1
|
Tang M, Song K, Xie D, Yuan X, Wang Y, Li Z, Lu X, Guo L, Zhu X, Xiong L, Zhou W, Lin J. PSAT1 promotes the progression of colorectal cancer by regulating Hippo-YAP/TAZ-ID1 axis via AMOT. Mol Cell Biochem 2025; 480:3647-3668. [PMID: 39739271 PMCID: PMC12095340 DOI: 10.1007/s11010-024-05194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
Colorectal cancer (CRC) ranks third for morbidity and second for mortality among all digestive malignant tumors worldwide, but its pathogenesis remains not entirely clear. Bioinformatic analyses were performed to find out important biomarkers for CRC. For validation, reverse transcription-quantitative PCR, western blotting, and immunohistochemistry were performed. Then, cell transfection, gain- and loss-of-function assays, immunofluorescence, cell line RNA-sequencing and analyses, and in vivo tumorigenesis assay were also performed to further explore the mechanism. We prioritized phosphoserine aminotransferase 1 (PSAT1) as an important biomarker in CRC. PSAT1 expression was gradually up-regulated as the CRC disease progresses and may relate to poor prognosis. PSAT1 promoted the malignant behaviors of CRC cells. Although PSAT1 is an enzyme essential to serine biosynthesis, an exogenous supplement of serine did not completely rescue the malignant behaviors in PSAT1-knockdown CRC cells. Interestingly, PSAT1 inhibited the Hippo tumor-suppressor pathway by promoting the nucleus-localization of YAP/TAZ and increasing the expression of ID1 in CRC cells. Furthermore, AMOT, a vascular-related molecule that molecularly interacts with YAP/TAZ, was up-regulated upon PSAT1 knockdown in CRC cells. Knocking down AMOT partially rescued the inhibition of proliferation and the reduced nuclear localization of YAP/TAZ caused by PSAT1 knockdown in CRC cells. Moreover, PSAT1 was closely related to vascular-related pathways, in which AMOT might act as a mediator. Finally, PSAT1 promoted CRC proliferation by negatively regulating AMOT in vivo. PSAT1 could enhance the progression of colorectal cancer by regulating Hippo-YAP/TAZ-ID1 axis via AMOT, which is independent of the metabolic function of PSAT1.
Collapse
Affiliation(s)
- Minshan Tang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Kai Song
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Danning Xie
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Xinyu Yuan
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Yaxuan Wang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Zhiyang Li
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Liang Guo
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Xiaotong Zhu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Le Xiong
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Wenqian Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Cai J, Han X, Li M, Liu X, Zhang F, Wu X. Association of low angiomotin-p130 and high YAP1 nuclear expression with adverse prognosis in epithelial ovarian cancer. Histol Histopathol 2025; 40:57-65. [PMID: 38785315 DOI: 10.14670/hh-18-758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
OBJECTIVES The aim of our study was to examine the association of Angiomotin (Amot-p130) and Yes-associated protein 1 (YAP1) expressions and their prognostic significance in epithelial ovarian cancer (EOC). METHODS A total of 100 primary EOC samples were obtained for immunohistochemical analysis of Amot-p130 and YAP1 expressions. Correlation analysis was performed between Amot-p130 or YAP1 and clinical factors. The overall survival time was calculated. RESULTS Low Amot-p130 and high YAP1 nuclear expression were identified in 34 and 56 of 100 EOC tissues, respectively. Both low Amot-p130 and high YAP1 nuclear expression were associated with advanced tumor stage, high-grade carcinoma, and non-response to chemotherapy (p<0.05). They were also associated with shorter overall survival time (p<0.05) by log-rank test. A marker of low Amot-p130 and high YAP1 expression was associated with high-grade ovarian carcinoma, late-stage disease, non-response to chemotherapy, and shorter overall survival time (p<0.05). CONCLUSIONS Low Amot-p130 and high YAP1 nuclear expression can provide additional prognostic information for patients with EOC. A marker of low Amot-p130 and high YAP1 expression may be a potent predictor of poor prognosis in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Junna Cai
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, PR China
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Xiaorui Han
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Meng Li
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Fengying Zhang
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, PR China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, PR China.
| |
Collapse
|
3
|
Mondal V, Higgins PJ, Samarakoon R. Emerging Role of Hippo-YAP (Yes-Associated Protein)/TAZ (Transcriptional Coactivator with PDZ-Binding Motif) Pathway Dysregulation in Renal Cell Carcinoma Progression. Cancers (Basel) 2024; 16:2758. [PMID: 39123485 PMCID: PMC11312123 DOI: 10.3390/cancers16152758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney tumor subtype, has a poor prognosis and a high mortality rate. Core Hippo signaling inactivation (e.g., LATS kinases) leads to the nuclear translocation of YAP/TAZ where they bind to co-transcriptional factors such as TEAD promoting transcription of genes which initiates various fibrotic and neoplastic diseases. Loss of expression of LATS1/2 kinase and activation of YAP/TAZ correlates with poor survival in RCC patients. Renal-specific ablation of LATS1 in mice leads to the spontaneous development of several subtypes of RCC in a YAP/TAZ-dependent manner. Genetic and pharmacological inactivation of YAP/TAZ reverses the oncogenic potential in LATS1-deficient mice, highlighting the therapeutic benefit of network targeting in RCC. Here, we explore the unique upstream controls and downstream consequences of the Hippo-YAP/TAZ pathway deregulation in renal cancer. This review critically evaluates the current literature on the role of the Hippo pathway in RCC progression and highlights the recent scientific evidence designating YAP/TAZ as novel therapeutic targets against kidney cancer.
Collapse
Affiliation(s)
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA;
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA;
| |
Collapse
|
4
|
Wang Y, Yu FX. Angiomotin family proteins in the Hippo signaling pathway. Bioessays 2024; 46:e2400076. [PMID: 38760875 DOI: 10.1002/bies.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Araya F. Determining the minimal amount of DMSO necessary to stabilize the Angiomotin lipid binding domain. INDIANA UNIVERSITY JOURNAL OF UNDERGRADUATE RESEARCH 2024; 8:10.14434/iujur.v8i1.31200. [PMID: 39866826 PMCID: PMC11759511 DOI: 10.14434/iujur.v8i1.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function. Therefore, we endeavored to find the minimal amount of DMSO to stabilize the Amot lipid binding domain to eventually understand the protein function by studying its atomic structure. Our laboratory looked to determine the structure using nuclear magnetic resonance (NMR), which requires higher protein concentrations than those possible in our current buffered solutions. Based on literature reported on other proteins, DMSO can be used as a stabilizing agent up to 33-70%. Therefore, this work shows our preliminary findings for the minimal amount of dimethyl sulfoxide (DMSO) needed to stabilize the domain at higher concentrations without disrupting its native structure. To that end, we determined DMSO related changes in protein structure by analyzing shifts in the melting point determined by dynamic scanning fluorescence measurements. As a result, we found that the ACCH domain is denatured in solutions >10% DMSO.
Collapse
Affiliation(s)
- Feven Araya
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| |
Collapse
|
6
|
Wang H, Ye M, Jin X. Role of angiomotin family members in human diseases (Review). Exp Ther Med 2024; 27:258. [PMID: 38766307 PMCID: PMC11099588 DOI: 10.3892/etm.2024.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/23/2023] [Indexed: 05/22/2024] Open
Abstract
Angiomotin (Amot) family members, including Amot, Amot-like protein 1 (Amotl1) and Amot-like protein 2 (Amotl2), have been found to interact with angiostatins. In addition, Amot family members are involved in various physiological and pathological functions such as embryonic development, angiogenesis and tumorigenesis. Some studies have also demonstrated its regulation in signaling pathways such as the Hippo signaling pathway, AMPK signaling pathway and mTOR signaling pathways. Amot family members play an important role in neural stem cell differentiation, dendritic formation and synaptic maturation. In addition, an increasing number of studies have focused on their function in promoting and/or suppressing cancer, but the underlying mechanisms remain to be elucidated. The present review integrated relevant studies on upstream regulation and downstream signals of Amot family members, as well as the latest progress in physiological and pathological functions and clinical applications, hoping to offer important ideas for further research.
Collapse
Affiliation(s)
- Haoyun Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
7
|
Amirifar P, Kissil J. The role of Motin family proteins in tumorigenesis-an update. Oncogene 2023; 42:1265-1271. [PMID: 36973516 DOI: 10.1038/s41388-023-02677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The Motin protein family consists of three members: AMOT (p80 and p130 isoforms), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). The family members play an important role in processes such as cell proliferation, migration, angiogenesis, tight junction formation, and cell polarity. These functions are mediated through the involvement of the Motins in the regulation of different signal transduction pathways, including those regulated by small G-proteins and the Hippo-YAP pathway. One of the more characterized aspects of Motin family function is their role in regulating signaling through the Hippo-YAP pathway, and while some studies suggest a YAP-inhibitory function other studies indicate the Motins are required for YAP activity. This duality is also reflected in previous reports, often contradictory, that suggest the Motin proteins can function as oncogenes or tumor suppressors in tumorigenesis. In this review we summarize recent findings and integrate that with the existing work describing the multifunctional role of the Motins in different cancers. The emerging picture suggests that the Motin protein function is cell-type and context dependent and that further investigation in relevant cell types and whole organism models is required for the elucidation of the function of this protein family.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Molecular Oncology, Cancer Biology Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joseph Kissil
- Department of Molecular Oncology, Cancer Biology Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
8
|
Kang SW, Kang SW, Ban JY, Park MS. Identification of Multiple Hub Genes in Acute Kidney Injury after Kidney Transplantation by Bioinformatics Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:681. [PMID: 35630098 PMCID: PMC9145685 DOI: 10.3390/medicina58050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Background and Objectives: The molecular mechanisms of the development of acute kidney injury (AKI) after kidney transplantation are not yet clear. The aim of this study was to confirm the genes and mechanisms related to AKI after transplantation. Materials and Methods: To investigate potential genetic targets for AKI, an analysis of the gene expression omnibus database was used to identify key genes and pathways. After identification of differentially expressed genes, Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were performed. We identified the hub genes and established the protein-protein interaction network. Results: Finally, we identified 137 differentially expressed genes (59 upregulated genes and 16 downregulated genes). AKAP12, AMOT, C3AR1, LY96, PIK3AP1, PLCD4, PLCG2, TENM2, TLR2, and TSPAN5 were filtrated by the hub genes related to the development of post-transplant AKI from the Protein-Protein Interaction (PPI) network. Conclusions: This may provide important evidence of the diagnostic and therapeutic biomarker of AKI.
Collapse
Affiliation(s)
- Sang-Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
| | - Sung-Wook Kang
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA 70112, USA;
| | - Ju-Yeon Ban
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Min-Su Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
9
|
Olgun G, Tastan O. miRCoop: Identifying Cooperating miRNAs via Kernel Based Interaction Tests. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1760-1771. [PMID: 33382660 DOI: 10.1109/tcbb.2020.3047901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although miRNAs can cause widespread changes in expression programs, single miRNAs typically induce mild repression on their targets. Cooperativity among miRNAs is reported as one strategy to overcome this constraint. Expanding the catalog of synergistic miRNAs is critical for understanding gene regulation and for developing miRNA-based therapeutics. In this study, we develop miRCoop to identify synergistic miRNA pairs that have weak or no repression on the target mRNA individually, but when act together, induce strong repression. miRCoop uses kernel-based statistical interaction tests, together with miRNA and mRNA target information. We apply our approach to patient data of two different cancer types. In kidney cancer, we identify 66 putative triplets. For 64 of these triplets, there is at least one common transcription factor that potentially regulates all participating RNAs of the triplet, supporting a functional association among them. Furthermore, we find that identified triplets are enriched for certain biological processes that are relevant to kidney cancer. Some of the synergistic miRNAs are very closely encoded in the genome, hinting a functional association among them. In applying the method on tumor data with the primary liver site, we find 3105 potential triplet interactions. We believe miRCoop can aid our understanding of the complex regulatory interactions in different health and disease states of the cell and can help in designing miRNA-based therapies. Matlab code for the methodology is provided in https://github.com/guldenolgun/miRCoop.
Collapse
|
10
|
Heydarnezhad Asl M, Pasban Khelejani F, Bahojb Mahdavi SZ, Emrahi L, Jebelli A, Mokhtarzadeh A. The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J Cell Biochem 2022; 123:995-1024. [PMID: 35106829 DOI: 10.1002/jcb.30221] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumor-suppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/β-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.
Collapse
Affiliation(s)
| | - Faezeh Pasban Khelejani
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Leila Emrahi
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DKC, Balland M, Barker TH, Cavallo F, Holmgren L. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep 2021; 36:109616. [PMID: 34433061 DOI: 10.1016/j.celrep.2021.109616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Sumako Kameishi
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Yujuan Zheng
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - John Nicosia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - David Kung-Chun Chiu
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden.
| |
Collapse
|
12
|
Zhan Y, Zhang R, Li C, Xu X, Zhu K, Yang Z, Zheng J, Guo Y. A microRNA-clinical prognosis model to predict the overall survival for kidney renal clear cell carcinoma. Cancer Med 2021; 10:6128-6139. [PMID: 34288551 PMCID: PMC8419758 DOI: 10.1002/cam4.4148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have shown that microRNA (miRNA) serves as key regulatory factors in the origin and development of cancers. However, the biological mechanisms of miRNAs in kidney renal clear cell carcinoma (KIRC) are still unknown. It is necessary to construct an effective miRNA‐clinical model to predict the prognosis of KIRC. In this study, 94 differentially expressed miRNAs were found between para‐tumor and tumor tissues based on the Cancer Genome Atlas (TCGA) database. Seven miRNAs (hsa‐miR‐21‐5p, hsa‐miR‐3613‐5p, hsa‐miR‐144‐5p, hsa‐miR‐376a‐5p, hsa‐miR‐5588‐3p, hsa‐miR‐1269a, and hsa‐miR‐137‐3p) were selected as prognostic indicators. According to their cox coefficient, a risk score formula was constructed. Patients with risk scores were divided into high‐ and low‐risk groups based on the median score. Kaplan–Meier curves analysis showed that the low‐risk group had a better survival probability compared to the high‐risk group. The area under the ROC curve (AUC) value of the miRNA model was 0.744. In comparison with clinical features, the miRNA model risk score was considered as an independent prognosis factor in multivariate Cox regression analysis. In addition, we built a nomogram including age, metastasis, and miRNA prognostic model based on the results of multivariate Cox regression analysis. The decision curve analysis (DCA) revealed the clinical net benefit of the prognostic model. Gene set enrichment analysis (GSEA) results suggested that several important pathways may be the potential pathways for KIRC. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the target genes of 7 miRNAs revealed that miRNAs may participate in KIRC progression via many specific pathways. Additionally, the levels of seven prognostic miRNAs showed a significant difference between KIRC tissues and adjacent non‐tumorous tissues. In conclusion, the miRNA‐clinical model provides an effective and accurate way to predict the prognosis of KIRC.
Collapse
Affiliation(s)
- Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuantong Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhan Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Guo
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers (Basel) 2021; 13:cancers13123100. [PMID: 34205830 PMCID: PMC8234554 DOI: 10.3390/cancers13123100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In 2020, the global cancer database GLOBOCAN estimated 19.3 million new cancer cases worldwide. The discovery of targeted therapies may help prognosis and outcome of the patients affected, but the understanding of the plethora of highly interconnected pathways that modulate cell transformation, proliferation, invasion, migration and survival remains an ambitious goal. Here we propose an updated state of the art of YAP as the key protein driving oncogenic response via promoting all those steps at multiple levels. Of interest, the role of YAP in immunosuppression is a field of evolving research and growing interest and this summary about the current pharmacological therapies impacting YAP serves as starting point for future studies. Abstract Yes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm–nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol. This review aims to summarize and present the state of the art knowledge about the role of YAP in cancer signaling, first focusing on how YAP differs from WW domain-containing transcription regulator 1 (WWTR1, also named as TAZ) and which upstream factors regulate it; then, this review focuses on the role of YAP in different cancer stages and in the crosstalk between immune and cancer cells as well as growing translational strategies derived from its inhibitory and synergistic effects with existing chemo-, immuno- and radiotherapies.
Collapse
|
14
|
Chen X, Lu Y, Guo G, Zhang Y, Sun Y, Guo L, Li R, Nan Y, Yang X, Dong J, Jin X, Huang Q. AMOTL2‑knockdown promotes the proliferation, migration and invasion of glioma by regulating β‑catenin nuclear localization. Oncol Rep 2021; 46:139. [PMID: 34036399 PMCID: PMC8165599 DOI: 10.3892/or.2021.8090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type of malignant cancer in the adult central nervous system; however, its mechanism remains unclear. Angiomotin-like 2 (AMOTL2) is a member of the motin family of angiostatin-binding proteins. It has been reported as an oncogene in cervical and breast cancer, but its association with glioma remains unknown. The aim of the present study was to investigate AMOTL2-regulated processes in glioma cell lines using extensive in vitro assays and certain bioinformatics tools. These results revealed that AMOTL2 was downregulated in high-grade glioma cells and tissues, with patients with glioma exhibiting a high AMOTL2 expression having a higher survival rate. The results of the glioma cell phenotype experiment showed that AMOTL2 suppressed GBM proliferation, migration and invasion. In addition, immunoblotting, co-immunoprecipitation and immunofluorescence assays demonstrated that AMOTL2 could directly bind to β-catenin protein, the key molecule of the Wnt signaling pathway, and regulate its downstream genes by regulating β-catenin nuclear translocation. In conclusion, the present study demonstrated that AMOTL2 inhibited glioma proliferation, migration and invasion by regulating β-catenin nuclear localization. Thus, AMOTL2 may serve as a therapeutic target to further improve the prognosis and prolong survival time of patients with glioma.
Collapse
Affiliation(s)
- Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yan Sun
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lianmei Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruohong Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
15
|
Qiu Y, Mao YT, Zhu JH, Zhao K, Wang JF, Huang JM, Chang GQ, Guan YT, Huang FY, Hu YJ, Chen JQ, Liu JL. CLIC1 knockout inhibits invasion and migration of gastric cancer by upregulating AMOT-p130 expression. Clin Transl Oncol 2021; 23:514-525. [PMID: 32656583 DOI: 10.1007/s12094-020-02445-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/25/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE To explore the regulatory relationship between Chloride intracellular channel 1 (CLIC1) and Angiomotin (AMOT)-p130, and reveal the role of AMOT-p130 in gastric cancer (GC). METHODS Immunohistochemistry was performed to analyze the expression of CLIC1 and AMOT-p130 in GC tissues and adjacent tissues. The expression of AMOT-p130 upon CLIC1 silencing was analyzed using RT-PCR, western blot, and immunofluorescence in GC cells. Transwell and wound-healing assays were performed to detect migration and invasion in GC cells. The changes in EMT-related proteins were detected using western blot. RESULTS Our study found that high CLIC1 expression was significantly associated with low AMOT-p130 expression in GC tissues. Silencing CLIC1 expression in MGC-803 cells (MGC-803 CLIC1 KO) and AGS cells (AGS CLIC1 KO) decreased the invasive and migratory abilities of tumor cells, which were induced by the upregulation of AMOT-p130. Subsequently, we demonstrated that AMOT-p130 inhibits the invasive and migratory abilities of GC cells by inhibiting epithelial-mesenchymal transition. CONCLUSIONS Our study suggests that AMOT-p130 could inhibit epithelial-mesenchymal transition in GC cells. CLIC1 may participate in the metastatic progression of GC by downregulating the expression of AMOT-p130.
Collapse
Affiliation(s)
- Y Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Y-T Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-H Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - K Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-F Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-M Huang
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - G-Q Chang
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Y-T Guan
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - F-Y Huang
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Y-J Hu
- The Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - J-Q Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - J-L Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
16
|
Basak T, Dey AK, Banerjee R, Paul S, Maiti TK, Ain R. Sequestration of eIF4A by angiomotin: A novel mechanism to restrict global protein synthesis in trophoblast cells. STEM CELLS (DAYTON, OHIO) 2020; 39:210-226. [PMID: 33237582 DOI: 10.1002/stem.3305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022]
Abstract
Enrichment of angiomotin (AMOT) in the ectoplacental cone of E7.5 murine placenta prompted our investigation on the role of AMOT in trophoblast differentiation. We show here that AMOT levels increased in mouse placenta during gestation and also upon induction of differentiation in trophoblast stem cell ex vivo. Proteomic data unravelling AMOT-interactome in trophoblast cells indicated a majority of AMOT interactors to be involved in protein translation. In-depth analysis of AMOT-interactome led to identification of eukaryotic translation initiation factor 4A (eIF4A) as the most plausible AMOT interactor. Loss of function of AMOT enhanced, whereas, gain in function resulted in decline of global protein synthesis in trophoblast cells. Bioinformatics analysis evaluating the potential energy of AMOT-eIF4A binding suggested a strong AMOT-eIF4A interaction using a distinct groove encompassing amino acid residue positions 238 to 255 of AMOT. Co-immunoprecipitation of AMOT with eIF4A reaffirmed AMOT-eIF4A association in trophoblast cells. Deletion of 238 to 255 amino acids of AMOT resulted in abrogation of AMOT-eIF4A interaction. In addition, 238 to 255 amino acid deletion of AMOT was ineffective in eliciting AMOT's function in reducing global protein synthesis. Interestingly, AMOT-dependent sequestration of eIF4A dampened its loading to the m7 -GTP cap and hindered its interaction with eIF4G. Furthermore, enhanced AMOT expression in placenta was associated with intrauterine growth restriction in both rats and humans. These results not only highlight a hitherto unknown novel function of AMOT in trophoblast cells but also have broad biological implications as AMOT might be an inbuilt switch to check protein synthesis in developmentally indispensable trophoblast cells.
Collapse
Affiliation(s)
- Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Rachana Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sandip Paul
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
17
|
Sun Z, Zhang H, Wu J, Gao F, Zhang C, Hu X, Liu Q, Wei Y, Zhuang J, Huang X. A Novel Model System for Understanding Anticancer Activity of Hypoxia-Activated Prodrugs. Mol Pharm 2020; 17:2072-2082. [PMID: 32352301 DOI: 10.1021/acs.molpharmaceut.0c00232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reports on the comprehensive factors for design considerations of hypoxia-activated prodrugs (HAPs) are rare. We introduced a new model system composed of a series of highly water-soluble HAPs, providing a platform to comprehensively understand the interaction between HAPs and hypoxic biosystems. Specifically, four kinds of new HAPs were designed and synthesized, containing the same biologically active moiety but masked by different bioreductive groups. Our results demonstrated that the activity of the prodrugs was strongly dependent on not only the molecular structure but also the hypoxic tumor microenvironment. We found the presence of a direct linear relationship between cytotoxicity of the HAPs and the reduction potential of whole molecule/oxygen concentration/reductase expression. Moreover, limited blood vasculature in hypoxic regions was also a critical barrier for effective activation of the HAPs. This study offers a comprehensive insight into understanding the design factors required for HAPs.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haoqi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Congcong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, P.R. China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Zhuang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,College of Medicine, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Kovar H, Bierbaumer L, Radic-Sarikas B. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis. Cells 2020; 9:E972. [PMID: 32326412 PMCID: PMC7227004 DOI: 10.3390/cells9040972] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
YAP and TAZ are intracellular messengers communicating multiple interacting extracellular biophysical and biochemical cues to the transcription apparatus in the nucleus and back to the cell/tissue microenvironment interface through the regulation of cytoskeletal and extracellular matrix components. Their activity is negatively and positively controlled by multiple phosphorylation events. Phenotypically, they serve an important role in cellular plasticity and lineage determination during development. As they regulate self-renewal, proliferation, migration, invasion and differentiation of stem cells, perturbed expression of YAP/TAZ signaling components play important roles in tumorigenesis and metastasis. Despite their high structural similarity, YAP and TAZ are functionally not identical and may play distinct cell type and differentiation stage-specific roles mediated by a diversity of downstream effectors and upstream regulatory molecules. However, YAP and TAZ are frequently looked at as functionally redundant and are not sufficiently discriminated in the scientific literature. As the extracellular matrix composition and mechanosignaling are of particular relevance in bone formation during embryogenesis, post-natal bone elongation and bone regeneration, YAP/TAZ are believed to have critical functions in these processes. Depending on the differentiation stage of mesenchymal stem cells during endochondral bone development, YAP and TAZ serve distinct roles, which are also reflected in bone tumors arising from the mesenchymal lineage at different developmental stages. Efforts to clinically translate the wealth of available knowledge of the pathway for cancer diagnostic and therapeutic purposes focus mainly on YAP and TAZ expression and their role as transcriptional co-activators of TEAD transcription factors but rarely consider the expression and activity of pathway modulatory components and other transcriptional partners of YAP and TAZ. As there is a growing body of evidence for YAP and TAZ as potential therapeutic targets in several cancers, we here interrogate the applicability of this concept to bone tumors. To this end, this review aims to summarize our current knowledge of YAP and TAZ in cell plasticity, normal bone development and bone cancer.
Collapse
Affiliation(s)
- Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Lisa Bierbaumer
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| | - Branka Radic-Sarikas
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| |
Collapse
|
19
|
Kang PH, Schaffer DV, Kumar S. Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells. Mol Biol Cell 2020; 31:386-396. [PMID: 31940260 PMCID: PMC7183791 DOI: 10.1091/mbc.e19-11-0602] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical cues regulate the function of a broad range of stem cells in culture and in tissue. For example, soft substrates promote the neuronal differentiation of neural stem cells (NSCs) by suppressing cytoskeletal contractility. However, the mechanisms that link cytoskeletal signaling to the transcriptional regulatory processes that ultimately govern stiffness-dependent NSC fate commitment are not fully understood. Here, we show that Angiomotin (AMOT), which can bind both F-actin and the neurosuppressive transcriptional coactivator Yes-associated protein (YAP), is critical for mechanotransduction in NSCs. On soft substrates, loss of AMOT substantially reduces neurogenesis, whereas on stiff substrates, loss of AMOT negates the rescue of neurogenesis normally induced by pharmacologic inhibition of myosin activity. Furthermore, overexpression of a phospho-mimetic S175E AMOT mutant, which has been established to enhance AMOT–YAP binding, increases β-catenin activity and rescues neurogenesis on stiff substrates. Together, our data identify AMOT as an important intermediate signal transducer that allows NSCs to sense and respond to extracellular stiffness cues.
Collapse
Affiliation(s)
- Phillip H Kang
- Graduate Program in Bioengineering, University of California, Berkeley-University of California, San Francisco.,Department of Bioengineering, and
| | - David V Schaffer
- Graduate Program in Bioengineering, University of California, Berkeley-University of California, San Francisco.,Department of Bioengineering, and.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720.,Molecular Biophysics and Integrated Bioimaging Division and.,Helen Wills Neuroscience Institute, Berkeley, CA 94720
| | - Sanjay Kumar
- Graduate Program in Bioengineering, University of California, Berkeley-University of California, San Francisco.,Department of Bioengineering, and.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
20
|
Han Z, Dash S, Sagum CA, Ruthel G, Jaladanki CK, Berry CT, Schwoerer MP, Harty NM, Freedman BD, Bedford MT, Fan H, Sidhu SS, Sudol M, Shtanko O, Harty RN. Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathog 2020; 16:e1008231. [PMID: 31905227 PMCID: PMC6977764 DOI: 10.1371/journal.ppat.1008231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 11/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies. By screening an array of 115 mammalian WW-domains with the PPxY motif from MARV VP40 (mVP40), we identified YAP1 and TAZ, transcriptional effectors of the Hippo pathway, as mVP40 interactors, and demonstrated that ectopically expressed YAP1 or TAZ inhibited budding of mVP40 virus-like particles (VLPs) in a WW-domain/PPxY dependent manner. Angiomotin (Amot), a multi-PPxY containing regulator of YAP1 nuclear/cytoplasmic localization and function, rescued mVP40 VLP egress from either YAP1- or TAZ-mediated inhibition in a PPxY-dependent manner. Indeed, endogenous Amot expression was critical for egress of mVP40 VLPs and authentic MARV. In sum, we have revealed a link between the Hippo pathway and filovirus egress by identifying negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shantoshini Dash
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chaitanya K. Jaladanki
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Corbett T. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael P. Schwoerer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nina M. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bruce D. Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
| | - Hao Fan
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marius Sudol
- Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Olena Shtanko
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Shen Y, Li S, Wang X, Wang M, Tian Q, Yang J, Wang J, Wang B, Liu P, Yang J. Tumor vasculature remolding by thalidomide increases delivery and efficacy of cisplatin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:427. [PMID: 31656203 PMCID: PMC6816178 DOI: 10.1186/s13046-019-1366-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Background A promising strategy to overcome the chemoresistance is the tumor blood vessel normalization, which restores the physiological perfusion and oxygenation of tumor vasculature. Thalidomide (Thal) has been shown to increase the anti-tumor effect of chemotherapy agents in solid tumors. However, it is not yet known whether the synergistic effect of Thal combined with other cytotoxic drugs is attributable to tumor vascular normalization. Methods We used two homograft mice models (4 T1 breast tumor model and CT26 colorectal tumor model) to investigate the effect of Thal on tumor growth, microvessel density, vascular physiology, vascular maturity and function, drug delivery and chemosensitivity. Immunofluorescence, immunohistochemistry and scanning electron microscopy were performed to determine the vessel changes. Protein array assay, qPCR and western blotting were used to detect the molecular mechanism by which Thal regulates tumor vascular. Results Here we report that Thal potently suppressed tumor growth, angiogenesis, hypoxia, and vascular permeability in animal models. Thal also induced a regular monolayer of endothelial cells in tumor vessels, inhibiting vascular instability, and normalized tumor vessels by increasing vascular maturity, pericyte coverage and endothelial junctions. The tumor vessel stabilization effect of Thal resulted in a decrease in tumor vessel tortuosity and leakage, and increased vessel thickness and tumor perfusion. Eventually, the delivery of cisplatin was highly enhanced through the normalized tumor vasculature, thus resulting in profound anti-tumor and anti-metastatic effects. Mechanistically, the effects of Thal on tumor vessels were caused in part by its capability to correct the imbalance between pro-angiogenic factors and anti-angiogenic factors. Conclusions Our findings provide direct evidence that Thal remodels the abnormal tumor vessel system into a normalized vasculature. Our results may lay solid foundation for the development of Thal as a novel candidate agent to maximize the therapeutic efficacy of chemotherapeutic drugs for solid tumors. Electronic supplementary material The online version of this article (10.1186/s13046-019-1366-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanwei Shen
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shuting Li
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xin Wang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Mengying Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qi Tian
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jiao Yang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jichang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Biyuan Wang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of the Western Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Liu X, Hou W, He L, Han F, Lu M, Lu X, Duan K, Guo T, Weng J. AMOT130/YAP pathway in topography-induced BMSC osteoblastic differentiation. Colloids Surf B Biointerfaces 2019; 182:110332. [PMID: 31325776 DOI: 10.1016/j.colsurfb.2019.06.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023]
Abstract
Micro/nano-topography (MNT) is an important variable affecting osseointegration of bone biomaterials, but the underlying mechanisms are not fully understood. We probed the role of a AMOT130/YAP pathway in osteoblastic differentiation of bone marrow mesenchymal stems cultured on titanium (Ti) carrying MNTs. Ti surfaces with two well-defined MNTs (TiO2 nanotubes of different diameters and wall thicknesses) were prepared by anodization. Rat BMSCs were cultured on flat Ti and Ti surfaces carrying MNTs, and cell behaviors (i.e., morphology, F-actin development, osteoblastic differentiation, YAP localization) were studied. Ti surfaces carrying MNTs increased F-actin formation, osteoblastic gene expression, and protein AMOT130 production in BMSCs (all vs. flat Ti), and the surface carrying larger nantubes was more effective, confirming osteoblastic differentiation induced by MNTs. Elevation of the AMOT130 level (by inhibiting its degradation) increased the osteoblastic gene expression, F-actin formation, and nuclear localization of YAP. These show that, AMOT130/YAP is an important pathway mediating the translation of MNT signals to BMSC osteoblastic commitment, likely via the cascade: AMOT130 promotion of F-actin formation, increased YAP nuclear import, and activation of osteoblastic gene expression.
Collapse
Affiliation(s)
- Xuan Liu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenqing Hou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei He
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Fangping Han
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mengjie Lu
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaobo Lu
- Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ke Duan
- Laboratory of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
23
|
Super-Enhancer-Associated LncRNA UCA1 Interacts Directly with AMOT to Activate YAP Target Genes in Epithelial Ovarian Cancer. iScience 2019; 17:242-255. [PMID: 31307004 PMCID: PMC6629722 DOI: 10.1016/j.isci.2019.06.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of tumorigenesis, and yet their mechanistic roles remain challenging to characterize. Here, we integrate functional proteomics with lncRNA-interactome profiling to characterize Urothelial Cancer Associated 1 (UCA1), a candidate driver of ovarian cancer development. Reverse phase protein array (RPPA) analysis indicates that UCA1 activates transcription coactivator YAP and its target genes. In vivo RNA antisense purification (iRAP) of UCA1 interacting proteins identified angiomotin (AMOT), a known YAP regulator, as a direct binding partner. Loss-of-function experiments show that AMOT mediates YAP activation by UCA1, as UCA1 enhances the AMOT-YAP interaction to promote YAP dephosphorylation and nuclear translocation. Together, we characterize UCA1 as a lncRNA regulator of Hippo-YAP signaling and highlight the UCA1-AMOT-YAP signaling axis in ovarian cancer development. A super-enhancer drives the expression of lncRNA UCA1 in EOC Inactivation of UCA1 impairs tumor growth in vivo UCA1 activates transcription coactivator YAP and its target genes UCA1 promotes YAP dephosphorylation and nuclear translocation via AMOTp130
Collapse
|
24
|
Rojek KO, Krzemień J, Doleżyczek H, Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J, Holmgren L, Prószyński TJ. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol 2019; 17:e3000253. [PMID: 31042703 PMCID: PMC6513106 DOI: 10.1371/journal.pbio.3000253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Krzemień
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Doleżyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł M. Boguszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Rylski
- Centre of Postgraduate Medical Education, Warsaw, Poland
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
25
|
Hall L, Donovan E, Araya M, Idowa E, Jiminez-Segovia I, Folck A, Wells CD, Kimble-Hill AC. Identification of Specific Lysines and Arginines That Mediate Angiomotin Membrane Association. ACS OMEGA 2019; 4:6726-6736. [PMID: 31179409 PMCID: PMC6547806 DOI: 10.1021/acsomega.9b00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 05/17/2023]
Abstract
The family of Angiomotin (Amot) proteins regulate several biological pathways associated with cellular differentiation, proliferation, and migration. These adaptor proteins target proteins to the apical membrane, actin fibers, or the nucleus. A major function of the Amot coiled-coil homology (ACCH) domain is to initiate protein interactions with the cellular membrane, particularly those containing phosphatidylinositol lipids. The work presented in this article uses several ACCH domain lysine/arginine mutants to probe the relative importance of individual residues for lipid binding. This identified four lysine and three arginine residues that mediate full lipid binding. Based on these findings, three of these residues were mutated to glutamates in the Angiomotin 80 kDa splice form and were incorporated into human mammary cell lines. Results show that mutating three of these residues in the context of full-length Angiomotin reduced the residence of the protein at the apical membrane. These findings provide new insight into how the ACCH domain mediates lipid binding to enable Amot proteins to control epithelial cell growth.
Collapse
Affiliation(s)
- Le’Celia Hall
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Emily Donovan
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Michael Araya
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Eniola Idowa
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Ilse Jiminez-Segovia
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Anthony Folck
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Clark D. Wells
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| | - Ann C. Kimble-Hill
- Department of Biochemistry
and Molecular Biology, Indiana University
School of Medicine, Room MS 4053, 635 Barnhill Drive, Indianapolis, Indiana 46202, United
States
| |
Collapse
|
26
|
Farrell A, Alahari S, Ermini L, Tagliaferro A, Litvack M, Post M, Caniggia I. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCI Insight 2019; 4:127009. [PMID: 30996134 DOI: 10.1172/jci.insight.127009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Human placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown. Herein, we show that AMOT is primarily expressed in migratory extravillous trophoblast cells (EVTs) of the intermediate and distal anchoring column. Its expression increases after 10 weeks of gestation when oxygen tension rises and EVT migration/invasion peaks. Time-lapse imaging confirmed that the AMOT 80-kDa isoform promotes migration of trophoblastic JEG3 and HTR-8/SVneo cells. In preeclampsia, however, AMOT expression is decreased and its localization to migratory fetomaternal interface EVTs is disrupted. We demonstrate that Jumonji C domain-containing protein 6 (JMJD6), an oxygen sensor, positively regulates AMOT via oxygen-dependent lysyl hydroxylation. Furthermore, in vitro and ex vivo studies show that transforming growth factor-β (TGF-β) regulates AMOT expression, its interaction with polarity protein PAR6, and its subcellular redistribution from tight junctions to cytoskeleton. Our data reveal an oxygen- and TGF-β-driven migratory function for AMOT in the human placenta, and implicate its deficiency in impaired trophoblast migration that plagues preeclampsia.
Collapse
Affiliation(s)
- Abby Farrell
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences, and
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Ermini
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrea Tagliaferro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michael Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Martin Post
- Institute of Medical Sciences, and.,Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences, and.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Angiomotin-p130 inhibits β-catenin stability by competing with Axin for binding to tankyrase in breast cancer. Cell Death Dis 2019; 10:179. [PMID: 30792381 PMCID: PMC6385204 DOI: 10.1038/s41419-019-1427-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Growing evidence indicates that Angiomotin (Amot)-p130 and Amot-p80 have different physiological functions. We hypothesized that Amot-p130 is a tumor suppressor gene in breast cancer, in contrast with the canonical oncogenicity of Amot-p80 or total Amot. To clarify the role of Amot-p130 in breast cancer, we performed real-time quantitative PCR, western blotting, flow cytometry, microarray, immunofluorescence, immunoprecipitation, and tumor sphere-formation assays in vitro, as well as tumorigenesis and limited-dilution analysis in vivo. In this study, we showed that Amot-p130 inhibited the proliferation, migration, and invasion of breast cancer cells. Interestingly, transcriptional profiles indicated that genes differentially expressed in response to Amot-p130 knockdown were mostly related to β-catenin signaling in MCF7 cells. More importantly, most of the downstream partners of β-catenin were associated with stemness. In a further validation, Amot-p130 inhibited the cancer stem cell potential of breast cancer cells both in vitro and in vivo. Mechanistically, Amot-p130 decreased β-catenin stability by competing with Axin for binding to tankyrase, leading to a further inhibition of the WNT pathway. In conclusions, Amot-p130 functions as a tumor suppressor gene in breast cancer, disrupting β-catenin stability by competing with Axin for binding to tankyrase. Amot-p130 was identified as a potential target for WNT pathway-targeted therapies in breast cancer.
Collapse
|
28
|
Peck C, Virtanen P, Johnson D, Kimble-Hill AC. Using the Predicted Structure of the Amot Coiled Coil Homology Domain to Understand Lipid Binding. INDIANA UNIVERSITY JOURNAL OF UNDERGRADUATE RESEARCH 2018; 4:27-46. [PMID: 30957019 PMCID: PMC6448796 DOI: 10.14434/iujur.v4i1.24528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiomotins (Amots) are a family of adapter proteins that modulate cellular polarity, differentiation, proliferation, and migration. Amot family members have a characteristic lipid-binding domain, the coiled coil homology (ACCH) domain that selectively targets the protein to membranes, which has been directly linked to its regulatory role in the cell. Several spot blot assays were used to validate the regions of the domain that participate in its membrane association, deformation, and vesicle fusion activity, which indicated the need for a structure to define the mechanism. Therefore, we sought to understand the structure-function relationship of this domain in order to find ways to modulate these signaling pathways. After many failed attempts to crystallize the ACCH domain of each Amot family member for structural analysis, we decided to pursue homologous models that could be refined using small angle x-ray scattering data. Theoretical models were produced using the homology software SWISS-MODEL and threading software I-TASSER and LOMETS, followed by comparison to SAXS data for model selection and refinement. We present a theoretical model of the domain that is driven by alpha helices and short random coil regions. These alpha helical regions form a classic dimer interface followed by two wide spread legs that we predict to be the lipid binding interface.
Collapse
|
29
|
Liu S, Yang Y, Wang W, Pan X. Long noncoding RNA TUG1 promotes cell proliferation and migration of renal cell carcinoma via regulation of YAP. J Cell Biochem 2018; 119:9694-9706. [PMID: 30132963 DOI: 10.1002/jcb.27284] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Recently, long noncoding RNAs (lncRNAs) have captured much attention for their important roles in human diseases. Deregulation of lncRNA taurine-upregulated gene 1 (TUG1) has been reported to regulate cancer progression in many cancer types. However, how TUG1 contributes to renal cell carcinoma (RCC) remains elusive; we were eager to resolve the questions. METHODS Tumor tissues and the matched adjacent normal tissues were collected from patients with RCC. Messenger RNA (mRNA) levels of TUG1, yes-associated protein (YAP), and microRNA (miR)-9 levels were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The regulation of YAP by TUG1 was investigated using Western blot analysis, RT-qPCR, and immunofluorescence. The oncogenic roles of TUG1 and YAP were studied using a cell proliferation assay and a wound healing assay. The interaction of TUG1-miR-9-YAP was analyzed in RCC cell lines. RESULTS In the current study, we observed a positive correlation between TUG1 expression and YAP expression in RCC using the Gene Expression Omnibus database and tumor tissues collected from 58 patients with RCC. The TUG1 elevation enhanced YAP expression but did not alter the Hippo-signaling pathway activity or YAP protein distribution in cells. In addition, we found that TUG1 could bind to miR-9; therefore, TUG1 could positively control YAP expression via downregulation of miR-9 level. Furthermore, we observed that inhibition of cell proliferation and cell migration induced by TUG1 silencing could be reversed by overexpression of YAP in RCC cell lines. CONCLUSIONS Our findings indicated a pivotal role of TUG1 in driving RCC progression via regulation of miR-9/YAP, suggesting a potential therapeutic targeting role of TUG1 in RCC.
Collapse
Affiliation(s)
- Shan Liu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yantong Yang
- Cancer Institute, Henan University of Science and Technology, Luoyang, China.,Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Weiwei Wang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyue Pan
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
30
|
Huang T, Zhou Y, Zhang J, Cheng ASL, Yu J, To KF, Kang W. The physiological role of Motin family and its dysregulation in tumorigenesis. J Transl Med 2018; 16:98. [PMID: 29650031 PMCID: PMC5898069 DOI: 10.1186/s12967-018-1466-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Members in Motin family, or Angiomotins (AMOTs), are adaptor proteins that localize in the membranous, cytoplasmic or nuclear fraction in a cell context-dependent manner. They control the bioprocesses such as migration, tight junction formation, cell polarity, and angiogenesis. Emerging evidences have demonstrated that AMOTs participate in cancer initiation and progression. Many of the previous studies have focused on the involvement of AMOTs in Hippo-YAP1 pathway. However, it has been controversial for years that AMOTs serve as either positive or negative growth regulators in different cancer types because of the various cellular origins. The molecular mechanisms of these opposite roles of AMOTs remain elusive. This review comprehensively summarized how AMOTs function physiologically and how their dysregulation promotes or inhibits tumorigenesis. Better understanding the functional roles of AMOTs in cancers may lead to an improvement of clinical interventions as well as development of novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
31
|
Chen ZL, Yang J, Shen YW, Li ST, Wang X, Lv M, Wang BY, Li P, Zhao W, Qiu RY, Liu Y, Liu PJ, Yang J. AmotP130 regulates Rho GTPase and decreases breast cancer cell mobility. J Cell Mol Med 2018; 22:2390-2403. [PMID: 29377471 PMCID: PMC5867092 DOI: 10.1111/jcmm.13533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Angiomotin (Amot) is a newly discovered, multifunctional protein that is involved in cell migration and angiogenesis. However, the role of its isoform, AmotP130, in the regulation of cytoskeleton and metastasis of breast cancer, is unclear. The aim of this study was to investigate the role of AmotP130 in the reorganization of the actin cytoskeleton and the changes of morphology in breast cancer cells through the Rho pathway that influences the invasion and migration of cells. The results suggested that AmotP130 suppressed the invasion ability through remodelling the cytoskeleton of breast cancer cells, including the actin fibre organization and focal adhesion protein turnover. Global transcriptome changes in breast cancer cells following knockdown of AmotP130 identified pathways related with the cytoskeleton and cell motility that involved the Rho GTPase family. From database analyses, changes in the Rho GTPase family of proteins were identified as possible prognostic factors in patients with breast cancer. We have been suggested that AmotP130 suppressed the invasion ability through remodelling of the cytoskeleton of breast cancer cells, involving regulation of the Rho pathway. The cytoskeleton-related pathway components may provide novel, clinically therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zhe-Ling Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Wei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu-Ting Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Department of Oncology, Shangluo Central Hospital, Shangluo, Shaanxi, China
| | - Meng Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bi-Yuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui-Yue Qiu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Liu
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Lv M, Shen Y, Yang J, Li S, Wang B, Chen Z, Li P, Liu P, Yang J. Angiomotin Family Members: Oncogenes or Tumor Suppressors? Int J Biol Sci 2017; 13:772-781. [PMID: 28656002 PMCID: PMC5485632 DOI: 10.7150/ijbs.19603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022] Open
Abstract
Angiomotin (Amot) family contains three members: Amot (p80 and p130 isoforms), Amot-like protein 1 (Amotl1), and Amot-like protein 2 (Amotl2). Amot proteins play an important role in tube formation and migration of endothelial cells and the regulation of tight junctions, polarity, and epithelial-mesenchymal transition in epithelial cells. Moreover, these proteins regulate the proliferation and migration of cancer cells. In most cancers, Amot family members promote the proliferation and invasion of cancer cells, including breast cancer, osteosarcoma, colon cancer, prostate cancer, head and neck squamous cell carcinoma, cervical cancer, liver cancer, and renal cell cancer. However, in glioblastoma, ovarian cancer, and lung cancer, Amot inhibits the growth of cancer cells. In addition, there are controversies on the regulation of Yes-associated protein (YAP) by Amot. Amot promotes either the internalization of YAP into the nucleus or the retention of YAP in the cytoplasm of different cell types. Moreover, Amot regulates the AMPK, mTOR, Wnt, and MAPK signaling pathways. However, it is unclear whether Amot is an oncogene or a tumor suppressor gene in different cellular processes. This review focuses on the multifunctional roles of Amot in cancers.
Collapse
Affiliation(s)
- Meng Lv
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Yanwei Shen
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Jiao Yang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Shuting Li
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Biyuan Wang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Zheling Chen
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Pan Li
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| |
Collapse
|
33
|
Moleirinho S, Hoxha S, Mandati V, Curtale G, Troutman S, Ehmer U, Kissil JL. Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. eLife 2017; 6. [PMID: 28464980 PMCID: PMC5415356 DOI: 10.7554/elife.23966] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
The Hippo-YAP pathway is a central regulator of cell contact inhibition, proliferation and death. There are conflicting reports regarding the role of Angiomotin (Amot) in regulating this pathway. While some studies suggest a YAP-inhibitory function other studies indicate Amot is required for YAP activity. Here, we describe an Amot-dependent complex comprised of Amot, YAP and Merlin. The phosphorylation of Amot at Serine 176 shifts localization of this complex to the plasma membrane, where it associates with the tight-junction proteins Pals1/PATJ and E-cadherin. Conversely, hypophosphorylated Amot shifts localization of the complex to the nucleus, where it facilitates the association of YAP and TEAD, induces transcriptional activation of YAP target genes and promotes YAP-dependent cell proliferation. We propose that phosphorylation of AmotS176 is a critical post-translational modification that suppresses YAP’s ability to promote cell proliferation and tumorigenesis by altering the subcellular localization of an essential YAP co-factor. DOI:http://dx.doi.org/10.7554/eLife.23966.001 Cells in animals and other multi-cellular organisms need to know when and where they should grow and divide. Individual cells communicate with their surrounding environment and each other via signaling pathways such as the Hippo-YAP pathway, which stimulates cells to grow and therefore influences the size of organs. When the Hippo part of the pathway is active it causes a protein known as YAP to move out of a compartment in the cell called the nucleus. Inside the nucleus, YAP helps to activate genes that promote cell growth. If the Hippo pathway can no longer respond to cues from the environment, YAP becomes over-active and can contribute to the development of various cancers. Therefore researchers are trying to better understand how it is regulated. Many signals both from inside and outside the cell influence YAP activity. For example, some signals block YAP from entering the nucleus, whereas others cause YAP to be broken down entirely. Several studies have recently identified a signal protein called angiomotin as a regulator of YAP. However, the studies provide conflicting reports as to whether angiomotin promotes or inhibits cell growth. Like many other proteins, angiomotin can be tagged with a small molecule called a phosphate group that can alter its activity. Moleirinho, Hoxha et al. studied human cells containing versions of angiomotin that mimic different forms of the protein with or without the phosphate. The experiments indicate that when a phosphate is attached at a particular position (known as serine 176), angiomotin predominantly interacts with YAP and another protein called Merlin at the cell surface. On the other hand, when angiomotin does not have a phosphate attached to it, all three proteins can move into the nucleus, where YAP is able to activate genes and promote cell growth. Overall, these findings indicate that adding a phosphate group to angiomotin can act as a switch to regulate where in the cell it and YAP are found and thus, whether YAP is active. Future experiments will investigate which enzymes add the phosphate group to serine 176, and when they are able to do so. DOI:http://dx.doi.org/10.7554/eLife.23966.002
Collapse
Affiliation(s)
- Susana Moleirinho
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Sany Hoxha
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Vinay Mandati
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Graziella Curtale
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Scott Troutman
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Ursula Ehmer
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Joseph L Kissil
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
34
|
Han H, Yang B, Wang W. Angiomotin-like 2 interacts with and negatively regulates AKT. Oncogene 2017; 36:4662-4669. [DOI: 10.1038/onc.2017.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 02/08/2023]
|
35
|
12-O-Tetradecanoylphorbol-13-acetate (TPA) is anti-tumorigenic in liver cancer cells via inhibiting YAP through AMOT. Sci Rep 2017; 7:44940. [PMID: 28322318 PMCID: PMC5359578 DOI: 10.1038/srep44940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
TPA stimulates carcinogenesis in various types of cancers. However, we found that TPA inhibits transformative phenotypes in liver cancer cells via the translocation of YAP from the nucleus, where it functions as a transcriptional co-factor, to the cytoplasm. Such effects led to a separation of YAP from its dependent transcription factors. The inhibitory effects of TPA on YAP were AMOT dependent. Without AMOT, TPA was unable to alter YAP activity. Importantly, the depletion of YAP and AMOT blocked the TPA-reduced transformative phenotypes. In sum, TPA has been established as an anti-tumorigenic drug in liver cancer cells via YAP and AMOT.
Collapse
|
36
|
Zhang Y, Yuan J, Zhang X, Yan F, Huang M, Wang T, Zheng X, Zhang M. Angiomotin promotes the malignant potential of colon cancer cells by activating the YAP-ERK/PI3K-AKT signaling pathway. Oncol Rep 2016; 36:3619-3626. [PMID: 27779692 DOI: 10.3892/or.2016.5194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths with an increasing incidence in China. The aberrant expression of angiomotin (AMOT) has been confirmed in a variety of tumors and can interact with Yes-associated protein (YAP) to either promote or suppress the progression of cancer. Unfortunately, its role in CRC remains poorly elucidated. Herein, higher levels of AMOT were observed in CRC cell lines. Upregulation of AMOT in LoVo cells markedly increased cell proliferation and apoptotic resistance to 5-fluorouracil. Moreover, its increase also promoted cell invasion and migration. Simultaneously, AMOT silencing markedly attenuated the growth and metastatic potential of HCT116 cells. Notably, AMOT upregulation promoted the activity of YAP by decreasing the expression of phosphorylated YAP and YAP in the cytoplasm and increasing YAP levels in the nucleus. Further mechanistic analysis corroborated that transfection with YAP siRNA notably diminished cell growth, invasion and migration in the AMOT‑overexpressing LoVo cells. Additionally, upregulation of AMOT induced the activation of the ERK and AKT pathways by YAP expression, both associated with the development of CRC. Collectively, these results suggest that AMOT may function as an oncogene in the progression of CRC by activating the YAP-ERK/PI3K-AKT signaling pathway. Therefore, this study presents a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Yuan
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xinli Zhang
- Radio Immunity Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Futang Yan
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Minggang Huang
- CT Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Tao Wang
- Department of Radiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao Zheng
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|