1
|
Peng R, Zhan Y, Li A, Lv Q, Xu S. Research progress and development strategy of PI3K inhibitors for breast cancer treatment: A review (2016-present). Bioorg Chem 2024; 153:107934. [PMID: 39509786 DOI: 10.1016/j.bioorg.2024.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are widely expressed in tissues and cells throughout the body and are involved in a variety of physiological processes including cell growth and metabolism. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of the rapamycin (mTOR) signaling pathway (PI3K/AKT/mTOR, PAM) is a promising target for the treatment of many cancer types because it is significantly linked to tumorigenesis and development. Aberrant activation of this pathway is observed in the majority of tumors, particularly in breast cancer. The development of PI3K inhibitors has received much attention in recent years. PI3K inhibitors are effective drugs for the treatment of various types of malignant tumors. The FDA has approved a few PI3K inhibitors for commercialization, and the majority of PI3K inhibitors under clinical trials are expected to conquer cancers, including breast cancer. This article discusses the link between the PAM signaling system and breast cancer, as well as the current clinical applications of PAM pathway inhibitors in the treatment of breast cancer. This work summarizes and describes the development tactics of seven types of PI3K inhibitors targeting breast cancer, including morpholine-substituted thienopyrimidines, with the goal of informing future PI3K inhibitor research.
Collapse
Affiliation(s)
- Rujue Peng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qiaoli Lv
- Department of Oncology, Jiangxi Cancer Hospital, Nanchang 330029, China.
| | - Shan Xu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
2
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
3
|
Xia H, Zhu J, Zheng Z, Xiao P, Yu X, Wu M, Xue L, Xu X, Wang X, Guo Y, Zheng C, Ding S, Wang Y, Peng X, Fu S, Li J, Deng X. Amino acids and their roles in tumor immunotherapy of breast cancer. J Gene Med 2024; 26:e3647. [PMID: 38084655 DOI: 10.1002/jgm.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.
Collapse
Affiliation(s)
- Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Zhuomeng Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Peiyao Xiao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaohui Yu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoning Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Giannopoulos S, Bozkus CC, Zografos E, Athanasiou A, Bongiovanni AM, Doulaveris G, Bakoyiannis CN, Theodoropoulos GE, Zografos GC, Witkin SS, Orfanelli T. Targeting Both Autophagy and Immunotherapy in Breast Cancer Treatment. Metabolites 2022; 12:metabo12100966. [PMID: 36295867 PMCID: PMC9607060 DOI: 10.3390/metabo12100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
As clinical efforts towards breast-conserving therapy and prolonging survival of those with metastatic breast cancer increase, innovative approaches with the use of biologics are on the rise. Two areas of current focus are cancer immunotherapy and autophagy, both of which have been well-studied independently but have recently been shown to have intertwining roles in cancer. An increased understanding of their interactions could provide new insights that result in novel diagnostic, prognostic, and therapeutic strategies. In this breast cancer-focused review, we explore the interactions between autophagy and two clinically relevant immune checkpoint pathways; the programmed cell death-1 receptor with its ligand (PD-L1)/PD-1 and the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)/CD80 and CD86 (B7-1 and B7-2). Furthermore, we discuss emerging preclinical and clinical data supporting targeting both immunotherapy and autophagy pathway manipulation as a promising approach in the treatment of breast cancer.
Collapse
Affiliation(s)
- Spyridon Giannopoulos
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cansu Cimen Bozkus
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aikaterini Athanasiou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ann Marie Bongiovanni
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Georgios Doulaveris
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chris N Bakoyiannis
- First Department of Surgery, Division of Vascular Surgery, Laikon General Hospital, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios E Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios C Zografos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Theofano Orfanelli
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
5
|
Jia W, Luo S, Zhao W, Xu W, Zhong Y, Kong D. Discovery of Novel PI3Kδ Inhibitors Based on the p110δ Crystal Structure. Molecules 2022; 27:molecules27196211. [PMID: 36234743 PMCID: PMC9571382 DOI: 10.3390/molecules27196211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
PI3Kδ is a key mediator of B-cell receptor signaling and plays an important role in the pathogenesis of certain hematological malignancies, such as chronic lymphocytic leukemia. Idelalisib, which targets PI3Kδ specifically, is the first approved PI3K inhibitor for cancer therapy. Recently, we carried out virtual screening, cell-based assays, adapta kinase assays, and molecular dynamic analysis to discover novel PI3Kδ inhibitors and identified NSC348884 as a lead PI3Kδ inhibitor. NSC348884 had an excellent docking score, potent PI3Kδ-inhibitory activity, antitumor effects on various cancer cell lines, and a favorable binding mode with the active site of PI3Kδ. Moreover, through the structural modification of NSC348884, we further discovered comp#1, which forms H-bonds with both Val828 and Lys779 in the ATP binding pocket of PI3Kδ, with a more favorable conformation binding to PI3Kδ. In addition, we found that N1, N1, N2-trimethyl-N2-((6-methyl-1H-benzo[d]imidazol-2-yl) methyl) ethane-1,2-diamine might be a potential scaffold structure. Thus, the result of this study provides a far more efficient approach for discovering novel inhibitors targeting PI3Kδ.
Collapse
Affiliation(s)
- Wenqing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuyu Luo
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wennan Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Weiren Xu
- Tianjin Institute of Pharmaceutical Research, Tianjin 300070, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Y.Z.); (D.K.)
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (Y.Z.); (D.K.)
| |
Collapse
|
6
|
Cocco S, Leone A, Roca MS, Lombardi R, Piezzo M, Caputo R, Ciardiello C, Costantini S, Bruzzese F, Sisalli MJ, Budillon A, De Laurentiis M. Inhibition of autophagy by chloroquine prevents resistance to PI3K/AKT inhibitors and potentiates their antitumor effect in combination with paclitaxel in triple negative breast cancer models. J Transl Med 2022; 20:290. [PMID: 35761360 PMCID: PMC9235112 DOI: 10.1186/s12967-022-03462-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. Methods The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. Results Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. Conclusion These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03462-z.
Collapse
Affiliation(s)
- Stefania Cocco
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy.
| | - Alessandra Leone
- Experimental Pharmacology Unit, Laboratories of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy.
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Laboratories of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Laboratories of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Michela Piezzo
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Roberta Caputo
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit, Laboratories of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit, Laboratories of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Francesca Bruzzese
- Animal Facility, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Maria José Sisalli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Laboratories of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Division of Breast Medical Oncology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131, Naples, Italy
| |
Collapse
|
7
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
8
|
Peng X, Zhang S, Jiao W, Zhong Z, Yang Y, Claret FX, Elkabets M, Wang F, Wang R, Zhong Y, Chen ZS, Kong D. Hydroxychloroquine synergizes with the PI3K inhibitor BKM120 to exhibit antitumor efficacy independent of autophagy. J Exp Clin Cancer Res 2021; 40:374. [PMID: 34844627 PMCID: PMC8628289 DOI: 10.1186/s13046-021-02176-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer. METHODS The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. RESULTS HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. CONCLUSIONS Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the "off target" effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shaolu Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Zhenxing Zhong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China. .,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, 301700, China.
| |
Collapse
|
9
|
Digoxin exerts anticancer activity on human nonsmall cell lung cancer cells by blocking PI3K/Akt pathway. Biosci Rep 2021; 41:229832. [PMID: 34549269 PMCID: PMC8495431 DOI: 10.1042/bsr20211056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
Lung cancer remains the leading cause of cancer mortality because of its metastatic potential and high malignancy. The discovery of new applications for old drugs is a shortcut for cancer therapy. We recently investigated the antitumor effect of digoxin, a well-established drug for treating heart failure, against nonsmall cell lung cancer A549 and H1299 cells. Digoxin inhibited the proliferation and colony-forming ability of the two cell lines and arrested the cell cycle at the G0/G1 phase in A549 cells and the G2/M phase in H1299 cells. Mitochondria-mediated apoptosis was induced in A549 cells but not in H1299 cells after treatment with digoxin. Moreover, digoxin inhibited the migration, invasion, adhesion and epithelial–mesenchymal transition of A549 and H1299 cells. Autophagy was induced in both cell lines after treatment with digoxin, with an increase in autophagosome foci. In addition, digoxin inhibited the phosphorylation of Akt, mTOR and p70S6K, signaling molecules of the PI3K/Akt pathway that are known to be involved in tumor cell survival, proliferation, metastasis and autophagy. Our findings suggest that digoxin has the potential to be used for therapy for human nonsmall cell lung cancer, but further evidence is required.
Collapse
|
10
|
Meng D, He W, Zhang Y, Liang Z, Zheng J, Zhang X, Zheng X, Zhan P, Chen H, Li W, Cai L. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacol Res 2021; 173:105900. [PMID: 34547385 DOI: 10.1016/j.phrs.2021.105900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are the family of vital lipid kinases widely distributed in mammalian cells. The overexpression of PI3Ks leads to hyperactivation of the PI3K/AKT/mTOR pathway, which is considered a pivotal pathway in the occurrence and development of tumors. Hence, PI3Ks are viewed as promising therapeutic targets for anti-cancer therapy. To date, some PI3K inhibitors have achieved desired therapeutic effect via inhibiting the activity of PI3Ks or reducing the level of PI3Ks in clinical trials, among which, Idelalisib, Alpelisib and Duvelisib have been approved by the FDA for treatment of ER+/HER2- advanced metastatic breast cancer and refractory chronic lymphocytic leukemia (CLL) and small lymphocytic lymphomas (SLL). This review focuses on the latest advances of PI3K inhibitors with efficacious anticancer activity, which are classified into Pan-PI3K inhibitors, isoform-specific PI3K inhibitors and dual PI3K/mTOR inhibitors based on the isoform affinity. Their corresponding structure characteristics and structures-activity relationship (SAR), together with the progress in the clinical application are mainly discussed. Additionally, the new PI3K inhibitory strategy, such as PI3K degradation agent, for the design of potential PI3K candidates to overcome drug resistance is referred as well.
Collapse
Affiliation(s)
- Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Wei He
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Zhenguo Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Peng Zhan
- School of Pharmaceutical Sciences, Shandong University, No. 44, Wenhuaxi Road, Jinan 250012, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, University of South China, No. 28 Changshengxi Road, Hengyang 421001, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
11
|
Binuclear silver(I) complexes with the non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity and evaluation of cellular mechanism of action. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhang S, Peng X, Li X, Liu H, Zhao B, Elkabets M, Liu Y, Wang W, Wang R, Zhong Y, Kong D. BKM120 sensitizes glioblastoma to the PARP inhibitor rucaparib by suppressing homologous recombination repair. Cell Death Dis 2021; 12:546. [PMID: 34039959 PMCID: PMC8150626 DOI: 10.1038/s41419-021-03805-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
PARP inhibitors have been approved for the therapy of cancers with homologous recombination (HR) deficiency based on the concept of "synthetic lethality". However, glioblastoma (GBM) patients have gained little benefit from PARP inhibitors due to a lack of BRCA mutations. Herein, we demonstrated that concurrent treatment with the PARP inhibitor rucaparib and the PI3K inhibitor BKM120 showed synergetic anticancer effects on GBM U251 and U87MG cells. Mechanistically, BKM120 decreased expression of HR molecules, including RAD51 and BRCA1/2, and reduced HR repair efficiency in GBM cells, therefore increasing levels of apoptosis induced by rucaparib. Furthermore, we discovered that the two compounds complemented each other in DNA damage response and drug accumulation. Notably, in the zebrafish U87MG-RFP orthotopic xenograft model, nude mouse U87MG subcutaneous xenograft model and U87MG-Luc orthotopic xenograft model, combination showed obviously increased antitumor efficacy compared to each monotherapy. Immunohistochemical analysis of tumor tissues indicated that the combination obviously reduced expression of HR repair molecules and increased the DNA damage biomarker γ-H2AX, consistent with the in vitro results. Collectively, our findings provide new insight into combined blockade of PI3K and PARP, which might represent a promising therapeutic approach for GBM.
Collapse
Affiliation(s)
- Shaolu Zhang
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Peng
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaofei Li
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hongyan Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Baoquan Zhao
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Moshe Elkabets
- grid.7489.20000 0004 1937 0511The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yao Liu
- grid.417024.40000 0004 0605 6814Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Wei Wang
- grid.417024.40000 0004 0605 6814Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Ran Wang
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuxu Zhong
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dexin Kong
- grid.265021.20000 0000 9792 1228Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China ,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
13
|
Xing J, Yang J, Gu Y, Yi J. Research update on the anticancer effects of buparlisib. Oncol Lett 2021; 21:266. [PMID: 33717263 PMCID: PMC7885152 DOI: 10.3892/ol.2021.12527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Buparlisib is a highly efficient and selective PI3K inhibitor and a member of the 2,6-dimorpholinopyrimidine-derived family of compounds. It selectively inhibits four isomers of PI3K, PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ, by competitively binding the lipid kinase domain on adenosine 5'-triphosphate (ATP), and serves an important role in inhibiting proliferation, promoting apoptosis and blocking angiogenesis, predominantly by antagonizing the PI3K/AKT pathway. Buparlisib has been confirmed to have a clinical effect in patients with solid tumors and hematological malignancies. A global, phase II clinical trial with buparlisib and paclitaxel in head and neck squamous cell carcinoma has now been completed, with a manageable safety profile. Buparlisib currently has fast-track status with the United States Food and Drug Administration. The present review examined the biochemical structure, pharmacokinetic characteristics, preclinical data and ongoing clinical studies of buparlisib. The various mechanisms of influence of buparlisib in tumors, particularly in preclinical research, were summarized, providing a theoretical basis and direction for basic research on and clinical treatment with buparlisib.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Yang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
14
|
DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition. DNA Repair (Amst) 2020; 98:103032. [PMID: 33494010 DOI: 10.1016/j.dnarep.2020.103032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common and significant cancers in females regarding the loss of life quality. Similar to other cancers, one of the etiologic factors in breast cancer is DNA damage. A plethora of molecules are responsible for sensing DNA damage and mediating actions which lead to DNA repair, senescence, cell cycle arrest and if damage is unbearable to apoptosis. In each of these, aberrations leading to unrepaired damage was resulted in uncontrolled proliferation and cancer. Another cellular function is autophagy defined as a process eliminating of unnecessary proteins in stress cases involved in pathogenesis of cancer. Knowing their role in cancer, scholars have tried to develop strategies in order to target DDR and autophagy. Further, the interactions of DDR and autophagy plus their regulatory role on each other have been focused simultaneously. The present review study has aimed to illustrate the importance of DDR and autophagy in breast cancer according to the related studies and uncover the relation between DDR and autophagy and its significance in breast cancer therapy.
Collapse
|
15
|
Cocco S, Leone A, Piezzo M, Caputo R, Di Lauro V, Di Rella F, Fusco G, Capozzi M, Gioia GD, Budillon A, De Laurentiis M. Targeting Autophagy in Breast Cancer. Int J Mol Sci 2020; 21:E7836. [PMID: 33105796 PMCID: PMC7660056 DOI: 10.3390/ijms21217836] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease consisting of different biological subtypes, with differences in terms of incidence, response to diverse treatments, risk of disease progression, and sites of metastases. In the last years, several molecular targets have emerged and new drugs, targeting PI3K/Akt/mTOR and cyclinD/CDK/pRb pathways and tumor microenvironment have been integrated into clinical practice. However, it is clear now that breast cancer is able to develop resistance to these drugs and the identification of the underlying molecular mechanisms is paramount to drive further drug development. Autophagy is a highly conserved homeostatic process that can be activated in response to antineoplastic agents as a cytoprotective mechanism. Inhibition of autophagy could enhance tumor cell death by diverse anti-cancer therapies, representing an attractive approach to control mechanisms of drug resistance. In this manuscript, we present a review of autophagy focusing on its interplay with targeted drugs used for breast cancer treatment.
Collapse
Affiliation(s)
- Stefania Cocco
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (A.L.); (A.B.)
| | - Michela Piezzo
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Roberta Caputo
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Vincenzo Di Lauro
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Francesca Di Rella
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Giuseppina Fusco
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Monica Capozzi
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Germira di Gioia
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (A.L.); (A.B.)
| | - Michelino De Laurentiis
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| |
Collapse
|
16
|
Guo H, Diao QP. 1,3,5-Triazine-azole Hybrids and their Anticancer Activity. Curr Top Med Chem 2020; 20:1481-1492. [DOI: 10.2174/1568026620666200310122741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives
possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance
efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under
different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable
therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop
azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent
activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity,
and the structure-activity relationships as well as the mechanisms of action are also discussed to
provide comprehensive and target-oriented information for the development of this kind of anticancer
drugs.
Collapse
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| | - Quan-Ping Diao
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
17
|
Peng X, Liu Y, Zhu S, Peng X, Li H, Jiao W, Lin P, Zhang Z, Qiu Y, Jin M, Wang R, Kong D. Co-targeting PI3K/Akt and MAPK/ERK pathways leads to an enhanced antitumor effect on human hypopharyngeal squamous cell carcinoma. J Cancer Res Clin Oncol 2019; 145:2921-2936. [PMID: 31620898 DOI: 10.1007/s00432-019-03047-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
PURPOSE The present study aims to determine whether co-targeting PI3K/Akt and MAPK/ERK pathways in human hypopharyngeal squamous cell carcinoma (HSCC) is a potential anticancer strategy. METHODS We retrospectively analyzed the clinical data of HSCC patients, and the phosphorylation status of Akt and Erk in HSCC and tumor adjacent tissues was evaluated by immunohistochemistry. MTT and colony formation assay were performed to determine the anti-proliferative effect of PI3K/mTOR inhibitor GDC-0980 and MEK inhibitor Refametinib on HSCC cell line Fadu. Wound-healing and Transwell migration assay were used to analyze the anti-migrative capability of the two drugs. The involved anti-tumor mechanism was explored by flow cytometry, qRT-PCR and western blot. The combinational anticancer effect of GDC-0980 and Refametinib was evaluated according to Chou and Talalay's method. RESULTS The levels of p-Akt and p-Erk were increased significantly with the progression of clinical stage of HSCC, suggesting PI3K/Akt and MAPK/ERK pathways might be associated with HSCC occurrence and progression. Furthermore, both GDC-0980 and Refametinib showed obvious antitumor effects on FaDu cells. Treatment by the two drugs arrested FaDu cell cycle progression in G1 phase, with reduction of cyclin D1 and p-Rb, in contrast to enhancement of p27. GDC-0980 inhibited FaDu cell migration and reduced metastasis related proteins including p-PKCζ, p-Integrin β1 and uPA. Combination use of GDC-0980 and Refametinib exhibited strong synergistic anti-tumor effect. CONCLUSION Dual inhibition of PI3K/Akt and MAPK/ERK pathway by GDC-0980 and Refametinib might be a promising treatment strategy for HSCC patients.
Collapse
Affiliation(s)
- Xiaolin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China.
- School of Medicine, Tianjin Tianshi College, Tianyuan University, 301700, Tianjin, China.
| |
Collapse
|
18
|
Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur J Med Chem 2019; 183:111718. [DOI: 10.1016/j.ejmech.2019.111718] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
19
|
Wang Z, Wang Y, Zhu S, Liu Y, Peng X, Zhang S, Zhang Z, Qiu Y, Jin M, Wang R, Zhong Y, Kong D. DT-13 Inhibits Proliferation and Metastasis of Human Prostate Cancer Cells Through Blocking PI3K/Akt Pathway. Front Pharmacol 2018; 9:1450. [PMID: 30581390 PMCID: PMC6292965 DOI: 10.3389/fphar.2018.01450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
DT-13, a saponin monomer 13 from the dwarf lilyturf tuber, was reported to exhibit anti-inflammatory, hepatoprotective, cardioprotective as well as antitumor activities in a number of tumor cells. Prostate cancer is the second leading cause of cancer death in males, discovery of novel antitumor drug for therapy of prostate cancer is expected. Aiming to evaluate whether DT-13 could become a candidate to treat prostate cancer, we recently investigated the antitumor effect of DT-13 on human prostate cancer cells and the underlying mechanism. DT-13 was found to effectively inhibit proliferation and metastasis of prostate cancer PC3 and DU145 cell lines in a dose-dependent manner. Treatment by DT-13 resulted in a mitochondria-mediated apoptosis, which was accompanied by the chromatin condensation and nuclear shrinkage in the prostate cancer cells. Moreover, DT-13 caused remarkable upregulation of Bax, Bad, Cytochrome C, cleaved -caspase 3, -caspase 9 and -PARP, in contrast to the downregulation of Bcl-2. Nevertheless, no obvious change in intracellular ROS level was observed after DT-13 treatment. We further demonstrated that DT-13 could inhibit PC3 cell metastasis in which suppression of Integrinβ1 and MMP2/9 might be involved. Western blot analysis indicated DT-13 significantly decreased the phosphorylation of PDK1, Akt, mTOR as well as p70S6K, suggesting the pro-apoptotic and anti-metastatic effects of DT-13 on prostate cancer cells might be attributed to the blockade of PI3K/Akt pathway. Collectively, our findings suggest DT-13 is worthy of further investigation as a drug candidate for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhengming Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shaolu Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Synthesis, biological evaluation and structure-activity relationship of a novel class of PI3Kα H1047R mutant inhibitors. Eur J Med Chem 2018; 158:707-719. [DOI: 10.1016/j.ejmech.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/24/2022]
|
21
|
Peng X, Wang Z, Liu Y, Peng X, Liu Y, Zhu S, Zhang Z, Qiu Y, Jin M, Wang R, Zhang Q, Kong D. Oxyfadichalcone C inhibits melanoma A375 cell proliferation and metastasis via suppressing PI3K/Akt and MAPK/ERK pathways. Life Sci 2018; 206:35-44. [DOI: 10.1016/j.lfs.2018.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
22
|
Peng X, Liu Y, Peng X, Wang Z, Zhang Z, Qiu Y, Jin M, Wang R, Kong D. Clinical features and the molecular biomarkers of olfactory neuroblastoma. Pathol Res Pract 2018; 214:1123-1129. [PMID: 29921494 DOI: 10.1016/j.prp.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
Abstract
Olfactory neuroblastoma (ONB) is a kind of rare and complex head and neck tumor. The reports on this field are very scarce due to the low morbidity. Here, we summarized the clinical features and prognosis of ONB through analysis of 10 cases, and determined the phosphorylation status of some molecules known to be involved in carcinogesis such as Akt, Erk, Stat3 and Stat5 in ONB tissue. Ten ONB patients were recruited in this study, 6 male and 4 female, ranging from 26 to 66 years old. In the 10 cases, 6 were diagnosed as late T stage (T3/T4), 6 were at late Kadish stage (C/D) and 3 were at high Hyams grade (Ⅲ), which indicated a poorer prognosis. Patient characteristics-gender and tumor features were evaluated with respect to the overall survival (OS) through univariate analysis. The result indicated that the OS of male is obviously higher than that of female after a series of combined treatment. The OS of ONB patients in the late stage or high grade is lower than those in early stages or low grade. Moreover, p-Akt, p-Erk, p-Stat3 and p-Stat5 was detected in 5 (50%), 9 (90%), 7 (70%) and 0 patients (0%), respectively, suggesting the former 3 molecules might be potential biomarkers for diagnosis of ONB.
Collapse
Affiliation(s)
- Xiaolin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Otorhinolaryngology Head and Neck Surgery, Tianjin first central hospital, Tianjin 300192, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhengming Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
23
|
Li W, Gao C, Zhao L, Yuan Z, Chen Y, Jiang Y. Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem 2018; 151:237-247. [DOI: 10.1016/j.ejmech.2018.03.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
|
24
|
Zhou Q, Chen Y, Zhang L, Zhong Y, Zhang Z, Wang R, Jin M, Gong M, Qiu Y, Kong D. Antiproliferative effect of ZSTK474 alone or in combination with chemotherapeutic drugs on HL60 and HL60/ADR cells. Oncotarget 2018; 8:39064-39076. [PMID: 28388564 PMCID: PMC5503595 DOI: 10.18632/oncotarget.16589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy remains to be one of the main approaches in the clinical treatment of acute myeloid leukemia (AML), multidrug resistance (MDR) has become a serious problem which limits the therapeutic efficacy. The important roles of the PI3K/Akt pathway in modulating cell proliferation and MDR suggest that PI3K inhibitor might be effective for treatment of AML. In the present study, the antiproliferative effects of PI3K inhibitor ZSTK474 on AML cell HL60 and the adriamycin (ADR)-resistant HL60/ADR cells were investigated. Our data indicated that ZSTK474 exhibited potent antiproliferative activity, induced G1 cell cycle arrest, but no obvious apoptosis in both cell lines. Moreover, ZSTK474 affected the protein levels of cell-cycle-related molecules including increased p27, decreased cyclin D1 and phosphorylated Rb in dose-dependent manner. The proteins downstream of PI3K including phosphorylated PDK1, Akt and GSK-3β were reduced in a dose-dependent manner after ZSTK474 treatment. ZSTK474 reversed ADR resistance, increased the intracellular accumulation of ADR, and reduced the expression and function of multidrug resistance (MDR) proteins including both P-gp and MRP1 in HL60/ADR cells. The combination of ZSTK474 and chemotherapeutic drugs cytarabine or vincristine led to a synergistic effect in HL60 and HL60/ADR cells. In conclusion, ZSTK474 showed potent antiproliferative effect on HL60 and HL60/ADR cells; combination with cytarabine or vincristine resulted in synergistic effect. Our results suggest ZSTK474 has the potential to be applied in the treatment of AML patients, while further evidences particularly those about in vivo efficacy are needed.
Collapse
Affiliation(s)
- Qianxiang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yali Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Min Gong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
25
|
Chen Y, Zhou Q, Zhang L, Zhong Y, Fan G, Zhang Z, Wang R, Jin M, Qiu Y, Kong D. Stellettin B induces apoptosis in human chronic myeloid leukemia cells via targeting PI3K and Stat5. Oncotarget 2018; 8:28906-28921. [PMID: 28423649 PMCID: PMC5438702 DOI: 10.18632/oncotarget.15957] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Novel agents are still urgently expected for therapy of chronic myeloid leukemia (CML). The in vitro anti-leukemia activity of Stellettin B (Stel B), a triterpenoid we isolated from marine sponge Jaspis stellifera, on human CML K562 and KU812 cells was recently investigated. Stel B inhibited K562 and KU812 cell proliferation with IC50 as 0.035 μM and 0.95 μM respectively. While no obvious cell cycle arrest was observed, apoptosis was induced in K562 cells after Stel B treatment. The Stel B-induced apoptosis might be in mitochondrial pathway, with increase of Bad and Bax, decrease of Bcl-2 and activation of caspase-9. In addition, dose-dependent increase of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (MMP) occurred. Meanwhile, Stel B inhibited phosphorylation of Stat5, expression of 4 PI3K catalytic isoforms, and phosphorylation of the downstream effectors including PDK1 and Akt, suggesting that inhibition against Stat5 and PI3K might be involved in the apoptosis-inducing effect. Combination of Stel B with Imatinib with ratio as IC50 Stel B : 5×IC50 Imatinib led to synergistic effect. Stel B might become a promising candidate for CML therapy alone or together with Imatinib.
Collapse
Affiliation(s)
- Yali Chen
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qianxiang Zhou
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lei Zhang
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Guanwei Fan
- Institute of Traditional Chinese Medicine Research, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhe Zhang
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Wang
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Meihua Jin
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuling Qiu
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dexin Kong
- Department of Biopharmaceutical Sciences, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
26
|
Liu Y, Zhang X, Kelsang N, Tu G, Kong D, Lu J, Zhang Y, Liang H, Tu P, Zhang Q. Structurally Diverse Cytotoxic Dimeric Chalcones from Oxytropis chiliophylla. JOURNAL OF NATURAL PRODUCTS 2018; 81:307-315. [PMID: 29400468 DOI: 10.1021/acs.jnatprod.7b00736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ten isomeric cyclobutane- and cyclohexene-containing chalcone dimers, oxyfadichalcones A-G, were isolated from the aerial parts of Oxytropis chiliophylla. These included six new compounds and three pairs of enantiomers that are being reported from natural sources for the first time. The relative configurations were elucidated by spectroscopic data analysis, while the absolute configurations were determined by comparing the experimental and calculated electronic circular dichroism spectra. Quantitative LC-MS analysis of the main dimers from different parts of the plant revealed their characteristic accumulation in the viscous secretion and provided supporting evidence for the hypothesized photochemical biosynthesis. In addition, the cytotoxic activities of all isolates against the PC-3 human prostate cancer cell line are reported.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| | - Xiaojing Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| | - Norbo Kelsang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| | - Guangzhong Tu
- Beijing Institute of Microchemistry , Beijing 100091, People's Republic of China
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University , Tianjin 300070, People's Republic of China
| | - Jianghai Lu
- National Anti-Doping Laboratory, China Anti-Doping Agency , Beijing 100029, People's Republic of China
| | - Yingtao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| | - Hong Liang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| | - Qingying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing 100191, People's Republic of China
| |
Collapse
|
27
|
Synergistic effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway or NUP214-ABL1 fusion protein in human Acute Lymphoblastic Leukemia. Oncotarget 2018; 7:79842-79853. [PMID: 27821800 PMCID: PMC5346755 DOI: 10.18632/oncotarget.13035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Philadelphia chromosome-positive (Ph+) Acute Lymphoblastic Leukemia (ALL) accounts for 25–30% of adult ALL and its incidence increases with age in adults >40 years old. Irrespective of age, the ABL1 fusion genes are markers of poor prognosis and amplification of the NUP214-ABL1 oncogene can be detected mainly in patients with T-ALL. T cell malignancies harboring the ABL1 fusion genes are sensitive to many cytotoxic agents, but up to date complete remissions have not been achieved. The PI3K/Akt/mTOR signaling pathway is often activated in leukemias and plays a crucial role in leukemogenesis. We analyzed the effects of three BCR-ABL1 tyrosine kinase inhibitors (TKIs), alone and in combination with a panel of selective PI3K/Akt/mTOR inhibitors, on three NUP214-ABL1 positive T-ALL cell lines that also displayed PI3K/Akt/mTOR activation. Cells were sensitive to anti BCR-ABL1 TKIs Imatinib, Nilotinib and GZD824, that specifically targeted the ABL1 fusion protein, but not the PI3K/Akt/mTOR axis. Four drugs against the PI3K/Akt/mTOR cascade, GSK690693, NVP-BGT226, ZSTK474 and Torin-2, showed marked cytotoxic effects on T-leukemic cells, without affecting the NUP214-ABL1 kinase and related pathway. Dephosphorylation of pAkt and pS6 showed the cytotoxicity of these compounds. Either single or combined administration of drugs against the different targets displayed inhibition of cellular viability associated with a concentration-dependent induction of apoptosis, cell cycle arrest in G0/G1 phase and autophagy, having the combined treatments a significant synergistic cytotoxic effect. Co-targeting NUP214-ABL1 fusion gene and PI3K/Akt/mTOR signaling pathway could represent a new and effective pharmacological strategy to improve the outcome in NUP214-ABL1 positive T-ALL.
Collapse
|
28
|
Castellanos-Esparza YC, Wu S, Huang L, Buquet C, Shen R, Sanchez-Gonzalez B, García Latorre EA, Boyer O, Varin R, Jiménez-Zamudio LA, Janin A, Vannier JP, Li H, Lu H. Synergistic promoting effects of pentoxifylline and simvastatin on the apoptosis of triple-negative MDA-MB-231 breast cancer cells. Int J Oncol 2018; 52:1246-1254. [PMID: 29436616 DOI: 10.3892/ijo.2018.4272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/14/2017] [Indexed: 11/06/2022] Open
Abstract
Pentoxifylline (PTX), a xanthine family molecule and simvastatin (SIM), an anti-hypercholesterolemic agent, have recently been considered as sensitizers to chemotherapy and radiotherapy. The present in vitro study evaluated their antitumor synergistic effects on MDA‑MB‑231 breast cancer cells characterized by the triple‑negative phenotype (TNP). The anti-proliferative effects of these two agents were evaluated by MTT and clonogenic assays. Cell cycle progression was examined using propidium iodide staining. Apoptosis was investigated by Annexin V labeling, and by examining caspase 3 activity and DNA fragmentation. Autophagic vesicles and reactive oxygen species (ROS) levels were monitored by flow cytometry. Western blot analysis was performed to evaluate molecular targets. Our results revealed that when used alone, PTX and SIM exerted antitumor effects. Nevertheless, used in combination, the inhibition of cell proliferation was synergistically superior (80% vs 42%) than that observed following treatment with each agent alone after 48 h. PTX alone (0.5 mM) induced both apoptosis (25%) and autophagy (25%); however, when used in combination with SIM (0.5 µM), the balance between these processes was disrupted and the cells underwent apoptosis (>65%) as opposed to autophagy (<13%). This imbalance was associated with an increase in ERK1/2 and AKT activation, but not with an increase in mTOR phosphorylation, and with the suppression of the NF-κB pathway. In addition, in the cells treated with both agents, almost 78% of the cells were arrested at the G0/G1 phase and lost their colony-forming ability (38±5%) compared to the cells treated with PTX alone (115±5%). On the whole, these results suggest that the induction of autophagy may be a protective mechanism preventing MDA‑MB‑231 cancer cell death. The combined use of PTX and SIM may drive dormant autophagic cancer cells to undergo apoptosis and thus this may be a novel treatment strategy for breast cancer characterized by the TNP.
Collapse
Affiliation(s)
- Yessica Cristina Castellanos-Esparza
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Shuang Wu
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Limin Huang
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Catherine Buquet
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Rong Shen
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Berenice Sanchez-Gonzalez
- Immunochemistry Laboratory I, Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Ethel Awilda García Latorre
- Immunochemistry Laboratory I, Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Olivier Boyer
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Remi Varin
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Luis Antonio Jiménez-Zamudio
- Immunochemistry Laboratory I, Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Anne Janin
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Jean-Pierre Vannier
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Hong Li
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - He Lu
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| |
Collapse
|
29
|
Alameen AAM, Simioni C, Martelli AM, Zauli G, Ultimo S, McCubrey JA, Gonelli A, Marisi G, Ulivi P, Capitani S, Neri LM. Healthy CD4+ T lymphocytes are not affected by targeted therapies against the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:55690-55703. [PMID: 27494886 PMCID: PMC5342446 DOI: 10.18632/oncotarget.10984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
An attractive molecular target for novel anti-cancer therapies is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway which is commonly deregulated in many types of cancer. Nevertheless, the effects of PI3K/Akt/mTOR inhibitors on T lymphocytes, a key component of immune responses, have been seldom explored. In this study we investigated the effects on human CD4+ T-cells of a panel of PI3K/Akt/mTOR inhibitors: BGT226, Torin-2, MK-2206, and ZSTK474. We also assessed their efficacy against two acute leukemia T cell lines. T lymphocytes were stimulated with phytohemagglutinin. Inhibitor effects on cell cycle and apoptosis were analyzed by flow cytometry, while cytotoxicity was assessed by MTT assays. In addition, the activation status of the pathway as well as induction of autophagy were analyzed by Western blotting. Quiescent healthy T lymphocytes were unaffected by the drugs whereas mitogen-stimulated lymphocytes as well as leukemic cell lines displayed a cell cycle block, caspase-dependent apoptosis, and dephosphorylation of key components of the signaling pathway. Autophagy was also induced in proliferating lymphocytes and in JURKAT and MOLT-4 cell lines. When autophagy was inhibited by 3-methyladenine or Bafilomycin A1, drug cytotoxicity was increased, indicating that autophagy is a protective mechanism. Therefore, our findings suggest that PI3K/Akt/mTOR inhibitors preserve lymphocyte viability. This is a valuable result to be taken into account when selecting drugs for targeted cancer therapy in order to minimize detrimental effects on immune function.
Collapse
Affiliation(s)
- Ayman A M Alameen
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Toulany M, Iida M, Keinath S, Iyi FF, Mueck K, Fehrenbacher B, Mansour WY, Schaller M, Wheeler DL, Rodemann HP. Dual targeting of PI3K and MEK enhances the radiation response of K-RAS mutated non-small cell lung cancer. Oncotarget 2018; 7:43746-43761. [PMID: 27248324 PMCID: PMC5190057 DOI: 10.18632/oncotarget.9670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Despite the significant contribution of radiotherapy to non-small lung cancer (NSCLC), radioresistance still occurs. One of the major radioresistance mechanisms is the hyperactivation of the PI3K/Akt pathway in which Akt facilitates the repair of DNA double-strand breaks (DSBs) through the stimulation of DNA-PKcs. We investigated if targeting PI3K would be a potential approach for enhancing the radiosensitivity of K-RAS mutated (K-RASmut) NSCLC cell lines A549 and H460. Short-term (1-2 h) pre-treatment of cells with the PI3K inhibitor PI-103 (1 μM) inhibited Akt/DNA-PKcs activity, blocked DSBs repair and induced radiosensitivity, while long-term (24 h) pre-treatment did not. Lack of an effect after 24 h of PI-103 pre-treatment was due to reactivation of K-Ras/MEK/ERK-dependent Akt. However, long-term treatment with the combination of PI-103 and MEK inhibitor PD98059 completely blocked reactivation of Akt and impaired DSBs repair through non-homologous end joining (NHEJ) leading to radiosensitization. The effect of PI3K inhibition on Akt signaling was also tested in A549 mouse xenografts. P-Akt and P-DNA-PKcs were inhibited 30 min post-irradiation in xenografts, which were pretreated by PI-103 30 min before irradiation. However, Akt was reactivated 30 min post-irradiation in tumors, which were pre-treated for 3 h with PI-103 before irradiation. After a 24 h pretreatment with PI-103, a significant reactivation of Akt was achieved 24 h after irradiation. Thus, due to MEK/ERK-dependent reactivation of Akt, targeting PI3K alone is not a suitable approach for radiosensitizing K-RASmut NSCLC cells, indicating that dual targeting of PI3K and MEK is an efficient approach to improve radiotherapy outcome.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - Simone Keinath
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Firdevs F Iyi
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Katharina Mueck
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | | | - Wael Y Mansour
- Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
31
|
Yang W, Hosford SR, Traphagen NA, Shee K, Demidenko E, Liu S, Miller TW. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer. FASEB J 2018; 32:1222-1235. [PMID: 29127189 DOI: 10.1096/fj.201700477r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER+ breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER+ breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER+ breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Wei Yang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sarah R Hosford
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Nicole A Traphagen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kevin Shee
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eugene Demidenko
- Community and Family Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; and
| | - Stephanie Liu
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
32
|
Wu YC, Luo SH, Mei WJ, Cao L, Wu HQ, Wang ZY. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2( 5H )-furanones as potential anticancer agents. Eur J Med Chem 2017; 139:84-94. [DOI: 10.1016/j.ejmech.2017.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
33
|
The induction of apoptosis and autophagy in human hepatoma SMMC-7721 cells by combined treatment with vitamin C and polysaccharides extracted from Grifola frondosa. Apoptosis 2017; 22:1461-1472. [DOI: 10.1007/s10495-017-1421-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Muthiah D, Callaghan R. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells. Eur J Pharmacol 2017; 815:127-137. [PMID: 28912036 DOI: 10.1016/j.ejphar.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022]
Abstract
ZSTK474 is a potent phosphoinositide 3-kinase (PI3K) inhibitor that reduces cell proliferation via G1-arrest. However, there is little information on the susceptibility of this anticancer drug to resistance conferred by the multidrug pumps P-glycoprotein (ABCB1) and ABCG2. We have demonstrated that ZSTK474 generated cytotoxicity in cells over-expressing either pump with potency similar to that in drug sensitive cells. In addition, the co-administration of ZSTK474 with the cytotoxic anti-cancer drugs vinblastine and mitoxantrone caused a potentiated cytotoxic effect in both drug sensitive and efflux pump expressing cells. These observations suggest that ZSTK474 is unaffected by the presence of multidrug efflux pumps and may circumvent their activities. Indeed, ZSTK474 increased the cellular accumulation of calcein-AM and mitoxantrone in cells expressing ABCB1 and ABCG2, respectively. ZSTK474 treatment also resulted in reduced expression of both efflux pumps in multidrug resistant cancer cells. Measurement of ABCB1 or ABCG2 mRNA levels demonstrated that the reduction was not due to altered transcription. Similarly, inhibitor studies showed that the proteasomal degradation pathway for ABCB1 and the lysosomal route for ABCG2 degradation were unaffected by ZSTK474. Thus the mechanism underlying reduced ABCB1 and ABCG2 levels caused by ZSTK474 was due to a reduction in overall protein synthesis; a process influenced by the PI3K pathway. In summary, ZSTK474 is not susceptible to efflux by the resistance mediators ABCB1 and ABCG2. Moreover, it inhibits the drug transport function of the pumps and leads to a reduction in their cellular expression levels. Our observations demonstrate that ZSTK474 is a powerful anticancer drug.
Collapse
Affiliation(s)
- Divya Muthiah
- Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 2601, Australia
| | - Richard Callaghan
- Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 2601, Australia.
| |
Collapse
|
35
|
Paris saponin-induced autophagy promotes breast cancer cell apoptosis via the Akt/mTOR signaling pathway. Chem Biol Interact 2017; 264:1-9. [DOI: 10.1016/j.cbi.2017.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022]
|
36
|
Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharm Sin B 2017; 7:27-37. [PMID: 28119806 PMCID: PMC5237710 DOI: 10.1016/j.apsb.2016.07.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancers. Class I PI3Ks are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3), which in turn activates Akt and the downstream effectors like mammalian target of rapamycin (mTOR) to play key roles in carcinogenesis. Therefore, PI3K has become an important anticancer drug target, and currently there is very high interest in the pharmaceutical development of PI3K inhibitors. Idelalisib has been approved in USA and Europe as the first-in-class PI3K inhibitor for cancer therapy. Dozens of other PI3K inhibitors including BKM120 and ZSTK474 are being evaluated in clinical trials. Multifaceted studies on these PI3K inhibitors are being performed, such as single and combinational efficacy, resistance, biomarkers, etc. This review provides an introduction to PI3K and summarizes key advances in the development of PI3K inhibitors.
Collapse
|
37
|
Chen Y, Zhou Q, Zhang L, Wang R, Jin M, Qiu Y, Kong D. Idelalisib induces G1 arrest and apoptosis in chronic myeloid leukemia K562 cells. Oncol Rep 2016; 36:3643-3650. [DOI: 10.3892/or.2016.5176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/11/2016] [Indexed: 11/06/2022] Open
|