1
|
Wu D, Lim WK, Chai X, Seshachalam VP, Rasheed SAK, Ghosh S, Casey PJ. Gα13 Promotes Clonogenic Growth by Increasing Tolerance to Oxidative Metabolic Stress in Prostate Cancer Cells. Int J Mol Sci 2025; 26:4883. [PMID: 40430023 PMCID: PMC12111955 DOI: 10.3390/ijms26104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
The oncogenic role of the G12 family in many human solid cancers has been extensively studied, primarily through the effects of constitutively active mutants of these proteins on cell migration and invasion. However, these mutations are not seen in cancers, and the biological role of Gα13 in prostate cancer tumorigenesis is largely unexplored. Here, we report that Gα13 promotes anchorage-independent colony formation, spheroid formation, and xenograft tumor growth in human prostate cancer cell lines. Transcriptome analyses suggest that Gα13 modulates genes in the mitochondria and are involved in the oxidative stress response. Silencing of GNA13 increased mitochondrial superoxide levels when prostate cancer cells were cultured in galactose medium and increased the sensitivity to oxidative metabolic stress when the cells were cultured in media containing non-glycolytic metabolites. Furthermore, Gα13 levels impacts the abundance of superoxide dismutase 2 (SOD2) in the mitochondria, as well as SOD2 promoter activity and mRNA expression. Importantly, expression of SOD2 could rescue the effect of Gα13 loss on suppression of anchorage-independent growth. Likewise, stable knockdown of SOD2 decreased anchorage-independent cell growth, which was enhanced by overexpression of Gα13. These results outline a novel biological function of Gα13 mediated via SOD2 in prostate cancer tumorigenesis and highlight it as a potential treatment target.
Collapse
Affiliation(s)
- Di Wu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Kiang Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiaoran Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Veerabrahma Pratap Seshachalam
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
| | - Suhail Ahmed Kabeer Rasheed
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Laboratory of Functional Genomics, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Patrick J. Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
2
|
Subsomwong P, Asano K, Akada J, Matsumoto T, Nakane A, Yamaoka Y. Proteomic Profiling of Extracellular Vesicles Reveals Potential Biomarkers for Helicobacter pylori Infection and Gastric Cancer. Helicobacter 2025; 30:e70022. [PMID: 40033163 PMCID: PMC11876490 DOI: 10.1111/hel.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) has been identified as a type I carcinogen and contributes to a high rate of gastric cancer (GC), especially in Eastern Asia. Extracellular vesicles (EVs) have the potential to be used to detect various cancer types and diseases. However, the protein markers in EVs for the prognosis of H. pylori infection and GC are unknown. We aim to identify the proteins within EVs derived from a gastric epithelial cell line (AGS) infected with H. pylori by using LC-MS/MS. MATERIALS AND METHODS EVs were isolated from AGS cells infected with high- and low-virulence H. pylori (strains TN2wt and Tx30a) by ultracentrifugation. Proteins within these EVs were identified and analyzed for potential marker candidates through bioinformatics. Proteins in H. pylori-derived EVs (HpEVs) from bacterial culture supernatant and HpEVs derived from H. pylori-infected AGS cells were elucidated. RESULTS Differentially expressed proteins by proteomic analysis in AGSEVs-Tx30a vs. AGSEVs-noninfected (NI) and AGSEVs-TN2wt vs. AGSEVs-NI were 107 and 55 proteins, respectively. Bioinformatics of these proteomes revealed that essential proteins for H. pylori survival and pathogenicity including outer membrane proteins, metabolism-related, host cell infection-related, and virulence-related proteins were observed in HpEVs. Interestingly, EVs derived from AGS cells infected with H. pylori TN2wt significantly contained multiple proteins related to GC (ATP6V0A1, GAPDH, HINT1, LYZ, and RBX1). CONCLUSION This study provides a comprehensive protein profile of EVs from H. pylori-infected AGS cells and HpEVs, which could serve as liquid-based biomarkers in the future for screening H. pylori infection, especially GC-related.
Collapse
Affiliation(s)
- Phawinee Subsomwong
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
| | - Krisana Asano
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
- Research Center for Global and Local Infectious DiseasesOita UniversityYufuJapan
| | - Akio Nakane
- Department of Microbiology and ImmunologyHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Biopolymer and Health ScienceHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of MedicineOita UniversityYufuJapan
- Research Center for Global and Local Infectious DiseasesOita UniversityYufuJapan
- Department of Medicine, Gastroenterology and Hepatology SectionBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
4
|
Subramanyan LV, Rasheed SAK, Wang L, Ghosh S, Ong MSN, Lakshmanan M, Wang M, Casey PJ. GNA13 suppresses proliferation of ER+ breast cancer cells via ERα dependent upregulation of the MYC oncogene. Breast Cancer Res 2024; 26:113. [PMID: 38965558 PMCID: PMC11225210 DOI: 10.1186/s13058-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.
Collapse
Affiliation(s)
| | | | - Lijin Wang
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Bioinformatics and Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Michelle Shi Ning Ong
- Biopharma Innovations and Solutions, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Manikandan Lakshmanan
- Biopharma Innovations and Solutions, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
5
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
6
|
Shi L, Luo B, Deng L, Zhang Q, Li Y, Sun D, Zhang H, Zhuang L. The lncRNA TRG-AS1 promotes the growth of colorectal cancer cells through the regulation of P2RY10/GNA13. Scand J Gastroenterol 2024; 59:710-721. [PMID: 38357893 DOI: 10.1080/00365521.2024.2318363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The lncRNA TRG-AS1 and its co-expressed gene P2RY10 are important for colorectal cancer (CRC) occurrence and development. The purpose of our research was to explore the roles of TRG-AS1 and P2RY10 in CRC progression. METHODS The abundance of TRG-AS1 and P2RY10 in CRC cell lines (HT-29 and LoVo) and normal colon cells FHC was determined and difference between CRC cells and normal cells was compared. LoVo cells were transfected with si-TRG-AS1 and si-P2RY10 constructs. Subsequently, the viability, colony formation, and migration of the transfected cells were analyzed using cell counting kit-8, clonogenicity, and scratch-wound/Transwell® assays, respectively. Cells overexpressing GNA13 were used to further explore the relationship between TRG-AS1 and P2RY10 along with their downstream functions. Finally, nude mice were injected with different transfected cell types to observe tumor formation in vivo. RESULTS TRG-AS1 and P2RY10 were significantly upregulated in HT-29 and LoVo compared to FHC cells. TRG-AS1 knockdown and P2RY10 silencing suppressed the viability, colony formation, and migration of LoVo cells. TRG-AS1 knockdown downregulated the expression of P2RY10, GNA12, and GNA13, while P2RY10 silencing downregulated the expression of TRG-AS1, GNA12, and GNA13. Additionally, GNA13 overexpression reversed the cell growth and gene expression changes in LoVo cells induced by TRG-AS1 knockdown or P2RY10 silencing. In vivo experiments revealed that CRC tumor growth was suppressed by TRG-AS1 knockdown and P2RY10 silencing. CONCLUSIONS TRG-AS1 knockdown repressed the growth of HT-29 and LoVo by regulating P2RY10 and GNA13 expression.
Collapse
Affiliation(s)
- Longqing Shi
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Baoyang Luo
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Linghui Deng
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yuanjiu Li
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Hua Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Lin Zhuang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
7
|
Li J, Wang C, Xu X, Chen J, Guo H. An extensive analysis of the prognostic and immune role of FOXO1 in various types of cancer. Braz J Med Biol Res 2024; 57:e13378. [PMID: 38716982 PMCID: PMC11085032 DOI: 10.1590/1414-431x2024e13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024] Open
Abstract
Forkhead Box O1 (FOXO1) has been reported to play important roles in many tumors. However, FOXO1 has not been studied in pan-cancer. The purpose of this study was to reveal the roles of FOXO1 in pan-cancer (33 cancers in this study). Through multiple public platforms, a pan-cancer analysis of FOXO1 was conducted to obtained FOXO1 expression profiles in various tumors to explore the relationship between FOXO1 expression and prognosis of these tumors and to disclose the potential mechanism of FOXO1 in these tumors. FOXO1 was associated with the prognosis of multiple tumors, especially LGG (low grade glioma), OV (ovarian carcinoma), and KIRC (kidney renal clear cell carcinoma). FOXO1 might play the role of an oncogenic gene in LGG and OV, while playing the role of a cancer suppressor gene in KIRC. FOXO1 expression had a significant correlation with the infiltration of some immune cells in LGG, OV, and KIRC. By combining FOXO1 expression and immune cell infiltration, we found that FOXO1 might influence the overall survival of LGG through the infiltration of myeloid dendritic cells or CD4+ T cells. Functional enrichment analysis and gene set enrichment analysis showed that FOXO1 might play roles in tumors through immunoregulatory interactions between a lymphoid and a non-lymphoid cell, TGF-beta signaling pathway, and transcriptional misregulation in cancer. FOXO1 was associated with the prognosis of multiple tumors, especially LGG, OV, and KIRC. In these tumors, FOXO1 might play its role via the regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| | - Haijun Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated
Hangzhou First People's Hospital, West Lake University School of Medicine,
Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine
of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Lauinger M, Christen D, Klar RF, Roubaty C, Heilig CE, Stumpe M, Knox JJ, Radulovich N, Tamblyn L, Xie IY, Horak P, Forschner A, Bitzer M, Wittel UA, Boerries M, Ball CR, Heining C, Glimm H, Fröhlich M, Hübschmann D, Gallinger S, Fritsch R, Fröhling S, O’Kane GM, Dengjel J, Brummer T. BRAF Δβ3-αC in-frame deletion mutants differ in their dimerization propensity, HSP90 dependence, and druggability. SCIENCE ADVANCES 2023; 9:eade7486. [PMID: 37656784 PMCID: PMC11804575 DOI: 10.1126/sciadv.ade7486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔβ3-αC oncoproteins usually lack five amino acids in the β3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔβ3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔβ3-αC oncoproteins. We show that BRAFΔβ3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔβ3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔβ3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.
Collapse
Affiliation(s)
- Manuel Lauinger
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rhena F. U. Klar
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christoph E. Heilig
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jennifer J. Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Tamblyn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Irene Y. Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Michael Bitzer
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University, Tübingen, Germany
- Center for Personalized Medicine Tübingen, Eberhard Karls University, Tübingen, Germany
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, 79106 Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudia R. Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Heining
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ralph Fritsch
- Department of Internal Medicine I (Hematology, Oncology, and Stem Cell Transplantation), University Hospital of Freiburg, Freiburg, Germany
- Department of Medical Oncology and Haematology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Grainne M. O’Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Freeze-O Organoid Bank, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Hasan S, White NF, Tagliatela AC, Durall RT, Brown KM, McDiarmid GR, Meigs TE. Overexpressed Gα13 activates serum response factor through stoichiometric imbalance with Gβγ and mislocalization to the cytoplasm. Cell Signal 2023; 102:110534. [PMID: 36442589 DOI: 10.1016/j.cellsig.2022.110534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Gα13, a heterotrimeric G protein α subunit of the G12/13 subfamily, is an oncogenic driver in multiple cancer types. Unlike other G protein subfamilies that contribute to cancer progression via amino acid substitutions that abolish their deactivating, intrinsic GTPase activity, Gα13 rarely harbors such mutations in tumors and instead appears to stimulate aberrant cell growth via overexpression as a wildtype form. It is not known why this effect is exclusive to the G12/13 subfamily, nor has a mechanism been elucidated for overexpressed Gα13 promoting tumor progression. Using a reporter gene assay for serum response factor (SRF)-mediated transcription in HEK293 cells, we found that transiently expressed, wildtype Gα13 generates a robust SRF signal, approximately half the amplitude observed for GTPase-defective Gα13. When epitope-tagged, wildtype Gα13 was titrated upward in cells, a sharp increase in SRF stimulation was observed coincident with a "spillover" of Gα13 from membrane-associated to a soluble fraction. Overexpressing G protein β and γ subunits caused both a decrease in this signal and a shift of wildtype Gα13 back to the membranous fraction, suggesting that stoichiometric imbalance in the αβγ heterotrimer results in aberrant subcellular localization and signalling by overexpressed Gα13. We also examined the acylation requirements of wildtype Gα13 for signalling to SRF. Similar to GTPase-defective Gα13, S-palmitoylation of the wildtype α subunit was necessary for SRF activation but could be replaced functionally by an engineered site for N-terminal myristoylation. However, a key difference was observed between wildtype and GTPase-defective Gα13: whereas the latter protein lacking palmitoylation sites was rescued in its SRF signalling by either an engineered polybasic sequence or a C-terminal isoprenylation site, these motifs failed to restore signalling by wildtype, non-palmitoylated Gα13. These findings illuminate several components of the mechanism in which overexpressed, wildtype Gα13 contributes to growth and tumorigenic signalling, and reveal greater stringency in its requirements for post-translational modification in comparison to GTPase-defective Gα13.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Nicholas F White
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Alicia C Tagliatela
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - R Taylor Durall
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Katherine M Brown
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Gray R McDiarmid
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, 220 Campus Drive, Asheville, NC 28804, USA.
| |
Collapse
|
10
|
Yagi H, Onoyama I, Asanoma K, Kawakami M, Maenohara S, Kodama K, Matsumura Y, Hamada N, Hori E, Hachisuga K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kato K. Tumor-derived ARHGAP35 mutations enhance the Gα 13-Rho signaling axis in human endometrial cancer. Cancer Gene Ther 2023; 30:313-323. [PMID: 36257976 DOI: 10.1038/s41417-022-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
Dysregulated G protein-coupled receptor signaling is involved in the formation and progression of human cancers. The heterotrimeric G protein Gα13 is highly expressed in various cancers and regulates diverse cancer-related transcriptional networks and cellular functions by activating Rho. Herein, we demonstrate that increased expression of Gα13 promotes cell proliferation through activation of Rho and the transcription factor AP-1 in human endometrial cancer. Of interest, the RhoGTPase activating protein (RhoGAP), ARHGAP35 is frequently mutated in human endometrial cancers. Among the 509 endometrial cancer samples in The Cancer Genome Atlas database, 108 harbor 152 mutations at 126 different positions within ARHGAP35, representing a somatic mutation frequency of 20.2%. We evaluated the effect of 124 tumor-derived ARHGAP35 mutations on Gα13-mediated Rho and AP-1 activation. The RhoGAP activity of ARHGAP35 was impaired by 55 of 124 tumor-derived mutations, comprised of 23 nonsense, 15 frame-shift, 15 missense mutations, and two in-frame deletions. Considering that ARHGAP35 is mutated in >2% of all tumors, it ranks among the top 30 most significantly mutated genes in human cancer. Our data suggest potential roles of ARHGAP35 as an oncogenic driver gene, providing novel therapeutic opportunities for endometrial cancer.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
An Update of G-Protein-Coupled Receptor Signaling and Its Deregulation in Gastric Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030736. [PMID: 36765694 PMCID: PMC9913146 DOI: 10.3390/cancers15030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily responding to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a heterotrimeric G protein and triggers the production of numerous secondary messengers, which transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor initiation and development. In this review, we have summarized the research progress of GPCRs and highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape. Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.
Collapse
|
12
|
Interaction kinetics between p115-RhoGEF and Gα 13 are determined by unique molecular interactions affecting agonist sensitivity. Commun Biol 2022; 5:1287. [PMID: 36434027 PMCID: PMC9700851 DOI: 10.1038/s42003-022-04224-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
The three RH-RhoGEFs (Guanine nucleotide exchange factors) p115-RhoGEF, LARG (leukemia-associated RhoGEF) and PDZ-RhoGEF link G-protein coupled receptors (GPCRs) with RhoA signaling through activation of Gα12/13. In order to find functional differences in signaling between the different RH-RhoGEFs we examined their interaction with Gα13 in high spatial and temporal resolution, utilizing a FRET-based single cell assay. We found that p115-RhoGEF interacts significantly shorter with Gα13 than LARG and PDZ-RhoGEF, while narrowing the structural basis for these differences down to a single amino acid in the rgRGS domain of p115-RhoGEF. The mutation of this amino acid led to an increased interaction time with Gα13 and an enhanced agonist sensitivity, comparable to LARG, while mutating the corresponding amino acid in Gα13 the same effect could be achieved. While the rgRGS domains of RH-RhoGEFs showed GAP (GTPase-activating protein) activity towards Gα13 in vitro, our approach suggests higher GAP activity of p115-RhoGEF in intact cells.
Collapse
|
13
|
Identification of potentially functional modules and diagnostic genes related to amyotrophic lateral sclerosis based on the WGCNA and LASSO algorithms. Sci Rep 2022; 12:20144. [PMID: 36418457 PMCID: PMC9684499 DOI: 10.1038/s41598-022-24306-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically and phenotypically heterogeneous disease results in the loss of motor neurons. Mounting information points to involvement of other systems including cognitive impairment. However, neither the valid biomarker for diagnosis nor effective therapeutic intervention is available for ALS. The present study is aimed at identifying potentially genetic biomarker that improves the diagnosis and treatment of ALS patients based on the data of the Gene Expression Omnibus. We retrieved datasets and conducted a weighted gene co-expression network analysis (WGCNA) to identify ALS-related co-expression genes. Functional enrichment analysis was performed to determine the features and pathways of the main modules. We then constructed an ALS-related model using the least absolute shrinkage and selection operator (LASSO) regression analysis and verified the model by the receiver operating characteristic (ROC) curve. Besides we screened the non-preserved gene modules in FTD and ALS-mimic disorders to distinct ALS-related genes from disorders with overlapping genes and features. Altogether, 4198 common genes between datasets with the most variation were analyzed and 16 distinct modules were identified through WGCNA. Blue module had the most correlation with ALS and functionally enriched in pathways of neurodegeneration-multiple diseases', 'amyotrophic lateral sclerosis', and 'endocytosis' KEGG terms. Further, some of other modules related to ALS were enriched in 'autophagy' and 'amyotrophic lateral sclerosis'. The 30 top of hub genes were recruited to a LASSO regression model and 5 genes (BCLAF1, GNA13, ARL6IP5, ARGLU1, and YPEL5) were identified as potentially diagnostic ALS biomarkers with validating of the ROC curve and AUC value.
Collapse
|
14
|
Pan Z, Zheng Z, Ye W, Chen C, Ye S. Overexpression of GNA13 correlates with poor prognosis in esophageal squamous cell carcinoma after esophagectomy. Int J Biol Markers 2022; 37:289-295. [PMID: 35706395 DOI: 10.1177/03936155221106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study aimed to explore the expression and clinical implication of guanine nucleotide-binding protein alpha 13 (GNA13) in esophageal squamous cell carcinoma (ESCC). METHODS We first employed western blot analysis to test the GNA13 protein expression level in ESCC tissues. Subsequently, we used immunohistochemistry assays to detect the GNA13 in ESCC specimens from 173 patients who underwent esophagectomy. Survival analysis was performed to define the impact of GNA13 expressions on the prognosis of the ESCC patients based on the clinical and follow-up data. RESULTS The GNA13 protein was shown to be considerably higher in ESCC tissues than in normal esophageal tissues. The level of expression was closely related to the tumor, node, TNM stage, and tumor size. More importantly, ESCC patients with high GNA13 expression carried an increased risk of tumor recurrence compared to those with low GNA13 expression. In addition, a high GNA13 expression level could independently predict worse overall survival and disease-free survival in ESCC. CONCLUSIONS GNA13 could be a novel prognostic biomarker for ESCC patients after esophagectomy.
Collapse
Affiliation(s)
- Zichun Pan
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Wen Ye
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, 71068Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Rasheed SAK, Subramanyan LV, Lim WK, Udayappan UK, Wang M, Casey PJ. The emerging roles of Gα12/13 proteins on the hallmarks of cancer in solid tumors. Oncogene 2022; 41:147-158. [PMID: 34689178 PMCID: PMC8732267 DOI: 10.1038/s41388-021-02069-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
G12 proteins comprise a subfamily of G-alpha subunits of heterotrimeric GTP-binding proteins (G proteins) that link specific cell surface G protein-coupled receptors (GPCRs) to downstream signaling molecules and play important roles in human physiology. The G12 subfamily contains two family members: Gα12 and Gα13 (encoded by the GNA12 and GNA13 genes, respectively) and, as with all G proteins, their activity is regulated by their ability to bind to guanine nucleotides. Increased expression of both Gα12 and Gα13, and their enhanced signaling, has been associated with tumorigenesis and tumor progression of multiple cancer types over the past decade. Despite these strong associations, Gα12/13 proteins are underappreciated in the field of cancer. As our understanding of G protein involvement in oncogenic signaling has evolved, it has become clear that Gα12/13 signaling is pleotropic and activates specific downstream effectors in different tumor types. Further, the expression of Gα12/13 proteins is regulated through a series of transcriptional and post-transcriptional mechanisms, several of which are frequently deregulated in cancer. With the ever-increasing understanding of tumorigenic processes driven by Gα12/13 proteins, it is becoming clear that targeting Gα12/13 signaling in a context-specific manner could provide a new strategy to improve therapeutic outcomes in a number of solid tumors. In this review, we detail how Gα12/13 proteins, which were first discovered as proto-oncogenes, are now known to drive several "classical" hallmarks, and also play important roles in the "emerging" hallmarks, of cancer.
Collapse
Affiliation(s)
| | | | - Wei Kiang Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Udhaya Kumari Udayappan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke Univ. Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Liu F, Zhu XT, Li Y, Wang CJ, Fu JL, Hui J, Xiao Y, Liu L, Yan R, Li XF, Liu Y. Magnesium demethylcantharidate inhibits hepatocellular carcinoma cell invasion and metastasis via activation transcription factor FOXO1. Eur J Pharmacol 2021; 911:174558. [PMID: 34634308 DOI: 10.1016/j.ejphar.2021.174558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, develops rapidly and has a high mortality rate. Relapsed metastasis is the most important factor affecting prognosis and is also the main cause of death for patients with HCC. Cantharidin is a kind of folk medicine for malignant tumors in China. Because of its cytotoxicity, the application of cantharidin is very limited. Magnesium demethylcantharidate (MDC) is a derivative of cantharidin independently developed by our laboratory. Our results show that MDC has anticancer activity and exhibited lower toxicity than cantharidin. However, whether MDC affects the invasion and metastasis of HCC cells and the underlying molecular mechanisms remain obscure. Transwell and Matrigel assays showed that MDC could effectively inhibit the invasion and metastasis of the HCC cell lines SMMC-7721 and SK-Hep1 in a dose-dependent manner. Moreover, MDC significantly inhibited the expression of invasion and metastasis related proteins MMP-2 and MMP-9. In addition, our study found that MDC inhibited the invasion and metastasis of HCC cell lines SMMC-7721 and SK-Hep1 by activating transcription factor FOXO1. Interestingly, the combination of MDC and sorafenib significantly inhibited the invasion and metastasis of HCC cell lines SMMC-7721 and SK-Hep1 compared with the single drug treatment via the activated transcription factor FOXO1. Our work revealed that MDC obviously inhibited the invasion and metastasis of HCC cells, and suggested that MDC could be a potential candidate molecule against the invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Fang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xin-Ting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Li
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Chen-Jing Wang
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Li Fu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China
| | - Liu Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Rong Yan
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Xiao-Fei Li
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yun Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, China; Life Sciences Institute, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
17
|
Zhang X, Groen K, Morten BC, Steffens Reinhardt L, Campbell HG, Braithwaite AW, Bourdon JC, Avery-Kiejda KA. Effect of p53 and its N-terminally truncated isoform, Δ40p53, on breast cancer migration and invasion. Mol Oncol 2021; 16:447-465. [PMID: 34657382 PMCID: PMC8763661 DOI: 10.1002/1878-0261.13118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is the most diagnosed malignancy in women, with over half a million women dying from this disease each year. In our previous studies, ∆40p53, an N‐terminally truncated p53 isoform, was found to be upregulated in breast cancers, and a high ∆40p53 : p53α ratio was linked with worse disease‐free survival. Although p53α inhibits cancer migration and invasion, little is known about the role of ∆40p53 in regulating these metastasis‐related processes and its role in contributing to worse prognosis. The aim of this study was to assess the role of ∆40p53 in breast cancer migration and invasion. A relationship between Δ40p53 and gene expression profiles was identified in oestrogen‐receptor‐positive breast cancer specimens. To further evaluate the role of Δ40p53 in oestrogen‐receptor‐positive breast cancer, MCF‐7 and ZR75‐1 cell lines were transduced to knockdown p53α or Δ40p53 and overexpress Δ40p53. Proliferation, migration and invasion were assessed in the transduced sublines, and gene expression was assessed through RNA‐sequencing and validated by reverse‐transcription quantitative PCR. Knockdown of both p53α and ∆40p53 resulted in increased proliferation, whereas overexpression of ∆40p53 reduced proliferation rates. p53α knockdown was also associated with increased cell mobility. ∆40p53 overexpression reduced both migratory and invasive properties of the transduced cells. Phenotypic findings are supported by gene expression data, including differential expression of LRG1, HYOU1, UBE2QL1, SERPINA5 and PCDH7. Taken together, these results suggest that, at the basal level, ∆40p53 works similarly to p53α in suppressing cellular mobility and proliferation, although the role of Δ40p53 may be cell context‐specific.
Collapse
Affiliation(s)
- Xiajie Zhang
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Brianna C Morten
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Luiza Steffens Reinhardt
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| | - Hamish G Campbell
- Children's Medical Research Institute, University of Sydney, NSW, Australia
| | - Antony W Braithwaite
- Children's Medical Research Institute, University of Sydney, NSW, Australia.,Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Kelly A Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, NSW, Australia
| |
Collapse
|
18
|
Liu Y, Du Z, Xu Z, Jin T, Xu K, Huang M, Wang S, Zheng Y, Liu M, Xu H. Overexpressed GNA13 induces temozolomide sensitization via down-regulating MGMT and p-RELA in glioma. Am J Transl Res 2021; 13:11413-11426. [PMID: 34786068 PMCID: PMC8581860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Temozolomide (TMZ), one of the few effective drugs used during adjuvant therapy, could effectively prolong the overall survival (OS) of glioma patients. In our previous study, the mRNA level of G Protein Subunit Alpha 13 (GNA13) was found to be inversely correlated with OS and was therefore identified as a potential biomarker for the prognosis of glioma. Henceforth, this study aims to identify the molecular mechanism of GNA13 in enhancing TMZ sensitization through bioinformatic analyses of GSE80729 and GSE43452 and other experiments. In glioma, overexpression of GNA13 downregulated PRKACA, which is a subunit of PKA, hence reducing phosphorylated RELA and MGMT. Since p-RELA and MGMT were proven to be closely associated with TMZ resistance, we therefore investigated whether thetwo signaling pathways, "GNA13/PRKACA/p-RELA", and "GNA13/PRKACA/MGMT", were involved in the molecular mechanism of GNA13 in TMZ sensitization. Our conclusion was that, GNA13 overexpression in glioma cells were more sensitive in TMZ treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Tao Jin
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Ke Xu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Meihui Huang
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Yuyu Zheng
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| |
Collapse
|
19
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Proteomic Profiling of the First Human Dental Pulp Mesenchymal Stem/Stromal Cells from Carbonic Anhydrase II Deficiency Osteopetrosis Patients. Int J Mol Sci 2020; 22:ijms22010380. [PMID: 33396517 PMCID: PMC7795265 DOI: 10.3390/ijms22010380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Osteopetrosis is a hereditary disorder characterized by sclerotic, thick, weak, and brittle bone. The biological behavior of mesenchymal cells obtained from osteopetrosis patients has not been well-studied. Isolated mesenchymal stem/stromal cells from dental pulp (DP-MSSCs) of recently extracted deciduous teeth from osteopetrosis (OP) patients and healthy controls (HCs) were compared. We evaluated whether the dental pulp of OP patients has a population of MSSCs with similar multilineage differentiation capability to DP-MSSCs of healthy subjects. Stem/progenitor cells were characterized using immunohistochemistry, flow cytometry, and proteomics. Our DP-MSSCs were strongly positive for CD44, CD73, CD105, and CD90. DP-MSSCs obtained from HC subjects and OP patients showed similar patterns of proliferation and differentiation as well as gene expression. Proteomic analysis identified 1499 unique proteins with 94.3% similarity in global protein fingerprints of HCs and OP patients. Interestingly, we observed subtle differences in expressed proteins of osteopetrosis disease-related in pathways, including MAPK, ERK 1/2, PI3K, and integrin, rather than in the stem cell signaling network. Our findings of similar protein expression signatures in DP-MSSCs of HC and OP patients are of paramount interest, and further in vivo validation study is needed. There is the possibility that OP patients could have their exfoliating deciduous teeth banked for future use in regenerative dentistry.
Collapse
|
21
|
Mansour MA. SP3 is associated with migration, invasion, and Akt/PKB signalling in MDA-MB-231 breast cancer cells. J Biochem Mol Toxicol 2020; 35:e22657. [PMID: 33113244 DOI: 10.1002/jbt.22657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) have pro-oncogenic functions in cancer cells, ranging from cancer cell proliferation, migration, invasion, and angiogenesis. There is strong evidence that several antineoplastic drugs target depletion of SP proteins via different pathways. However, the mode of action of SP3 and the underlying consequences of its depletion are not well understood. Here, we demonstrate that SP3 is overexpressed in invasive breast cancer cells vs normal counterparts. The gene expression analysis from The Cancer Genome Atlas datasets indicated that SP3 is strongly correlated with Akt signalling-related proteins, G protein subunit alpha 13, and RAB33B (RAB33B, member RAS oncogene family). RNA interference of SP3 decreased active phosphorylation of Akt at serine and threonine sites. These findings indicate that SP3 exhibits a pro-oncogenic function, which clearly fits the description of an nononcogene addiction gene. Future analyses are prompted to uncover the SP3 gene regulation function and to reveal downstream targets of SP3 in breast cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.,Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Stecky RC, Quick CR, Fleming TL, Mull ML, Vinson VK, Whitley MS, Dover EN, Meigs TE. Divergent C-terminal motifs in Gα12 and Gα13 provide distinct mechanisms of effector binding and SRF activation. Cell Signal 2020; 72:109653. [PMID: 32330601 DOI: 10.1016/j.cellsig.2020.109653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/18/2022]
Abstract
The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown. Invertebrates encode a single G12/13 homolog that participates in cytoskeletal changes yet appears to lack signalling to SRF (serum response factor), a transcriptional activator stimulated by mammalian Gα12 and Gα13 to promote growth and tumorigenesis. Our previous studies identified an evolutionarily divergent region in Gα12 for which replacement by homologous sequence from Drosophila melanogaster abolished SRF signalling, whereas the same invertebrate substitution was fully tolerated in Gα13 [Montgomery et al. (2014) Mol. Pharmacol. 85: 586]. These findings prompted our current approach of evolution-guided mutagenesis to identify fine structural features of Gα12 and Gα13 that underlie their respective SRF activation mechanisms. Our results identified two motifs flanking the α4 helix that play a key role in Gα12 signalling to SRF. We found the region encompassing these motifs to provide an interacting surface for multiple Gα12-specific target proteins that fail to bind Gα13. Adjacent to this divergent region, a highly-conserved domain was vital for SRF activation by both Gα12 and Gα13. However, dissection of this domain using invertebrate substitutions revealed different signalling mechanisms in these α subunits and identified Gα13-specific determinants of binding Rho-specific guanine nucleotide exchange factors. Furthermore, invertebrate substitutions in the C-terminal, α5 helical region were selectively disruptive to Gα12 signalling. Taken together, our results identify key structural features near the C-terminus that evolved after the divergence of Gα12 and Gα13, and should aid the development of agents to selectively manipulate signalling by individual α subunits of the G12/13 subfamily.
Collapse
Affiliation(s)
- Rebecca C Stecky
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Courtney R Quick
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Todd L Fleming
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Makenzy L Mull
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Vanessa K Vinson
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Megan S Whitley
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - E Nicole Dover
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Thomas E Meigs
- Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
| |
Collapse
|
23
|
Lim WK, Chai X, Ghosh S, Ray D, Wang M, Rasheed SAK, Casey PJ. Gα-13 induces C XC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-κB. J Biol Chem 2019; 294:18192-18206. [PMID: 31636124 PMCID: PMC6885619 DOI: 10.1074/jbc.ra119.010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
GNA13, the α subunit of a heterotrimeric G protein, mediates signaling through G-protein-coupled receptors (GPCRs). GNA13 is up-regulated in many solid tumors, including prostate cancer, where it contributes to tumor initiation, drug resistance, and metastasis. To better understand how GNA13 contributes to tumorigenesis and tumor progression, we compared the entire transcriptome of PC3 prostate cancer cells with those cells in which GNA13 expression had been silenced. This analysis revealed that GNA13 levels affected multiple CXC-family chemokines. Further investigation in three different prostate cancer cell lines singled out pro-tumorigenic CXC motif chemokine ligand 5 (CXCL5) as a target of GNA13 signaling. Elevation of GNA13 levels consistently induced CXCL5 RNA and protein expression in all three cell lines. Analysis of the CXCL5 promoter revealed that the -505/+62 region was both highly active and influenced by GNA13, and a single NF-κB site within this region of the promoter was critical for GNA13-dependent promoter activity. ChIP experiments revealed that, upon induction of GNA13 expression, occupancy at the CXCL5 promoter was significantly enriched for the p65 component of NF-κB. GNA13 knockdown suppressed both p65 phosphorylation and the activity of a specific NF-κB reporter, and p65 silencing impaired the GNA13-enhanced expression of CXCL5. Finally, blockade of Rho GTPase activity eliminated the impact of GNA13 on NF-κB transcriptional activity and CXCL5 expression. Together, these findings suggest that GNA13 drives CXCL5 expression by transactivating NF-κB in a Rho-dependent manner in prostate cancer cells.
Collapse
Affiliation(s)
- Wei Kiang Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Xiaoran Chai
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857 Singapore
| | - Sujoy Ghosh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857 Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | | | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
24
|
Yagi H, Onoyama I, Asanoma K, Hori E, Yasunaga M, Kodama K, Kijima M, Ohgami T, Kaneki E, Okugawa K, Yahata H, Kato K. Gα 13-mediated LATS1 down-regulation contributes to epithelial-mesenchymal transition in ovarian cancer. FASEB J 2019; 33:13683-13694. [PMID: 31569999 DOI: 10.1096/fj.201901278r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gα13, a heterotrimeric G-protein of the Gα12/13 subfamily, is associated with aggressive phenotypes in various human cancers. However, the mechanisms by which Gα13 promotes cancer progression have not been fully elucidated. Here, we demonstrate that the activation of Gα13 induces epithelial-mesenchymal transition in ovarian cancer (OvCa) cells through down-regulation of large tumor suppressor kinase (LATS) 1, a critical component of the Hippo signaling pathway. A synthetic biology approach using a mutant GPCR and chimeric G-protein revealed that Gα13-regulated phosphorylation of LATS1 at serine 909 within its activation loop induced recruitment of the itchy E3 ubiquitin protein ligase to trigger LATS1 degradation. Our findings uncover novel mechanisms through which Gα13 activation induces dysregulation of the Hippo signaling pathway, which leads to aggressive cancer phenotypes, and thereby identify a potential target for preventing the metastatic spread of OvCa.-Yagi, H., Onoyama, I., Asanoma, K., Hori, E., Yasunaga, M., Kodama, K., Kijima, M., Ohgami, T., Kaneki, E., Okugawa, K., Yahata, H., Kato, K. Gα13-mediated LATS1 down-regulation contributes to epithelial-mesenchymal transition in ovarian cancer.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masako Kijima
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eisuke Kaneki
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 2019; 294:11062-11086. [PMID: 31171722 DOI: 10.1074/jbc.rev119.005601] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.
Collapse
Affiliation(s)
- Victoria Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Huwate Yeerna
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Nijiro Nohata
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Olivier Harismendy
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093.,Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Pablo Tamayo
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
26
|
Ahadi A, Safavi MS. miR-335-5p has an important role in the progression of gastric cancer by down-regulation of CEACAM5. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
27
|
Zhang Z, Tan X, Luo J, Cui B, Lei S, Si Z, Shen L, Yao H. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells. Cancer Med 2018; 7:5611-5620. [PMID: 30267476 PMCID: PMC6246959 DOI: 10.1002/cam4.1783] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/15/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
GNA13 has been found overexpressed in various types of cancer, which is related to tumor metastasis and progression. However, the biological functions of GNA13 in colorectal cancer (CRC) progression remain unclear. This study aimed to explore the role of GNA13 in CRC and investigate the mechanism of how GNA13 promotes tumor growth. Interestingly, our findings showed that GNA13 is commonly upregulated in CRC, where these events are associated with a worse histologic grade and poor survival. Increased expression levels of GNA13 promoted cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas GNA13 silencing abrogated these malignant phenotypes. In addition, overexpressing GNA13 in cancer cells increased the levels of the chemokines CXCL1, CXCL2, and CXCL4, which contributed to CRC proliferation and colony formation. Moreover, our mechanistic investigations suggest that the NF-κB/p65 signaling pathway was activated by the increase in GNA13 levels. Inhibiting the NF-κB/p65 pathway with an inhibitor decreased GNA13-induced migration, invasion and CXCL chemokine level increases, indicating the critical role of NF-κB/p65 signaling in mediating the effects of GNA13 in CRC. Together, these results demonstrate a key role of GNA13 overexpression in CRC that contributes to malignant behavior in cancer cells, at least in part through stimulating angiogenesis and increasing the levels of the NF-κB-dependent chemokines CXCL1, CXCL2, and CXCL4.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiao Tan
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing Luo
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Beibei Cui
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sanlin Lei
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhongzhou Si
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liangfang Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongliang Yao
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
28
|
Shimono J, Miyoshi H, Yoshida N, Kato T, Sato K, Sugio T, Miyawaki K, Kurita D, Sasaki Y, Kawamoto K, Imaizumi Y, Kato K, Nagafuji K, Akashi K, Seto M, Teshima T, Ohshima K. Analysis of GNA13 Protein in Follicular Lymphoma and its Association With Poor Prognosis. Am J Surg Pathol 2018; 42:1466-1471. [PMID: 30307409 PMCID: PMC6266301 DOI: 10.1097/pas.0000000000000969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GNA13 is a G protein involved in modulating tumor proliferative capacity, infiltration, metastasis, and migration. Genomic alteration of GNA13 was frequently observed in follicular lymphoma (FL). In this study, we examined 167 cases of FL by immunostaining of GNA13 using tissue microarray to evaluate the clinical significance. There were 26 GNA13-positive cases (15.6%) and 141 GNA13-negative cases (84.4%). GNA13-positive cases had a higher incidence of early progression of disease for which disease progression was recognized within 2 years compared with GNA13-negative cases (P=0.03). There were no significant differences in other clinicopathologic factors including histological grade, BCL2-IGH translocation, immunohistochemical phenotype, and Follicular Lymphoma International Prognostic Index. In addition, overall survival and progression-free survival were poorer in GNA13-positive cases than in GNA13-negative cases (P=0.009 and 0.005, respectively). In multivariate analysis, GNA13 positivity was found to be a poor prognostic factor for overall survival and progression-free survival. Thus, GNA13 protein expression was an independent prognostic factor and may affect disease progression in FL.
Collapse
Affiliation(s)
- Joji Shimono
- Departments of Pathology
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | | | | | - Takeharu Kato
- Department of Hematology, Sasebo City General Hospital, Sasebo
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki
| | | | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | | | | | | | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | - Koji Nagafuji
- Division of Hematology and Oncology, Hematology, School of Medicine, Kurume University, Kurume
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine Sciences, Fukuoka, Japan
| | | | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo
| | | |
Collapse
|
29
|
Muhammad S, Tang Q, Wei L, Zhang Q, Wang G, Muhammad BU, Kaur K, Kamchedalova T, Gang Z, Jiang Z, Liu Z, Wang X. miRNA-30d serves a critical function in colorectal cancer initiation, progression and invasion via directly targeting the GNA13 gene. Exp Ther Med 2018; 17:260-272. [PMID: 30651791 PMCID: PMC6307398 DOI: 10.3892/etm.2018.6902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are reported to be dysregulated in the progression and invasion of various human cancer types, including colorectal cancer (CRC). They are also reported to be molecular biomarkers and therapeutic targets in CRC. miRNAs serve functions in a plethora of biological processes, including proliferation, migration, invasion and apoptosis, and several miRNAs have been demonstrated to be involved in CRC carcinogenesis, invasion and metastasis. Aberrant miR-30d expression and its effects have been reported in certain cancer types. However, the function and underlying mechanism of miR-30d in the progression of CRC remains largely unknown. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to quantify miR-30d expression in CRC tissues. In vivo and in vitro functional assays indicated that miR-30d inhibits CRC cell proliferation. Target prediction online software packages, miRBase, TargetScan and miRANDA, and luciferase reporter assays were used to confirm the target gene GNA13. Specimens from 45 patients with CRC were analyzed for correlation between the expression of miR-30d and the expression of target gene GNA13, evaluated by RT-qPCR. miR-30d was downregulated in CRC tissues and cell lines. Ectopic expression of miR-30d inhibited cell proliferation and invasion and tumor growth ability. By contrast, inhibition of endogenous miR-30d promoted cell proliferation and tumor growth ability of CRC cells. It was indicated that miR-30d directly targets the 3'-untranslated region of the GNA13 gene. Downregulation of miR-30d led to the activation of cell proliferation in CRC. In addition, miR-30d expression was negatively correlated with the expression of GNA13 in CRC tissues. In conclusion, miR-30d inhibits cancer initiation, proliferation and invasion in colorectal cancer via targeting GNA13.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Neurology, Heilongjiang University of Traditional Medicine, Harbin, Heilongjiang 150081, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Qingchao Tang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Liu Wei
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Library of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qian Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Bilal Umar Muhammad
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kavanjit Kaur
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tatiana Kamchedalova
- Department of Neurology, Heilongjiang University of Traditional Medicine, Harbin, Heilongjiang 150081, P.R. China
| | - Zhao Gang
- Department of Neurology, Heilongjiang University of Traditional Medicine, Harbin, Heilongjiang 150081, P.R. China
| | - Zheng Jiang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| | - Zheng Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| | - Xishan Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Cancer, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, P.R. China.,Department of Colorectal Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
30
|
Guo G, Zhou J, Yang X, Feng J, Shao Y, Jia T, Huang Q, Li Y, Zhong Y, Nagarkatti PS, Nagarkatti M. Role of MicroRNAs Induced by Chinese Herbal Medicines Against Hepatocellular Carcinoma: A Brief Review. Integr Cancer Ther 2018; 17:1059-1067. [PMID: 30343602 PMCID: PMC6247546 DOI: 10.1177/1534735418805564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate gene
expression, and consequently several important functions including early embryo
development, cell cycle, programmed cell death, cell differentiation, and
metabolism. While there are no effective treatments available against
hepatocellular carcinoma (HCC), some Chinese herbal medicines have been shown to
regulate growth, differentiation, invasion, and metastasis of HCC. Many studies
have shown that Chinese herbal medicines regulate the expression of miRNAs and
this may be associated with their ability to control the development of HCC. In
this article, the effects of Chinese herbal medicines on the expression of
miRNAs and their functions in the regulation of HCC have been reviewed and
discussed. miRNAs such as miRNA-221 and miRNA-222 mediated by Chinese herbal
medicines may be good biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Ge Guo
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Juhua Zhou
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Xiaogaung Yang
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Jiang Feng
- 2 Hangzhou Hesti Biotechnology Co, Ltd, Hangzhou, Zhejiang, People's Republic of China
| | - Yanxia Shao
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Tingting Jia
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Qingrong Huang
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yanmin Li
- 1 Ludong University, Yantai, Shandong, People's Republic of China
| | - Yin Zhong
- 3 University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
31
|
Shi F, Li T, Liu Z, Qu K, Shi C, Li Y, Qin Q, Cheng L, Jin X, Yu T, Di W, Que J, Xia H, She J. FOXO1: Another avenue for treating digestive malignancy? Semin Cancer Biol 2018; 50:124-131. [PMID: 28965871 PMCID: PMC5874167 DOI: 10.1016/j.semcancer.2017.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
Abstract
Digestive malignancies are the leading cause of mortality among all neoplasms, contributing to estimated 3 million deaths in 2012 worldwide. The mortality rate hassurpassed lung cancer and prostate cancer in recent years. The transcription factor Forkhead Box O1 (FOXO1) is a key member of Forkhead Box family, regulating diverse cellular functions during tumor initiation, progression and metastasis. In this review, we focus on recent studies investigating the antineoplastic role of FOXO1 in digestive malignancy. This review aims to serve as a guide for further research and implicate FOXO1 as a potent therapeutic target in digestive malignancy.
Collapse
Affiliation(s)
- Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, Shaanxi, China
| | - Zhi Liu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Chengxin Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Yaguang Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Qian Qin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Liang Cheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Xin Jin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Jianwen Que
- Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, 10032, NY, USA
| | - Hongping Xia
- Laboratory of Cancer Genomics, National Cancer Centre, Singapore 169610, Singapore
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
32
|
Zeng W, Rao N, Li Q, Wang G, Liu D, Li Z, Yang Y. Genome-wide Analyses on Single Disease Samples for Potential Biomarkers and Biological Features of Molecular Subtypes: A Case Study in Gastric Cancer. Int J Biol Sci 2018; 14:833-842. [PMID: 29989098 PMCID: PMC6036754 DOI: 10.7150/ijbs.24816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose: Based on the previous 3 well-defined subtypes of gastric adenocarcinoma (invasive, proliferative and metabolic), we aimed to find potential biomarkers and biological features of each subtype. Methods: The genome-wide co-expression network of each subtype of gastric cancer was firstly constructed. Then, the functional modules in each genome-wide co-expression network were divided. Next, the key genes were screened from each functional module. Finally, the enrichment analysis was performed on the key genes to mine the biological features of each subtype. Comparative analysis between each pair of subtypes was performed to find the common and unique features among different subtypes. Results: A total of 207 key genes were identified in invasive, 215 key genes in proliferative, and 204 key genes in metabolic subtypes. Most key genes in each subtype were unique and new findings compared with that of the existing related researches. The GO and KEGG enrichment analyses for the key genes of each subtype revealed important biological features of each subtype. Conclusions: For a subtype, most identified key genes and important biological features were unique, which means that the key genes can be used as the potential biomarker of a subtype, and each subtype of gastric cancer might have different occurrence and development mechanisms. Thus, different diagnosis and therapy methods should be applied to the invasive, proliferative and metabolic subtypes of gastric cancer.
Collapse
Affiliation(s)
- Wei Zeng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China.,Department of Biomedical Engineering, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Nini Rao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China.,Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan, 523808, China
| | - Qian Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guangbin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dingyun Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhengwen Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuntao Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.,Key Laboratory for NeuroInformation of the Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
33
|
Rasheed SAK, Leong HS, Lakshmanan M, Raju A, Dadlani D, Chong FT, Shannon NB, Rajarethinam R, Skanthakumar T, Tan EY, Hwang JSG, Lim KH, Tan DSW, Ceppi P, Wang M, Tergaonkar V, Casey PJ, Iyer NG. GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers. Oncogene 2017; 37:1340-1353. [PMID: 29255247 PMCID: PMC6168473 DOI: 10.1038/s41388-017-0038-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022]
Abstract
Treatment failure in solid tumors occurs due to the survival of specific subpopulations of cells that possess tumor-initiating (TIC) phenotypes. Studies have implicated G protein-coupled-receptors (GPCRs) in cancer progression and the acquisition of TIC phenotypes. Many of the implicated GPCRs signal through the G protein GNA13. In this study, we demonstrate that GNA13 is upregulated in many solid tumors and impacts survival and metastases in patients. GNA13 levels modulate drug resistance and TIC-like phenotypes in patient-derived head and neck squamous cell carcinoma (HNSCC) cells in vitro and in vivo. Blockade of GNA13 expression, or of select downstream pathways, using small-molecule inhibitors abrogates GNA13-induced TIC phenotypes, rendering cells vulnerable to standard-of-care cytotoxic therapies. Taken together, these data indicate that GNA13 expression is a potential prognostic biomarker for tumor progression, and that interfering with GNA13-induced signaling provides a novel strategy to block TICs and drug resistance in HNSCCs.
Collapse
Affiliation(s)
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore
| | - Manikandan Lakshmanan
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Anandhkumar Raju
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Dhivya Dadlani
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Fui-Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore
| | - Nicholas B Shannon
- Department of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | | | | | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Kok Hing Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Daniel Shao-Weng Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore
| | - Paolo Ceppi
- IZKF Junior Research Group, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vinay Tergaonkar
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, USA.
| | - N Gopalakrishna Iyer
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore. .,Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore. .,Department of Surgical Oncology, National Cancer Centre, Singapore, Singapore.
| |
Collapse
|
34
|
Ru GQ, Han Y, Wang W, Chen Y, Wang HJ, Xu WJ, Ma J, Ye M, Chen X, He XL, Győrffy B, Zhao ZS, Huang D. CEACAM6 is a prognostic biomarker and potential therapeutic target for gastric carcinoma. Oncotarget 2017; 8:83673-83683. [PMID: 29137373 PMCID: PMC5663545 DOI: 10.18632/oncotarget.19415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate the prognostic power of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in gastric cancer (GC) and its potential role in cancer development and progression. Data mining results show that CEACAM6 is overexpressed in gastric cancer and is correlated with lymph node metastasis. Subsequently, immunohistochemical staining was performed to determine CEACAM6 protein levels in paraffin gastric tumor specimens. Real-time reverse-transcription-polymerase chain reaction (RT-PCR) was conducted to detect CEACAM6 mRNA levels in fresh GC samples. CEACAM6 protein and mRNA levels were significantly up regulated in GC compared with paired normal mucosa. The IHC staining intensity of CEACAM6 was positively correlated with tumor size, Lauren's classification, vascular invasion, lymph node metastasis, distant metastasis, and TNM stage. CEACAM6 expression was inversely correlated with the five-year survival rate of GC patients. Cox multivariate analysis results demonstrated that the overall survival was independently correlated with CEACAM6 expression. A significant association was observed between CEACAM6 and distant metastases. Network analysis of downstream gene signatures revealed several hub genes such as SRC and DNM1L etc. which may mediating tumor promoting functions of CEACAM6. Further data mining discovered that Tamoxifen etc. could be therapeutic alternatives for gastric patients with CEACAM6 overexpression. Collectively, CEACAM6 overexpression is a common characteristic of GC and is associated with poor 5 year survival rate in GC. Besides, potential molecular mechanisms and treatment options were also provided.
Collapse
Affiliation(s)
- Guo-Qing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Wei Wang
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Yuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Wen-Juan Xu
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Meihua Ye
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Xi Chen
- VIP Medical Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Balázs Győrffy
- Momentum Cancer Biomarker Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zhong-Sheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| | - Dongsheng Huang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
35
|
Xu Y, Rong J, Duan S, Chen C, Li Y, Peng B, Yi B, Zheng Z, Gao Y, Wang K, Yun M, Weng H, Zhang J, Ye S. High expression of GNA13 is associated with poor prognosis in hepatocellular carcinoma. Sci Rep 2016; 6:35948. [PMID: 27883022 PMCID: PMC5121652 DOI: 10.1038/srep35948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Guanine nucleotide binding protein alpha 13 (GNA13) has been found to play critical roles in the development of several human cancers. However, little is known about GNA13 expression and its clinical significance in hepatocellular carcinoma (HCC). In our study, GNA13 was reported to be significantly up-regulated in HCC tissues, and this was correlated with several clinicopathological parameters, including tumor multiplicity (P = 0.004), TNM stage (P = 0.002), and BCLC stage (P = 0.010). Further Cox regression analysis suggested that GNA13 expression was an independent prognostic factor for overall survival (P = 0.014) and disease-free survival (P = 0.005). Moreover, we found that overexpression of GNA13 couldn’t promote cell proliferation in vitro, but could significantly increase the invasion ability of HCC cells. Together, our study demonstrates GNA13 may be served as a prognostic biomarker for HCC patients after curative hepatectomy, in which high expression of GNA13 suggests poor prognosis of HCC patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Yi
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Kebing Wang
- Department of Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Miao Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Ultrasound, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Huiwen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|