1
|
Zhang X, Li B, Lan T, Chiari C, Ye X, Wang K, Chen J. The role of interleukin-17 in inflammation-related cancers. Front Immunol 2025; 15:1479505. [PMID: 39906741 PMCID: PMC11790576 DOI: 10.3389/fimmu.2024.1479505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Emerging evidence indicates a correlation between inflammation and the development and progression of cancer. Among the various inflammatory signals, interleukin-17 (IL-17) family cytokines serve as a critical link between inflammation and cancer. IL-17 is a highly versatile pro-inflammatory cytokine that plays a pivotal role in host defense, tissue repair, the pathogenesis of inflammatory diseases, and cancer progression. During the early stages of tumorigenesis, IL-17 signaling directly promotes the proliferation of tumor cells. Conversely, IL-17 has been shown to exhibit antitumor immunity in several models of grafted subcutaneous tumors. Additionally, dynamic changes in the microbiome can influence the secretion of IL-17, thereby affecting tumor development. The specific role of IL-17 is contingent upon its functional classification, spatiotemporal characteristics, and the stage of tumor development. In this review, we introduce the fundamental biology of IL-17 and the expression profile of its receptors in cancer, while also reviewing and discussing recent advancements regarding the pleiotropic effects and mechanisms of IL-17 in inflammation-related cancers. Furthermore, we supplement our discussion with insights into the mechanisms by which IL-17 impacts cancer progression through interactions with the microbiota, and we explore the implications of IL-17 in cancer therapy. This comprehensive analysis aims to enhance our understanding of IL-17 and its potential role in cancer treatment.
Collapse
Affiliation(s)
- Xingru Zhang
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Bangjie Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Tian Lan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Conner Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- College of Engineering, Northeastern University, Seattle, WA, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
2
|
Lai F, Zheng W, Zhong C, Chen Z. Pan-cancer analysis of disulfidptosis with potential implications in prognosis, immune microenvironment, and drug resistance in human cancer. Aging (Albany NY) 2024; 16:10997-11017. [PMID: 38968580 PMCID: PMC11272104 DOI: 10.18632/aging.205993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
To get a systematic assessment of disulfidptosis-related genes across human cancers and explore the predictive role of disulfidptosis in cancer drug sensitivity. We developed a score-level model to quantify the level of disulfidptosis in 33 human cancers using TCGA data. The mRNA expression and protein levels of disulfidptosis-related genes in human cancer cells and tissues were detected and retrieved from the Human Protein Atlas. Multiomics bioinformatic analyses were performed to evaluate disulfidptosis-related gene characteristics as well as the effect of disulfidptosis on the cancer immune microenvironment and drug resistance. Thirty cancers showed significantly different expression levels of disulfidptosis-related genes between normal and tumor samples. The mRNA expression and protein level of disulfidptosis-related genes were consistent with TCGA databases in lung cancer and hepatocellular carcinoma. We also found that altered levels of the disulfidptosis score expression were usually related to patient prognosis, and high expression of disulfidptosis-related genes was associated with drug resistance in different cancer types. Our study illustrates the characterization of disulfidptosis in multiple cancer types and highlights its potential value as a predictive biomarker of drug response, which can pave the way for further investigation of the prognostic and therapeutic potential of disulfidptosis.
Collapse
Affiliation(s)
- Fobao Lai
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian, China
| | - Wanrong Zheng
- College of Medical Nursing, Minxi Vocational and Technical College, Longyan 364000, Fujian, China
| | - Chengqian Zhong
- Department of Digestive Endoscopy Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian, China
| |
Collapse
|
3
|
Montalbano AM, Di Sano C, Albano GD, Gjomarkaj M, Ricciardolo FLM, Profita M. IL-17A Drives Oxidative Stress and Cell Growth in A549 Lung Epithelial Cells: Potential Protective Action of Oleuropein. Nutrients 2024; 16:2123. [PMID: 38999871 PMCID: PMC11243068 DOI: 10.3390/nu16132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Giusy Daniela Albano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Mark Gjomarkaj
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Mirella Profita
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| |
Collapse
|
4
|
Tamuli B, Sharma S, Patkar M, Biswas S. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Cancer Rep (Hoboken) 2024; 7:e2066. [PMID: 38703051 PMCID: PMC11069128 DOI: 10.1002/cnr2.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.
Collapse
Affiliation(s)
- Baishali Tamuli
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Sakshi Sharma
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Meena Patkar
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
5
|
Jin B, Moududee SA, Ge D, Zhou P, Wang AR, Liu YZ, You Z. SCF FBXW11 Complex Targets Interleukin-17 Receptor A for Ubiquitin-Proteasome-Mediated Degradation. Biomedicines 2024; 12:755. [PMID: 38672111 PMCID: PMC11047997 DOI: 10.3390/biomedicines12040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine that participates in innate and adaptive immune responses and plays an important role in host defense, autoimmune diseases, tissue regeneration, metabolic regulation, and tumor progression. Post-translational modifications (PTMs) are crucial for protein function, stability, cellular localization, cellular transduction, and cell death. However, PTMs of IL-17 receptor A (IL-17RA) have not been investigated. Here, we show that human IL-17RA was targeted by F-box and WD repeat domain-containing 11 (FBXW11) for ubiquitination, followed by proteasome-mediated degradation. We used bioinformatics tools and biochemical techniques to determine that FBXW11 ubiquitinated IL-17RA through a lysine 27-linked polyubiquitin chain, targeting IL-17RA for proteasomal degradation. Domain 665-804 of IL-17RA was critical for interaction with FBXW11 and subsequent ubiquitination. Our study demonstrates that FBXW11 regulates IL-17 signaling pathways at the IL-17RA level.
Collapse
Affiliation(s)
- Ben Jin
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA; (B.J.); (S.A.M.)
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Sayed Ala Moududee
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA; (B.J.); (S.A.M.)
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Dongxia Ge
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA;
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, Tulane University, New Orleans, LA 70112, USA;
| | - Zongbing You
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70112, USA; (B.J.); (S.A.M.)
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA;
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
He T, Chang Z, Zhang Y, Lang X, Guo S, Cui H. Effects of biological agents on glycogen metabolism in psoriasis patients: A systematic review and meta-analysis. Australas J Dermatol 2024; 65:1-13. [PMID: 37876281 DOI: 10.1111/ajd.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/26/2023]
Abstract
The effectiveness and safety of biological agents for treating psoriasis have been confirmed; however, their effects on glucose metabolism biomarkers in psoriasis patients remain unclear. A systematic review and meta-analysis were performed according to PRISMA guidelines. The final analysis enrolled 12 studies, including eight randomized controlled trial (RCT) (n = 5628 patients) and four observational cohort studies (OBSs) (n = 393 patients). The meta-analysis comprising nine studies (six RCTs and three OBSs) revealed a slight reduction in the levels of HOMA-IR associated with the use of biological therapies in OBS (biological therapies vs. traditional therapies: WMD = -0.2, CI = -0.10 to 0.50, p = 0.02). Although a considerable number of studies were analysed, our review did not show a significant alteration in HOMA-IR levels among patients treated with biological therapies such as IL-17 inhibitors and IL-12/23 inhibitors at weeks 12-16 in RCTs. We also did not observe remarkable alterations in the fasting plasma glucose levels of patients in both OBS and RCT. Additional RCT on a larger scale and duration is required to provide more conclusive evidence regarding the effect of biological agents on glycogen metabolism in psoriasis.
Collapse
Affiliation(s)
- Ting He
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhangqian Chang
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingjie Zhang
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqing Lang
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuping Guo
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongzhou Cui
- Department of Dermatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Dong S, Wang P, Zhang L, Zhang X, Li X, Wang J, Cui X, Lan T, Gao C, Shi Y, Wang W, Wang J, Jiang M. The Qi Yin San Liang San decoction enhances anti-CD19 CAR-T cell function in the treatment of B-cell lymphomas. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117109. [PMID: 37657771 DOI: 10.1016/j.jep.2023.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)-expressing T cells is a new approach for treating advanced B-cell malignancies. However, CAR-Tcell therapies for tumors are challenging due to tumor heterogeneity, cytokine release syndrome (CRS), and CAR-T cell exhaustion. The Qi Yin San Liang San (SLS) decoction has a significant curative effect in treating tumors and can improve clinical efficacy when combined with tumor immunotherapy. However, there has been no in vitro or in vivo pharmacodynamic evaluation of SLS in combination with immunotherapy, and the underlying immunological mechanism remains unclear. AIM OF THE REVIEW The study objective was to determine the auxiliary effect and potential mechanism of SLS as an adjuvant treatment with anti-CD19 CAR-T cells for B-cell lymphomas. MATERIALS AND METHODS Network pharmacology analyses, in vitro and in vivo studies, and transcriptome sequencing analyses were performed. RESULTS Forty-two components were detected in SLS by HPLC. Sixteen pharmacologically active ingredients were analyzed by searching the TCMSP database. The predicted targets included IL-2, IL-6, IL-10, TNF-α, CASP7, and CASP9. In vitro studies revealed that SLS can dose-dependently promote the killing effect of unmodified T and anti-CD19 CAR-T cells against Raji cell lines. Meanwhile, SLS inhibited unmodified T and anti-CD19 CAR-T cell exhaustion, promoted anti-CD19 CAR-T cell proliferation, reduced the levels of IL-6, IL-10, and TNF-α, and increased granzyme B levels. In vivo studies, SLS effectively improved the anti-tumor function of anti-CD19 CAR-T cells, prolonged the survival of the mice, and reduced the levels of IL-6, GM-CSF, and IL-17. Subsequently, the transcriptomic analysis showed that SLS inhibited the IL-17 signaling pathway and the apoptosis signaling pathway of T cells. In addition, SLS downregulated the expression of IL-17A, IL-6, TNF-α, GM-CSF, S100A8, CASP 7, CASP 9, and CASP 10 in anti-CD19 CAR-T cells. SLS regulated the IL-17 signaling pathway and apoptosis signaling pathway in anti-CD19 CAR-T cells. CONCLUSION SLS plays a potential auxiliary role in enhancing the function of anti-CD19 CAR T cells in the treatment of B-cell lymphoma, improving the killing ability of these cells, reducing the potential risk associated with inflammation, and providing synergistic and attenuating effects. The mechanism of SLS is partially mediated by the apoptosis and IL-17 signaling pathways (such as IL-17A, IL-6, TNF-α, GM-CSF, and Granzyme B).
Collapse
Affiliation(s)
- Shi Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101121, China
| | - Peipei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Liubo Zhang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaotian Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Xiaorui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Jiali Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Xinming Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Ting Lan
- Department of Lab Medicine, Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Can Gao
- Department of Lab Medicine, Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Yuanyuan Shi
- Shenzhen Research Institute of Chinese Medicine, Shenzhen, 518172, China; Shenzhen Cell Valley Biomedical Co., Ltd, Shenzhen, 518000, China
| | - Weijia Wang
- Department of Lab Medicine, Zhongshan People's Hospital, Zhongshan, 528403, China.
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102401, China; Shenzhen Research Institute of Chinese Medicine, Shenzhen, 518172, China; Shenzhen Cell Valley Biomedical Co., Ltd, Shenzhen, 518000, China.
| | - Miao Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101121, China.
| |
Collapse
|
8
|
Kiełb P, Kaczorowski M, Kowalczyk K, Piotrowska A, Nowak Ł, Krajewski W, Chorbińska J, Dudek K, Dzięgiel P, Hałoń A, Szydełko T, Małkiewicz B. Role of IL-17A and IL-17RA in Prostate Cancer with Lymph Nodes Metastasis: Expression Patterns and Clinical Significance. Cancers (Basel) 2023; 15:4578. [PMID: 37760548 PMCID: PMC10526823 DOI: 10.3390/cancers15184578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer among men. The use of IL-17A and its receptor IL-17RA as prognostic markers for PCa has shown promising results. We analyzed the clinical data of 77 patients with PCa after radical prostatectomy with lymphadenectomy and lymph node metastasis (LN+). We assessed the expression levels of IL-17A and IL-17RA in cancer cells in prostate and, for the first time, also in LN+. Prostate IL-17A expression positively correlated with BMI (p = 0.028). In LN+, the expression of IL-17A was positively correlated with the percentage of affected lymph nodes (p = 0.006) and EAU risk groups (p = 0.001). Additionally, in the group with high IL-17A expression in LN+, the extracapsular extension (ECE) of the prostate was significantly more frequent (p = 0.033). Also, significant correlations with the level of IL-17RA expression was found-expression was higher in prostate than in LN+ (p = 0.009); in LN+, expression positively correlated with the EAU risk group (p = 0.045), and in the group of high expression in LN+ ECE of lymph nodes was detected significantly more often (p = 0.009). Our findings support the potential role of IL-17A and IL-17RA as PCa markers; however, further studies are needed to determine their roles and potential clinical applications.
Collapse
Affiliation(s)
- Paweł Kiełb
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| | - Maciej Kaczorowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.K.); (A.H.)
| | - Kamil Kowalczyk
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.)
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| | - Joanna Chorbińska
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| | - Krzysztof Dudek
- Center for Statistical Analysis, Wroclaw Medical University, Marcinkowskiego 2-6, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.)
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (M.K.); (A.H.)
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (Ł.N.); (W.K.); (J.C.); (T.S.)
| |
Collapse
|
9
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
10
|
Jin B, Zhang Y, Miller HD, He L, Ge D, Wang AR, You Z. Defect of IL17 Signaling, but Not Centrinone, Inhibits the Development of Psoriasis and Skin Papilloma in Mouse Models. Biomedicines 2022; 10:biomedicines10081976. [PMID: 36009523 PMCID: PMC9405709 DOI: 10.3390/biomedicines10081976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with psoriasis tend to develop skin cancer, and the hyperproliferation of the epidermis is a histopathological hallmark of both psoriasis and cutaneous squamous cell carcinoma (SCC), indicating that they may share pathogenic mechanisms. Interleukin-17 (IL17) stimulates the proliferation of the epidermis, leading to psoriasis. Overexpression of Polo-like kinase 4 (PLK4), which controls centriole duplication, has been identified in SCC, which also shows the hyperproliferation of keratinocytes. To investigate the cooperation between IL17 signaling and centriole duplication in epidermal proliferation, we established psoriasis and skin papilloma models in wild type (WT), IL17 receptor A (T779A) knockin (Il17ra(T779A)-KI), and IL17 receptor C knockout (Il17rc-KO) mouse strains. Bioinformatics, Western blot, immunohistochemical staining, colony formation, and real-time PCR were used to determine the effect of IL17 signaling and centrinone on epithelial proliferation. In the psoriasis model, compared to WT and Il17ra(T779A)-KI, Il17rc-KO dramatically suppressed epidermal thickening. The proliferation of keratinocytes significantly decreased in this order from WT to Il17ra(T779A)-KI and Il17rc-KO mice. In the skin papilloma model, Il17ra(T779A)-KI significantly decreased tumor burden compared to the WT, while Il17rc-KO abolished papilloma development. However, centrinone, a selective inhibitor of PLK4, did not affect skin lesion formation in either model. Our data demonstrated that Il17ra(T779A)-KI and Il17rc-KO prevent the development of psoriasis and tumorigenesis in the skin, while the topical administration of centrinone does not have any effect.
Collapse
Affiliation(s)
- Ben Jin
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Yongfeng Zhang
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Haiyan D. Miller
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Ling He
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zongbing You
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112, USA
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University, New Orleans, LA 70112, USA
- Correspondence: or ; Tel.: +1-504-507-2000 (ext. 67364) or +1-504-988-0467
| |
Collapse
|
11
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
12
|
Liu S, Zhang B, Rowan BG, Jazwinski SM, Abdel-Mageed AB, Steele C, Wang AR, Sartor O, Niu T, Zhang Q. A Novel Controlled PTEN-Knockout Mouse Model for Prostate Cancer Study. Front Mol Biosci 2021; 8:696537. [PMID: 34150854 PMCID: PMC8211560 DOI: 10.3389/fmolb.2021.696537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is associated with advanced age, but how age contributes to prostate carcinogenesis remains unknown. The prostate-specific Pten conditional knockout mouse model closely imitates human PCa initiation and progression. To better understand how age impacts PCa in an experimental model, we have generated a spatially and temporally controlled Pten-null PCa murine model at different ages (aged vs. non-aged) of adult mice. Here, we present a protocol to inject the Cre-expressing adenovirus with luciferin tag, intraductally, into the prostate anterior lobes of Pten-floxed mice; Pten-loss will be triggered post-Cre expression at different ages. In vivo imaging of luciferin signal following viral infection confirmed successful delivery of the virus and Cre activity. Immunohistochemical staining confirmed prostate epithelial-specific expression of Cre recombinase and the loss of Pten and activation of P-Akt, P-S6, and P-4E-BP1. The Cre-expression, Pten ablation, and activated PI3K/AKT/mTOR pathways were limited to the prostate epithelium. All mice developed prostatic epithelial hyperplasia within 4 weeks after Pten ablation and prostatic intraepithelial neoplasia (PIN) within 8 weeks post-Pten ablation. Some PINs had progressed to invasive adenocarcinoma at 8-16 weeks post-Pten ablation. Aged mice exhibited significantly accelerated PI3K/AKT/mTOR signaling and increased PCa onset and progression compared to young mice. The viral infection success rate is ∼80%. This model will be beneficial for investigations of cancer-related to aging.
Collapse
Affiliation(s)
- Sen Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bing Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Medical Laboratory of ShenZhen LuoHu People’s Hospital, Shenzhen, China
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - S. Michal Jazwinski
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alun R. Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Oliver Sartor
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tianhua Niu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Qiuyang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
13
|
IL-17-Mediated Inflammation Promotes Cigarette Smoke-Induced Genomic Instability. Cells 2021; 10:cells10051173. [PMID: 34065904 PMCID: PMC8151076 DOI: 10.3390/cells10051173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: Chronic inflammation has been regarded as a risk factor for the onset and progression of human cancer, but the critical molecular mechanisms underlying this pathological process have yet to be elucidated. (2) Methods: In this study, we investigated whether interleukin (IL)-17-mediated inflammation was involved in cigarette smoke-induced genomic instability. (3) Results: Higher levels of both IL-17 and the DNA damage response (DDR) were found in the lung tissues of smokers than in those of non-smokers. Similarly, elevated levels of IL-17 and the DDR were observed in mice after cigarette smoke exposure, and a positive correlation was observed between IL-17 expression and the DDR. In line with these observations, the DDR in the mouse lung was diminished in IL-17 KO when exposed to cigarette smoke. Besides this, the treatment of human bronchial epithelium cells with IL-17 led to increased levels of the DDR and chromosome breakage. (4) Conclusions: These results suggest that cigarette smoke induces genomic instability at least partially through IL-17-mediated inflammation, implying that IL-17 could play an important role in the development of lung cancer.
Collapse
|
14
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
15
|
de Bono JS, Guo C, Gurel B, De Marzo AM, Sfanos KS, Mani RS, Gil J, Drake CG, Alimonti A. Prostate carcinogenesis: inflammatory storms. Nat Rev Cancer 2020; 20:455-469. [PMID: 32546840 DOI: 10.1038/s41568-020-0267-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer is a major cause of cancer morbidity and mortality. Intra-prostatic inflammation is a risk factor for prostate carcinogenesis, with diet, chemical injury and an altered microbiome being causally implicated. Intra-prostatic inflammatory cell recruitment and expansion can ultimately promote DNA double-strand breaks and androgen receptor activation in prostate epithelial cells. The activation of the senescence-associated secretory phenotype fuels further 'inflammatory storms', with free radicals leading to further DNA damage. This drives the overexpression of DNA repair and tumour suppressor genes, rendering these genes susceptible to mutagenic insults, with carcinogenesis accelerated by germline DNA repair gene defects. We provide updates on recent advances in elucidating prostate carcinogenesis and explore novel therapeutic and prevention strategies harnessing these discoveries.
Collapse
Affiliation(s)
- Johann S de Bono
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | - Christina Guo
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | - Karen S Sfanos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
16
|
Vitiello GA, Miller G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J Exp Med 2020; 217:jem.20190456. [PMID: 31727783 PMCID: PMC7037254 DOI: 10.1084/jem.20190456] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
IL-17 plays versatile roles during tumorigenesis. Here, Vitiello and Miller summarize current knowledge in harnessing IL-17–producing γδ and Th17 cells for successful cancer immunotherapy. The role of IL-17 in cancer remains controversial. Emerging evidence suggests that during early oncogenesis IL-17 supports tumor growth, whereas in established tumors IL-17 production by γδ and Th17 cells potentiates antitumor immunity. Consequently, γδ and Th17 cells are attractive targets for immunotherapy in the IL-17 immune axis. To optimize IL-17–based immunotherapy, a deeper understanding of the cytokines dictating IL-17 production and the polarity of γδ and Th17 cells is critical. Here, we delve into the dichotomous roles of IL-17 in cancer and provide insight into the tumor microenvironment conducive for successful IL-17–based γδ and Th17 cell immunotherapy.
Collapse
Affiliation(s)
- Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
17
|
Expression Levels of IL-17A, IL-17F, IL-17RA, and IL-17RC in Prostate Cancer with Taking into Account the Histological Grade according to Gleason Scale in Comparison to Benign Prostatic Hyperplasia: In Search of New Therapeutic Options. J Immunol Res 2020; 2020:4910595. [PMID: 32537467 PMCID: PMC7267874 DOI: 10.1155/2020/4910595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed malignant tumor and the fifth leading cause of cancer death in men in the world. The most common types of tumors are adenocarcinomas. Prostate cancer is a slow-growing cancer. The incidence increases with age. Evaluation of proinflammatory factors such as IL-17A, IL-17F, IL-17RA, and IL-17RC expression makes it possible to assess the impact of inflammatory process on progression of PCa. The aim of the study was to retrospectively assess the histological material of PCa divided into few groups using the Gleason score. Studies were carried out on archival tissue material in the form of paraffin blocks of 40 men with PCa after radical prostatectomy. The control group was composed of 10 men with benign prostatic hyperplasia (BPH). The material was obtained by the transurethral resection of the prostate (TURP). Immunohistochemistry was performed on prepared material using specific primary antibodies against IL-17A, IL-17F, IL-17RA, and IL-17RC. Expression of the antibody to be examined using light microscopy and the Remmele-Stegner score (IRS) in cancer staining was then evaluated. Expression of IL-17 RA was not shown in a group of patients with PCa and in the control group. In the group of patients with Gleason score 8 and 9 PCa, the expression of IL-17A was higher compared to that of IL-17F. In addition, in PCa with an increased grade of Gleason scale, a decrease in the expression of the study inflammatory parameters was found. The inflammatory process has an impact on PCa. A study on IL-17 may become a starting point for further research on an attempt to use, for example, immunotherapy in PCa.
Collapse
|
18
|
Duan Z, Miller HD, Fu X, Ge D, Jin B, Moustafa AA, Lan R, Zhang K, Chen Z, You Z. Th17 cells promote tumor growth in an immunocompetent orthotopic mouse model of prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:249-261. [PMID: 31511831 PMCID: PMC6734037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-17 (IL-17) has been demonstrated to promote development of a variety of cancers including prostate cancer in genetically modified mouse models. IL-17 is the main product secreted by T helper 17 (Th17) cells. A recent study has shown that Th17 cells and related genes are upregulated in human prostate cancers. However, there is no direct experimental evidence to demonstrate Th17's role in prostate cancer. In the present study, we co-implanted mouse prostate cancer MPC3-luc cells with Th17-polarized mouse splenocytes in the prostate of immunocompetent C57BL/6J male mice. We found that Th17-polarized splenocytes promoted orthotopic allograft prostate tumor growth compared to the control splenocytes. The numbers of IL-17-positive lymphocytes and macrophages were higher in the prostate tumors grown from co-implantation of MPC3-luc cells and Th17-polarized splenocytes, compared to the prostate tumors grown from co-implantation of MPC3-luc cells and control splenocytes. Our findings provide the first direct experimental evidence that Th17 cells may promote prostate cancer growth.
Collapse
Affiliation(s)
- Zhenling Duan
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Haiyan D Miller
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Xiaowei Fu
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Clinical Medicine, The Second Affiliated Hospital, Shaanxi University of Chinese MedicineXi’an, China
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Ben Jin
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Ahmed A Moustafa
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Ruoxin Lan
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science and Biostatistics Facility of RCMI Cancer Research Center, Xavier University of LouisianaNew Orleans, LA, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical CollegeNashville, TN, USA
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane UniversityNew Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane UniversityNew Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane UniversityNew Orleans, LA, USA
- Tulane Center for Aging, Tulane UniversityNew Orleans, LA, USA
- Southeast Louisiana Veterans Health Care SystemNew Orleans, LA, USA
| |
Collapse
|
19
|
Hayashi T, Fujita K, Matsushita M, Nonomura N. Main Inflammatory Cells and Potentials of Anti-Inflammatory Agents in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081153. [PMID: 31408948 PMCID: PMC6721573 DOI: 10.3390/cancers11081153] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most common type of cancer and the leading cause of cancer deaths among men in many countries. Preventing progression is a major concern for prostate cancer patients on active surveillance, patients with recurrence after radical therapies, and patients who acquired resistance to systemic therapies. Inflammation, which is induced by various factors such as infection, microbiome, obesity, and a high-fat diet, is the major etiology in the development of prostate cancer. Inflammatory cells play important roles in tumor progression. Various immune cells including tumor-associated neutrophils, tumor-infiltrating macrophages, myeloid-derived suppressor cells, and mast cells promote prostate cancer via various intercellular signaling. Further basic studies examining the relationship between the inflammatory process and prostate cancer progression are warranted. Interventions by medications and diets to control systemic and/or local inflammation might be effective therapies for prostate cancer progression. Epidemiological investigations and basic research using human immune cells or mouse models have revealed that non-steroidal anti-inflammatory drugs, metformin, statins, soy isoflavones, and other diets are potential interventions for preventing progression of prostate cancer by suppressing inflammation. It is essential to evaluate appropriate indications and doses of each drug and diet.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Guo N, Shen G, Zhang Y, Moustafa AA, Ge D, You Z. Interleukin-17 Promotes Migration and Invasion of Human Cancer Cells Through Upregulation of MTA1 Expression. Front Oncol 2019; 9:546. [PMID: 31281798 PMCID: PMC6596356 DOI: 10.3389/fonc.2019.00546] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin-17 (IL-17) has been shown to promote development of prostate, colon, skin, lung, breast, and pancreatic cancer. The purpose of this study was to determine if IL-17 regulates MTA1 expression and its biological consequences. Human cervical cancer HeLa and human prostate cancer DU-145 cell lines were used to test if IL-17 regulates metastasis associated 1 (MTA1) mRNA and protein expression using quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Cell migration and invasion were studied using wound healing assays and invasion chamber assays. Thirty-four human cervical tissues were stained for IL-17 and MTA1 using immunohistochemical staining. We found that IL-17 increased MTA1 mRNA and protein expression in both cell lines. Cell migration was accelerated by IL-17, which was abolished by knockdown of MTA1 expression with small interference RNA (siRNA). Further, cell invasion was enhanced by IL-17, which was eliminated by MTA1 knockdown. Human cervical intra-epithelial neoplasia (CIN) and cervical cancer tissues had increased number of IL-17-positive cells and MTA1 expression compared to normal cervical tissues. The number of IL-17-positive cells was positively correlated with MTA1 expression. These findings demonstrate that IL-17 upregulates MTA1 mRNA and protein expression to promote HeLa and DU-145 cell migration and invasion.
Collapse
Affiliation(s)
- Na Guo
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ge Shen
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States
| | - Ying Zhang
- Department of Gynecology, Guangyuan First People's Hospital, Guangyuan, China
| | - Ahmed A Moustafa
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane University, New Orleans, LA, United States.,Department of Orthopaedic Surgery, Tulane University, New Orleans, LA, United States.,Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA, United States.,Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, United States.,Tulane Center for Aging, Tulane University, New Orleans, LA, United States.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| |
Collapse
|
21
|
Goncalves MD, Hopkins BD, Cantley LC. Dietary Fat and Sugar in Promoting Cancer Development and Progression. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The uncontrolled cellular growth that characterizes tumor formation requires a constant delivery of nutrients. Since the 1970s, researchers have wondered if the supply of nutrients from the diet could impact tumor development. Numerous studies have assessed the impact of dietary components, specifically sugar and fat, to increased cancer risk. For the most part, data from these trials have been inconclusive; however, this does not indicate that dietary factors do not contribute to cancer progression. Rather, the dietary contribution may be dependent on tumor, patient, and context, making it difficult to detect in the setting of large trials. In this review, we combine data from prospective cohort trials with mechanistic studies in mice to argue that fat and sugar can play a role in tumorigenesis and disease progression. We find that certain tumors may respond directly to dietary sugar (colorectal and endometrial cancers) and fat (prostate cancer) or indirectly to the obese state (breast cancer).
Collapse
Affiliation(s)
- Marcus D. Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| |
Collapse
|
22
|
Guo ZL, Weng XT, Chan FL, Gong LL, Xiang ST, Gan S, Gu CM, Wang SS. Serum C-peptide concentration and prostate cancer: A meta-analysis of observational studies. Medicine (Baltimore) 2018; 97:e11771. [PMID: 30075605 PMCID: PMC6081093 DOI: 10.1097/md.0000000000011771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association between serum C-peptide concentration and prostate cancer remains unexplored. Therefore, we conducted a meta-analysis to assess whether C-peptide serum concentrations are associated with increased prostate cancer risk. METHODS Several databases were searched to identify relevant original research articles published before November 2017. Random-effects models were used to summarize the overall estimate of the multivariable-adjusted odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Nine observational studies involving 11,796 participants were identified. The findings of the meta-analysis indicated that the association between serum C-peptide concentration and prostate cancer was not significant (OR: 1.15, 95% CI: 0.85-1.54; for highest versus lowest category C-peptide concentrations, P = .376). The associations were inconsistent, as indicated by subgroup analyses. CONCLUSION Although our findings provided no support for the hypothesis that serum C-peptide concentration is associated with excess risk of prostate cancer, people must pay attention to this aspect and increase physical activity or modify dietary habits to constrain insulin secretion, which possibly lead to decreased incidence of prostate cancer. Hence, well-designed observational studies involving different ethnic populations are still needed.
Collapse
Affiliation(s)
- Zhen-Lang Guo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China Department of Mechanical Engineering, National University of Singapore, Kent Ridge, Singapore Department of Urology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Vidal AC, Howard LE, de Hoedt A, Kane CJ, Terris MK, Aronson WJ, Cooperberg MR, Amling CL, Freedland SJ. Obese patients with castration-resistant prostate cancer may be at a lower risk of all-cause mortality: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BJU Int 2018. [PMID: 29521009 DOI: 10.1111/bju.14193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To assess whether obesity is associated with progression to metastasis, prostate cancer-specific mortality (PCSM), and all-cause mortality (ACM), in patients with non-metastatic castration-resistant prostate cancer (non-mCRPC). At the population level, obesity is associated with prostate cancer mortality; however, some studies have found that higher body mass index (BMI) is associated with better long-term prostate cancer outcomes amongst men with mCRPC. PATIENTS AND METHODS We identified 1 192 patients with non-mCRPC from the Shared Equal Access Regional Cancer Hospital (SEARCH) database. BMI was calculated from height and weight abstracted from the medical records at the time closest to but prior to CRPC diagnosis and categorised as underweight (<21 kg/m2 ), normal weight (21-24.9 kg/m2 ), overweight (25-29.9 kg/m2 ), and obese (≥30 kg/m2 ). Competing risks regression and Cox models were used to test associations between obesity and progression to metastasis, PCSM, and ACM, accounting for confounders. RESULTS Overall, 51 (4%) men were underweight, 239 (25%) were normal weight, 464 (39%) were overweight, and 438 (37%) were obese. In adjusted analysis, higher BMI was significantly associated with reduced ACM (hazard ratio [HR] 0.98, P = 0.012) but not PCSM (HR 1.00, P = 0.737) or metastases (HR 0.99, P = 0.225). Likewise, when BMI was treated as a categorical variable in adjusted models, obesity was not associated with PCSM (HR 1.11, P = 0.436) or metastases (HR 1.06, P = 0.647), but was associated with decreased ACM (HR 0.79, P = 0.016) compared to normal weight. No data were available on treatments received after CRPC diagnosis. CONCLUSIONS Amongst patients with non-mCRPC obesity was associated with better overall survival. Although this result mirrors evidence from men with mCRPC, obesity was not associated with prostate cancer outcomes. Larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Adriana C Vidal
- Division of Urology, Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Lauren E Howard
- Urology Section, VA Medical Center, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | | | - Christopher J Kane
- Urology Department, University of California San Diego Health System, San Diego, CA, USA
| | - Martha K Terris
- Section of Urology, VA Medical Center Augusta, Augusta, GA, USA.,Section of Urology, Medical College of Georgia, Augusta, GA, USA
| | - William J Aronson
- Urology Section, Department of Surgery, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Urology, School of Medicine, University of California, Los Angeles, CA, USA
| | - Matthew R Cooperberg
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | | | - Stephen J Freedland
- Division of Urology, Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Urology Section, VA Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
He KQ, Li WZ, Chai XQ, Yin YY, Jiang Y, Li WP. Astragaloside IV prevents kidney injury caused by iatrogenic hyperinsulinemia in a streptozotocin‑induced diabetic rat model. Int J Mol Med 2017; 41:1078-1088. [PMID: 29207011 DOI: 10.3892/ijmm.2017.3265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/08/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetic patients are able to manage their blood glucose with exogenous insulin but, ultimately, remain at risk of diabetic nephropathy (DN). Long‑term use of insulin may lead to iatrogenic hyperinsulinemia, which has been suggested to cause kidney injury. However, there are no effective interventions for iatrogenic hyperinsulinemia leading to kidney damage. In the present paper, the hypothesis that astragaloside IV (AS‑IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bunge, may prevent DN in iatrogenic hyperinsulinemic diabetic rats through antioxidative and anti‑inflammatory mechanisms was investigated. Diabetes was induced with streptozotocin (STZ) (55 mg/kg) by intraperitoneal injection in rats. At 1 week following STZ injection, the diabetic rats were treated with Levemir subcutaneously for 4 weeks. Diabetic rat insulin levels >30 µU/ml were considered as iatrogenic hyperinsulinemia. Rats were divided into six groups (n=8 per group): Iatrogenic hyperinsulinemic rats, and iatrogenic hyperinsulinemic rats treated with Tempol and AS‑IV at 2.5, 5 and 10 mg/kg/day, intragastric infusion, for 12 weeks. The normal rats were used as a non‑diabetic control group. AS‑IV ameliorated albuminuria, mesangial cell proliferation, basement membrane thickening and podocyte foot process effacement in iatrogenic hyperinsulinemic rats. In iatrogenic hyperinsulinemic rat renal tissues, malondialdehyde, interleukin‑1β (IL‑1β), tumor necrosis factor‑α (TNF‑α), type IV collagen and laminin levels were increased, whereas glutathione peroxidase and superoxide dismutase activity levels were decreased. Nicotinamide adenine dinucleotide phosphate oxidase 4 expression and extracellular signal‑regulated kinase 1/2 (ERK1/2) activation were upregulated, and canonical transient receptor potential cation channel 6 (TRPC6) protein expression was downregulated. However, all these abnormalities were attenuated by AS‑IV. These findings suggested that AS‑IV prevented rat kidney injury caused by iatrogenic hyperinsulinemia by inhibiting oxidative stress, IL‑1β and TNF‑α overproduction, downregulating ERK1/2 activation, and upregulating TRPC6 expression.
Collapse
Affiliation(s)
- Ke-Qiang He
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Zu Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Qing Chai
- Department of Anesthesiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Yan-Yan Yin
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Jiang
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Ping Li
- Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
25
|
Ma L, Li J, Nie Q, Zhang Q, Liu S, Ge D, You Z. Organoid culture of human prostate cancer cell lines LNCaP and C4-2B. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:25-33. [PMID: 29181435 PMCID: PMC5698596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Organoids mimic the architecture and functions of a small organ. Organoid culture technique has been rapidly accepted by all research communities during the past decade to study stem cells, organ development and function, and patient-specific diseases. A protocol for organoid culture of human and mouse prostate epithelial and cancer tissues has been reported. However, organoid culture of the commonly used human prostate cancer cell lines has yet to be established. We followed the published protocol and performed organoid culture of LNCaP and C4-2B cells in MatrigelTM and organoid culture medium for 14 days. We found that both LNCaP and C4-2B cell lines formed organoids that presented glandular structures. The cells within the organoids were androgen receptor-positive adenocarcinoma cells, but not p63-positive basal cells. The cells in the organoids responded to interleukin-17A treatment differently from the cells in the monolayer culture. The present study suggests that LNCaP and C4-2B cells are able to form organoids under the defined organoid culture conditions.
Collapse
Affiliation(s)
- Lin Ma
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Thoracic Surgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Jingwu Li
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Gastroenterological Surgery, Tangshan People’s HospitalTangshan, China
| | - Qiang Nie
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Lung Cancer Research Institute and Cancer Center, Guangdong General HospitalGuangzhou, China
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Sen Liu
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane UniversityNew Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane UniversityNew Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane UniversityNew Orleans, LA, USA
- Tulane Center for Aging, Tulane UniversityNew Orleans, LA, USA
| |
Collapse
|
26
|
Zhang Q, Liu S, Ge D, Cunningham DM, Huang F, Ma L, Burris TP, You Z. Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model. Prostate 2017; 77:888-899. [PMID: 28240383 PMCID: PMC5400716 DOI: 10.1002/pros.23343] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. METHODS The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected intraperitoneally (i.p.) twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected intravenously (i.v.) once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10 weeks old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. RESULTS We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. CONCLUSIONS These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. Prostate 77:888-899, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
- Department of Tulane Center for Aging, Tulane University, New Orleans, LA 70112
- Corresponding Authors: Zongbing You, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave Mailbox 8649, New Orleans, LA 70112; Phone: 504-988-0467; FAX: 504-988-1687; ; Qiuyang Zhang, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave Mailbox 8649, New Orleans, LA 70112; Phone: 504-988-5527; FAX: 504-988-1687;
| | - Sen Liu
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
| | - Dongxia Ge
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
| | - David M. Cunningham
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
| | - Feng Huang
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
- Department of Clinical Medicine, the First Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Lin Ma
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Thomas P. Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | - Zongbing You
- Departments of Structural & Cellular Biology, Tulane University, New Orleans, LA 70112
- Department of Orthopaedic Surgery, Tulane University, New Orleans, LA 70112
- Department of Tulane Center for Aging, Tulane University, New Orleans, LA 70112
- Department of Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA 70112
- Department of Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112
- Corresponding Authors: Zongbing You, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave Mailbox 8649, New Orleans, LA 70112; Phone: 504-988-0467; FAX: 504-988-1687; ; Qiuyang Zhang, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave Mailbox 8649, New Orleans, LA 70112; Phone: 504-988-5527; FAX: 504-988-1687;
| |
Collapse
|
27
|
Tseng CH. Sitagliptin may reduce prostate cancer risk in male patients with type 2 diabetes. Oncotarget 2017; 8:19057-19064. [PMID: 27661113 PMCID: PMC5386669 DOI: 10.18632/oncotarget.12137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
This retrospective cohort study evaluated the risk of prostate cancer associated with sitagliptin use in Taiwanese male patients with type 2 diabetes mellitus by using the reimbursement databases of the National Health Insurance. Male patients with newly diagnosed type 2 diabetes mellitus at an age ≥25 years between 1999 and 2010 were recruited. A total of 37,924 ever users of sitagliptin and 426,276 never users were followed until December 31, 2011. The treatment effect of sitagliptin (for ever versus never users, and for tertiles of cumulative duration of therapy) was estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. Analyses were also conducted in a 1:1 matched pair cohort based on 8 digits of propensity score. Results showed that during follow-up, 84 ever users and 2,549 never users were diagnosed of prostate cancer, representing an incidence of 140.74 and 240.17 per 100,000 person-years, respectively. The hazard ratio (95% confidence intervals) for ever users versus never users was 0.613 (0.493-0.763). The respective hazard ratio for the first, second, and third tertile of cumulative duration of sitagliptin use <5.9, 5.9-12.7 and >12.7 months was 0.853 (0.601-1.210), 0.840 (0.598-1.179) and 0.304 (0.191-0.483), respectively; and was 0.856 (0.603-1.214), 0.695 (0.475-1.016) and 0.410 (0.277-0.608) for cumulative dose <15,000, 15,000-33,600 and >33,600 mg, respectively. Findings were supported by analyses in the matched cohort. In conclusion, sitagliptin significantly reduces the risk of prostate cancer, especially when the cumulative duration is >12.7 months or the cumulative dose >33,600 mg.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
28
|
Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E. Stressed and Inflamed, Can GSK3 Be Blamed? Trends Biochem Sci 2017; 42:180-192. [PMID: 27876551 PMCID: PMC5336482 DOI: 10.1016/j.tibs.2016.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
Psychological stress has a pervasive influence on our lives. In many cases adapting to stress strengthens organisms, but chronic or severe stress is usually harmful. One surprising outcome of psychological stress is the activation of an inflammatory response that resembles inflammation caused by infection or trauma. Excessive psychological stress and the consequential inflammation in the brain can increase susceptibility to psychiatric diseases, such as depression, and impair learning and memory, including in some patients with cognitive deficits. An emerging target to control detrimental outcomes of stress and inflammation is glycogen synthase kinase-3 (GSK3). GSK3 promotes inflammation, partly by regulating key transcription factors in the inflammation signaling pathway, and GSK3 can impair learning by promoting inflammation and by inhibiting long-term potentiation (LTP). Drugs inhibiting GSK3 may prove beneficial for controlling mood and cognitive impairments caused by excessive stress and the associated neuroinflammation.
Collapse
Affiliation(s)
- Richard S Jope
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jeffrey A Lowell
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ryan J Worthen
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yoel H Sitbon
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
29
|
Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment. Tumour Biol 2016; 37:14363-14380. [PMID: 27623943 DOI: 10.1007/s13277-016-5357-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Obesity continues to be a major global problem. Various cancers are related to obesity and proper understanding of their aetiology, especially their molecular tumour biology is important for early diagnosis and better treatment. Genes play an important role in the development of obesity. Few genes such as leptin, leptin receptor encoded by the db (diabetes), pro-opiomelanocortin, AgRP and NPY and melanocortin-4 receptors and insulin-induced gene 2 were linked to obesity. MicroRNAs control gene expression via mRNA degradation and protein translation inhibition and influence cell differentiation, cell growth and cell death. Overexpression of miR-143 inhibits tumour growth by suppressing B cell lymphoma 2, extracellular signal-regulated kinase-5 activities and KRAS oncogene. Cancers of the breast, uterus, renal, thyroid and liver are also related to obesity. Any disturbance in the production of sex hormones and insulin, leads to distortion in the balance between cell proliferation, differentiation and apoptosis. The possible mechanism linking obesity to cancer involves alteration in the level of adipokines and sex hormones. These mediators act as biomarkers for cancer progression and act as targets for cancer therapy and prevention. Interestingly, many anti-cancerous drugs are also beneficial in treating obesity and vice versa. We also reviewed the possible link in the mechanism of few drugs which act both on cancer and obesity. The present review may be important for molecular biologists, oncologists and clinicians treating cancers and also pave the way for better therapeutic options.
Collapse
|
30
|
Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A, Bagot M, Al-Dacak R. Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. Int J Mol Sci 2016; 17:ijms17091433. [PMID: 27589729 PMCID: PMC5037712 DOI: 10.3390/ijms17091433] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022] Open
Abstract
The inflammatory process contributes to immune tolerance as well as to tumor progression and metastasis. By releasing extracellular signals, cancerous cells constantly shape their surrounding microenvironment through their interactions with infiltrating immune cells, stromal cells and components of extracellular matrix. Recently, the pro-inflammatory interleukin 17 (IL-17)-producing T helper lymphocytes, the Th17 cells, and the IL-17/IL-17 receptor (IL-17R) axis gained special attention. The IL-17 family comprises at least six members, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F. Secreted as disulfide-linked homo- or heterodimers, the IL-17 bind to the IL-17R, a type I cell surface receptor, of which there are five variants, IL-17RA to IL-17RE. This review focuses on the current advances identifying the promoting role of IL-17 in carcinogenesis, tumor metastasis and resistance to chemotherapy of diverse solid cancers. While underscoring the IL-17/IL-17R axis as promising immunotherapeutic target in the context of cancer managing, this knowledge calls upon further in vitro and in vivo studies that would allow the development and implementation of novel strategies to combat tumors.
Collapse
Affiliation(s)
- Joseph Fabre
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
- Centre Hospitalo-Universitaire Henri Mondor, Service de Radiothérapie, 51 Avenue du Maréchal de Lattre de Tassigny, F-94010 Créteil, France.
| | - Jerome Giustiniani
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Christian Garbar
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Frank Antonicelli
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Yacine Merrouche
- Institut Jean Godinot, Unicancer, 1 rue du Général Koenig, F-51726 Reims, France.
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51 rue Cognacq-Jay, F-51095 Reims, France.
| | - Armand Bensussan
- Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint Louis, F-75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie & Oncologie, UMR-S 976, F-75475 Paris, France.
- OREGA Biotech, 69130 Ecully, France.
| | - Martine Bagot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint Louis, F-75010 Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie & Oncologie, UMR-S 976, F-75475 Paris, France.
| | - Reem Al-Dacak
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie & Oncologie, UMR-S 976, F-75475 Paris, France.
| |
Collapse
|
31
|
Jiang YX, Yang SW, Li PA, Luo X, Li ZY, Hao YX, Yu PW. The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms. Oncogene 2016; 36:1256-1264. [PMID: 27524415 PMCID: PMC5340802 DOI: 10.1038/onc.2016.291] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Postoperative recurrence and metastasis have crucial roles in the poor prognosis of gastric cancer patients. Previous studies have indicated that gastric cancer originates from cancer stem cells (CSCs), and some investigators have found that a particular subset of CSCs possesses higher metastatic capacity. However, the specific mechanism remains uncertain. In the present study, we aimed to explore the biological functions of the inflammatory cytokine interleukin-17 (IL-17) in gastric cancer metastasis and the distinct IL-17-induced transformation of quiescent gastric CSCs. Our results showed that invasive gastric CSCs were CD26+ and CXCR4+ and were closely associated with increased metastatic ability. The quiescent gastric CSCs, which were CD26- and CXCR4-, were exposed to appropriate concentrations of IL-17; this resulted in the decreased expression of E-cadherin and the increased expression of vimentin and N-cadherin. In addition, the upregulation of IL-17 both in vitro and in vivo resulted in a significant induction of invasion, migration and tumor formation ability in gastric CSCs compared with the control group, which was not treated with IL-17. Further experiments indicated that the activation of the downstream phosphorylated signal transducer and activator of transcription 3 (STAT3) transcription factor pathway was facilitated by IL-17. On the contrary, the downregulation of STAT3 by the specific inhibitor Stattic significantly reversed the IL-17-induced epithelial-mesenchymal transition (EMT)-associated properties of quiescent gastric CSCs. Moreover, tumorigenesis and metastasis were suppressed. Taken together, we suggest that IL-17 is positively correlated with the transformation of quiescent gastric CSCs into invasive gastric CSCs and that targeting IL-17 may emerge as a possible novel therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Y-X Jiang
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - S-W Yang
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - P-A Li
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - X Luo
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Z-Y Li
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Y-X Hao
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - P-W Yu
- Department of General Surgery, Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
32
|
Ande SR, Nguyen KH, Nyomba BLG, Mishra S. Prohibitin in Adipose and Immune Functions. Trends Endocrinol Metab 2016; 27:531-541. [PMID: 27312736 DOI: 10.1016/j.tem.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Prohibitin (PHB) was discovered in a quest to find genes with antiproliferative functions. However, the attribute of PHB that is responsible for its antiproliferative function remains elusive. Meanwhile, recent studies have established PHB as a pleiotropic protein with roles in metabolism, immunity, and senescence. PHB has cell compartment-specific functions, acting as a scaffolding protein in mitochondria, an adaptor molecule in membrane signaling, and a transcriptional coregulator in the nucleus. However, it remains unclear whether different functions and locations of PHB are interrelated or independent from each other, or if PHB works in a tissue-specific manner. Here, we discuss new findings on the role of PHB in adipose-immune interaction and an unexpected role in sex differences in adipose and immune functions.
Collapse
Affiliation(s)
- Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - K Hoa Nguyen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Suresh Mishra
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
33
|
Zhang Q, Liu S, Parajuli KR, Zhang W, Zhang K, Mo Z, Liu J, Chen Z, Yang S, Wang AR, Myers L, You Z. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene 2016; 36:687-699. [PMID: 27375020 PMCID: PMC5213194 DOI: 10.1038/onc.2016.240] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation has been associated with a variety of human cancers including prostate cancer. Interleukin-17 (IL-17) is a critical pro-inflammatory cytokine, which has been demonstrated to promote development of prostate cancer, colon cancer, skin cancer, breast cancer, lung cancer, and pancreas cancer. IL-17 promotes prostate adenocarcinoma with a concurrent increase of matrix metalloproteinase 7 (MMP7) expression in mouse prostate. Whether MMP7 mediates IL-17’s action and the underlying mechanisms remain unknown. We generated Mmp7 and Pten double knockout (Mmp7−/− in abbreviation) mouse model and demonstrated that MMP7 promotes prostate adenocarcinoma through induction of epithelial-to-mesenchymal transition (EMT) in Pten-null mice. MMP7 disrupted E-cadherin/β-catenin complex to up-regulate EMT transcription factors in mouse prostate tumors. IL-17 receptor C and Pten double knockout mice recapitulated the weak EMT characteristics observed in Mmp7−/− mice. IL-17 induced MMP7 and EMT in human prostate cancer LNCaP, C4-2B, and PC-3 cell lines, while siRNA knockdown of MMP7 inhibited IL-17-induced EMT. Compound III, a selective MMP7 inhibitor, decreased development of invasive prostate cancer in Pten single knockout mice. In human normal prostates and prostate tumors, IL-17 mRNA levels were positively correlated with MMP7 mRNA levels. These findings demonstrate that MMP7 mediates IL-17’s function in promoting prostate carcinogenesis through induction of EMT, indicating IL-17-MMP7-EMT axis as potential targets for developing new strategies in the prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Q Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - S Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - K R Parajuli
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - W Zhang
- Department of Computer Science and Biostatistics Facility of RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - K Zhang
- Department of Computer Science and Biostatistics Facility of RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Z Mo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Obstetrics and Gynecology, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - J Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Obstetrics and Gynecology, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Z Chen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Thoracic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - S Yang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - A R Wang
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA
| | - L Myers
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
| | - Z You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Orthopaedic Surgery, Tulane University, New Orleans, LA, USA.,Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA, USA.,Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA.,Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| |
Collapse
|