1
|
Szternel Ł, Sobucki B, Wieprzycka L, Krintus M, Panteghini M. Golgi protein 73 in liver fibrosis. Clin Chim Acta 2025; 565:119999. [PMID: 39401651 DOI: 10.1016/j.cca.2024.119999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024]
Abstract
Golgi protein 73 (GP73) is implicated in key pathogenic processes, particularly those related to inflammation and fibrogenesis. In the last years, its measurement has emerged as a promising biomarker for detection of liver fibrosis (LF), a common consequence of chronic liver disease that can progress to cirrhosis and eventually hepatocellular carcinoma. GP73 concentrations in blood appear significantly increased in LF patients, correlating with disease severity, making this biomarker a possible non-invasive alternative for detecting and monitoring this condition regardless of etiology. Understanding the molecular mechanisms involving GP73 expression could also lead to new therapeutic strategies aimed at modulating its synthesis or function to prevent or reverse LF. Despite its clinical potential, GP73 as a LF biomarker faces several challenges. The lack of demonstrated comparability among different assays as well as the lack of knowledge of individual variability can make difficult the result interpretation. Further research is therefore needed focusing on robust clinical validation of GP73 as a LF biomarker. Addressing analytical, biological, and clinical limitations will be critical to exploiting its potential for improving detection and monitoring of advanced LF.
Collapse
Affiliation(s)
- Łukasz Szternel
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Bartłomiej Sobucki
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Laura Wieprzycka
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland.
| | - Mauro Panteghini
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
2
|
Liu L, Huang Y, Fu Y, Rao J, Zeng F, Ji M, Xu X, Zhu J, Du W, Liu Z. Hepatitis B virus promotes hepatocellular carcinoma development by activating GP73 to repress the innate immune response. Infect Agent Cancer 2022; 17:52. [PMID: 36195933 PMCID: PMC9533540 DOI: 10.1186/s13027-022-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Hepatitis B virus (HBV) causes acute and chronic infection in the clinic. Hepatocellular carcinoma (HCC) is closely linked to HBV infection. Serum Golgi protein 73 (GP73) increases during HBV infection. However, the role of GP73 during HBV infection and the occurrence of HBV-related HCC is still poorly understood. Methods The underlying role of HBV-induced GP73 in regulating HCC development was investigated in this study. GP73 expression in HBV-related clinical HCC tissues and in HBV-infected hepatoma cells and primary human hepatocytes was evaluated by immunohistochemistry, ELISAs, Western blotting and quantitative real-time PCR (qRT-PCR) analysis. Tumorigenicity of GP73 overexpressed cells was detected by flow cytometry, qRT-PCR, xenograft nude mouse analyses and sphere formation assays. The effects of GP73 and HBV infection on host innate immune responses in hepatocytes were further investigated by Western blotting and qRT-PCR analysis. Results Initially, we confirmed that HBV-positive HCC tissues had significantly higher expression of GP73. Ectopic expression of the HBV gene could induce GP73 expression in primary human hepatocytes and hepatoma cells in vitro. In addition, we discovered that GP73 promotes HCC in both normal liver cells and hepatoma cells. We also found that ectopic expression of HBV genes increases GP73 expression, suppressing the host's innate immune responses in hepatocytes. Conclusions Our results demonstrate that HBV facilitates HCC development by activating GP73 to repress the host's innate immune response. This study adds to our understanding of the pathogenesis of HBV infection-induced HCC. The findings also provide preclinical support for GP73 as a potential HCC prevention or treatment target. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-022-00462-y.
Collapse
Affiliation(s)
- Long Liu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Yanping Huang
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Yanan Fu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Jingjing Rao
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Feng Zeng
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Institution of Virology, Hubei University of Medicine, Shiyan, China
| | - Manshan Ji
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiang Xu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jianyong Zhu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
| | - Weixing Du
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
| | - Zhixin Liu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China. .,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China. .,Institution of Virology, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
3
|
Tong J, Yao M, Mu X, Wang L, Wen X, Zhai X, Xu X, Wang Y, Chen J, Zhai X, Guan C, Lu F, Hu J. Relationship between the Level of Serum Golgi Protein 73 and the Risk of Short-term Death in Patients with ALD-ACLF. J Clin Transl Hepatol 2022; 10:449-457. [PMID: 35836755 PMCID: PMC9240251 DOI: 10.14218/jcth.2020.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/08/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS As a hepatocellular carcinoma biomarker, serum Golgi protein 73 (GP73) is reportedly related to inflammation. Acute-on-chronic liver failure (ACLF) is characterized by severe systemic inflammation. In this study, we aimed to explore the association between the GP73 level and short-term mortality in patients with alcohol-associated liver disease-related ACLF (ALD-ACLF). METHODS This retrospective cohort study involved 126 Chinese adults with ALD-ACLF. Baseline serum GP73 level was measured using enzyme-linked immunosorbent assay. Patients were followed-up for 90 d and outcomes were assessed. Data were analyzed using multivariate Cox regression and piecewise linear regression analyses. The predictive value of GP73 and classic models for the short-term prognosis of participants were evaluated and compared using receiver operating characteristic curves. RESULTS The serum GP73 level was independently associated with an increased mortality risk in patients with ALD-ACLF. Compared with the lowest tertile, the highest serum GP73 level predisposed patients with ALD-ACLF to a higher mortality risk in the fully adjusted model [at 28 days: hazard ratio (HR): 4.29 (0.99-18.54), p=0.0511; at 90 days: HR: 3.52 (1.15-10.79), p=0.0276]. Further analysis revealed a positive linear association. GP73 significantly improved the accuracy of the Child-Turcotte-Pugh score, model for end-stage liver disease score, and model for end-stage liver disease-sodium score in predicting short-time prognosis of patients with ALD-ACLF. CONCLUSIONS The serum GP73 level is a significant predictor of the subsequent risk of death in patients with ALD-ACLF. GP73 improved the predictive value of classic prognostic scores.
Collapse
Affiliation(s)
- Jingjing Tong
- Chinese PLA Medical School, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Mingjie Yao
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiuying Mu
- Peking University 302 Clinical Medical School, Beijing, China
| | - Leijie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiajie Wen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Xiang Xu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yu Wang
- Chinese PLA Medical School, Beijing, China
| | - Jing Chen
- Chinese PLA Medical School, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiangwei Zhai
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chongdan Guan
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jinhua Hu
- Chinese PLA Medical School, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| |
Collapse
|
4
|
Lin Y, Dong S, Ye X, Liu J, Li J, Zhang Y, Tu M, Wang S, Ying Y, Chen R, Wang F, Ni F, Chen J, Du B, Zhang D. Synergistic regenerative therapy of thin endometrium by human placenta-derived mesenchymal stem cells encapsulated within hyaluronic acid hydrogels. Stem Cell Res Ther 2022; 13:66. [PMID: 35135594 PMCID: PMC8822809 DOI: 10.1186/s13287-022-02717-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Thin endometrium is a primary cause of defective endometrial receptivity, resulting in infertility or recurrent miscarriage. Much effort has been devoted toward regenerating thin endometrium by stem cell-based therapies. The human placenta-derived mesenchymal stem cells (HP-MSCs) are emerging alternative sources of MSCs with various advantages. To maximize their retention inside the uterus, we loaded HP-MSCs with cross-linked hyaluronic acid hydrogel (HA hydrogel) to investigate their therapeutic efficacy and possible underlying mechanisms.
Methods Ethanol was injected into the mice uterus to establish the endometrium-injured model. The retention time of HP-MSCs and HA hydrogel was detected by in vivo imaging, while the distribution of HP-MSCs was detected by immunofluorescence staining. Functional restoration of the uterus was assessed by testing embryo implantation rates. The endometrial morphological alteration was observed by H&E staining, Masson staining, and immunohistochemistry. In vitro studies were further conducted using EdU, transwell, tube formation, and western blot assays. Results Instilled HP-MSCs with HA hydrogel (HP-MSCs-HA) exhibited a prolonged retention time in mouse uteri than normal HP-MSCs. In vivo studies showed that the HP-MSCs-HA could significantly increase the gland number and endometrial thickness (P < 0.001, P < 0.05), decrease fibrous area (P < 0.0001), and promote the proliferation and angiogenesis of endometrial cells (as indicated by Ki67 and VEGF, P < 0.05, P < 0.05, respectively) in mice injured endometrium. HP-MSCs-HA could also significantly improve the embryo implantation rate (P < 0.01) compared with the ethanol group. Further mechanistic study showed the paracrine effects of HP-MSCs. They could not only promote the proliferation and migration of human endometrial stromal cells via the JNK/Erk1/2-Stat3-VEGF pathway but also facilitate the proliferation of glandular cells via Jak2-Stat5 and c-Fos-VEGF pathway. In turn, the increased VEGF in the endometrium promoted the angiogenesis of endothelial cells. Conclusion Our study suggested the potential therapeutic effects and the underlying mechanisms of HP-MSCs-HA on treating thin endometrium. HA hydrogel could be a preferable delivery method for HP-MSCs, and the strategy represents a promising therapeutic approach against endometrial injury in clinical settings. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02717-2.
Collapse
Affiliation(s)
- Yifeng Lin
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Shunni Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaohang Ye
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Juan Liu
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ruixue Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Dan Zhang
- Key Laboratory of Women's Reproductive Health of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Liu Y, Hu X, Liu S, Zhou S, Chen Z, Jin H. Golgi Phosphoprotein 73: The Driver of Epithelial-Mesenchymal Transition in Cancer. Front Oncol 2021; 11:783860. [PMID: 34950590 PMCID: PMC8688837 DOI: 10.3389/fonc.2021.783860] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Golgi phosphoprotein 73 (GP73, also termed as GOLM1 or GOLPH2) is a glycosylated protein residing on cis-Golgi cisternae and highly expressed in various types of cancer tissues. Since GP73 is a secretory protein and detectable in serum derived from cancer patients, it has been regarded as a novel serum biomarker for the diagnosis of different cancers, especially hepatocellular carcinoma (HCC). However, the functional roles of GP73 in cancer development are still poorly understood. In recent years, it has been discovered that GP73 acts as a multifunctional protein-facilitating cancer progression, and strikingly, it has been identified as a leading factor promoting epithelial-mesenchymal transition (EMT) of cancer cells and causing cancer metastasis. In this review, we have overviewed the latest findings of the functional roles of GP73 in elevating cancer progression, especially in facilitating EMT and cancer metastasis through modulating expression, transactivation, and trafficking of EMT-related proteins. In addition, unsolved research fields of GP73 have been lightened, which might be helpful to elucidate the regulatory mechanisms of GP73 on EMT and provide potential approaches in therapeutics against cancer metastasis.
Collapse
Affiliation(s)
- Yiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiyao Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-231. Food Chem Toxicol 2021; 157:112574. [PMID: 34536514 DOI: 10.1016/j.fct.2021.112574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
Golgi Membrane Protein 1 (GOLM1) has been identified as a prime target for cancer therapy because it overexpresses in many solid tumors, increases tumor growth and metastasis and leads to unfavorable survival. Though various approaches including siRNA interference and antibody targeting have been attempted, GOLM1 has remained an un-targetable molecule because of its mainly intracellular location and the lack of domains that could possibly be interfered with by small molecules. Numerous natural anti-tumoral plant substances have been identified, while their possible function on GOLM1 has never been revealed. This is the first report to study the relationship between GOLM1 downregulation and natural anti-tumoral plant substances and the possible mechanism. Among three tested possible migration-inhibiting natural substances (Epigallocatechin gallate (EGCG), Betulinic acid (BA) and Lupeol), EGCG showed the most potent inhibition effect on GOLM1 expression and MDA-MB-231 cell migration. Knocking down GOLM1 expression further increased the EGCG treatment effect. Molecular docking prediction and following experiments suggested that EGCG may inhibit GOLM1 expression and MDA-MB-231 cells migration through HGF/HGFR/AKT/GSK-3/β-catenin/c-Myc signaling pathway. In all, EGCG is the first identified GOLM1 downregulation natural product. Silencing GOLM1 may be a novel mechanism of potentiated anti-cancer migration effects and cytotoxic effect of EGCG. In addition, this study shed a new way for cancer therapy by combination of GOLM1 silencing and EGCG treatment in the future.
Collapse
|
7
|
Wang J, Ning J, Qian X, Zhang T, Yao M, Wang J, Chen X, Lu F. Deletion of Golgi protein 73 delayed hepatocyte proliferation of mouse in the early stages of liver regeneration. J Gastroenterol Hepatol 2021; 36:1346-1356. [PMID: 33119928 DOI: 10.1111/jgh.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/05/2020] [Accepted: 09/19/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Golgi protein 73 (GP73) is a transmembrane protein that can promote the proliferation of cancer cells. However, the roles of GP73 in the proliferation of non-malignant hepatocytes have rarely been investigated. METHODS The wild-type (GP73+/+ ) and GP73 gene knockout mice (GP73-/- ) were subject to 70% partial hepatectomy (PHx) to explore the involvement of GP73 in liver regeneration. RESULTS After PHx, a significant increase of GP73 expression was observed in GP73+/+ mouse liver. Noticeably, promoted recovery of liver mass was observed in GP73-/- mouse at Day 1 after PHx, as showed by the liver/body weight ratio. RNA sequencing revealed that genes relevant to cell cycle and inflammation response in the residual liver tissues were severely suppressed with the deletion of GP73, particularly the inactivation of NF-κB signal pathway in early phase of liver regeneration. In line with this, we do see the downregulation of cell cycle-related protein including cyclin D1, p-cyclin D1, β-catenin, as well as interleukin 6, tumor necrosis factor-α, CCl2, and CXCl10. In contrast, activation of mTOR signaling pathway was documented, accompanied with the histological hypertrophy of hepatocytes in GP73-/- mouse. CONCLUSIONS Golgi protein 73 deletion leads to delayed response of liver regeneration and inflammation in the early stages of liver regeneration after PHx.
Collapse
Affiliation(s)
- Jianwen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Ning
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangjun Qian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ting Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mingjie Yao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
8
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a low survival rate. The identification of mechanisms underlying the development of HCC helps uncover cellular and molecular targets for the diagnosis, prevention, and treatment of HCC. Golgi protein 73 (GP73) level is upregulated in HCC patients and potentially can be a therapeutic target. Despite many studies devoted to GP73 as a marker for HCC early diagnosis, there is little discussion about the function of GP73 in HCC tumorigenesis. Given the poor response to currently available HCC therapies, a better understanding of the role of GP73 in HCC may provide a new therapeutic target for HCC. The current paper summarizes the role of GP73 as a diagnostic marker as well as its roles in liver carcinogenesis. Its roles in other types of cancer are also discussed.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
9
|
Gatselis NK, Tornai T, Shums Z, Zachou K, Saitis A, Gabeta S, Albesa R, Norman GL, Papp M, Dalekos GN. Golgi protein-73: A biomarker for assessing cirrhosis and prognosis of liver disease patients. World J Gastroenterol 2020; 26:5130-5145. [PMID: 32982114 PMCID: PMC7495033 DOI: 10.3748/wjg.v26.i34.5130] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reliable biomarkers of cirrhosis, hepatocellular carcinoma (HCC), or progression of chronic liver diseases are missing. In this context, Golgi protein-73 (GP73) also called Golgi phosphoprotein-2, was originally defined as a resident Golgi type II transmembrane protein expressed in epithelial cells. As a result, GP73 expression was found primarily in biliary epithelial cells, with only slight detection in hepatocytes. However, in patients with acute or chronic liver diseases and especially in HCC, the expression of GP73 is significantly up-regulated in hepatocytes. So far, few studies have assessed GP73 as a diagnostic or prognostic marker of liver fibrosis and disease progression. AIM To assess serum GP73 efficacy as a diagnostic marker of cirrhosis and/or HCC or as predictor of liver disease progression. METHODS GP73 serum levels were retrospectively determined by a novel GP73 ELISA (QUANTA Lite® GP73, Inova Diagnostics, Inc., Research Use Only) in a large cohort of 632 consecutive patients with chronic viral and non-viral liver diseases collected from two tertiary Academic centers in Larissa, Greece (n = 366) and Debrecen, Hungary (n = 266). Aspartate aminotransferase (AST)/Platelets (PLT) ratio index (APRI) was also calculated at the relevant time points in all patients. Two hundred and three patients had chronic hepatitis B, 183 chronic hepatitis C, 198 alcoholic liver disease, 28 autoimmune cholestatic liver diseases, 15 autoimmune hepatitis, and 5 with other liver-related disorders. The duration of follow-up was 50 (57) mo [median (interquartile range)]. The development of cirrhosis, liver decompensation and/or HCC during follow-up were assessed according to internationally accepted guidelines. In particular, the surveillance for the development of HCC was performed regularly with ultrasound imaging and alpha-fetoprotein (AFP) determination every 6 mo in cirrhotic and every 12 mo in non-cirrhotic patients. RESULTS Increased serum levels of GP73 (> 20 units) were detected at initial evaluation in 277 out of 632 patients (43.8%). GP73-seropositivity correlated at baseline with the presence of cirrhosis (96.4% vs 51.5%, P < 0.001), decompensation of cirrhosis (60.3% vs 35.5%, P < 0.001), presence of HCC (18.4% vs 7.9%, P < 0.001) and advanced HCC stage (52.9% vs 14.8%, P = 0.002). GP73 had higher diagnostic accuracy for the presence of cirrhosis compared to APRI score [Area under the curve (AUC) (95%CI): 0.909 (0.885-0.934) vs 0.849 (0.813-0.886), P = 0.003]. Combination of GP73 with APRI improved further the accuracy (AUC: 0.925) compared to GP73 (AUC: 0.909, P = 0.005) or APRI alone (AUC: 0.849, P < 0.001). GP73 levels were significantly higher in HCC patients compared to non-HCC [22.5 (29.2) vs 16 (20.3) units, P < 0.001) and positively associated with BCLC stage [stage 0: 13.9 (10.8); stage A: 17.1 (16.8); stage B: 19.6 (22.3); stage C: 32.2 (30.8); stage D: 45.3 (86.6) units, P < 0.001] and tumor dimensions [very early: 13.9 (10.8); intermediate: 19.6 (18.4); advanced: 29.1 (33.6) units, P = 0.004]. However, the discriminative ability for HCC diagnosis was relatively low [AUC (95%CI): 0.623 (0.570-0.675)]. Kaplan-Meier analysis showed that the detection of GP73 in patients with compensated cirrhosis at baseline, was prognostic of higher rates of decompensation (P = 0.036), HCC development (P = 0.08), and liver-related deaths (P < 0.001) during follow-up. CONCLUSION GP73 alone appears efficient for detecting cirrhosis and superior to APRI determination. In combination with APRI, its diagnostic performance can be further improved. Most importantly, the simple GP73 measurement proved promising for predicting a worse outcome of patients with both viral and non-viral chronic liver diseases.
Collapse
Affiliation(s)
- Nikolaos K Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- Institute of Internal Medicine and Hepatology, Larissa 41447, Greece
| | - Tamás Tornai
- Department of Internal Medicine, Division of Gastroenterology, University of Debrecen, Faculty of Medicine, Debrecen H-4032, Hungary
| | - Zakera Shums
- Department of Research and Development, Inova Diagnostics, Inc., San Diego, CA 92131, United States
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- Institute of Internal Medicine and Hepatology, Larissa 41447, Greece
| | - Asterios Saitis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
| | - Roger Albesa
- Department of Research and Development, Inova Diagnostics, Inc., San Diego, CA 92131, United States
| | - Gary L Norman
- Department of Research and Development, Inova Diagnostics, Inc., San Diego, CA 92131, United States
| | - Mária Papp
- Department of Internal Medicine, Division of Gastroenterology, University of Debrecen, Faculty of Medicine, Debrecen H-4032, Hungary
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- Institute of Internal Medicine and Hepatology, Larissa 41447, Greece
| |
Collapse
|
10
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common liver malignancies and is a leading cause of cancer-related deaths. Most HCC patients are diagnosed at an advanced stage and current treatments show poor therapeutic efficacy. It is particularly urgent to explore early diagnosis methods and effective treatments of HCC. There are a growing number of studies that show GOLM1 is one of the most promising markers for early diagnosis and prognosis of HCC. It is also involved in immune regulation, activation and degradation of intracellular signaling factors and promotion of epithelial-mesenchymal transition. GOLM1 can promote HCC progression and metastasis. The understanding of the GOLM1 regulation mechanism may provide new ideas for the diagnosis, monitoring and treatment of HCC.
Collapse
Affiliation(s)
- Jiuliang Yan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Binghai Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Lei Guo
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qinghai Ye
- Department of Liver Surgery & Transplantation, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis & Cancer Invasion (Fudan University), Ministry of Education, Fudan University, Shanghai, 200032, China
| |
Collapse
|
11
|
Bai YH, Yun XJ, Xue Y, Zhou T, Sun X, Gao YJ. A novel oncolytic adenovirus inhibits hepatocellular carcinoma growth. J Zhejiang Univ Sci B 2020; 20:1003-1013. [PMID: 31749347 DOI: 10.1631/jzus.b1900089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the inhibitory role of a novel oncolytic adenovirus (OA), GP73-SphK1sR-Ad5, on the growth of hepatocellular carcinoma (HCC). METHODS GP73-SphK1sR-Ad5 was constructed by integrating Golgi protein 73 (GP73) promoter and sphingosine kinase 1 (SphK1)-short hairpin RNA (shRNA) into adenovirus serotype 5 (Ad5), and transfecting into HCC Huh7 cells and normal human liver HL-7702 cells. The expression of SphK1 and adenovirus early region 1 (E1A) was detected by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Cell viability was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and apoptotic rate was determined by flow cytometry. An Huh7 xenograft model was established in mice injected intratumorally with GP73-SphK1sR-Ad5. Twenty days after injection, the tumor volume and weight, and the survival time of the mice were recorded. The histopathological changes in tumor tissues were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). RESULTS Transfection of GP73-SphK1sR-Ad5 significantly upregulated E1A and downregulated SphK1 in Huh7 cells, but not in HL7702 cells. GP73-SphK1sR-Ad5 transfection significantly decreased the viability and increased the apoptotic rate of Huh7 cells, but had no effect on HL7702 cells. Intratumoral injection of GP73-SphK1sR-Ad5 into the Huh7 xenograft mouse model significantly decreased tumor volume and weight, and prolonged survival time. It also significantly decreased the tumor infiltration area and blood vessel density, and increased the percentages of cells with nucleus deformation and cells with condensed chromatin in tumor tissues. CONCLUSIONS GP73-SphK1sR-Ad5 serves as a novel OA and can inhibit HCC progression with high specificity and efficacy.
Collapse
Affiliation(s)
- Yu-Huan Bai
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Xiao-Jing Yun
- Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Yan Xue
- Department of Gastroenterology, the Second People's Hospital of Liaocheng, Linqing 252600, China
| | - Ting Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xin Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Shi Y, Sun H. Down-regulation of lncRNA LINC00152 Suppresses Gastric Cancer Cell Migration and Invasion Through Inhibition of the ERK/MAPK Signaling Pathway. Onco Targets Ther 2020; 13:2115-2124. [PMID: 32210577 PMCID: PMC7074822 DOI: 10.2147/ott.s217452] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to explore the regulatory role and mechanism of long noncoding RNA LINC00152 in gastric cancer (GC) cells. Methods LINC00152 expression in GC tissues and cells was detected by reverse transcription-polymerase chain reaction (qRT-PCR). MKN45 and MGC-803 cells were selected and assigned into different groups after transfection with si-LINC00152, activated ERK/MAPK signaling pathway (SA), or negative control. Cell proliferation, apoptosis, cycle, migration and invasion were assessed by CCK-8, flow cytometry, Transwell assay and Scratch test, respectively. Western blot analysis was conducted to detect the expression of E-cadherin, N-cadherin and ERK/MAPK signaling pathway protein. Results Compared with the normal tissues, higher expression of LINC00152 was found in GC tissues and LINC00152 was remarkably correlative with clinical stage and lymphatic metastasis. LINC00152 expression in GC cells was higher than that in GES-1 cells. Compared with the NC group, the cell proliferation rate, cells in G2/M phase, migration and invasion abilities as well as the expression of N-cadherin and p-ERK-1/2 were significantly decreased, and the expression of E-cadherin, cells in G0/G1 phase and cell apoptosis rate were significantly increased in the si-LINC00152-1 group. ERK/MAPK signaling pathway activator SA could reverse the biological role of LINC00152 in GC cells. Conclusion These results demonstrated that the interference of LINC00152 expression may inhibit the invasion and migration of GC cells by inhibiting the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Shi
- Department of Hyperbaric Oxygen, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Huihui Sun
- Department of Gastroenterology, Jinan First People's Hospital, Jinan, Shandong 250011, People's Republic of China
| |
Collapse
|
13
|
Liu J, Ying Y, Wang S, Li J, Xu J, Lv P, Chen J, Zhou C, Liu Y, Wu Y, Huang Y, Chen Y, Chen L, Tu S, Zhao W, Yang M, Hu Y, Zhang R, Zhang D. The effects and mechanisms of GM-CSF on endometrial regeneration. Cytokine 2019; 125:154850. [PMID: 31557635 DOI: 10.1016/j.cyto.2019.154850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Endometrial injury can result in thin endometrium and subfertility. Granulocyte macrophage colony stimulating factor (GM-CSF) contributes to tissue repair, but its role in endometrial regeneration has not been investigated. METHODS To determine the effect of GM-CSF on endometrial regeneration, we established a mouse model of thin endometrium by uterine perfusion with 20 μL 90% ethanol. Thin endometrium in mice was featured by lowered endometrial thickness, decreased expression of Ki67 in glandular cells, and a reduced number of implantation sites. To explore the mechanism of GM-CSF on endometrial regeneration, endometrium was obtained from patients undergoing hysterectomy or hysteroscopy and endometrial biopsy. Effects of GM-CSF on primary cultured human endometrial glandular and stromal cells were examined by the 5-bromo-2'-deoxyuridine (BrdU) proliferation assay and transwell migration assay, followed by exploration of the potential signaling pathway. RESULTS GM-CSF intraperitoneal (i.p.) injection significantly increased endometrial thickness, expression of Ki67 in endometrial glandular cells, and the number of implantation sites. GM-CSF significantly promoted proliferation of primary human endometrial glandular cells and migration of stromal cells. GM-CSF activated p-Akt and increased expressions of p70S6K and c-Jun, which were blocked by LY294002. CONCLUSION We found that GM-CSF could improve endometrial regeneration, possibly through activating PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jinqun Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Pingping Lv
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Caiyun Zhou
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Lifen Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China; Huzhou Maternity & Child Care Hospital, PR China
| | - Shijiong Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China; Ningbo Women & Children's Hospital, PR China
| | - Wei Zhao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Min Yang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Yanjun Hu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Runju Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China.
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China.
| |
Collapse
|
14
|
An NF-kappaB- and IKK-Independent Function of NEMO Prevents Hepatocarcinogenesis by Suppressing Compensatory Liver Regeneration. Cancers (Basel) 2019; 11:cancers11070999. [PMID: 31319593 PMCID: PMC6678501 DOI: 10.3390/cancers11070999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The I-κB-Kinase (IKK) complex represents a central signaling nexus in the TNF-dependent activation of the pro-inflammatory NF-κB pathway. However, recent studies suggested that the distinct IKK subunits (IKKα, IKKβ, and NEMO) might withhold additional NF-κB-independent functions in inflammation and cancer. Here, we generated mice lacking all three IKK subunits in liver parenchymal cells (LPC) (IKKα/β/NEMOLPC-KO) and compared their phenotype with mice lacking both catalytic subunits (IKKα/βLPC-KO), allowing to functionally dissect putative I-κB-Kinase-independent functions of the regulatory subunit NEMO. We show that the additional deletion of NEMO rescues IKKα/βLPC-KO mice from lethal cholestasis and biliary ductopenia by triggering LPC apoptosis and inducing a strong compensatory proliferation of LPC including cholangiocytes. Beyond this beneficial effect, we show that increased hepatocyte cell-death and compensatory proliferation inhibit the activation of LPC-necroptosis but trigger spontaneous hepatocarcinogenesis in IKKα/β/NEMOLPC-KO mice. Collectively, our data show that free NEMO molecules unbound to the catalytic IKK subunits control LPC programmed cell death pathways and proliferation, cholestasis and hepatocarcinogenesis independently of an IKK-related function. These findings support the idea of different functional levels at which NEMO controls inflammation and cancer in the liver.
Collapse
|
15
|
Xia Y, Zhang Y, Shen M, Xu H, Li Z, He N. Golgi protein 73 and its diagnostic value in liver diseases. Cell Prolif 2019; 52:e12538. [PMID: 30341783 PMCID: PMC6496820 DOI: 10.1111/cpr.12538] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Golgi protein 73 (GP73, also referred to as Golph 2) with 400 amino acids is a 73 kDa transmembrane glycoprotein typically found in the cis-Golg complex. It is primarily expressed in epithelial cells, which has been found upregulated in hepatocytes in patients suffering from both viral and non-viral liver diseases. GP73 has drawn increasing attention for its potential application in the diagnosis of liver diseases such as hepatitis, liver cirrhosis and liver cancer. Herein, we reviewed the discovery history of GP73 and summarized studies by many groups around the world, aiming at understanding its structure, expression, function, detection methods and the relationship between GP73 and liver diseases in various settings.
Collapse
Affiliation(s)
- Yanyan Xia
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuanying Zhang
- Department of Molecular BiologyJiangsu Cancer HospitalNanjingChina
| | - Mengjiao Shen
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongpan Xu
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhiyang Li
- Center of Laboratory MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Nongyue He
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| |
Collapse
|
16
|
Liang R, Liu Z, Piao X, Zuo M, Zhang J, Liu Z, Li Y, Lin Y. Research progress on GP73 in malignant tumors. Onco Targets Ther 2018; 11:7417-7421. [PMID: 30425529 PMCID: PMC6204869 DOI: 10.2147/ott.s181239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cancer is one of the most serious diseases that currently endanger human health. As most tumors are diagnosed at an advanced stage, the current treatments show poor therapeutic efficacy, and the patients have poor prognosis. However, a 5-year survival rate higher than 80% could be achieved if tumors are diagnosed at an early stage. Therefore, early diagnosis and treatment play important roles in the prevention and treatment of malignant tumors, and serum tumor markers are important for the early diagnosis of malignant cancers. Recent studies have shown that GP73, a transmembrane protein, has greater diagnostic value in primary liver cancer than in other types of cancers, and research on the regulation of GP73 expression has unveiled broad prospects in anticancer targeted therapy. Thus, GP73, as a new tumor marker, deserves further study.
Collapse
Affiliation(s)
- Rong Liang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Ziyu Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Xuemin Piao
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Mingtang Zuo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Zhihui Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| |
Collapse
|
17
|
Song YX, Xu ZC, Li HL, Yang PL, Du JK, Xu J. Overexpression of GP73 promotes cell invasion, migration and metastasis by inducing epithelial-mesenchymal transition in pancreatic cancer. Pancreatology 2018; 18:812-821. [PMID: 30217697 DOI: 10.1016/j.pan.2018.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most difficult clinical cases to diagnose with a very low 5-year survival rate of 5%, regardless of the advances made in both the medical and surgical treatment of the disease. One of the contributing factors for the high mortality rate seen of pancreatic cancer patients is the lack of effective chemotherapies, which is believed to be due to drug-resistance. Based on recent evidence, epithelial-mesenchymal transition (ETM) of pancreatic cancer cells has been found to be associated with the development of drug resistance and an increase in cell invasion. Therefore, we conducted the present study in order to investigate the regulatory effects of Golgi protein-73 (GP73) on PC. GP73 and EMT-related gene expressions in PC, along with the adjacent and chronic pancreatitis tissues were determined by means of RT-qPCR and Western blot analysis. Cultured PC cells were treated with pAdTrack-CMV, si-NC, GP73 overexpression, Si-GP73, Snail-siRNA and GP73 + Snail-siRNA. Cell invasion, migration and metastasis were measured in vitro and in vivo. The results revealed that the PC tissues and chronic pancreatitis tissues exhibited diminished E-cadherin expression and amplified GP73, N-cadherin, Vimentin and Snail expression. In response to GP73 gene silencing, PC cells presented with increased E-cadherin expression and decreased N-cadherin, Vimentin, Snail expression in addition to the inhibition of the number of invasive cells, tumor volume and number of liver lesions. These findings highly indicated that the overexpression of GP73 promotes cell invasion, migration and metastasis by inducing EMT in PC.
Collapse
Affiliation(s)
- Yin-Xue Song
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Zhi-Chao Xu
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hui-Ling Li
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pei-Lei Yang
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jun-Kai Du
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jing Xu
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
18
|
Yao M, Wang L, Leung PSC, Li Y, Liu S, Wang L, Guo X, Zhou G, Yan Y, Guan G, Chen X, Bowlus CL, Liu T, Jia J, Gershwin ME, Ma X, Zhao J, Lu F. The Clinical Significance of GP73 in Immunologically Mediated Chronic Liver Diseases: Experimental Data and Literature Review. Clin Rev Allergy Immunol 2018; 54:282-294. [PMID: 29256057 DOI: 10.1007/s12016-017-8655-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is significant void in establishing validated non-invasive surrogate biomarkers of liver fibrosis/cirrhosis in chronic liver diseases (CLD). Golgi protein 73 (GP73) has been suggested as a potential serum marker for the diagnosis of hepatocellular carcinoma (HCC). However, significant background of cirrhosis could have accounted for the elevation of serum GP73 in HCC. In this study, we have taken advantage of a well-defined extensive cohort of 3044 patients with either compensated cirrhosis (n = 1247), decompensated cirrhosis (n = 841) or pre-cirrhotic CLD (n = 956) and our ability to quantify serum GP73 to define the potential of serum GP73 as a biomarker of liver cirrhosis/fibrosis in CLD. The diagnostic value of GP73 was compared with aspartate aminotransferase-to-platelet ratio index (APRI), fibrosis index based on four factors (FIB-4) and liver stiffness measurement (LSM). Immunohistochemical analysis was performed to measure hepatic GP73 expression. Receiver operating characteristic curve analysis demonstrated that serum GP73 had a good diagnostic potential for compensated cirrhosis regardless of etiology. The diagnostic performance of GP73 is better than APRI, FIB-4 and similar with LSM, especially in patients with severe inflammation, steatosis and cholestasis. Notably, in patients of autoimmune liver diseases, non-alcoholic fatty liver disease and viral hepatitis, serum GP73 also exhibited diagnostic value for advanced fibrosis as well as cirrhosis. Furthermore, there is also a gradual increase in GP73 expression with disease progression from mild fibrosis to cirrhosis. In conclusion, GP73 is an effective and reliable serological marker for the diagnosis of advanced fibrosis and prediction of appearance of cirrhosis.
Collapse
Affiliation(s)
- Mingjie Yao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Leijie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, The University of California, Davis, CA, 95616, USA.
| | - Yanmei Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, People's Republic of China
| | - Shuhong Liu
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China
| | - Lu Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Xiaodong Guo
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China
| | - Guangde Zhou
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, School of Medicine, The University of California, Davis, CA, 95616, USA
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, 100050, Beijing, People's Republic of China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, 100050, Beijing, People's Republic of China
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, The University of California, Davis, CA, 95616, USA
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, People's Republic of China.
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, 100039, Beijing, People's Republic of China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, 100191, Beijing, People's Republic of China.
| |
Collapse
|
19
|
Li H, Yang LL, Xiao Y, Deng WW, Chen L, Wu L, Zhang WF, Sun ZJ. Overexpression of Golgi Phosphoprotein 2 Is Associated With Poor Prognosis in Oral Squamous Cell Carcinoma. Am J Clin Pathol 2018; 150:74-83. [PMID: 29788173 DOI: 10.1093/ajcp/aqy029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The aims of this study were to investigate the relationship between Golgi phosphoprotein 2 (GOLPH2) and oral squamous cell carcinoma (OSCC) and explore the clinical significance of GOLPH2 in OSCC. METHODS Tissue microarrays from human OSCC samples were stained for GOLPH2 expression and clinicopathologic features. Kaplan-Meier analysis was used to compare the survival of patients with high GOLPH2 expression and patients with low GOLPH2 expression. RESULTS We found GOLPH2 is highly expressed in OSCC tissue, and the GOLPH2 expression in metastatic lymph nodes is higher than in tumor tissue. Our data indicate that patients with higher GOLPH2 expression have poor overall survival compared with those with lower GOLPH2 expression. This study demonstrated that GOLPH2 was associated with CD44, SOX2, Slug, B7-H3, B7-H4, TIM3, and VISTA. CONCLUSIONS These findings suggest GOLPH2 is a potential marker for estimating the patient's prognosis and may be a target for molecular-targeted therapy against OSCC.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Development of an alpha-fetoprotein and Golgi protein 73 multiplex detection assay using xMAP technology. Clin Chim Acta 2018; 482:209-214. [PMID: 29630871 DOI: 10.1016/j.cca.2018.03.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
AIM OF THE STUDY Development of a new method to simultaneously detect Alpha-fetoprotein (AFP) and Golgi protein 73 (GP73) from peripheral blood. MATERIAL AND METHODS Anti human AFP and GP73 monoclonal antibodies was used to develop a sandwich immunity reaction using xMAP technology for the simultaneous detection of plasma AFP and GP73. The assay evaluated the sensitivity, cross reactivity, range of detection, precision, recovery and linearity dilution effect. The assay utilized plasma samples and compared its performance with commercially available Enzyme Linked Immunosorbent Assay (ELISA) kits. RESULTS The assay was successful in detecting AFP and GP73 simultaneously. Validation experiments demonstrated the limit of detection was AFP 0.006 μg/l and GP73 0.482 μg/l. The functional sensitivity was AFP 0.010 μg/l and GP73 0.640 μg/l. The range of detection was AFP 0.01-50 μg/l and GP73 0.64-100 μg/l. No cross reactivity was observed. The intra- and inter-assay variation for AFP was 0.19-3.46% and 3.1-5.8% and for GP73 was 1.5-3.2% and 1.1-7.6% respectively. The recovery for AFP was 96-106% and GP73 was 89-110%. 80 clinical plasma samples from healthy controls, and patients with liver cirrhosis and Hepatocellular Carcinoma (HCC) were evaluated. For healthy controls (n = 25), the AFP was 2.40 (1.55, 3.30) μg/l and GP73 was 42.60 (39.10, 57.40) μg/l. For patients with liver cirrhosis (n = 19), the AFP was 2.60 (1.70, 4.20) μg/l and GP73 was 136.10 (92.10, 261.70) μg/l, and for HCC patients (n = 36), the AFP was 13.65 (3.35, 158.88) μg/l and GP73 was 186.25 (96.73, 262.03) μg/l. The new assay demonstrated a good correlation with commercially available ELISA kits (correlation coefficients (r) were 0.997 (AFP, p < 0.001) and 0.959 (GP73, p < 0.001). CONCLUSIONS The method demonstrated a sensitive, effective and accurate method for the simultaneous detection of AFP and GP73, and could be used clinically for routine detection and monitoring of patients with chronic hepatitis B.
Collapse
|
21
|
Yang L, Luo P, Song Q, Fei X. DNMT1/miR-200a/GOLM1 signaling pathway regulates lung adenocarcinoma cells proliferation. Biomed Pharmacother 2018; 99:839-847. [PMID: 29710483 DOI: 10.1016/j.biopha.2018.01.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Lung adenocarcinoma (LAD) comprises about 80% of all diagnosed lung cancers. However, the underlying regulatory mechanism of LAD cell proliferation is largely unclear. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. METHOD In this work, the A549 and H1650 human lung cancer cell lines were used in this study. The proliferation was evaluated by the MTT and BrdU assay. The expression level of related proteins was detected by western blot. RESULT We reported GOLM1 was highly expressed in LAD cells and associated with low survival ratio and higher grade malignancy. Knockdown of GOLM1 repressed the LAD cell proliferation. Overexpression of GOLM1 promoted the cell proliferation. Further we found that the level of microRNA-200a (miR-200a) expression was low in LAD cells. miR-200a repress GOLM1 expression by directly targeting its 3? UTR. Overexpression of miR-200a repressed the cell proliferation and blocked the increase of LAD cell proliferation caused by GOLM1 overexpression. Further, we found that miR-200 was downregulated by DNMT1.Overexpression of DNMT1 blocked the function of miR-200a on repressing proliferation. We then found that knockdown of DNMT1 repressed LAD cell proliferation, which could be rescued by GOLM1 overexpression. CONCLUSION This work revealed the critical function of GOLM1/miR-200a/DNMT1 signaling pathway on regulating LAD cell proliferation, and might lay the foundation for further clinical treatment of LAD.
Collapse
Affiliation(s)
- Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, China
| | - Pengcheng Luo
- Department of Urology Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, China
| | - Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China.
| | - Xuejie Fei
- Department of Intensive Care Unit, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| |
Collapse
|
22
|
Yang Y, Liu Q, Li Z, Zhang R, Jia C, Yang Z, Zhao H, Ya S, Mao R, Ailijiang T, Bao Y, Zhang H. GP73 promotes epithelial–mesenchymal transition and invasion partly by activating TGF-β1/Smad2 signaling in hepatocellular carcinoma. Carcinogenesis 2018; 39:900-910. [PMID: 29365054 DOI: 10.1093/carcin/bgy010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Yang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Liu
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhipeng Li
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ruili Zhang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chunli Jia
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhifang Yang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huarong Zhao
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Sha Ya
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Mao
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerxun Ailijiang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yongxing Bao
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hua Zhang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
23
|
Yang HJ, Liu GL, Liu B, Liu T. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway. J Cell Mol Med 2018; 22:1650-1665. [PMID: 29349903 PMCID: PMC5824402 DOI: 10.1111/jcmm.13442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial-mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF-β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected and assigned to blank, negative control (NC), TGF-β, thrombospondin-1 (TSP-1), TGF-β1+ TSP-1, GP73-siRNA-1, GP73-siRNA-2, GP73-siRNA-1+ TSP-1, GP73-siRNA-1+ pcDNA-GP73, WT1-siRNA and WT1-siRNA + GP73-siRNA-1 groups. Expressions of GP73, TGF-β1, Smad2, p-Smad2, E-cadherin and vimentin were detected using RT-qPCR and Western blotting. Cell proliferation, migration and invasion were determined using MTT assay, scratch testing and Transwell assay, respectively. Compared with the blank and NC groups, levels of GP73, TGF-β1, Smad2, p-Smad2, N-cadherin and vimentin decreased, and levels of WT1 and E-cadherin increased in the GP73-siRNA-1 and GP73-siRNA-2 groups, while the opposite results were observed in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups. Cell proliferation, migration and invasion notably decreased in the GP73-siRNA-1 and GP73-siRNA-2 groups in comparison with the blank and NC groups, while in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups, cell migration, invasion and proliferation showed the reduction after the EMT. These results suggest that GP73 promotes bladder cancer invasion and metastasis by inducing the EMT through down-regulating WT1 levels and activating the TGF-β1/Smad2 signalling pathway.
Collapse
Affiliation(s)
- Han-Jie Yang
- Department of Urology, Pingxiang Affiliated, Southern Medical University, Pingxiang, China
| | - Ge-Liang Liu
- Department of Urology, Pingxiang Affiliated, Southern Medical University, Pingxiang, China
| | - Bo Liu
- Department of General Surgery, Xiangya 2nd Hospital of Central South University, Changsha, China
| | - Tian Liu
- Department of General Surgery, Xiangya 2nd Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
XRRA1 Targets ATM/CHK1/2-Mediated DNA Repair in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5718968. [PMID: 29082250 PMCID: PMC5634579 DOI: 10.1155/2017/5718968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022]
Abstract
X-ray radiation resistance associated 1 (XRRA1) has been found to regulate the response of human tumor and normal cells to X-radiation (XR). Although XRRA1 overexpression is known to be involved in cancer cell response to XR, there are no reports about whether the expression of XRRA1 in tumors can adjust radioresistance. It is widely known that cell cycle arrest could cause radioresistance. We found that blocked XRRA1 expression could lead to cell cycle G2/M arrest by the regulation of cyclin A, cyclin E, and p21 proteins in colorectal cancer (CRC) and expression of XRRA1 reduced cell cycle arrest and increased cell proliferation in CRC. However, whether regulation of the cell cycle by XRRA1 can influence radioresistance is poorly characterized. Correspondingly, DNA repair can effectively lead to radioresistance. In our study, when cancer cells were exposed to drugs and ionizing radiation, low expression of XRRA1 could increase the phosphorylation of DNA repair pathway factors CHK1, CHK2, and ATM and reduce the expression of γ-H2AX, which is believed to participate in DNA repair in the nucleus. Crucially, our results identify a novel link between XRRA1 and the ATM/CHK1/2 pathway and suggest that XRRA1 is involved in a DNA damage response that drives radio- and chemoresistance by regulating the ATM/CHK1/2 pathway.
Collapse
|
25
|
Zhang L, Hu R, Cheng Y, Wu X, Xi S, Sun Y, Jiang H. Lidocaine inhibits the proliferation of lung cancer by regulating the expression of GOLT1A. Cell Prolif 2017; 50. [PMID: 28737263 DOI: 10.1111/cpr.12364] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Lidocaine is the most commonly used local anaesthetic in clinical and can inhibit proliferation, suppress invasion and migration and induce apoptosis in human lung adenocarcinoma (LAD) cells. However, its specific downstream molecular mechanism is unclear. MATERIALS AND METHODS LAD cell lines, A549 and H1299 cells, were treated with lidocaine. The proliferation was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assay. The expression level of related proteins was detected by real-time quantitative PCR (qPCR) and Western blot assay. RESULTS The results indicated that lidocaine dose-dependently suppressed the proliferation of A549 and H1299 cells. In the LAD patients' samples, GOLT1A was upregulated and involved in the poor prognosis and higher grade malignancy. Additionally, GOLT1A mediates the function of lidocaine on repressing proliferation by regulating the cell cycle in A549 cells. CONCLUSIONS Our findings suggest that lidocaine downregulates the GOLT1A expression to repress the proliferation of lung cancer cells.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Xiaoyang Wu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Siwei Xi
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| |
Collapse
|
26
|
Zhao J, Xu T, Wang F, Cai W, Chen L. miR-493-5p suppresses hepatocellular carcinoma cell proliferation through targeting GP73. Biomed Pharmacother 2017; 90:744-751. [PMID: 28419971 DOI: 10.1016/j.biopha.2017.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Aberrant expression of miRNAs has been documented to play critical roles in the development and progression of hepatocellular carcinoma (HCC). However, the expression pattern, functional roles and regulatory mechanism of miR-493-5p in HCC have not been addressed. Herein, we found that miR-493-5p was significantly downregulated in HCC tissues and was tightly associated with tumor size, tumor differentiation grade and TNM stage of HCC patients. Overexpression of miR-493-5p inhibited HCC cell proliferation, arrested cell cycle in G0/G1 phase and induced cell apoptosis. Bioinformatical analysis and luciferase reporter assay further proved that Golgiprotein73 (GP73), an oncogene which was generally overexpressed in HCC, acted as a novel target of miR-493-5p. MiR-493-5p could inhibit GP73 both mRNA and protein expression. Moreover, overexpression of GP73 could reverse the inhibitory effects of miR-493-5p mediated HCC cell proliferation. In addition, upregulated GP73 in HCC tissues was inversely correlated with the miR-493-5p expression levels in the HCC tissues. Collectively, our present study demonstrates that miR-493-5p is downregulated in HCC and it can suppress the proliferation of HCC cells, partly at least, via directly targeting GP73. Besides, this study provides a novel insight into the mechanism of hepatocarcinogenesis and a promising blueprint for miR-493-5p-GP73 axis-oriented treatment of HCC.
Collapse
Affiliation(s)
- Jinli Zhao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Tongsheng Xu
- Department of Pharmacy, The People's Hospital of Hai
tm)an County, Jiangsu, 226600, China
| | - Feng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| | - Weihua Cai
- Department of Gastroenterology and Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, 226006, China
| | - Lin Chen
- Department of Gastroenterology and Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, 226006, China.
| |
Collapse
|
27
|
Yang Y, Liu Q, Zhang H, Zhao H, Mao R, Li Z, Ya S, Jia C, Bao Y. Silencing of GP73 inhibits invasion and metastasis via suppression of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep 2017; 37:1182-1188. [DOI: 10.3892/or.2017.5351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/20/2016] [Indexed: 11/05/2022] Open
|