard to viability, proliferation, and migration. Moreover, the substance is capable of downregulating protein expression of aberrant tumorigenic pathways in MCPyV-negative MCC cells.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Britta Majchrzak-Stiller
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ilka Peters
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Department of Dermatology, University Duisburg-Essen, Essen, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johanna Strotmann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nessr Abu Rached
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | | | - Waldemar Uhl
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Marie Buchholz
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Chris Braumann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of General, Visceral and Vascular Surgery, Evangelische Kliniken Gelsenkirchen, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, 45878 Gelsenkirchen, Germany
| |
Collapse
|
42
|
Lawrence L, Wang A, Charville G, Liu CL, Garofalo A, Alizadeh A, Jangam D, Pinsky BA, Sahoo M, Gratzinger D, Khodadoust M, Kim Y, Novoa R, Stehr H. Identification and confirmation via in situ hybridization of Merkel cell polyomavirus in rare cases of posttransplant cutaneous T-cell lymphoma. J Cutan Pathol 2023; 50:835-844. [PMID: 37394808 DOI: 10.1111/cup.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Viral infection is an oncogenic factor in many hematolymphoid malignancies. We sought to determine the diagnostic yield of aligning off-target reads incidentally obtained during targeted hematolymphoid next-generation sequencing to a large database of viral genomes to screen for viral sequences within tumor specimens. METHODS Alignment of off-target reads to viral genomes was performed using magicBLAST. Localization of Merkel cell polyomavirus (MCPyV) RNA was confirmed by RNAScope in situ hybridization. Integration analysis was performed using Virus-Clip. RESULTS Four cases of post-cardiac-transplant folliculotropic mycosis fungoides (fMF) and one case of peripheral T-cell lymphoma (PTCL) were positive in off-target reads for MCPyV DNA. Two of the four cases of posttransplant fMF and the case of PTCL showed localization of MCPyV RNA to malignant lymphocytes, whereas the remaining two cases of posttransplant fMF showed MCPyV RNA in keratinocytes. CONCLUSIONS Our findings raise the question of whether MCPyV may play a role in rare cases of T-lymphoproliferative disorders, particularly in the skin and in the heavily immunosuppressed posttransplant setting.
Collapse
Affiliation(s)
| | - Aihui Wang
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Chih Long Liu
- Stanford University School of Medicine, Stanford, California, USA
| | - Andrea Garofalo
- Stanford University School of Medicine, Stanford, California, USA
| | - Ash Alizadeh
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Malaya Sahoo
- Stanford University School of Medicine, Stanford, California, USA
| | - Dita Gratzinger
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Youn Kim
- Stanford University School of Medicine, Stanford, California, USA
| | - Roberto Novoa
- Stanford University School of Medicine, Stanford, California, USA
| | - Henning Stehr
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
43
|
Al-Noshokaty TM, Elballal MS, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Midan HM, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Zewail MB, Mohammed OA, Doghish AS. miRNAs driving diagnosis, prognosis and progression in Merkel cell carcinoma. Pathol Res Pract 2023; 249:154763. [PMID: 37595447 DOI: 10.1016/j.prp.2023.154763] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
44
|
Buchta Rosean C, Leyder EC, Hamilton J, Carter JJ, Galloway DA, Koelle DM, Nghiem P, Heiland T. LAMP1 targeting of the large T antigen of Merkel cell polyomavirus results in potent CD4 T cell responses and tumor inhibition. Front Immunol 2023; 14:1253568. [PMID: 37711623 PMCID: PMC10499392 DOI: 10.3389/fimmu.2023.1253568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Most cases of Merkel cell carcinoma (MCC), a rare and highly aggressive type of neuroendocrine skin cancer, are associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV integrates into the host genome, resulting in expression of oncoproteins including a truncated form of the viral large T antigen (LT) in infected cells. These oncoproteins are an attractive target for a therapeutic cancer vaccine. Methods We designed a cancer vaccine that promotes potent, antigen-specific CD4 T cell responses to MCPyV-LT. To activate antigen-specific CD4 T cells in vivo, we utilized our nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression), which fuses a tumor-associated antigen with lysosomal-associated membrane protein 1 (LAMP1). This lysosomal targeting technology results in enhanced antigen presentation and potent antigen-specific T cell responses. LTS220A, encoding a mutated form of MCPyV-LT that diminishes its pro-oncogenic properties, was introduced into the UNITE™ platform. Results Vaccination with LTS220A-UNITE™ DNA vaccine (ITI-3000) induced antigen-specific CD4 T cell responses and a strong humoral response that were sufficient to delay tumor growth of a B16F10 melanoma line expressing LTS220A. This effect was dependent on the CD4 T cells' ability to produce IFNγ. Moreover, ITI-3000 induced a favorable tumor microenvironment (TME), including Th1-type cytokines and significantly enhanced numbers of CD4 and CD8 T cells as well as NK and NKT cells. Additionally, ITI-3000 synergized with an α-PD-1 immune checkpoint inhibitor to further slow tumor growth and enhance survival. Conclusions These findings strongly suggest that in pre-clinical studies, DNA vaccination with ITI-3000, using the UNITE™ platform, enhances CD4 T cell responses to MCPyV-LT that result in significant anti-tumor immune responses. These data support the initiation of a first-in-human (FIH) Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in patients with polyomavirus-positive MCC (NCT05422781).
Collapse
Affiliation(s)
| | | | | | - Joseph J. Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Denise A. Galloway
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Teri Heiland
- Immunomic Therapeutics Inc., Rockville, MD, United States
| |
Collapse
|
45
|
Karpinski P, Rosales I, Laczmanski L, Kowalik A, Wenson S, Hoang MP. Expression of Genes Associated With Epithelial-Mesenchymal Transition in Merkel Cell Polyomavirus-Negative Merkel Cell Carcinoma. J Transl Med 2023; 103:100177. [PMID: 37207705 DOI: 10.1016/j.labinv.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Two accepted possible pathways for Merkel cell carcinoma (MCC) pathogenesis include the clonal integration of the Merkel cell polyomavirus (MCPyV) into the neoplastic cells and by UV irradiation. We hypothesize that, in UV etiology, the expression of genes associated with epithelial-mesenchymal transition (EMT) would be higher in MCPyV-negative MCCs. We compared RNA expression in 16 MCPyV-negative with that in 14 MCPyV-positive MCCs in 30 patients using NanoString panel of 760 gene targets as an exploratory method. Subsequently, we confirmed the findings with a publicly available RNA sequencing data set. The NanoString method showed that 29 of 760 genes exhibited significant deregulation. Ten genes (CD44, COL6A3, COL11A1, CXCL8, INHBA, MMP1, NID2, SPP1, THBS1, and THY1) were part of the EMT pathway. The expression of CDH1/E-cadherin, a key EMT gene, and TWIST1, regulator gene of EMT, was higher in MCPyV-negative tumors. To further investigate the expression of EMT genes in MCPyV-negative MCCs, we analyzed publicly available RNA sequencing data of 111 primary MCCs. Differential expression and gene set enrichment analysis of 35 MCPyV-negative versus 76 MCPyV-positive MCCs demonstrated significantly higher expression of EMT-related genes and associated pathways such as Notch signaling, TGF-β signaling, and Hedgehog signaling, and UV response pathway in MCPyV-negative MCCs. The significance of the EMT pathway in MCPyV-negative MCCs was confirmed independently by a coexpression module analysis. One of the modules (M3) was specifically activated in MCPyV-negative MCCs and showed significant enrichment for genes involved in EMT. A network analysis of module M3 revealed that CDH1/E-cadherin was among the most connected genes (hubs). E-cadherin and LEF1 immunostains demonstrated significantly more frequent expression in MCPvV-negative versus MCPyV-positive tumors (P < .0001). In summary, our study showed that the expression of EMT-associated genes is higher in MCPyV-negative MCC. Because EMT-related proteins can be targeted, the identification of EMT pathways in MCPyV-negative MCCs is of potential therapeutic relevance.
Collapse
Affiliation(s)
- Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Genomics and Bioinformatics, Wroclaw, Poland
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lukasz Laczmanski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Genomics and Bioinformatics, Wroclaw, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland; Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Scott Wenson
- Department of Pathology, Newton-Wellesley Hospital, Boston, Massachusetts
| | - Mai P Hoang
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
46
|
Cho WC, Vanderbeck K, Nagarajan P, Milton DR, Gill P, Wang WL, Curry JL, Torres-Cabala CA, Ivan D, Prieto VG, Aung PP. SOX11 Is an Effective Discriminatory Marker, When Used in Conjunction With CK20 and TTF1, for Merkel Cell Carcinoma: Comparative Analysis of SOX11, CK20, PAX5, and TTF1 Expression in Merkel Cell Carcinoma and Pulmonary Small Cell Carcinoma. Arch Pathol Lab Med 2023; 147:758-766. [PMID: 36745184 DOI: 10.5858/arpa.2022-0238-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
CONTEXT.— Distinction between Merkel cell carcinoma (MCC) and pulmonary small cell carcinoma (PSmCC) can be challenging, even with the aid of immunohistochemistry (IHC) analysis of CK20 and TTF1, as these tumors occasionally lack classic immunophenotypes (CK20+/TTF1- in MCC and CK20-/TTF1+ in PSmCC). OBJECTIVE.— To evaluate the diagnostic utility of SOX11 and PAX5 IHC for distinguishing MCCs from PSmCCs and compare it with that of CK20 and TTF1 IHC. DESIGN.— SOX11, PAX5, CK20, and TTF1 expression (pattern, intensity, and proportion of tumor cells expressing protein) was assessed in 31 primary and 16 metastatic MCCs and 20 primary and 9 metastatic PSmCCs. RESULTS.— SOX11 expression was present in all MCCs and was predominantly strong and diffuse. Only 19% of primary and 38% of metastatic MCCs exhibited diffuse PAX5 expression; none exhibited strong immunoreactivity. Strong and diffuse SOX11 expression was seen in less than 25% of primary and metastatic PSmCCs. PAX5 expression was rare in PSmCCs and was mostly weak and focal/patchy. SOX11 expression in at least 26% of tumor cells, with at least moderate intensity, favored the diagnosis of MCC over PSmCC (P < .001). Furthermore, SOX11 expression was more likely than CK20 expression to be strong or diffuse in sentinel lymph node (SLN) metastases of MCC, indicating that SOX11 is superior to CK20 for detecting tumor deposits in SLNs in MCC. CONCLUSIONS.— Our findings indicate that SOX11 not only is a powerful marker for distinguishing MCCs from PSmCCs, especially when used in conjunction with CK20 and TTF1, but also has utility for screening SLNs in MCC.
Collapse
Affiliation(s)
- Woo Cheal Cho
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Kaitlin Vanderbeck
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Priyadharsini Nagarajan
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | | | - Pavandeep Gill
- The University of Texas MD Anderson Cancer Center, Houston; and the Department of Pathology, Royal Jubilee Hospital, Victoria, British Columbia, Canada (Gill). Cho, Vanderbeck, and Aung contributed equally to this manuscript
| | - Wei-Lien Wang
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Jonathan L Curry
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Carlos A Torres-Cabala
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Doina Ivan
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Victor G Prieto
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| | - Phyu P Aung
- From the Departments of Pathology (Cho, Vanderbeck, Nagarajan, Wang, Curry, Torres-Cabala, Ivan, Prieto, Aung)
| |
Collapse
|
47
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Gaubert A, Kervarrec T, Montaudié H, Burel-Vandenbos F, Cardot-Leccia N, Di Mauro I, Fabas T, Tallet A, Kubiniek V, Pedeutour F, Dadone-Montaudié B. BRCA1/2 Pathogenic Variants Are Not Common in Merkel Cell Carcinoma: Comprehensive Molecular Study of 30 Cases and Meta-Analysis of the Literature. J Invest Dermatol 2023; 143:1178-1186. [PMID: 36754117 DOI: 10.1016/j.jid.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous neuroendocrine cancer. Management of advanced MCC is mainly based on immune-checkpoint inhibitors. The high failure rate warrants an investigation of new therapeutic targets. The recent identification of BRCA1 or BRCA2 (BRCA1/2) mutations in some MCC raises the issue of the use of poly-(ADP-Ribose)-polymerase inhibitors in selected advanced cases. The main objective of our study is to determine the accurate frequency of BRCA1/2 pathogenic variants. We studied a series of 30 MCC and performed a meta-analysis of BRCA1/2 variants of published cases in the literature. In our series, we detected only one BRCA2 pathogenic variant. The low frequency of BRCA1/2 pathogenic variants in our series of MCC (3%) was confirmed by the meta-analysis of BRCA1/2 variants in the literature. Among the 915 MCC from 13 published series studied for molecular alterations of BRCA1/2, only 12 BRCA1/2 pathogenic mutations were identified (1-2% of MCC), whereas many other BRCA1/2 variants were variants of unknown significance or benign. BRCA1/2 pathogenic variants are uncommon in MCC. However, in BRCA-mutated MCC, poly-(ADP-Ribose)-polymerase inhibitors might be a valuable therapeutic option requiring validation by clinical trials.
Collapse
Affiliation(s)
- Alexandre Gaubert
- Department of Pathology and Molecular Oncology, Central Laboratory of Pathology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Thibault Kervarrec
- Biologie des infections à polyomavirus team, UMR INRA ISP 1282, University of Tours, Tours, France; Department of Pathology, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Henri Montaudié
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France; Department of Dermatology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Fanny Burel-Vandenbos
- Department of Pathology and Molecular Oncology, Central Laboratory of Pathology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Nathalie Cardot-Leccia
- Department of Pathology and Molecular Oncology, Central Laboratory of Pathology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Ilaria Di Mauro
- Laboratory of Solid Tumor Genetics, Department of Pathology and Molecular Oncology, University Hospital of Nice, University Côte d'Azur, Nice, France; Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France
| | - Thibault Fabas
- Laboratory of Solid Tumor Genetics, Department of Pathology and Molecular Oncology, University Hospital of Nice, University Côte d'Azur, Nice, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Valérie Kubiniek
- Laboratory of Solid Tumor Genetics, Department of Pathology and Molecular Oncology, University Hospital of Nice, University Côte d'Azur, Nice, France
| | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, Department of Pathology and Molecular Oncology, University Hospital of Nice, University Côte d'Azur, Nice, France; Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France
| | - Bérengère Dadone-Montaudié
- Department of Pathology and Molecular Oncology, Central Laboratory of Pathology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France; Laboratory of Solid Tumor Genetics, Department of Pathology and Molecular Oncology, University Hospital of Nice, University Côte d'Azur, Nice, France; Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France.
| |
Collapse
|
49
|
Robb TJ, Ward Z, Houseman P, Woodhouse B, Patel R, Fitzgerald S, Tsai P, Lawrence B, Parker K, Print CG, Blenkiron C. Chromosomal Aberrations Accumulate during Metastasis of Virus-Negative Merkel Cell Carcinoma. J Invest Dermatol 2023; 143:1168-1177.e2. [PMID: 36736454 DOI: 10.1016/j.jid.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 02/04/2023]
Abstract
Merkel cell carcinoma is a rare, aggressive skin tumor initiated by polyomavirus integration or UV light DNA damage. In New Zealand, there is a propensity toward the UV-driven form (31 of 107, 29% virus positive). Using archival formalin-fixed, paraffin-embedded tissues, we report targeted DNA sequencing covering 246 cancer genes on 71 tumor tissues and 38 nonmalignant tissues from 37 individuals, with 33 of 37 being negative for the virus. Somatic variants of New Zealand virus-negative Merkel cell carcinomas partially overlapped with those reported overseas, including TP53 variants in all tumors and RB1, LRP1B, NOTCH1, and EPHA3/7 variants each found in over half of the cohort. Variants in genes not analyzed or reported in previous studies were also found. Cataloging variants in TP53 and RB1 from published datasets revealed a broad distribution across these genes. Chr 1p gain and Chr 3p loss were identified in around 50% of New Zealand virus-negative Merkel cell carcinomas, and RB1 loss of heterozygosity was found in 90% of cases. Copy number variants accumulate in most metastases. Virus-negative Merkel cell carcinomas have complex combinations of somatic DNA-sequence variants and copy number variants. They likely carry the small genomic changes permissive for metastasis from early tumor development; however, chromosomal alterations may contribute to driving metastatic progression.
Collapse
Affiliation(s)
- Tamsin J Robb
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Zoe Ward
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pascalene Houseman
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Braden Woodhouse
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rachna Patel
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sandra Fitzgerald
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Ben Lawrence
- Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand; Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kate Parker
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
50
|
Jani S, Church CD, Nghiem P. Insights into anti-tumor immunity via the polyomavirus shared across human Merkel cell carcinomas. Front Immunol 2023; 14:1172913. [PMID: 37287968 PMCID: PMC10242112 DOI: 10.3389/fimmu.2023.1172913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Understanding and augmenting cancer-specific immunity is impeded by the fact that most tumors are driven by patient-specific mutations that encode unique antigenic epitopes. The shared antigens in virus-driven tumors can help overcome this limitation. Merkel cell carcinoma (MCC) is a particularly interesting tumor immunity model because (1) 80% of cases are driven by Merkel cell polyomavirus (MCPyV) oncoproteins that must be continually expressed for tumor survival; (2) MCPyV oncoproteins are only ~400 amino acids in length and are essentially invariant between tumors; (3) MCPyV-specific T cell responses are robust and strongly linked to patient outcomes; (4) anti-MCPyV antibodies reliably increase with MCC recurrence, forming the basis of a standard clinical surveillance test; and (5) MCC has one of the highest response rates to PD-1 pathway blockade among all solid cancers. Leveraging these well-defined viral oncoproteins, a set of tools that includes over 20 peptide-MHC class I tetramers has been developed to facilitate the study of anti-tumor immunity across MCC patients. Additionally, the highly immunogenic nature of MCPyV oncoproteins forces MCC tumors to develop robust immune evasion mechanisms to survive. Indeed, several immune evasion mechanisms are active in MCC, including transcriptional downregulation of MHC expression by tumor cells and upregulation of inhibitory molecules including PD-L1 and immunosuppressive cytokines. About half of patients with advanced MCC do not persistently benefit from PD-1 pathway blockade. Herein, we (1) summarize the lessons learned from studying the anti-tumor T cell response to virus-positive MCC; (2) review immune evasion mechanisms in MCC; (3) review mechanisms of resistance to immune-based therapies in MCC and other cancers; and (4) discuss how recently developed tools can be used to address open questions in cancer immunotherapy. We believe detailed investigation of this model cancer will provide insight into tumor immunity that will likely also be applicable to more common cancers without shared tumor antigens.
Collapse
Affiliation(s)
- Saumya Jani
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Candice D. Church
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Paul Nghiem
- Department of Medicine, University of Washington, Seattle, WA, United States
- Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|