1
|
Xu S, Wu J, Yang Q, Fang H, Xu T, He B, Chen N, Xing S. Isodon rubescens research literature based on Web of Science database for visual analysis: A review. Medicine (Baltimore) 2025; 104:e41945. [PMID: 40324265 PMCID: PMC12055185 DOI: 10.1097/md.0000000000041945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025] Open
Abstract
Isodon rubescens has been used as an herbal medicine in China for a long time. The significant value of development and utilization is affirmative. Bibliometrics is used as an approach to sort out, analyze, and visualize relevant literature in a particular field. So, it can intuitively express the research trends, hot directions, significant achievements, core journals, and outstanding authors in the field. But there is no bibliometrics analysis of I rubescens. The relevant dataset was retrieved and exported from the Web of Science database, and the results were obtained and visualized using the R Programming Language, CiteSpace, and VOSviewer, with the creation of time zone maps also using Scimago Graphica and Gephi. There were 506 valid data retrieved and 465 analyzed data selected. The country with the most significant number of publications is China, the institution with the largest annual publication volume is China Pharmaceutical University, the publication with the most relevant literature is the International Journal of Oncology, and the author with the most publications is Zhou. The keyword with the greatest intensity is "matastasis," which is also an emerging keyword. The role of I rubescens has been continuously diversifying. It has been proven to play a role in treating major diseases such as multiple cancers, leukemia, liver and kidney function impairment, and cardiovascular and cerebrovascular diseases. This study will highlight the main research direction in this field, namely the use of I rubescens for the treatment of cancer.
Collapse
Affiliation(s)
- Shaowei Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingshan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Huqiang Fang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Teng Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bing He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Bozhou, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Kaur G, Tiwari P, Singla S, Panghal A, Jena G. The intervention of NLRP3 inflammasome inhibitor: oridonin against azoxymethane and dextran sulfate sodium-induced colitis-associated colorectal cancer in male BALB/c mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03871-z. [PMID: 40035821 DOI: 10.1007/s00210-025-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025]
Abstract
Colorectal cancer (CRC) ranks third globally in cancer diagnoses. The dysregulation of the NLRP3 inflammasome is prominently linked to several types of cancers. Oridonin, a principal component of Rabdosia rubescens, exhibits inhibitory activity against NLRP3 and is well-recognized for its diverse pharmacological benefits. However, its role in an animal model of colitis-associated colorectal cancer (CACC) remains unexplored. In the present study, the effectiveness of oridonin was investigated against CACC, developed using azoxymethane (AOM), a tumour initiator, and dextran sulphate sodium (DSS), a tumour promoter, in male BALB/c mice. The two-stage murine model of inflammation-associated cancer was established by administering AOM (10 mg/kg b.w.; i.p., once) followed by DSS (2% w/v) in drinking water (3 cycles, 7 days/cycle). Over a span of 10 weeks, the dose-dependent (2.5, 5, and 10 mg/kg, b.w.; i.p.) effects of oridonin were investigated in BALB/c mice. Oridonin significantly alleviated CACC severity, as evidenced by reduced DAI scores and restored body weight. Moreover, it attenuated surrogate markers of inflammation, including myeloperoxidase, nitrite, plasma LPS, TNF-α, IL-1β, and DNA damage. Histopathological examination revealed diminished tumorigenesis and apoptotic cells, corroborated by reduced Ki-67 and TNF-α, along with increased p53 expression in the colon. Following oridonin treatment, IHC/immunofluorescence analyses demonstrated a significantly reduced expression of the components of NLRP3 inflammasome including NLRP3, ASC-1, and caspase-1. Notably, the high dose of oridonin (10 mg/kg) consistently exhibited significant protective effects against CACC by modulating various molecular targets. Present findings confirmed the potential of oridonin in the protection of colitis-associated colorectal cancer, providing valuable insights into its mechanism of action and clinical significance.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Priyanka Tiwari
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Shivani Singla
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Archna Panghal
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility of Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
3
|
Zhu J, Ding D, Sun T, Zhang Y, Miao H, Gu Y, Dai M, Zhu M. Oridonin Preserves Retinal Pigmented Epithelial Cell Tight Junctions and Ameliorates Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 39982392 PMCID: PMC11855140 DOI: 10.1167/iovs.66.2.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Purpose To investigate the role and mechanism of oridonin (ORI), a bioactive diterpenoid extracted from the Chinese herbal medicine Rabdosia rubescens, on the integrity of outer blood-retinal barrier (oBRB) during choroidal neovascularization (CNV). Methods ARPE-19 cells were exposed to hypoxia and treated with ORI. The expression of ZO-1 and occludin in the axis of TGFβR/SUV39H1/KLF11 was detected by WB, chromatin immunoprecipitation, luciferin report activity assay, and immunofluorescence assay (IF), and the effect of ORI on the barrier properties of ARPE-19 cells was studied. A laser-induced mouse CNV model was constructed, and ORI was administrated by oral gavage. IF on mouse choroid flat mounts was done to confirm the effect of ORI on BRB integrity. Indocyanine green angiography and IF on mouse retina-RPE-choroid flat mounts were performed to determine the effect of ORI on CNV formation and retinal function. Hematoxylin and eosin staining and TUNEL staining were carried out to appraise ocular and systemic cytotoxicity caused by ORI. Results ORI protected ARPE-19 cells from hypoxia-induced destruction of barrier properties and promoted the expression of ZO-1 and occludin by the TGFβR/SUV39H1/KLF11 axis, maintaining barrier properties of ARPE-19 cells with hypoxia. ORI improved BRB integrity during laser-induced CNV in mice and mitigated laser-induced CNV formation in mice without any ocular or systemic cytotoxicity (n = 4-5 in each group). Conclusions ORI ameliorates BRB integrity and subsequent formation of CNV via regulating the TGFβR/SUV39H1/KLF11 pathway in RPE cells.
Collapse
Affiliation(s)
- Juming Zhu
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Dongmei Ding
- Department of Ophthalmology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangzhou, China
| | - Tao Sun
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huizi Miao
- Department of Ophthalmology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangzhou, China
| | - Yunjie Gu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming Dai
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhao CL, Zhang CY, Yang XM, Lam KH, Xia YX, Du YX, Pan LT, Zhang HJ. Design and synthesis of oridonin derivatives as cytotoxic agents. Nat Prod Res 2025; 39:550-558. [PMID: 37902442 DOI: 10.1080/14786419.2023.2275287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Oridonin is one of the ent-kaurane diterpenes that have been studied extensively for various bioactivities. In an effort to expand natural scaffold-based library as anticancer agents, we have designed and synthesised a number of novel oridonin derivatives and evaluated their bioactivities on a panel of human cancer cell lines (HCT116, A375, MCF-7, HepG2, and A549). Compound 4b bearing a 4-fluorophenyl moiety was found to be the most active compound with an IC50 value of 0.3 μM against MCF-7 cells, which was 7.4-fold more active than oridonin. This study could provide some insightful information for further synthesis of oridonin derivatives as anticancer agents.
Collapse
Affiliation(s)
- Chen-Liang Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, P. R. China
| | - Chi-Yuan Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Xiao-Min Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Ka Hei Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Yi-Xuan Xia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Yin-Xiao Du
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Lu-Tai Pan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, P. R. China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|
5
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Wu Q, Gao X, Lin Y, Wu C, Zhang J, Chen M, Wen J, Wu Y, Tian K, Bao W, Sun P, Zhu A. Integrating Epigenetics, Proteomics, and Metabolomics to Reveal the Involvement of Wnt/β-Catenin Signaling Pathway in Oridonin-Induced Reproductive Toxicity. TOXICS 2024; 12:339. [PMID: 38787118 PMCID: PMC11126149 DOI: 10.3390/toxics12050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Oridonin is the primary active component in the traditional Chinese medicine Rabdosia rubescens, displaying anti-inflammatory, anti-tumor, and antibacterial effects. It is widely employed in clinical therapy for acute and chronic pharyngitis, tonsillitis, as well as bronchitis. Nevertheless, the clinical application of oridonin is significantly restricted due to its reproductive toxicity, with the exact mechanism remaining unclear. The aim of this study was to investigate the mechanism of oridonin-induced damage to HTR-8/SVneo cells. Through the integration of epigenetics, proteomics, and metabolomics methodologies, the mechanisms of oridonin-induced reproductive toxicity were discovered and confirmed through fluorescence imaging, RT-qPCR, and Western blotting. Experimental findings indicated that oridonin altered m6A levels, gene and protein expression levels, along with metabolite levels within the cells. Additionally, oridonin triggered oxidative stress and mitochondrial damage, leading to a notable decrease in WNT6, β-catenin, CLDN1, CCND1, and ZO-1 protein levels. This implied that the inhibition of the Wnt/β-catenin signaling pathway and disruption of tight junction might be attributed to the cytotoxicity induced by oridonin and mitochondrial dysfunction, ultimately resulting in damage to HTR-8/SVneo cells.
Collapse
Affiliation(s)
- Qibin Wu
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350108, China
| | - Xinyue Gao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yifan Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Caijin Wu
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350108, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Jiaxin Wen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Kun Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350108, China
| | - An Zhu
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
7
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
8
|
Xiao HT, Jin J, Zheng ZG. Emerging role of GCN5 in human diseases and its therapeutic potential. Biomed Pharmacother 2023; 165:114835. [PMID: 37352700 DOI: 10.1016/j.biopha.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Jing Jin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Zhou F, Gao H, Shang L, Li J, Zhang M, Wang S, Li R, Ye L, Yang S. Oridonin promotes endoplasmic reticulum stress via TP53-repressed TCF4 transactivation in colorectal cancer. J Exp Clin Cancer Res 2023; 42:150. [PMID: 37337284 DOI: 10.1186/s13046-023-02702-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The incidence of colorectal cancer and cancer death rate are increasing every year, and the affected population is becoming younger. Traditional Chinese medicine therapy has a unique effect in prolonging survival time and improving the prognosis of patients with colorectal cancer. Oridonin has been reported to have anti-cancer effects in a variety of tumors, but the exact mechanism remains to be investigated. METHODS Cell Counting Kit-8 assay (CCK8) and 5-Ethynyl-2'-deoxyuridine (EdU) staining assay, Tranwell, and Wound healing assays were performed to measure cell proliferation, invasion, and migration capacities, respectively. The protein and mRNA expression levels of various molecules were reflected by Western blot and Reverse Transcription quantitative Polymerase Chain Reaction (qRT-PCR). Transcription Factor 4 (TCF4) and its target genes were analyzed by Position Weight Matrices (PWMs) software and the Gene Expression Omnibus (GEO) database. Immunofluorescence (IF) was performed to visualize the expression and position of Endoplasmic Reticulum (ER) stress biomarkers. The morphology of the ER was demonstrated by the ER tracker-red. Reactive Oxygen Species (ROS) levels were measured using a flow cytometer (FCM) or fluorescent staining. Calcium ion (Ca2+) concentration was quantified by Fluo-3 AM staining. Athymic nude mice were modeled with subcutaneous xenografts. RESULTS Oridonin inhibited the proliferation, invasion, and migration of colorectal cancer, and this effect was weakened in a concentration-dependent manner by ER stress inhibitors. In addition, oridonin-induced colorectal tumor cells showed increased expression of ER stress biomarkers, loose morphology of ER, increased vesicles, and irregular shape. TCF4 was identified as a regulator of ER stress by PWMs software and GEO survival analysis. In vitro and in vivo experiments confirmed that TCF4 inhibited ER stress, reduced ROS production, and maintained Ca2+ homeostasis. In addition, oridonin also activated TP53 and inhibited TCF4 transactivation, further exacerbating the elevated ROS levels and calcium ion release in tumor cells and inhibiting tumorigenesis in colorectal cancer cells in vivo. CONCLUSIONS Oridonin upregulated TP53, inhibited TCF4 transactivation, and induced ER stress dysregulation in tumor cells, promoting colorectal cancer cell death. Therefore, TCF4 may be one of the important nodes for tumor cells to regulate ER stress and maintain protein synthesis homeostasis. And the inhibition of the TP53/TCF4 axis plays a key role in the anti-cancer effects of oridonin.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Haiyang Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Mengqi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuhan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Runze Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Clinical Nutrition Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
10
|
Bhosale M, Jeelani I, Nawaz A, Abe H, Padhye S. Site-Specific Binding of Anticancer Drugs to Human Serum Albumin. Anticancer Agents Med Chem 2022; 22:2876-2884. [PMID: 35331098 DOI: 10.2174/1871520622666220324094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
The interaction of drugs with proteins plays a very important role in the distribution of the drug. Human serum albumin (HSA) is the most abundant protein in the human body and showing great binding characteristics has gained a lot of importance pharmaceutically. It plays an essential role in the pharmacokinetics of a number of drugs and hence several reports are available on the interaction of drugs with HSA. It can bind to cancer drugs and thus it is crucial to look at the binding characteristics of these drugs with HSA. Herein we summarize the binding properties of some anti-cancer drugs by specifically looking into the binding site with HSA. The number of drugs binding at Sudlow's site I situated in subdomain II A is more than the drugs binding at Sudlow's site II.
Collapse
Affiliation(s)
- Mrinalini Bhosale
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| | - Ishtiaq Jeelani
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Hitoshi Abe
- Faculty of Engineering, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
| | - Subhash Padhye
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| |
Collapse
|
11
|
Min L, Wang H, Qi H. Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway. Am J Transl Res 2022; 14:1551-1566. [PMID: 35422920 PMCID: PMC8991133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
AIM The purpose of the present research was to investigate the effect and mechanism of Astragaloside IV (AS-IV) on liver cancer progression in vivo and in vitro. Since M1 macrophages play an essential role in suppressing tumors, while M2 macrophages can accelerate the incidence and progression of tumors by promoting angiogenesis, increasing tumor cell invasion and inhibiting tumor immune response, the effect and mechanism of AS-IV on macrophage polarization and their role in the development of HCC was explored. METHODS The effects of different concentrations of AS-IV (0, 50, 80, 100, 120, and 150 μM) on the capacity of hepatocellular carcinoma (HCC) cells to proliferate, migrate, and invade were detected. THP-1 cells were subjected to incubation in PMA for the purpose of stimulating differentiation into M0 macrophages. These macrophages were treated using LPS, IFN-γ, and PMA to produce M1 macrophages or treated using PMA, IL-13, and IL-4 to produce M2 macrophages. HCC cells and M1 or M2 macrophages were co-cultured for 48 hours, then the cell proliferation and migration were measured. The MTT assay was employed to determine cell viability. The capability of the cells to migrate and invade was investigated utilizing the Transwell assay and the wound healing assay. The expression of the M2 macrophage CD206 in macrophages treated with AS-IV was evaluated by flow cytometry. The expression of p-signal transducer and activator of transcription 3 (STAT3), phosphorylated (p)-NF-κB, and toll-like receptor 4 (TLR4) in macrophages was measured after treatment with AS-IV and M2 induction. To verify the function of the TLR4/NF-κB/STAT3 signaling pathway, TLR4 expression was knocked down in M2 macrophages, then the proliferation and migration and the M2 macrophage markers of HCC cells were measured. The effect of AS-IV on HCC in vivo was confirmed by a subcutaneous tumor mouse model. AS-IV was 2 was administered by gavage (0, 40, 80, and 100 mg/kg) for every 3 days. The tumor volume and weight were recorded. RESULTS AS-IV suppressed the capacities of HCC cells to proliferate, migrate, and invade in a dose-dependent way. M2 macrophages could promote the proliferative, migratory, and invasive ability of Huh-7 cells, which were suppressed by AS-IV. AS-IV directly attenuated the expression of M2 macrophage markers, indicating that AS-IV can inhibit macrophage M2 polarization. M2 macrophages stimulated the expression of p-STAT3, p-NF-κB, and TLR4, while AS-IV decreased the expression compared to the M2 group, indicating that AS-IV can regulate the TLR4/NF-κB/STAT3 signaling pathway. TLR4 small interfering RNA (siRNA/si) inhibited the proliferation of Huh-7 cells. The tumor volume, as well as weight of mice, was significantly reduced by AS-IV, indicating the antitumor impact of AS-IV in vivo. CONCLUSION AS-IV can inhibit the proliferative, invasive, and migratory ability of liver cancer through the suppression of the M2 polarization of macrophages, and the mechanism may involve the TLR4/NF-κB/STAT3 signaling pathway. The present study indicates that AS-IV could be an alternative drug to treat liver cancer, and the polarization of macrophages may be a novel treatment target for HCC.
Collapse
Affiliation(s)
- Liang Min
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| | - Haiqiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| | - Hong Qi
- Department of Traditional Chinese Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200127, China
| |
Collapse
|
12
|
Hua X, Wu P, Gao GS, Ye XL. Combination of oridonin and TRAIL induces apoptosis in uveal melanoma cells by upregulating DR5. Int J Ophthalmol 2021; 14:1834-1842. [PMID: 34926196 DOI: 10.18240/ijo.2021.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the inhibitory effect of the combined use of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and oridonin on choroidal melanoma cell lines, and to explore its underlying mechanism. METHODS MUM-2B and C918 cells were treated with different concentrations of TRAIL and oridonin, and MTT assay used to evaluate the inhibition rate of the two compounds on cells. Then, the cell cycle distribution and apoptosis were detected by flow cytometry, and changes in apoptosis-related proteins such as death receptor 5 (DR5), a-caspase-3, and x-linked inhibitor of apoptosis protein (XIAP) were detected by Western blot. MUM-2B cells were transfected with si-DR5, which interfered with the expression of the DR5 gene. MTT and Western blot assay were used to detect cell activity and apoptosis-related proteins. RESULTS When TRAIL and oridonin were simultaneously administered to the MUM-2B cells, the apoptosis rate was significantly higher than that by the two drugs individually. However, the effect of combined use of TRAIL and oridonin on C918 cells was not significantly different from that used alone. Cell cycle analysis showed that TRAIL and oridonin could induce G2/M arrest in MUM-2B cells. The Western blot results showed that the protein expression levels of the DR5, a-caspase-3, and BAX increased, while the expression levels of the anti-apoptosis-related proteins XIAP and BCL-2 were suppressed when TRAIL and oridonin simultaneously administered to MUM-2B cells. Interfering the expression of DR5 gene in MUM-2B cells could reverse the inhibitory effect of oridonin and TRAIL on the proliferation and apoptosis induction of MUM-2B cells. CONCLUSION The inhibitory effects of oridonin and TRAIL on MUM-2B cells are significantly enhanced when they were administered as a combined treatment, which may ascribe to up-regulation of DR5.
Collapse
Affiliation(s)
- Xin Hua
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Peng Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang Province, China
| | - Xiao-Lei Ye
- College of Life Sciences, China West Normal University, Nanchong 637009, Sichuan Province, China
| |
Collapse
|
13
|
Acetylation inhibition alleviates energy metabolism in muscles of minipigs varying with the type of muscle fibers. Meat Sci 2021; 184:108699. [PMID: 34700176 DOI: 10.1016/j.meatsci.2021.108699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/22/2022]
Abstract
In this study, we investigated whether preslaughter chemical-induced acetylation affected postmortem energy metabolism and pork quality. Thirty pigs were randomly assigned to control, acetyltransferase inhibitor (ATi) or deacetyltransferase inhibitor treatments. Serum, trapezius, longissimus lumborum, psoas major, semimembranosus and semitendinosus muscles were taken for analyses. The results indicated that ATi treatment significantly reduced the activities of lactate dehydrogenase and creatine kinase and heat shock protein 70 in serum (P < 0.05). ATi treatment increased ATP and glycogen content, but decreased lactic acid content in trapezius, psoas major and semitendinosus muscles (P < 0.05). A total of 13 acetylated proteins bands were identified and the deacetylation of creatine kinase may play a key role in slowing down the postmortem energy metabolism in ATi-treated group. In addition, ATi treatment reduced the rate of postmortem glycolysis in muscles with higher oxidative but lower glycolytic fibers. These findings provide a new insight into the underlying mechanism on muscle-specific postmortem changes of pork quality.
Collapse
|
14
|
Du X, Que W, Hu X, Yu X, Guo WZ, Zhang S, Li XK. Oridonin Prolongs the Survival of Mouse Cardiac Allografts by Attenuating the NF-κB/NLRP3 Pathway. Front Immunol 2021; 12:719574. [PMID: 34566976 PMCID: PMC8462485 DOI: 10.3389/fimmu.2021.719574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Background Oridonin (Ori), the main bioactive ingredient of the natural anti-inflammatory herb Rabdosia rubescens, could be a covalent inhibitor of the NLRP3 inflammasome. Solid organ transplantation provides a life-saving optional therapy for patients with end-stage organ dysfunction. The long-term survival of solid organ transplantation remains restricted because of the possibility of rejection and the toxicity, infection, cardiovascular disease, and malignancy related to immunosuppressive (IS) drugs. However, the pathogenic mechanisms involved remain unclear. The ideal IS drugs to prevent allograft rejection have not been identified. Here, we investigated whether Ori could prolong the in vivo survival of completely mismatched cardiac allografts. Methods The cardiac transplantation models were conducted among three groups of mice from C57BL/6NCrSlc (B6/N) or C3H/HeNSlc (C3H) to C3H: the syngeneic and the allogeneic group, whose recipients were treated with vehicle of Ori, and the Ori treatment group, in which the recipients were transplanted hearts from MHC-I mismatched donors and treated with different dosages of Ori from post-operative day (POD) 0 to 7. Then, we investigated the effect of Ori on bone marrow-derived dendritic cell (BMDC) and allogeneic mixed lymphocyte reaction in vitro. Results Ori with 3, 10, and 15 mg/kg Ori could prolong the survival (MST = 22.8, 49.2, and 65.3 days, respectively). We found that infiltrating CD8+ T cells and macrophages were decreased, and regulatory T cells (Tregs) were expanded in allografts on POD7. The mRNA level of IL-1β and IFN-γ of allografts was downregulated. Mechanistically, Ori-treated BMDCs suppressed T-cell proliferation and IFN-γ+CD4+ T-cell differentiation, along with the expansion of Tregs and IL-10+CD4+ T cells. Ori inhibited NOD, LRR-, and pyrin domain-containing protein 3 (NLRP3) expression; attenuated NF-κB and IκBα phosphorylation in LPS-activated BMDCs; downregulated NLRP3, Caspase-1, IL-1β, IL-18, and IFN-γ; and upregulated IL-10 expression. Conclusions Our findings highlight the potential of Ori as a novel and natural IS agent to improve transplant tolerance. Ori could exert IS activity through decreasing IL-1β and IL-18 production and Th1 differentiation and proliferation and expanding Tregs via inhibiting the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Weitao Que
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xiao Yu
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
15
|
Zhao X, Zhang Q, Wang Y, Li S, Yu X, Wang B, Wang X. Oridonin induces autophagy-mediated cell death in pancreatic cancer by activating the c-Jun N-terminal kinase pathway and inhibiting phosphoinositide 3-kinase signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1084. [PMID: 34422996 PMCID: PMC8339817 DOI: 10.21037/atm-21-2630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Oridonin is a diterpenoid isolated from Rabdosia rubescens that has potent anticancer activity. This study set out to investigate the antitumor effects of oridonin in pancreatic carcinoma (PC) and their underlying mechanisms. Methods To investigate the antitumor effects of oridonin, we developed an orthotopic C57BL/6 mouse model of PC. After successful establishment of the model, the mice were given a daily intraperitoneal injection of phosphate-buffered saline containing 0.1% dimethyl sulfoxide or oridonin for 2 weeks. In vitro experiments including MTT assay and flow cytometry were performed to examine cell viability and apoptosis. Panc-1 and Panc02 cells were transfected with a green fluorescent protein (GFP)-LC3 plasmid. After the cells had been treated with or without 20 μM oridonin and 10 μM 3-MA, the formation of GFP-LC3 puncta was detected by fluorescence microscopy. The levels of the autophagy-related proteins Beclin-1, LC3, and p62 were measured by western blotting. Results Oridonin inhibited the proliferation of PC cells and induced their apoptosis in vitro and in vivo. Treatment with oridonin also led to an increase in the quantity of LC3B II protein and upregulation of the p62 and Beclin-1 levels in PC cells. The effects of oridonin on PC cell proliferation, apoptosis, and autophagy were mediated via the simultaneous inhibition of the phosphoinositide 3-kinase pathway and activation of the c-Jun N-terminal kinase pathway. Conclusions Our study is the first to confirm the antitumor and autophagy-activating effects of oridonin on PC cells. In light of these results, oridonin may be a promising therapeutic agent for PC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Qi Zhang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuanyuan Wang
- Department of Pharmacology, Tianjin Children's Hospital, Tianjin, China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Botao Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| |
Collapse
|
16
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
17
|
Li X, Zhang CT, Ma W, Xie X, Huang Q. Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2021; 12:645824. [PMID: 34295243 PMCID: PMC8289702 DOI: 10.3389/fphar.2021.645824] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oridonin, as a natural terpenoids found in traditional Chinese herbal medicine Isodon rubescens (Hemsl.) H.Hara, is widely present in numerous Chinese medicine preparations. The purpose of this review focuses on providing the latest and comprehensive information on the pharmacology, pharmacokinetics and toxicity of oridonin, to excavate the therapeutic potential and explore promising ways to balance toxicity and efficacy of this natural compound. Information concerning oridonin was systematically collected from the authoritative internet database of PubMed, Elsevier, Web of Science, Wiley Online Library and Europe PMC applying a combination of keywords involving "pharmacology," "pharmacokinetics," and "toxicology". New evidence shows that oridonin possesses a wide range of pharmacological properties, including anticancer, anti-inflammatory, hepatorenal activities as well as cardioprotective protective activities and so on. Although significant advancement has been witnessed in this field, some basic and intricate issues still exist such as the specific mechanism of oridonin against related diseases not being clear. Moreover, several lines of evidence indicated that oridonin may exhibit adverse effects, even toxicity under specific circumstances, which sparked intense debate and concern about security of oridonin. Based on the current progress, future research directions should emphasize on 1) investigating the interrelationship between concentration and pharmacological effects as well as toxicity, 2) reducing pharmacological toxicity, and 3) modifying the structure of oridonin-one of the pivotal approaches to strengthen pharmacological activity and bioavailability. We hope that this review can provide some inspiration for the research of oridonin in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan-Tao Zhang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Respiratory, School of Pharmacy, College of Medical Technology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Yang Q, Ma W, Yu K, Zhang Q, Ye Z, Xia W, Li S. Oridonin Suppresses Human Gastric Cancer Growth in Vitro and in Vivo via Inhibition of VEGF, Integrin β3, and PCNA. Biol Pharm Bull 2020; 43:1035-1045. [PMID: 32612067 DOI: 10.1248/bpb.b19-00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diterpenoid oridonin is an extract from the herb Rabdosia rubescens, commonly used in Traditional Chinese medicine. Oridonin has putative inhibitory activity in many human cancers. This study continued investigations into the therapeutic potential of oridonin against gastric carcinoma, and the underlying mechanism. An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with BGC823 cells was used to examine the cytotoxicity and apoptosis associated with oridonin treatment. RT-PCR and immunocytochemistry results showed evaluated levels of vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), integrin β3, and proliferating cell nuclear antigen (PCNA) in BGC823 cells, or BGC823 xenografts nude mice. The inhibitory effect of oridonin was determined in vivo using the xenograft model, comparing tumor weight and volume, and calculating the tumor inhibition rate. The oridonin treatment and control groups were compared for associations between microvessel density and tumor inhibition rate, VEGF mRNA, integrin β3 mRNA, and PCNA protein. The IC50s of oridonin at 12 and 72 h were 17.08 ± 2.38 and 8.76 ± 0.90 µg/mL, respectively. VEGF protein levels dramatically decreased in a time- and dose-dependent manner with oridonin treatment. BGC823 xenograft growth was notably less in the oridonin treatment groups, responding in a dose-dependent manner. After 14 d of treatment, VEGF, integrin β3, and PCNA levels were dramatically lower, and positively correlated with CD31 levels. Oridonin was associated with inhibition of BGC823 cell growth and tumor angiogenesis, in vitro and in vivo, in a dose-and-time dependent manner with lower levels of VEGF, integrin β3, and PCNA. Oridonin is a potential candidate agent for chemotherapy of gastric carcinoma.
Collapse
Affiliation(s)
- Qiong Yang
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Wengdong Ma
- Department of Gastroenterology, Tangshan Gongren Hospital
| | - Kun Yu
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Qi Zhang
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Zaiyuan Ye
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Wenjie Xia
- Department of General Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Shuguang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Hebe North University
| |
Collapse
|
19
|
Hu X, Wang Y, Gao X, Xu S, Zang L, Xiao Y, Li Z, Hua H, Xu J, Li D. Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia. Mini Rev Med Chem 2020; 20:483-497. [PMID: 31660811 DOI: 10.2174/1389557519666191029121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Valiant Co. Ltd., 11 Wuzhishan Road, YEDA Yantai, Shandong 264006, China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Xiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
20
|
Sheng H, Zhang Y, Nai J, Wang S, Dai M, Lin G, Zhu L, Zhang Q. Preparation of oridonin nanocrystals and study of their endocytosis and transcytosis behaviours on MDCK polarized epithelial cells. PHARMACEUTICAL BIOLOGY 2020; 58:518-527. [PMID: 32501184 PMCID: PMC8641689 DOI: 10.1080/13880209.2020.1767160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/06/2023]
Abstract
Context: Oridonin (ORI) has obvious anticancer effects, but its solubility is poor. Nanocrystal (NC) is a novel nano-drug delivery system for increasing bioavailability for ORI. However, the endocytosis and transcytosis behaviours of oridonin nanocrystals (ORI-NCs) through epithelial membrane are still unclear.Objectives: ORI-NCs were prepared and characterized. The in vitro cytotoxicity and endocytosis and transcytosis process on Madin-Darby canine kidney (MDCK) monolayer were investigated.Materials and methods: Anti-solvent precipitation method was adopted in preparation of ORI-NCs. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were adopted to explore crystallography of ORI-NCs. Sulforhodamine B (SRB) method was used to test the inhibition effect on proliferation of MDCK cells. Quantitative analysis by HPLC was performed to study the endocytosis and transcytosis of ORI-NCs and ORI bulk drug, and the process was observed by confocal laser spectrum microscopy (CLSM) and flow cytometry.Results: The particle size of ORI-NCs was about 274 nm. The crystallography form of ORI was not changed after prepared into NCs. The dissolution rate of ORI-NCs was higher than pure ORI in 120 min. At higher concentrations (34, 84 and 135 μg/mL), ORI-NCs significantly reduced the cell viability compared with free ORI (p < 0.05, p < 0.01). ORI-NCs demonstrated higher endocytosis in MDCK cells than free ORI (p < 0.01). In the transport process, ORI-NC was taken up into cells in an intact form, and excreted out from basolateral membrane of polarized epithelial cells in an intact form. The internalization and transmembrane amount increased as a function of time.Conclusions: ORI-NCs transported through the MDCK monolayers in an intact form.
Collapse
Affiliation(s)
- Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jijuan Nai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaohua Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengmeng Dai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guitao Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
21
|
Ravichandran P, Davis SA, Vashishtha H, Gucwa AL, Ginsburg DS. Nuclear Localization Is Not Required for Tip60 Tumor Suppressor Activity in Breast and Lung Cancer Cells. DNA Cell Biol 2020; 39:2077-2084. [PMID: 33155839 DOI: 10.1089/dna.2020.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tip60 lysine acetyltransferase is a tumor suppressor in most cancers but an oncogene in prostate and gastric cancer. Tip60 is commonly found in the nucleus, where it acetylates proteins involved in transcription, DNA repair, and chromatin; however, it has also been shown to acetylate cytoplasmic targets. In this study, we investigated the relationship between Tip60 localization and breast and lung cancer. In cell fractionation experiments, cancer-derived cell lines showed a shift from nuclear to cytoplasmic endogenous Tip60 compared with cell lines derived from normal cells. With immunofluorescence, we observed four different localization patterns of overexpressed Tip60 and found that cancer cells had increased cytoplasmic localization of Tip60 compared with HEK-293 cells. The addition of a nuclear localization signal (NLS) increased the number of cells containing nuclear Tip60, whereas mutation of a putative endogenous NLS increased the number of cells with cytoplasmic Tip60. Overexpression of Tip60 increased cancer cell line sensitivity to paclitaxel regardless of changes in localization. These results suggest that dysregulation of Tip60 in breast and lung cancer is not limited to reduced expression but may also involve subcellular localization.
Collapse
Affiliation(s)
| | - Simon A Davis
- New York Structural Biology Center, New York, New York, USA
| | | | - Azad L Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, New York, USA
| | - Daniel S Ginsburg
- Department of Natural Sciences, Immaculata University, Immaculata, Pennsylvania, USA
| |
Collapse
|
22
|
Shaikh S, Younis M, Rehman FU, Jiang H, Wang X. Specific Oxide Nanoclusters Enhance Intracellular Reactive Oxygen Species for Cancer-Targeted Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9472-9480. [PMID: 32701296 DOI: 10.1021/acs.langmuir.0c01378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bio-nanotechnology based cancer therapeutics exponentially increase every year. A therapeutic strategy to induce intracellular reactive oxygen species (ROS) has received promising success in oncotherapy. In this study, the new strategy has been exploited by the treatment of iridium (Ir) and Fe2+ ions with cancer cells to biosynthesize the biocompatible fluorescent iridium oxide (IrO2) and iron oxide nanoclusters (NCs) under the specific redox heterogeneous microenvironment of these diseased cells and tumors. The hydroxyl radical produced by the presence of Fe2+ and H2O2 in cancer cells apparently increased the ROS level in cancer cells during the process of biosynthesized NCs and, hence, simultaneously instigated apoptosis of relevant cells. Therefore, intracellular ROS-mediated in situ biosynthesis of IrO2 and iron oxide NCs may also act as anticancer agents and provide a promising pathway for targeted cancer therapy.
Collapse
Affiliation(s)
- Sana Shaikh
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Muhammad Younis
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Fawad Ur Rehman
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
23
|
Zhang HL, Zhang Y, Yan XL, Xiao LG, Hu DX, Yu Q, An LK. Secondary metabolites from Isodon ternifolius (D. Don) Kudo and their anticancer activity as DNA topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1 inhibitors. Bioorg Med Chem 2020; 28:115527. [PMID: 32345458 DOI: 10.1016/j.bmc.2020.115527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Based on DNA topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibition of the ethanol extract of the roots of Isodon ternifolius (D. Don) Kudo (Labiatae), its secondary metabolites has been studied. Two new compounds, an ent-abietane diterpenoid isodopene A (1) and a 2,3-seco-triterpene isodopene B (13), along with 25 known compounds were isolated. Their structures were elucidated by spectroscopic analysis and theoretical calculations. The enzyme-based assays indicated that 1 and 13 showed strong (+++) and moderate (++) TOP1 inhibition, respectively. Two chalcone derivatives 11 and 12 were firstly found as dual TDP1 and TOP1 natural inhibitors, and showed synergistic effect with the clinical TOP1 inhibitors topotecan in MCF-7 cells. Compounds 8, 16, and 22 acted as TOP1 catalytic inhibitors with equipotent TOP1 inhibition to camptothecin (++++). Compounds 7 and 8 exhibited significant cytotoxicity against MCF-7, A549, and HCT116 cells with GI50 values in the range of 2.2-4.8 μM. This work would provide valuable information that secondary metabolites from I. ternifolius could be developed as anticancer agents.
Collapse
Affiliation(s)
- Hong-Li Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Long-Gao Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Clinical Pharmacy (School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|
24
|
Mustachio LM, Roszik J, Farria A, Dent SYR. Targeting the SAGA and ATAC Transcriptional Coactivator Complexes in MYC-Driven Cancers. Cancer Res 2020; 80:1905-1911. [PMID: 32094302 DOI: 10.1158/0008-5472.can-19-3652] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Targeting epigenetic regulators, such as histone-modifying enzymes, provides novel strategies for cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both during normal development and in oncogenesis. As transcription factors, MYC family members are difficult to target with small-molecule inhibitors, but the acetyltransferase domain and the bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. GCN5 is part of two distinct multiprotein histone-modifying complexes, SAGA and ATAC. This review summarizes key findings on the roles of SAGA and ATAC in embryo development and in cancer to better understand the functional relationships of these complexes with MYC family members, as well as their future potential as therapeutic targets.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aimee Farria
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharon Y R Dent
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Li H, Hong J, Wijayakulathilaka WSMA. Long non-coding RNA SNHG4 promotes cervical cancer progression through regulating c-Met via targeting miR-148a-3p. Cell Cycle 2019; 18:3313-3324. [PMID: 31590627 DOI: 10.1080/15384101.2019.1674071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long non-coding RNA (lncRNA) SNHG4 has been shown to be associated with the development of a variety of cancers. The purpose of this study was to investigate the effect of SNHG4 on cervical cancer (CC) and the corresponding mechanism. The qRT-PCR was used to determine the expressions of SNHG4 and miR-148a-3p in CC cell lines and tissues. Cell apoptosis and proliferation were measured by flow cytometry and MTT assay, respectively. The interaction between SNHG4, miR-148a-3p and c-Met was verified by bioinformatics, dual-luciferase reporter gene and RNA immunoprecipitation (RIP), and the effect of SNHG4 on the growth of CC tumor in vivo was explored. The expression of SNHG4 was increased in both CC cell lines and tissues, while the expression of miR-148a-3p was down-regulated. Meanwhile, silencing SNHG4 remarkably inhibited CC cell proliferation and promoted apoptosis. In addition, miR-148a-3p was a direct target gene of SNHG4, and down-regulation of miR-148a-3p could observably reverse the effect of silencing SNHG4 on the proliferation and apoptosis of CC cells. More importantly, SNHG4 could up-regulate the expression of c-Met by targeting and interacting with miR-148a-3p. Finally, in vivo experiments confirmed that silence SNHG4 down-regulated the expression of c-Met by promoting miR-148a-3p, and ultimately suppressed the growth of CC tumor in vivo. In conclusion, SNHG4 could be used as a competitive endogenous RNA to bind to miR-148a-3p, thereby up-regulating the expression of c-Met and ultimately promoting the progression of CC, which provided a potential therapeutic target for the targeted treatment of CC.
Collapse
Affiliation(s)
- Hanchen Li
- Foreign Department-Department of Clinical Medicine, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | - Jiang Hong
- Foreign Department-Department of Clinical Medicine, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | | |
Collapse
|
26
|
Shi M, Deng Y, Yu H, Xu L, Shi C, Chen J, Li G, Du Y, Wang YG. Protective Effects of Oridonin on Acute Liver Injury via Impeding Posttranslational Modifications of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) in the Toll-Like Receptor 4 (TLR4) Signaling Pathway. Mediators Inflamm 2019; 2019:7634761. [PMID: 31611735 PMCID: PMC6757283 DOI: 10.1155/2019/7634761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Recent researches have demonstrated that inflammation-related diseases are effectively regulated by posttranslational modifications (PTMs) including phosphorylation and acetylation. Our previous study found a new acetyltransferase inhibitor, oridonin, which had a protective effect on acute liver injury (ALI). In the present study, we further investigated its protective mechanism against D-galactosamine (D-Gal) combined with lipopolysaccharide- (LPS-) induced ALI in mice. METHODS Intraperitoneal injections of LPS (40 μg/mouse)/D-Gal (5 mg/mouse) were given to the mice, and the experimental group was pretreated with intraperitoneal injection of oridonin (0.2 mg/mouse). To elucidate the protective mechanism of oridonin, we collected liver specimens and used RNA-sequencing (RNA-Seq) analysis. We focused on the genes that were upregulated by LPS/D-Gal and downregulated after pretreatment with oridonin. The downregulated genes examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were further verified by real-time polymerase chain reaction (PCR) and western blot. RESULTS GO analysis showed that genes that were downregulated after pretreatment with oridonin were extremely concentrated in immune response, chemotaxis, and inflammatory response. Real-time PCR confirmed that the expression of these genes was upregulated by LPS/D-Gal induction and reduced after treatment with oridonin, which was consistent with RNA-Seq results. KEGG pathway analysis showed a significantly enriched downregulated gene that was present in the Toll-like receptor (TLR) 4 signaling cascade. Our results manifested that phosphorylation levels of upstream signaling molecules in the TLR4 signaling cascade, including extracellular signal-regulated kinase (ERK), P38, and IκB, were significantly inhibited by oridonin. Furthermore, LPS/D-Gal stimulation triggered posttranslational modifications of related gene loci in the TLR4 signaling pathway, including phosphorylation of IL-1 receptor-associated kinase 4 (IRAK4 T345/S346) and acetylation of IRAK4 (K34). However, after treatment with oridonin, the modification pattern of IRAK4 expression stimulated by LPS/D-Gal was suggestively attenuated. CONCLUSION Our study revealed that the protective effects of oridonin on LPS/D-Gal-induced ALI mediated by inhibition of the PTMs of IRAK4, including phosphorylation of T345/S346 and acetylation of K34.
Collapse
Affiliation(s)
- Min Shi
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Yilin Deng
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Heguo Yu
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research (SIPPR), Institutes of Reproduction and Development, Fudan University, Shanghai 200000, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Cuicui Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiong Chen
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guangming Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Yu-gang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
27
|
Lou S, Xu J, Wang B, Li S, Ren J, Hu Z, Xu B, Luo F. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:814-825. [PMID: 31314060 DOI: 10.1093/abbs/gmz071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that the expression of the long non-coding RNA (lncRNA) AFAP1-AS1 in pancreatic cancer is negatively correlated with survival and prognosis. However, the effects of oridonin and lncRNA AFAP1-AS1 on the epithelial-to-mesenchymal transition (EMT) and migration of pancreatic cancer cells have not been fully elucidated. Surgery is the only potentially curative method for pancreatic cancer, but postoperative recurrence and metastasis are common. The aim of the present study was to assess the effect of oridonin and lncRNA AFAP1-AS1 silencing on pancreatic cancer cells. The pancreatic cancer cell lines BxPC-3 and PANC-1 cells were transfected with siAFAP1-AS1 and its negative control (siNC). After that, oridonin was used to treat the siAFAP1-AS1-transfected cells. The expression of lncRNA AFAP1-AS1 was downregulated in the pancreatic cancer cell lines BxPC-3 and PANC-1. The apoptosis and cell cycle progression of pancreatic cancer cells were evaluated by flow cytometry and Hoechst 33258 staining. Metastasis and invasion of BxPC-3 and PANC-1 cells were detected by transwell migration assay, real-time cell analysis, and western blot analysis. Cells were transfected with the lentiviral siAFAP1-AS1 and siNC, and tumorigenesis was evaluated in BALB/C nude mice. Immunohistochemical examination was used to verify the effects of oridonin and siAFAP1-AS1 on pancreatic cancer. The results demonstrated that the combination of oridonin and siAFAP1-AS1 inhibited pancreatic cancer cell proliferation, induced apoptosis, arrested cell cycle progression, prevented the migration, regulated EMT-related protein expression in BxPC-3 and PANC-1 cells, and inhibited pancreatic cancer cell tumorigenicity and EMT in nude mice.
Collapse
Affiliation(s)
- Songmei Lou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bili Wang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuquan Li
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jun Ren
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Zhu H, Zhang C, Guo Z, Yang J, Guo J, Chen C, Yao Q, Liu F, Zhang Q, Gao F. Oridonin induces Mdm2-p60 to promote p53-mediated apoptosis and cell cycle arrest in neuroblastoma. Cancer Med 2019; 8:5313-5326. [PMID: 31339234 PMCID: PMC6718599 DOI: 10.1002/cam4.2393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/28/2019] [Accepted: 06/16/2019] [Indexed: 12/26/2022] Open
Abstract
Oridonin could induce NB (neuroblastoma) cells growth inhibition by inducing apoptosis and cell cycle arrest, and the molecular mechanisms behind the effects deserve to be further explored. Here, oridonin was confirmed to cause the reactivation of p53 (cellular tumor antigen p53) to promote the expression of a series of apoptosis‐ and cell cycle arrest‐related proteins for the biological effects. During the process, oridonin relied on the caspase activation to cleave p53‐induced Mdm2 (E3 ubiquitin‐protein ligase Mdm2) to generate Mdm2‐p60. The generation of Mdm2‐p60 stabilized p53, and resulted in p53 accumulation for p53 continuous activation. In our research, it was also found that the reactivation of p53 induced by oridonin was closely related with the generation of ROS (reactive oxygen species). Taken together, these findings explain that oridonin exerts its anticancer activity partially by targeting the Mdm2‐p53 axis in NB cells, which lay an experimental base for future research of exploring the effects and molecular mechanisms of oridonin.
Collapse
Affiliation(s)
- Han‐Qing Zhu
- Department of Oncology, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chao Zhang
- Department of Geriatrics, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhu‐Ying Guo
- Department of Oncology, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun‐Mei Yang
- Department of Clinical LaboratoryChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jia‐Hui Guo
- Department of Oncology, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chen Chen
- Department of Oncology, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiang‐Hua Yao
- Department of PediatricsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Feng Liu
- Department of Oncology, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Quan‐Wu Zhang
- Department of PathologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Feng‐Hou Gao
- Department of Oncology, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
29
|
Malek V, Sharma N, Gaikwad AB. Histone Acetylation Regulates Natriuretic Peptides and Neprilysin Gene Expressions in Diabetic Cardiomyopathy and Nephropathy. Curr Mol Pharmacol 2019; 12:61-71. [PMID: 30465518 DOI: 10.2174/1874467212666181122092300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Natriuretic peptide system (NPS) alterations are involved in pathogenesis of diabetic cardiomyopathy (DCM) and nephropathy (DN), however its epigenetic regulation is still unclear. Interestingly, histone acetylation epigenetically regulates neprilysin expression in Alzheimer's disease. OBJECTIVES The present study was aimed at delineating role of histone acetylation in regulation of NPS in DCM and DN. METHODS Streptozotocin (55 mg/kg, i.p.)-induced diabetic male Wistar rats were used to mimic pathogenesis of DCM and DN. After haemodynamic measurements, all the rat's plasma, heart and kidney were collected for biochemistry, ELISA, protein isolation and western blotting, RT-PCR and chromatin immunoprecipitation (ChIP) assay. RESULTS Diabetic rats heart and kidney exhibited activation of NF-κB and TGF-β signalling with increased histone acetyl transferases (PCAF/CBP) expressions and augmented H2AK5Ac, H2BK5Ac, H3K18Ac, and H4K8Ac levels. ChIP assay results showed increased enrichment of H3K18Ac and H2BK5Ac at Nppa, Nppb (Heart) and Mme promoter (Heart/Kidney) in diabetic rats. Enrichment of H2AK5Ac was augmented on Nppa and Mme promoters in diabetic heart, while it remained unchanged on Nppb promoter in heart and Mme promoter in kidney. CONCLUSION Augmented histone acetylation at promoter regions of NPS gene(s), at least in a part, is responsible for increased expressions of ANP, BNP and NEP in diabetic heart and kidney. Hence, histone acetylation inhibitors can be considered as novel therapeutic targets against DCM and DN.
Collapse
Affiliation(s)
- Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
30
|
Luo D, Yi Y, Peng K, Liu T, Yang J, Liu S, Zhao W, Qu X, Yu W, Gu Y, Wan S. Oridonin derivatives as potential anticancer drug candidates triggering apoptosis through mitochondrial pathway in the liver cancer cells. Eur J Med Chem 2019; 178:365-379. [PMID: 31200238 DOI: 10.1016/j.ejmech.2019.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
The biological function of the natural ent-kaurene diterpenoid isolated from genus Isodon, oridonin, has been intensively studied. However, its mechanism studies and clinical applications were hampered by its moderate biological activities. In order to enlarge the applied range of oridonin and explore its mechanism of action, a series of derivatives were designed and synthesized based on the structure of oridonin. Some of the derivatives were significantly more potent than oridonin against four cancer cell lines. Especially, the most potent compound 20 markedly inhibited the proliferation of well differentiated HepG2 and poorly differentiated PLC/PRF/5 cells, with IC50 values as low as 1.36 μM and 0.78 μM respectively, while the IC50 values of oridonin are 8.12 μM and 7.41 μM. We found that compound 20 inhibited liver cancer cell proliferation via arresting cell cycle at G1 phase. Moreover, it induced liver cancer cell apoptosis by decreasing the mitochondrial membrane potential, increasing intracellular reactive oxygen species level and inducing the expression of apoptosis-related proteins. Furthermore, compound 20 significantly inhibited growth of PLC/PRF/5 xenograft tumors in nude mice and had no observable toxic effect. Altogether, these results indicated that compound 20 is a promising lead for liver cancer therapeutics.
Collapse
Affiliation(s)
- Dongdong Luo
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Yujiao Yi
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Kai Peng
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Tangrong Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Jiayu Yang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Shan Liu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Wanzhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), Nanjing OGpharma Co. Ltd., Nanjing, 210036, China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wengong Yu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China
| | - Yuchao Gu
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China.
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, and Yushan Road 5, Qingdao, 266003, China.
| |
Collapse
|
31
|
Zhou M, Yi Y, Hong L. Oridonin Ameliorates Lipopolysaccharide-Induced Endometritis in Mice via Inhibition of the TLR-4/NF-κBpathway. Inflammation 2019; 42:81-90. [PMID: 30132202 DOI: 10.1007/s10753-018-0874-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endometritis is a health threat to both humans and animals and poses a huge economic burden. Oridonin (Ori) is a natural diterpenoid isolated from the traditional Chinese herb Rabdosiarubescens (R. rubescens) and has multiple health-promoting effects, including antioxidant, anti-inflammatory, and antitumor effects. There is little evidence showing that Ori can effectively treat endometritis, and the relevant mechanisms need to be further clarified. In this study, we investigated the effects of Ori on LPS-induced endometritis in vivo. Additionally, we examined the effects of Ori on LPS-stimulated mouse endometrial epithelial cells (mEECs). The results showed that Ori treatment significantly alleviated LPS-induced endometritis and reduced the activity of myeloperoxidase. ELISA and qPCR results indicated that Ori dose-dependently decreased the expression of TNF-α, IL-1β, and IL-6 both in tissues and in mEECs. In addition, Ori was found to inhibit LPS-induced TLR4/NF-κB signaling pathway activation. These results suggest that Ori effectively attenuates LPS-induced endometritis by inhibiting the TLR4/NF-κB signaling pathway and that Ori might be an effective drug for the prevention and treatment of LPS-induced endometritis.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China
| | - Yinyi Yi
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China.
| |
Collapse
|
32
|
Liang Z, Yu Q, Ji H, Tian D. Tip60-siRNA regulates ABCE1 acetylation to suppress lung cancer growth via activation of the apoptotic signaling pathway. Exp Ther Med 2019; 17:3195-3202. [PMID: 30936993 DOI: 10.3892/etm.2019.7302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a leading cause of cancer-associated mortality and morbidity worldwide. Previous studies have suggested that ATP-binding cassette transporter E1 (ABCE1) acetylation is upregulated in the tissues and cells of lung cancer and is associated with the prognosis of patients with lung cancer. The aim of the present study was to investigate the association between Tat interactive protein 60 kDa (Tip60) expression and ABCE1 acetylation, and the effect of Tip60 on the biological functions of A549 lung carcinoma cells. The expression levels of Tip60 and ABCE1 acetylation were examined using western blot and co-immunoprecipitation (Co-IP) assays in normal bronchial epithelial (HBE) and human lung cancer (A549) cells. The expression of Tip60 then was downregulated in A549 cells using small interfering RNA. Wound healing and Transwell assays were used to assess cell invasion and migration. The biological effects of Tip60 in lung cancer cells were investigated using MTT and flow cytometric assays. Subsequently, tumor xenografts were established to observe the effect of Tip60 on lung cancer in vivo. Western blot and Co-IP assays were performed to investigate the mechanism of Tip60 in A549 cells. Tip60 expression and ABCE1 acetylation were upregulated in the lung cancer cells compared with the normal bronchial epithelial cells. Downregulation of Tip60 decreased the acetylation of ABCE1 and inhibited cell proliferation, invasion and migration. Furthermore, the downregulation of Tip60 activated the apoptotic pathway in order to achieve its suppressive function. In the xenografts, the tumor weight and volume were notably reduced due to the downregulation of Tip60 expression. The results of the present study strongly suggest that Tip60 is a novel target in the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Zongying Liang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China.,Department of Thoracic Surgery, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Qian Yu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Hongtao Ji
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dali Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
33
|
Hou W, Fan Q, Su L, Xu H. Synthesis of Oridonin Derivatives via Mizoroki-Heck Reaction and Click Chemistry for Cytotoxic Activity. Anticancer Agents Med Chem 2019; 19:935-947. [PMID: 30657049 DOI: 10.2174/1871520619666190118121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products (NPs) are evolutionarily chosen "privileged structures" that have a profound impact upon the anticancer drug discovery and development progress. However, the search for new drugs based on structure modification of NPs has often been hindered due to the tedious and complicated synthetic pathways. Fortunately, Mizoroki-Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC) could provide perfect strategies for selective modification on NPs even in the presence of liable functionalities. OBJECTIVE Here, we used oridonin, an ent-kaurane diterpenoid that showed a wide range of biological activities, as a parent molecule for the generation of analogues with anticancer activity. METHODS Derivatives of oridonin were generated based on the structure-activity relationship study of oridonin and synthesized via Mizoroki-Heck reaction and CuAAC. The cytotoxicity of new oridonin derivatives were evaluated on both cancer cells and normal cells. Furthermore, the apoptotic effect and cell cycle arrest effect of the selected potent analogue were evaluated by flow cytometry and western blotting analysis. RESULTS Two series of novel C-14 and C-17 modified derivatives of oridonin were obtained via Heck reaction and copper-catalyzed alkyne-azide cycloaddition (CuAAC), respectively. In vitro antiproliferative activities showed that the introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance cytotoxicity, whereas the introduction of C-17 phenyl ring might exert negative effect. Further studies demonstrated that derivative 23 exhibited broad-spectrum antiproliferative activity, effectively overcame drug-resistance and showed weak cytotoxicity on non-cancer cells. Preliminary mechanistic studies indicated that 23 might cause G2/M phase arrest and induce apoptosis in PC-3 cells. CONCLUSION Mizoroki-Heck reaction and CuAAC are perfect strategies for structure modification of complex natural products. The introduction of C-14 (2-triazole)acetoxyl- moiety could retain or enhance the cytotoxicity of oridonin, the introduction of C-17 phenyl group might exert negative effect on its cytotoxicity.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiuju Fan
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lin Su
- College of Pharmaceutical Science, and Institute of Drug Development & Chemical Biology (IDD&CB), Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
34
|
Chen Y, Jia Y, Song W, Zhang L. Therapeutic Potential of Nitrogen Mustard Based Hybrid Molecules. Front Pharmacol 2018; 9:1453. [PMID: 30618747 PMCID: PMC6304445 DOI: 10.3389/fphar.2018.01453] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
As medicine advances, cancer is still among one of the major health problems, posing significant threats to human health. New anticancer agents features with novel scaffolds and/or unique mechanisms of action are highly desirable for the treatment of cancers, especially those highly aggressive and drug-resistant ones. Nitrogen mustard has been widely used as an anticancer drug since the discovery of its antitumor effect in the 1942. However, the lack of selectivity to cancer cells restricts the wide usage of a mass of nitrogen mustard agents to achieve further clinical significance. Discovery of antitumor hybrids using nitrogen mustards as key functional groups has exhibited enormous potential in the drug development. Introduction of nitrogen mustards resulted in improvement in the activity, selectivity, targetability, safety, pharmacokinetics and pharmacodynamics properties of corresponding lead compounds or agents. Herein, the recently developed nitrogen mustard based hybrids have been introduced in the cancer therapy.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
35
|
Bi E, Liu D, Li Y, Mao X, Wang A, Wang J. Oridonin induces growth inhibition and apoptosis in human gastric carcinoma cells by enhancement of p53 expression and function. ACTA ACUST UNITED AC 2018; 51:e7599. [PMID: 30462771 PMCID: PMC6247279 DOI: 10.1590/1414-431x20187599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022]
Abstract
The tumor suppressive role of oridonin, an active compound extracted from Rabdosia rubescens, has been proven in several gastric cancer (GC) cell lines. The present study aimed to evaluate the effect of oridonin on another GC cell line, SNU-216, and explore the potential mechanisms. The viable cell numbers, cell migration, survival fraction, and cell viability were, respectively, evaluated by trypan blue exclusion assay, wound healing assay, clonogenic assay, and CCK-8 assay. Cell apoptosis was determined by flow cytometry assay and western blot. The expression of p53 was inhibited by transient transfection, and the efficiency was verified by western blot. qRT-PCR was performed to measure the mRNA expression of p53. Western blot was used to evaluate the protein expression of apoptosis, DNA damage and p53 function related factors. We found that oridonin significantly inhibited cell proliferation, migration, and survivability, and enhanced cell apoptosis in SNU-216 cells. However, it had no influence on HEK293 cell viability. Oridonin also remarkably enhanced the anti-tumor effect of cisplatin on SNU-216 cells, as it significantly increased apoptotic cells and decreased cell viability. Moreover, the mRNA and protein expression of p53 was significantly up-regulated in oridonin-treated cells, while Mdm2 expression was down-regulated. Furthermore, oridonin enhanced p53 function and induced DNA damage. Knockdown of p53 or employing the caspase inhibitor, Boc-D-FMK, reversed the effect of oridonin on cell viability and apoptosis-related protein expression. The present study demonstrated that oridonin exhibited an anti-tumor effect on GC SNU-216 cells through regulating p53 expression and function.
Collapse
Affiliation(s)
- Enxu Bi
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Dengqiang Liu
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Youxi Li
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Xuying Mao
- Department of Hepatopancreatobiliary Surgery, Huangdao Branch, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aihua Wang
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| | - Jingtao Wang
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
36
|
Li S, Shi D, Zhang L, Yang F, Cheng G. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2. Exp Ther Med 2018; 16:4859-4864. [PMID: 30546402 DOI: 10.3892/etm.2018.6803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Oridonin is an active component of the traditional Chinese herb Rabdosia rubescens. The present study aimed to evaluate the antitumor effects of oridonin on human non-small cell lung cancer (NSCLC) cells and explore whether oridonin could enhance their radiosensitivity. Oridonin was demonstrated to inhibit the proliferation of SPC-A-1 and HCC827 lung cancer cells in a time- and dose-dependent manner, which was detected using the MTT assay. In addition, pretreatment with oridonin for 24 h prior to irradiation was identified to enhance the radiosensitivity of SPC-A-1 cells. Furthermore, the levels of apoptosis regulator BAX (Bax) and apoptosis regulator Bcl-2 (Bcl-2) were detected by western blotting analysis. The results demonstrated that the level of Bax was increased and the level of Bcl-2 was decreased in SPC-A-1 cells treated with oridonin and irradiation compared with the group that received irradiation alone. These results indicate that oridonin may have a novel application as a radiosensitizing agent for the treatment of human NSCLC.
Collapse
Affiliation(s)
- Sirui Li
- Department of Medical Oncology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163111, P.R. China
| | - Dan Shi
- Department of Radiation, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liangyu Zhang
- Department of Medical Oncology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163111, P.R. China
| | - Fang Yang
- Department of Medical Oncology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163111, P.R. China
| | - Guanghui Cheng
- Department of Radiation, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
37
|
Sun Y, Jiang X, Lu Y, Zhu J, Yu L, Ma B, Zhang Q. Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma. Chem Biol Interact 2018; 296:57-64. [PMID: 30243739 DOI: 10.1016/j.cbi.2018.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Osteosarcoma is the most common primary bone tumor with highly invasive characteristic and low long-term survival. Recently, epithelial-mesenchymal transition (EMT) is reported as a key event in cancer invasion and metastasis. Oridonin, a bioactive diterpenoid, has been proved to possess anti-cancer effects. However, the effect of oridonin on EMT and metastasis of osteosarcoma is unclear. In this study, we investigated the underlying mechanism of oridonin on EMT and metastasis of osteosarcoma. We found that oridonin inhibited migration and invasion of MG-63 and 143B cells. Moreover, oridonin increased the protein expression of E-cadherin and decreased that of N-cadherin and Vimentin. Oridonin upregulated the transcription of E-cadherin and downregulated N-cadherin and Vimentin. Oridonin inhibited the protein and mRNA levels of Snail and Slug. Furthermore, oridonin inhibited TGF-β-induced phosphorylation of Smad 2/3, prevented Smad dimer translocation into the nucleus. Finally, we established metastatic models of osteosarcoma 143B cells, and found that oridonin inhibited lung metastasis in vivo. Oridonin increased the protein expression of E-cadherin and reduced N-cadherin and Vimentin. Oridonin inhibited the protein expression of Snail and Slug as well as Smad 2/3 activation. In conclusion, our study demonstrated that oridonin inhibited EMT and TGF-β1-induced EMT by inhibiting TGF-β1/Smad2/3 signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China.
| | - Xiubo Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Ying Lu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Lisha Yu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
38
|
Zhong L, Xu F, Chen F. Arsenic trioxide induces the apoptosis and decreases NF-κB expression in lymphoma cell lines. Oncol Lett 2018; 16:6267-6274. [PMID: 30333888 PMCID: PMC6176401 DOI: 10.3892/ol.2018.9424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphoma is a type of cancer that develops from certain immune system cells. Arsenic trioxide (ATO) has attracted wide attention owing to its antitumor activities. However, the role of ATO in tumorigenesis and progression remains to be investigated. In the present study, the antitumor function of ATO was investigated in in lymphoma Raji and Jurkat cell lines and the effect of ATO on nuclear factor (NF)-κB expression levels. A Cell Counting kit-8 assay was used to assess cellular proliferation and the degree of cell apoptosis was measured by flow cytometric analysis; these assays demonstrated that ATO inhibited proliferation and promoted the apoptosis of Raji and Jurkat cells in a dose- and time-dependent manner. Western blot analysis revealed that ATO treatment affected the expression of apoptosis-associated proteins by downregulating the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) and upregulating the pro-apoptotic protein Bcl-2-associatedX and the degree of caspase-3 cleavage. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis showed that the mRNA and protein expression levels of NF-κB were downregulated significantly following treatment with 2 µM ATO for 24, 48 and 72 h in the two cell lines. Additionally, immunofluorescence staining indicated that NF-κB expression diminished following ATO treatment in a time-dependent manner. These data indicated that ATO inhibited the proliferation of lymphoma cells by inducing cell apoptosis, which may be associated with the inhibition of the NF-κB signaling pathway. The findings of the present study may lay the foundation for developing a personalized medicine strategy using ATO via targeting of the NF-κB signaling pathway in lymphoma.
Collapse
Affiliation(s)
- Lu Zhong
- Department of Hematology, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200001, P.R. China
| | - Fei Xu
- Department of Ultrasound, The Affiliated Shuhuang Hospital of University of Shanghai Chinese Medicine, Shanghai 201111, P.R. China
| | - Fangyuan Chen
- Department of Hematology, Renji Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200001, P.R. China
| |
Collapse
|
39
|
Jiang JH, Pi J, Jin H, Cai JY. Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S297-S307. [DOI: 10.1080/21691401.2018.1492418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jin-Huan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jiang Pi
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hua Jin
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ji-Ye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Chemistry, Jinan University, GuangZhou, China
| |
Collapse
|
40
|
Oridonin Enhances Radiation-Induced Cell Death by Promoting DNA Damage in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2018; 19:ijms19082378. [PMID: 30104472 PMCID: PMC6121891 DOI: 10.3390/ijms19082378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Although many attempts have been made to improve the efficacy of radiotherapy to treat cancer, radiation resistance is still an obstacle in lung cancer treatment. Oridonin is a natural compound with promising antitumor efficacy that can trigger cancer cell death; however, its direct cellular targets, efficacy as a radiosensitizer, and underlying mechanisms of activity remain unclear. Herein, we report that oridonin exhibits additive cytotoxic and antitumor activity with radiation using the H460 non-small cell lung cancer cell lines. We assessed the effect of oridonin by proliferation, clonogenic, reactive oxygen species (ROS) production, DNA damage, and apoptosis assays. In vitro, oridonin enhanced the radiation-induced inhibition of cell growth and clonogenic survival. Oridonin also facilitated radiation-induced ROS production and DNA damage and enhanced apoptotic cell death. In vivo, the combination of oridonin and radiation effectively inhibited H460 xenograft tumor growth, with higher caspase-3 activation and H2A histone family member X (H2AX) phosphorylation compared with that of radiation alone. Our findings suggest that oridonin possesses a novel mechanism to enhance radiation therapeutic responses by increasing DNA damage and apoptosis. In conclusion, oridonin may be a novel small molecule to improve radiotherapy in non-small cell lung cancer.
Collapse
|
41
|
SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling. Exp Cell Res 2018; 370:283-291. [PMID: 29959912 DOI: 10.1016/j.yexcr.2018.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022]
Abstract
Chemotherapy remains the most prescribed anti-cancer therapy, despite patients suffering severe side effects and frequently developing chemoresistance. These complications can be partially overcome by combining different chemotherapeutic agents that target multiple biological pathways. However, selecting efficacious drug combinations remains challenging. We previously used fission yeast Schizosaccharomycespombe as a surrogate model to predict drug combinations, and showed that suberoylanilide hydroxamic acid (SAHA) and cisplatin can sensitise gastric adenocarcinoma cells toward the cytotoxic effects of doxorubicin. Yet, how this combination undermines cell viability is unknown. Here, we show that SAHA and doxorubicin markedly enhance the cleavage of two apoptosis markers, caspase 3 and poly-ADP ribose polymerase (PARP-1), and increase the phosphorylation of γH2AX, a marker of DNA damage. Further, we found a prominent reduction in Ser485 phosphorylation of AMP-dependent protein kinase (AMPK), and reductions in its target mTOR and downstream ribosomal protein S6 phosphorylation. We show that SAHA contributes most of the effect, as confirmed using another histone deacetylase inhibitor, trichostatin A. Overall, our results show that the combination of SAHA and doxorubicin can induce apoptosis in gastric adenocarcinoma in a synthetically lethal manner, and that fission yeast offers an efficient tool for identifying potent drug combinations against human cancer cells.
Collapse
|
42
|
AbouAitah K, Swiderska-Sroda A, Farghali AA, Wojnarowicz J, Stefanek A, Gierlotka S, Opalinska A, Allayeh AK, Ciach T, Lojkowski W. Folic acid-conjugated mesoporous silica particles as nanocarriers of natural prodrugs for cancer targeting and antioxidant action. Oncotarget 2018; 9:26466-26490. [PMID: 29899871 PMCID: PMC5995188 DOI: 10.18632/oncotarget.25470] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Naturally derived prodrugs have a wide range of pharmacological activities, including anticancer, antioxidant, and antiviral effects. However, significant barriers inhibit their use in medicine, e.g. their hydrophobicity. In this comprehensive study, we investigated simple and effective nanoformulations consisting of amine-functionalized and conjugated with folic acid (FA) mesoporous silica nanoparticles (MSNs). Two types of MSNs were studied: KCC- 1, with mean size 324 nm and mean pore diameter 3.4 nm, and MCM - 41, with mean size 197 and pore diameter 2 nm. Both types of MSNs were loaded with three anticancer prodrugs: curcumin, quercetin, and colchicine. The nanoformulations were tested to target in vitro human hepatocellular carcinoma cells (HepG2) and HeLa cancer cells. The amine-functionalized and FA-conjugated curcumin-loaded, especially KCC-1 MSNs penetrated all cells organs and steadily released curcumin. The FA-conjugated MSNs displayed higher cellular uptake, sustained intracellular release, and cytotoxicity effects in comparison to non-conjugated MSNs. The KCC-1 type MSNs carrying curcumin displayed the highest anticancer activity. Apoptosis was induced through specific signaling molecular pathways (caspase-3, H2O2, c-MET, and MCL-1). The nanoformulations displayed also an enhanced antioxidant activity compared to the pure forms of the prodrugs, and the effect depended on the time of release, type of MSN, prodrug, and assay used. FA-conjugated MSNs carrying curcumin and other safe natural prodrugs offer new possibilities for targeted cancer therapy.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Medicinal and Aromatic Plants Research, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza, Egypt
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Stefanek
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Opalinska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Abdou K. Allayeh
- Environmental Virology Laboratory, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Epigenetic modulation by small molecule compounds for neurodegenerative disorders. Pharmacol Res 2018; 132:135-148. [PMID: 29684672 DOI: 10.1016/j.phrs.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The accumulation of somatic and genetic mutations which altered the structure and coding information of the DNA are the major cause of neurological disorders. However, our recent understanding of molecular mechanisms of 'epigenetic' phenomenon reveals that the modifications of chromatin play a significant role in the development and severity of neurological disorders. These epigenetic processes are dynamic and reversible as compared to genetic ablations which are stable and irreversible. Therefore, targeting these epigenetic processes through small molecule modulators are of great therapeutic potential. To date, large number of small molecule modulators have been discovered which are capable of altering the brain pathology by targeting epigenetic enzymes. In this review, we shall put forward the key studies supporting the role of altered epigenetic processes in neurological disorders with especial emphasis on neurodegenerative disorders. A few small molecule modulators which have been shown to possess promising results in the animal model system of neurological disorders will also be discussed with future perspectives.
Collapse
|
44
|
Ma YC, Ke Y, Zi X, Zhao F, Yuan L, Zhu YL, Fan XX, Zhao NM, Li QY, Qin YH, Liu HM. Induction of the mitochondria-mediated apoptosis in human esophageal cancer cells by DS2, a newly synthetic diterpenoid analog, is regulated by Bax and caused by generation of reactive oxygen species. Oncotarget 2018; 7:86211-86224. [PMID: 27863415 PMCID: PMC5349908 DOI: 10.18632/oncotarget.13367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023] Open
Abstract
Ent-kaurane diterpene compounds have attracted considerable attention in recent years due to its antitumor, antibacterial, and antiviral activities. However, the clinical development of natural kaurane diterpenes, for example, oridonin for cancer therapy has been hampered by its relatively moderate potency, limited bioavailability. Herein, we report a newly synthetic analog of natural ent-kaurane diterpene, DS2, which exhibits significantly improved activity of antiproliferation against various cancer cell lines relative to oridonin. DS2 treatment triggers the mitochondria-mediated apoptosis and cell cycle arrest in human esophageal cancer cell lines (EC9706, EC109). Interestingly, normal human esophageal epithelial cells (HEECs) and normal human liver cells (HL-7702) are both significantly more resistant to the growth inhibition by DS2 compared with esophageal cancer cells. The DS2-induced apoptosis in EC9706 cells correlated with the drop of mitochondrial membrane potential (MMP), release of cytochrome c into the cytosol and activation of caspase-9 and -3. The induction of proapoptotic proteins p21 and Bax were also observed in DS2-treated cells. The DS2-induced apoptosis was significantly attenuated by knockdown of Bax proteins. Meanwhile, the DS2 treatment caused generation of reactive oxygen species (ROS) in human esophageal cancer cells, but not in HEECs, which was attenuated by pretreatment with ROS scavenger N-acetylcysteine (NAC). More interestingly, the antioxidants pretreatment completely attenuated DS2 mediated loss of the MMP and apoptosis, as well as Bax expression and growth inhibition. In conclusion, the present study reveals that the mitochondria-mediated cell death by DS2 is associated with Bax regulation and ROS generation, and understanding the function and mechanism of DS2 will help us to design better anti-cancer drugs.
Collapse
Affiliation(s)
- Yong-Cheng Ma
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yu Ke
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, California, USA.,Department of Pharmacology, University of California, Irvine, California, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Fei Zhao
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Lin Yuan
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ying-Li Zhu
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xia-Xia Fan
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ning-Min Zhao
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Qiao-Yan Li
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yu-Hua Qin
- Clinical Pharmacology Laboratory, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Therapeutic Potential of Oridonin and Its Analogs: From Anticancer and Antiinflammation to Neuroprotection. Molecules 2018; 23:molecules23020474. [PMID: 29470395 PMCID: PMC6017549 DOI: 10.3390/molecules23020474] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Oridonin, a diterpenoid natural product commonly used in East Asian herbal medicine, is garnering increased attention in the biomedical community due to its extensive biological activities that include antitumor, anti-inflammatory, antimicrobial, hepatic fibrosis prevention, and neurological effects. Over the past decade, significant progress has been made in structure activity relationship and mechanism of action studies of oridonin for the treatment of cancer and other diseases. This review provides a brief summary on oridonin and its analogs in cancer drug discovery and antiinflammation and highlights its emerging therapeutic potential in neuroprotection applications.
Collapse
|
46
|
Di Martile M, Del Bufalo D, Trisciuoglio D. The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target. Oncotarget 2018; 7:55789-55810. [PMID: 27322556 PMCID: PMC5342454 DOI: 10.18632/oncotarget.10048] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022] Open
Abstract
Lysine acetylation is a post-translational modification that regulates gene transcription by targeting histones as well as a variety of transcription factors in the nucleus. Recently, several reports have demonstrated that numerous cytosolic proteins are also acetylated and that this modification, affecting protein activity, localization and stability has profound consequences on their cellular functions. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumorigenesis. In this review, we will analyze the functional implications of lysine acetylation in different cellular compartments, and will examine our current understanding of lysine acetyltransferases family, highlighting the biological role and prognostic value of these enzymes and their substrates in cancer. The latter part of the article will address challenges and current status of molecules targeting lysine acetyltransferase enzymes in cancer therapy.
Collapse
Affiliation(s)
- Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
47
|
Novel enmein-type diterpenoid hybrids coupled with nitrogen mustards: Synthesis of promising candidates for anticancer therapeutics. Eur J Med Chem 2018; 146:588-598. [DOI: 10.1016/j.ejmech.2018.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022]
|
48
|
Yu J, Ma M, Ma Z, Fu J. HDAC6 inhibition prevents TNF-α-induced caspase 3 activation in lung endothelial cell and maintains cell-cell junctions. Oncotarget 2018; 7:54714-54722. [PMID: 27419634 PMCID: PMC5342375 DOI: 10.18632/oncotarget.10591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023] Open
Abstract
Pro-inflammatory mediators such as TNF-α induce caspase activation in endothelial cells, which leads to degradation of cellular proteins, induction of apoptotic signaling, and endothelial cell dysfunction. New therapeutic agents that can inhibit caspase activation may provide protection against inflammatory injury to endothelial cells. In the present study, we examined the effects of selective histone deacetylase 6 (HDAC6) inhibition on TNF-α induced caspase 3 activation and cell-cell junction dysfunction in lung endothelial cells. We also assessed the protective effects of HDAC6 inhibition against lung inflammatory injury in a mouse model of endotoxemia. We demonstrated that selective HDAC6 inhibition or knockdown of HDAC6 expression was able to prevent caspase 3 activation in lung endothelial cells and maintain lung endothelial cell-cell junctions. Mice pre-treated with HDAC6 inhibitors exhibited decreased endotoxin-induced caspase 3 activation and reduced lung vascular injury as indicated by the retention of cell-cell junction protein VE-Cadherin level and alleviated lung edema. Collectively, our data suggest that HDAC6 inhibition is a potent therapeutic strategy against inflammatory injury to endothelial cells.
Collapse
Affiliation(s)
- Jinyan Yu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China.,Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Mengshi Ma
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China.,Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zhongsen Ma
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jian Fu
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
49
|
Histone modifications: A review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract 2017; 213:1329-1339. [PMID: 28882400 DOI: 10.1016/j.prp.2017.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022]
|
50
|
Zhang HP, Li GQ, Guo WZ, Chen GH, Tang HW, Yan B, Li J, Zhang JK, Wen PH, Wang ZH, Lv JF, Zhang SJ. Oridonin synergistically enhances JQ1-triggered apoptosis in hepatocellular cancer cells through mitochondrial pathway. Oncotarget 2017; 8:106833-106843. [PMID: 29290992 PMCID: PMC5739777 DOI: 10.18632/oncotarget.21880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
Bromodomain and Extra-Terminal Domain (BET) inhibitors, such as JQ1 have emerged as novel drug candidates and are being enthusiastically pursued in clinical trials for the treatment of cancer. However, many solid cancers are resistance to BET inhibitors. To explore methods for improving the therapeutic potential of BET inhibitors, we investigated the combinational activity of JQ1 with Oridonin, a bioactive molecules derived from Traditional Chinese Medicine in hepatocellular carcinoma (HCC) cells. Our results showed that Oridonin synergistically enhanced the abilities of JQ1 to inhibit cell viability in HCC cells and, significantly augmented JQ1-triggered apoptosis in HCC cells and in HCC cancer stem-like cells. Moreover, Oridonin dose-dependently inhibited the expression of several anti-apoptotic proteins, such as Bcl-2, Mcl-1, and x-linked inhibitor of apoptosis (xIAP) in HCC cells. Cell fractionation and western blotting analysis showed that the enhancement of apoptosis by Oridonin was associated with cytochrome c release, activation of caspase-9, -3 and cleavage of PARP, indicating the activation of mitochondrial apoptosis pathway. Altogether, our findings demonstrate that Oridonin may be used to effectively enhance the sensitivity of BET inhibitors in HCC therapy via downregulation of the expression of multiple anti-apoptotic proteins.
Collapse
Affiliation(s)
- Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Gong-Quan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Guang-Hui Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Wei Tang
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Bing Yan
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Feng Lv
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| |
Collapse
|