1
|
Nagasaki M, Hirayasu K, Khor SS, Otokozawa R, Sekiya Y, Kawai Y, Tokunaga K. JoGo-LILR caller: Unveiling and navigating the complex diversity of LILRB3-LILRA6 copy number haplotype structures with whole-genome sequencing. Hum Immunol 2025; 86:111272. [PMID: 40054016 DOI: 10.1016/j.humimm.2025.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Leukocyte immunoglobulin-like receptors (LILRs), encoded on human chromosome 19q13.4, comprise a set of 11 immunoglobulin superfamily receptors known for their genetic heterogeneity. Notably, LILRB3 and LILRA6 within this cluster exhibit pronounced sequence homology in immunoglobulin-like domains involved in ligand binding and variable copy number (CN) states. However, understanding their precise role remains challenging. To address this difficulty, we developed an algorithm and tool named JoGo-LILR Caller, which jointly calls CNs of LILRB3 and LILRA6 from a population-scale whole-genome short-read sequencing dataset. This tool was applied to 2,504 international HapMap samples and yielded a global CN profile. The 100 % concordance rate corroborated this profile with the CN data obtained from 40 samples of pangenome reference assemblies provided by the Human Pangenome Reference Consortium (HPRC). The frequencies of LILRB3-LILRA6 CN haplotype structures were also estimated for five continental groups with a global CN profile. The established allele frequency profile allowed our tool to estimate LILRB3-LILRA6 CN haplotype combinations. JoGo-LILR-trio enhanced the prediction reliability for haplotype pairs within trio datasets, with trio analysis on 40 child samples demonstrating a 100 % concordance between the predicted pair of haploid CN types and the diploid reference assemblies. Its utility will extend to facilitating software advancements for imputing LILRB3-LILRA6 CN types from SNP array genotyping data, enabling subsequent association analyses that link these CN types to diverse phenotypic traits and diseases, e.g., inflammatory bowel diseases and Takayasu arteritis.
Collapse
Affiliation(s)
- Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan; Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Japan; Department of Evolutionary Immunology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan; Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Department of Immunology, School of Medical and Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore, Singapore
| | - Ryoko Otokozawa
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yayoi Sekiya
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Zhang M, Yang J, Zhang J, Huang C, Liu H, Zhang P, Zhai Y, Liu L, Yang J. Research progress of B subfamily of leucocyte immunoglobulin-like receptors in inflammation. Int J Immunogenet 2023; 50:107-116. [PMID: 37038910 DOI: 10.1111/iji.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Leucocyte immunoglobulin-like receptors subfamily B (LILRB) belongs to the type I transmembrane glycoproteins, which is the immunosuppressive receptor. LILRBs are widely expressed in bone marrow cells, hematopoietic stem cells, nerve cells and other body cells. Studies have found that LILRBs receptor can bind to a variety of ligands and has a variety of biological functions such as regulating inflammatory response, immune tolerance and cell differentiation. Inflammatory reaction plays a vital role in resisting microorganisms. The function of inhibitory immune receptors can recognize the signs of infection and promote the function of anti-microbial effect. The inflammatory response must be strictly regulated to prevent excessive inflammation and tissue damage. Therefore, it is of general interest to understand the role of LILRBs in the inflammatory response. Because they can inhibit the anti-microbial response of neutrophils, some human pathogens use these receptors to escape immunity. This article reviews the biological role of LILRBs in the inflammatory response. We focus on the known ligands of LILRBs, their different roles after binding with ligands, and how these receptors help to form neutrophil responses during infection. Recent studies have shown that LILRBs recruit phosphatases through intracellular tyrosine-based immunoreceptor inhibitory motifs to negatively regulate immune activation, thereby transmitting inflammation-related signals, suggesting that LILRBs may be an ideal target for the treatment of inflammatory diseases. Here, we describe in detail the regulation of LILRBs on the inflammatory response, its signal transduction mode in inflammation, and the progress in the treatment of inflammatory diseases, providing a reference for further research.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Peiyue Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| |
Collapse
|
4
|
Wang J, Zhao SJ, Wang LL, Lin XX, Mor G, Liao AH. Leukocyte immunoglobulin-like receptor subfamily B: A novel immune checkpoint molecule at the maternal-fetal interface. J Reprod Immunol 2023; 155:103764. [PMID: 36434938 DOI: 10.1016/j.jri.2022.103764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Due to their crucial roles in embryo implantation, maternal-fetal tolerance induction, and pregnancy progression, immune checkpoint molecules (ICMs), such as programmed cell death-1, cytotoxic T-lymphocyte antigen 4, and T cell immunoglobulin mucin 3, are considered potential targets for clinical intervention in pregnancy complications. Despite the considerable progress on these molecules, our understanding of ICMs at the maternal-fetal interface is still limited. Identification of alternative and novel ICMs and the combination of multiple ICMs is urgently needed for deeply understanding the mechanism of maternal-fetal tolerance and to discover the causes of pregnancy complications. Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a novel class of ICMs with strong negative regulatory effects on the immune response. Recent studies have revealed that LILRB is enriched in decidual immune cells and stromal cells at the maternal-fetal interface, which can modulate the biological behavior of immune cells and promote immune tolerance. In this review, we introduce the structural features, expression profiles, ligands, and orthologs of LILRB. In addition, the potential mechanisms and functions mediated by LILRB for sustaining the maternal-fetal tolerance microenvironment, remodeling the uterine spiral artery, and induction of pregnancy immune memory are summarized. We have also provided new suggestions for further understanding the roles of LILRB and potential therapeutic strategies for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
5
|
Distinct frequency patterns of LILRB3 and LILRA6 allelic variants in Europeans. Immunogenetics 2022; 75:263-267. [DOI: 10.1007/s00251-022-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Abstract
The leukocyte immunoglobulin–like receptor (LILR)B3 and LILRA6 genes encode homologous myeloid inhibitory and activating orphan receptors, respectively. Both genes exhibit a strikingly high level of polymorphism at the amino acid level and LILRA6 (but not LILRB3) displays copy number variation (CNV). Although multiple alleles have been reported for both genes, limited data is available on frequencies of these alleles among humans. We have sequenced LILRB3/A6 exons encoding signal peptides and ectodomains in 91 healthy blood donors of European descent who carry one or two copies of LILRA6 per diploid genome. Analysis of haplotypes among individuals with two LILRA6 copies, representing the majority in this cohort (N = 86), shows that common LILRB3 and LILRA6 alleles encode some distinct amino acid sequences in homologous regions of the receptors, which could potentially impact their respective functions differentially. Comparison of sequences in individuals with one vs. two copies of LILRA6 supports non-allelic homologous recombination between LILRB3 and LILRA6 as a mechanism for generating LILRA6 CNV and LILRB3 diversity. These data characterize LILRB3/LILRA6 genetic variation in more detail than previously described and underscore the need to determine their ligands.
Collapse
|
6
|
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an inhibitory receptor in the LILR family mainly expressed on normal and malignant human cells of myeloid origin. By binding to ligands, LILRB4 is activated and subsequently recruits adaptors to cytoplasmic immunoreceptor tyrosine inhibitory motifs to initiate different signaling cascades, thus playing an important role in physiological and pathological conditions, including autoimmune diseases, microbial infections, and cancers. In normal myeloid cells, LILRB4 regulates intrinsic cell activation and differentiation. In disease-associated or malignant myeloid cells, LILRB4 is significantly correlated with disease severity or patient survival and suppresses T cells, thereby participating in the pathogenesis of various diseases. In summary, LILRB4 functions as an immune checkpoint on myeloid cells and may be a promising therapeutic target for various human immune diseases, especially for cancer immunotherapy.
Collapse
|
7
|
Fan J, Wang L, Chen M, Zhang J, Li J, Song F, Gu A, Yin D, Yi Y. Analysis of the expression and prognosis for leukocyte immunoglobulin-like receptor subfamily B in human liver cancer. World J Surg Oncol 2022; 20:92. [PMID: 35321724 PMCID: PMC8943947 DOI: 10.1186/s12957-022-02562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background Leukocyte immunoglobulin-like receptor subfamily B (LILRB), including 5 subtypes, is a group of inhibitory receptors in the immune system. The LILRB family is known to be involved in the tumor progression of various cancer types, especially liver cancer. However, the expression patterns and prognostic values of LILRB family members in liver cancer tissues remain unclear. Methods We used the Oncomine database, GEPIA database, Kaplan–Meier Plotter, Timer, and TISIDB to assess the expression and prognostic value of the LILRB family in liver cancer patients. We also verified the expression of the LILRB family in tumor tissues and tumor-free liver tissues at the protein level by using immunohistochemistry. The STRING website was used to explore the interaction between the LILRB family and their related genes. The DAVID database was used to perform the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Flow cytometry was used to assess the infiltrated NK cells in liver cancer tissues. Results Our study revealed that the mRNA expression of LILRB1, LILRB2, LILRB3, and LILRB5 was downregulated, while compared with normal tissues, the mRNA expression of LILRB4 was upregulated in liver cancer tissues. Survival analysis revealed that LILRB2 and LILRB5 mRNA expression levels were significantly positively associated with overall survival (OS) and disease-free survival (DSS) and that the mRNA expression of all LILRB family members was significantly positively correlated with recurrence-free survival (RFS) and progression-free survival (PFS). Next, we further found that the mRNA expression of all LILRB family members was significantly associated with the infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in liver cancer. Finally, GO and KEGG analyses found that the LILRB family and its related genes were involved in antigen processing and presentation and natural killer cell-mediated cytotoxicity pathways. Conclusions Our study suggested that LILRB family expression was associated with the prognosis of liver cancer patients and infiltrated immune cells. The LILRB family might be involved in antigen processing and presentation and natural killer cell-mediated cytotoxicity pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02562-w.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003
| | - Miao Chen
- Nanjing University of Chinese Medicine, Han Zhong Road, Jianye District, Nanjing, Jiangsu, People's Republic of China, 210029
| | - Jiakang Zhang
- Nanjing University of Chinese Medicine, Han Zhong Road, Jianye District, Nanjing, Jiangsu, People's Republic of China, 210029
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003
| | - Yongxiang Yi
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu, People's Republic of China, 210003.
| |
Collapse
|
8
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Rumpret M, von Richthofen HJ, Peperzak V, Meyaard L. Inhibitory pattern recognition receptors. J Exp Med 2022; 219:212908. [PMID: 34905019 PMCID: PMC8674843 DOI: 10.1084/jem.20211463] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogen- and damage-associated molecular patterns are sensed by the immune system's pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Helen J von Richthofen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
10
|
Wu G, Xu Y, Schultz RD, Chen H, Xie J, Deng M, Liu X, Gui X, John S, Lu Z, Arase H, Zhang N, An Z, Zhang CC. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis. NATURE CANCER 2021; 2:1170-1184. [PMID: 35122056 PMCID: PMC8809885 DOI: 10.1038/s43018-021-00262-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Samuel John
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
12
|
Chen CX, Chen DN, Sun XL, Ke ZB, Lin F, Chen H, Tao X, Huang F, Wei Y, Xu N. Identification of vital prognostic genes related to tumor microenvironment in pheochromocytoma and paraganglioma based on weighted gene co-expression network analysis. Aging (Albany NY) 2021; 13:9976-9990. [PMID: 33795528 PMCID: PMC8064173 DOI: 10.18632/aging.202754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/16/2021] [Indexed: 01/12/2023]
Abstract
Pheochromocytoma and paraganglioma (PCPG) is a rare neuroendocrine tumor. This study aims to identify vital prognostic genes which were associated with PCPG tumor microenvironment (TME). We downloaded transcriptome data of PCPG from TCGA database and calculated the immune scores and stromal scores by using the ESTIMATE algorithm. DEGs related to TMB were then identified. We conducted WGCNA to further extract the TME-related modules. GO, KEGG pathway analysis, and PPI network were performed. Survival analysis was conducted to identify the hub genes associated with the prognosis of PCPG. A total of 150 PCPG samples were included in this study. We obtained 1507 and 2067 DEGs based on immune scores and stromal scores, respectively. WGCNA analysis identified the red module and brown module were correlated with immune sores while the turquoise module and red module were significantly associated with stromal scores. Functional enrichments analysis revealed that 307 TME-related genes were correlated with the inflammation or immune response. Survival analysis showed that three TME-relate genes (ADGRE1, CCL18, and LILRA6) were associated with PCPG prognosis. These three hub genes including ADGRE1, CCL18, and LILRA6 might be involved in the progression of PCPG and could serve as potential biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Chun-Xian Chen
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Dong-Ning Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xiong-Lin Sun
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhi-Bin Ke
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Fei Lin
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hang Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xuan Tao
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Fei Huang
- Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yong Wei
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
13
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Hirayasu K, Sun J, Hasegawa G, Hashikawa Y, Hosomichi K, Tajima A, Tokunaga K, Ohashi J, Hanayama R. Characterization of LILRB3 and LILRA6 allelic variants in the Japanese population. J Hum Genet 2021; 66:739-748. [PMID: 33526815 DOI: 10.1038/s10038-021-00906-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/09/2022]
Abstract
Leukocyte immunoglobulin (Ig)-like receptors (LILRs) are encoded by members of a human multigene family, comprising 11 protein-coding genes and two pseudogenes. Among the LILRs, LILRB3 and LILRA6 show the highest homology with each other, along with high allelic and copy number variations. Therefore, it has been difficult to discriminate between them, both genetically and functionally, precluding disease association studies of LILRB3 and LILRA6. In this study, we carefully performed variant screening of LILRB3 and LILRA6 by cDNA cloning from Japanese individuals and identified four allelic lineages showing significantly high non-synonymous-to-synonymous ratios in pairwise comparisons. Furthermore, the extracellular domains of the LILRB3*JP6 and LILRA6*JP1 alleles were identical at the DNA level, suggesting that gene conversion-like events diversified LILRB3 and LILRA6. To determine the four allelic lineages from genomic DNA, we established a lineage typing method that accurately estimated the four allelic lineages in addition to specific common alleles from genomic DNA. Analysis of LILRA6 copy number variation revealed one, two, and three copies of LILRA6 in the Japanese-in-Tokyo (JPT) population. Flow cytometric analysis showed that an anti-LILRB3 antibody did not recognize the second most common lineage in the Japanese population, indicating significant amino acid differences across the allelic lineages. Taken together, our findings indicate that our lineage typing is useful for classifying the lineage-specific functions of LILRB3 and LILRA6, serving as the basis for disease association studies.
Collapse
Affiliation(s)
- Kouyuki Hirayasu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan. .,Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Jinwen Sun
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Gen Hasegawa
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yuko Hashikawa
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan
| | - Kazuyoshi Hosomichi
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan.,Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Atsushi Tajima
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan.,Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rikinari Hanayama
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Ishikawa, Japan.,Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa, Japan
| |
Collapse
|
15
|
Carter JJ, Gardner JM, Poling BP, Welch MM, Nemeno JGE, Houghton JE, Dix RD. Transcriptional analysis of immune response genes during pathogenesis of cytomegalovirus retinitis in mice with murine acquired immunodeficiency syndrome. PLoS Pathog 2020; 16:e1009032. [PMID: 33156834 PMCID: PMC7647057 DOI: 10.1371/journal.ppat.1009032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic human herpesvirus that causes a sight-threatening retinitis in immunosuppressed patients, especially those with AIDS. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunodeficiency (MAIDS), we have been attempting to define with greater clarity the immunologic mechanisms that contribute to the progression of AIDS-related HCMV retinitis in the unique immunosuppressive setting of HIV infection. Toward this end, we provide herein a comprehensive assessment of immune response gene expression during the onset and development of MAIDS-related MCMV retinitis employing NanoString nCounter. In so doing, we analyzed and compared the intraocular expressions of 561 immune response genes within MCMV-infected eyes of groups of healthy mice, MCMV-infected mice with MAIDS of 4 weeks' (MAIDS-4) duration, and MCMV-infected eyes of mice with MAIDS of 10 weeks' (MAIDS-10) duration. These animal groups show a progression of retinal disease from absolute resistance to retinitis development in healthy mice to the development of classic full-thickness retinal necrosis in MAIDS-10 mice but through an intermediate stage of retinal disease development in MAIDS-4 mice. Our findings showed that increased susceptibility to MCMV retinitis during the progression of MAIDS is associated with robust upregulation or downregulation of a surprisingly large number of immune response genes that operate within several immune response pathways often unique to each animal group. Analysis of 14 additional immune response genes associated with programmed cell death pathways suggested involvement of necroptosis and pyroptosis during MAIDS-related MCMV retinitis pathogenesis. Use of the NanoString nCounter technology provided new and unexpected information on the immunopathogenesis of retinitis within MCMV-infected eyes of mice with retrovirus-induced immunosuppression. Our findings may provide new insights into the immunologic events that operate during the pathogenesis of AIDS-related HCMV retinitis.
Collapse
Affiliation(s)
- Jessica J. Carter
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jesse M. Gardner
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Brent P. Poling
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Madeline M. Welch
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Judee Grace E. Nemeno
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - John E. Houghton
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard D. Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Truong AD, Hong Y, Nguyen HT, Nguyen CT, Chu NT, Tran HTT, Dang HV, Lillehoj HS, Hong YH. Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. Br Poult Sci 2020; 62:68-80. [PMID: 32812773 DOI: 10.1080/00071668.2020.1812524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Leukocyte immunoglobulin-like receptor A5 (LILRA5) is a key molecule that regulates the immune system. However, the LILRA5 gene has not been characterised in avian species, including chickens. The present study aimed to identify and functionally characterise LILRA5 identified from two genetically disparate chicken lines, viz., Marek's disease (MD)-resistant (R) line 6.3 and MD-susceptible (S) line 7.2. 2. Multiple sequence alignment and phylogenetic analyses confirmed that the identity and similarity homologies of amino acids of LILRA5 in chicken lines 6.3 and 7.2 ranged between 93% and 93.7%, whereas those between chicken and mammals ranged between 20.9% and 43.7% and 21.1% to 43.9%, respectively. The newly cloned LILRA5 from chicken lines 6.3 and 7.2 revealed high conservation and a close relationship with other known mammalian LILRA5 proteins. 3. The results indicated that LILRA5 from chicken lines 6.3 and 7.2 was associated with phosphorylation of Src kinases and protein tyrosine phosphatase non-receptor type 11 (SHP2), which play a regulatory role in immune functions. Moreover, the results demonstrated that LILRA5 in these lines was associated with the activation of major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of the transporter associated with antigen processing. In addition, LILRA5 in both chicken lines activated and induced Janus kinase (JAK)-signal transducer and the activator of transcription (STAT), nuclear factor kappa B (NF-κB), phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2 signalling pathways; toll-like receptors; and Th1-, Th2-, and Th17- cytokines. 4. The data suggested that LILRA5 has innate immune receptors essential for macrophage immune response and provide novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- A D Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam.,Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - Y Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - H T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - C T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - N T Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H T T Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H V Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services , Beltsville, MD, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| |
Collapse
|
17
|
Yeboah M, Papagregoriou C, Jones DC, Chan HC, Hu G, McPartlan JS, Schiött T, Mattson U, Mockridge CI, Tornberg UC, Hambe B, Ljungars A, Mattsson M, Tews I, Glennie MJ, Thirdborough SM, Trowsdale J, Frendeus B, Chen J, Cragg MS, Roghanian A. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Insight 2020; 5:141593. [PMID: 32870822 PMCID: PMC7526549 DOI: 10.1172/jci.insight.141593] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor.
Collapse
Affiliation(s)
- Muchaala Yeboah
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Charys Papagregoriou
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Des C. Jones
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - H.T. Claude Chan
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Justine S. McPartlan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | - C. Ian Mockridge
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | - Ivo Tews
- Institute for Life Sciences and
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin J. Glennie
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Stephen M. Thirdborough
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S. Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Lewis Marffy AL, McCarthy AJ. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 2020; 11:857. [PMID: 32477348 PMCID: PMC7237751 DOI: 10.3389/fimmu.2020.00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.
Collapse
Affiliation(s)
- Alexander L Lewis Marffy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Zhao Y, van Woudenbergh E, Zhu J, Heck AJR, van Kessel KPM, de Haas CJC, Aerts PC, van Strijp JAG, McCarthy AJ. The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:954-966. [PMID: 31915259 PMCID: PMC7617070 DOI: 10.4049/jimmunol.1900852] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Neutrophils are critical to the generation of effective immune responses and for killing invading microbes. Paired immune receptors provide important mechanisms to modulate neutrophil activation thresholds and effector functions. Expression of the leukocyte Ig-like receptor (LILR)A6 (ILT8/CD85b) and LILRB3 (ILT5/CD85a) paired-receptor system on human neutrophils has remained unclear because of the lack of specific molecular tools. Additionally, there is little known of their possible functions in neutrophil biology. The objective of this study was to characterize expression of LILRA6/LILRB3 receptors during human neutrophil differentiation and activation, and to assess their roles in modulating Fc receptor-mediated effector functions. LILRB3, but not LILRA6, was detected in human neutrophil lysates following immunoprecipitation by mass spectrometry. We demonstrate high LILRB3 expression on the surface of resting neutrophils and release from the surface following neutrophil activation. Surface expression was recapitulated in a human PLB-985 cell model of neutrophil-like differentiation. Continuous ligation of LILRB3 inhibited key IgA-mediated effector functions, including production of reactive oxygen species, phagocytic uptake, and microbial killing. This suggests that LILRB3 provides an important checkpoint to control human neutrophil activation and their antimicrobial effector functions during resting and early-activation stages of the neutrophil life cycle.
Collapse
Affiliation(s)
- Yuxi Zhao
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Esther van Woudenbergh
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CX Utrecht, the Netherlands; and
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CX Utrecht, the Netherlands; and
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Alex J McCarthy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands;
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092710. [PMID: 30208630 PMCID: PMC6163679 DOI: 10.3390/ijms19092710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, β2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Collapse
|
21
|
López-Álvarez MR, Jiang W, Jones DC, Jayaraman J, Johnson C, Cookson WO, Moffatt MF, Trowsdale J, Traherne JA. LILRA6 copy number variation correlates with susceptibility to atopic dermatitis. Immunogenetics 2016; 68:743-7. [PMID: 27333811 PMCID: PMC5026711 DOI: 10.1007/s00251-016-0924-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023]
Abstract
Leukocyte immunoglobulin-like receptors (LILR) are expressed mostly on myelomonocytic cells where they are mediators of immunological tolerance. Two LILR genes, LILRA3 and LILRA6, exhibit marked copy number variation. We assessed the contribution of these genes to atopic dermatitis (AD) by analysing transmission in 378 AD families. The data indicated that copies of LILRA6 were over-transmitted to affected patients. They are consistent with a contribution of LILR genes to AD. They could affect the equilibrium between activating and inhibitory signals in the immune response.
Collapse
Affiliation(s)
- M R López-Álvarez
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - W Jiang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - D C Jones
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - J Jayaraman
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Johnson
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - W O Cookson
- Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - M F Moffatt
- Molecular Genetics and Genomics Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - J Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - J A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|