1
|
Xia W, Need E, Schiavone C, Singh N, Huang J, Goff M, Cave J, Gillespie DL, Jensen RL, Pagel MD, Dogra P, Shi S, Goel S. Image-guided targeting of mitochondrial metabolism sensitizes pediatric malignant rhabdoid tumors to low-dose radiotherapy. SCIENCE ADVANCES 2025; 11:eadv2930. [PMID: 40408469 PMCID: PMC12101499 DOI: 10.1126/sciadv.adv2930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/18/2025] [Indexed: 05/25/2025]
Abstract
Tumor hypoxia leads to radioresistance and markedly worse clinical outcomes for pediatric malignant rhabdoid tumors (MRTs). Our transcriptomics and bioenergetic profiling data reveal that mitochondrial oxidative phosphorylation is a metabolic vulnerability of MRT and can be exploited to overcome consumptive hypoxia by repurposing an FDA-approved antimalarial drug, atovaquone (AVO). We then establish the utility of oxygen-enhanced-multispectral optoacoustic tomography, a label-free, ionizing radiation-free imaging modality, to visualize and quantify spatiotemporal changes in tumor hypoxia in response to AVO. We show a potent but transient increase in tumor oxygenation upon AVO treatment that results in complete elimination of tumors in all tested mice when combined with 10-gray radiotherapy, a dose several times lower than the current clinic standard. Last, we use translational mathematical modeling for systematic evaluation of dosing regimens, administration timing, and therapeutic synergy in a virtual patient cohort. Together, our work establishes a framework for safe and pediatric patient-friendly image-guided metabolic radiosensitization of rhabdoid tumors.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Esther Need
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Carmine Schiavone
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiemin Huang
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew Goff
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Cave
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - David L. Gillespie
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Randy L. Jensen
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Mark D. Pagel
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Prota G, Berloffa G, Awad W, Vacchini A, Chancellor A, Schaefer V, Constantin D, Littler DR, Colombo R, Nosi V, Mori L, Rossjohn J, De Libero G. Mitochondria regulate MR1 protein expression and produce self-metabolites that activate MR1-restricted T cells. Proc Natl Acad Sci U S A 2025; 122:e2418525122. [PMID: 40354545 PMCID: PMC12107159 DOI: 10.1073/pnas.2418525122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondria coordinate several metabolic pathways, producing metabolites that influence the immune response in various ways. It remains unclear whether mitochondria impact antigen presentation by the MHC-class-I-related antigen-presenting molecule, MR1, which presents small molecules to MR1-restricted T-lymphocytes. Here, we demonstrate that mitochondrial complex III and the enzyme dihydroorotate dehydrogenase are essential for the cell-surface expression of MR1 and for generating uridine- and thymidine-related compounds that bind to MR1 and are produced upon oxidation by reactive oxygen species. One mitochondria-derived immunogenic formylated metabolite we identified is 5-formyl-deoxyuridine (5-FdU). Structural studies indicate that 5-FdU binds in the A'-antigen-binding pocket of MR1, positioning the deoxyribose toward the surface of MR1 for TCR interaction. 5-FdU stimulates specific T cells and detects circulating T cells when loaded onto MR1-tetramers. 5-FdU-reactive cells resemble adaptive T cells and express the phenotypes of naïve, memory, and effector cells, indicating prior in vivo stimulation. These findings suggest that mitochondria may play a role in MR1-mediated immune surveillance.
Collapse
Affiliation(s)
- Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Dene R. Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, CardiffCF14 4YS, United Kingdom
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel4031, Switzerland
| |
Collapse
|
3
|
Feng J, Pathak V, Byrne NM, Chambers S, Wang T, Islam R, Medina RJ, Coulter JA. Atovaquone-induced activation of the PERK/eIF2α signaling axis mitigates metabolic radiosensitisation. Cell Commun Signal 2025; 23:164. [PMID: 40176088 PMCID: PMC11967126 DOI: 10.1186/s12964-025-02160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Hypoxia, a key feature of most solid tumours, including head and neck cancer, reduces radiotherapy efficacy by promoting radiation resistance through micro-environmental and genomic alterations. Addressing these resistance mechanisms is crucial, as radiotherapy remains central to managing locally advanced disease. Atovaquone, a mitochondrial electron transport chain complex III inhibitor, is reported to reduce tumour hypoxia in preclinical models, however, this response does not consistently enhance radiation sensitivity. This work examines the potential of atovaquone to modify the hypoxic response in models of head and neck squamous cell carcinoma (HNSCC), uncovering an adaptive resistance mechanism driven by integrated stress response (ISR) signaling that limits the radiosensitising potential of this approach. METHODS The bioenergetic response of HNSCC cells to atovaquone was assessed using the Seahorse XFe96 Analyzer with the XF Cell Mito Stress Test. Radiation dose modifying effects of atovaquone were tested by clonogenic survival assays, while ROS yields were analysed by flow cytometry. Western blotting and quantitative reverse transcription-PCR were employed to study activation of ISR signaling and the overall influence of atovaquone on the hypoxic response. Finally, the role of the ISR activation in modulating radiosensitivity was investigated using both siRNA and pharmacological inhibition of eIF2α, a central regulator of the ISR. RESULTS Herein we report that atovaquone significantly disrupts mitochondrial respiration, triggering phosphorylation of eIF2α, a pivotal regulator of the ISR, and a master regulator of protein synthesis. Notably, atovaquone also increased the autophagic load under hypoxia, while autophagy inhibition significantly enhanced apoptosis, improving radiation sensitivity. Combined eIF2α inhibition and atovaquone promotes cell cycle redistribution and significantly enhances mitochondrial ROS production and compared to atovaquone alone, restoring atovaquone mediated radiosensitisation. CONCLUSIONS Our data highlight dual counter opposing impacts of atovaquone, serving as a hypoxic radiosensitiser though oxidative phosphorylation (OXPHOS) inhibition, but also in promoting stress induced ISR signaling, conferring resistance to radiation treatment. Importantly, if ISR activation is impeded, the metabolic radiosensitising properties of atovaquone is restored. These data provide a new insight to a molecular response that could help counteract hypoxia-induced radioresistance.
Collapse
Affiliation(s)
- Jie Feng
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK
| | - Varun Pathak
- Welcome-Wolfson Institute for Experimental medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niall M Byrne
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK
| | - Sarah Chambers
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK
| | - Tongchuan Wang
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK
| | - Rayhanul Islam
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK
| | - Reinhold J Medina
- Welcome-Wolfson Institute for Experimental medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Eye and Vision Sciences, Institute for Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK.
| |
Collapse
|
4
|
Beerkens APM, Heskamp S, Reinema FV, Adema GJ, Span PN, Bussink J. Mitochondria Targeting of Oxidative Phosphorylation Inhibitors to Alleviate Hypoxia and Enhance Anticancer Treatment Efficacy. Clin Cancer Res 2025; 31:1186-1193. [PMID: 39898881 DOI: 10.1158/1078-0432.ccr-24-3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Hypoxia is a common feature of solid tumors and is associated with a poor response to anticancer therapies. Hypoxia also induces metabolic changes, such as a switch to glycolysis. This glycolytic switch causes acidification of the tumor microenvironment (TME), thereby attenuating the anticancer immune response. A promising therapeutic strategy to reduce hypoxia and thereby sensitize tumors to irradiation and/or antitumor immune responses is pharmacological inhibition of oxidative phosphorylation (OXPHOS). Several OXPHOS inhibitors (OXPHOSi) have been tested in clinical trials. However, moderate responses and/or substantial toxicity have hampered clinical implementation. OXPHOSi tested in clinical trials inhibit the oxidative metabolism in tumor cells as well as healthy cells. Therefore, new strategies are needed to improve the efficacy of OXPHOSi while minimizing side effects. To enhance the therapeutic window, available OXPHOSi have, for instance, been conjugated to triphenylphosphonium to preferentially target the mitochondria of cancer cells, resulting in increased tumor uptake compared with healthy cells, as cancer cells have a higher mitochondrial membrane potential. However, OXPHOS inhibition also induces reactive oxygen species and subsequent antioxidant responses, which may influence the efficacy of therapies, such as platinum-based chemotherapy and radiotherapy. Here, we review the limitations of the clinically tested OXPHOSi metformin, atovaquone, tamoxifen, BAY 87-2243, and IACS-010759 and the potential of mitochondria-targeted OXPHOSi and their influence on reactive oxygen species production. Furthermore, the effect of the mitochondria-targeting moiety triphenylphosphonium on mitochondria is discussed as it affects mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Flavia V Reinema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Nardo G, Pantziarka P, Conti M. Synergistic Potential of Antibiotics with Cancer Treatments. Cancers (Basel) 2024; 17:59. [PMID: 39796688 PMCID: PMC11718857 DOI: 10.3390/cancers17010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results. Antibiotics can alter intratumoral microbiota's composition, which may have a major role in promoting cancer progression and immune evasion. Certain bacteria within tumors can promote immunosuppression and resistance to therapies. By targeting these bacteria, antibiotics can help create a more favorable environment for chemotherapy, targeted therapy, and immunotherapy to act effectively. Some bacteria within the tumor microenvironment produce immunosuppressive molecules that inhibit the activity of immune cells. The combination of antibiotics and other cancer therapies holds significant promise for creating a synergistic effect and enhancing the immune response against cancer. In this review, we analyze several preclinical studies that have been conducted to demonstrate the synergy between antibiotics and other cancer therapies and discuss possible clinical implications.
Collapse
Affiliation(s)
- Giuseppe Nardo
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Pan Pantziarka
- Anticancer Fund, 1860 Meise, Belgium;
- George Pantziarka TP53 Trust, London E1 8FA, UK
| | - Matteo Conti
- Dipartimento Sanità Pubblica, AUSL Imola, Viale Amendola 8, 40026 Imola, Italy;
| |
Collapse
|
6
|
Xia W, Goff M, Schiavone C, Singh N, Huang J, Need E, Cave J, Gillespie DL, Jensen RL, Pagel MD, Dogra P, Shi S, Goel S. Image-Guided Targeting of Mitochondrial Metabolism Sensitizes Pediatric Malignant Rhabdoid Tumors to Low Dose Radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607364. [PMID: 39211061 PMCID: PMC11361026 DOI: 10.1101/2024.08.09.607364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tumor hypoxia leads to radioresistance and markedly worse clinical outcomes for pediatric malignant rhabdoid tumors (MRT). Our transcriptomics and bioenergetic profiling data reveal that mitochondrial oxidative phosphorylation (OXPHOS) is a metabolic vulnerability of MRT and can be exploited to overcome consumptive hypoxia by repurposing an FDA-approved anti-malarial drug, Atovaquone (AVO). We then establish the utility of Oxygen-Enhanced-Multispectral Optoacoustic Tomography (OE-MSOT), a label-free, ionizing radiation-free imaging modality, to visualize and quantify spatiotemporal changes in tumor hypoxia in response to AVO. We show a potent but transient increase in tumor oxygenation upon AVO treatment which results in complete elimination of tumors in all tested mice when combined with 10 Gy radiotherapy, a dose several times lower than the current clinic standard. Finally, we use translational mathematical modeling for systematic evaluation of dosing regimens, administration timing, and therapeutic synergy in a virtual clinical patient population. Together, our work establishes a framework for safe and pediatric patient-friendly image-guided metabolic radiosensitization of rhabdoid tumors.
Collapse
|
7
|
Piao S, Kim S, Vu GH, Kim M, Lee EO, Jeon BH, Kim CS. The Downregulation of CRIF1 Exerts Antitumor Effects Partially via TP53-Induced Glycolysis and Apoptosis Regulator Induction in BT549 Breast Cancer Cells. Cancers (Basel) 2024; 16:4081. [PMID: 39682267 DOI: 10.3390/cancers16234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mitochondrial oxidative phosphorylation (OXPHOS) has been exploited as a therapeutic target in cancer treatments because of its crucial role in tumorigenesis. CR6-interacting factor 1 (CRIF1), a mitochondrial ribosomal subunit protein, is essential for the regulation of mitochondrial OXPHOS capacity. However, the mechanism of CRIF1 in triple-negative breast cancer (TNBC) cells remains unclear. METHODS/RESULTS We showed that the downregulation of CRIF1 reduced cell proliferation in the TNBC cell lines MDA-MB-468, MDA-MB-231, and, especially, BT549. In addition, wound scratch and Transwell assays showed that CRIF1 deficiency inhibited the migration and invasion of BT549 cells. CRIF1 downregulation resulted in the suppression of mitochondrial bioenergetics in BT549 cells, specifically affecting the inhibition of OXPHOS complexes I and II. This was evidenced by a decrease in the mitochondrial oxygen consumption rate and the depolarization of the mitochondrial membrane potential. Damage to mitochondria resulted in a lower adenosine triphosphate level and an elevated production of mitochondrial reactive oxygen species. In addition, CRIF1 deficiency decreased hypoxia-inducible factor 1α accumulation, NADPH synthesis, and TP53-induced glycolysis and apoptosis regulator (TIGAR) expression in BT549 cells. These events contributed to G0/G1-phase cell cycle inhibition and the upregulation of the cell cycle protein markers p53, p21, and p16. Transfection with a TIGAR overexpression plasmid reversed these effects and prevented CRIF1 downregulation-induced proliferation and migration reduction. CONCLUSIONS These results indicate that blocking mitochondrial OXPHOS synthesis via CRIF1 may have a therapeutic antitumor effect in BT549 TNBC cells.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Seonhee Kim
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Giang-Huong Vu
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Minsoo Kim
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Eun-Ok Lee
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Republic of Korea
| |
Collapse
|
8
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
9
|
Gatto L, Di Nunno V, Ghelardini A, Tosoni A, Bartolini S, Asioli S, Ratti S, Di Stefano AL, Franceschi E. Targeting Mitochondria in Glioma: New Hopes for a Cure. Biomedicines 2024; 12:2730. [PMID: 39767637 PMCID: PMC11727304 DOI: 10.3390/biomedicines12122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Drugs targeting mitochondrial energy metabolism are emerging as promising antitumor therapeutics. Glioma treatment is extremely challenging due to the high complexity of the tumor and the high cellular heterogeneity. From a metabolic perspective, glioma cancer cells can be classified into the oxidative metabolic phenotype (mainly depending on mitochondrial respiration for energy production) and glycolytic phenotype or "Warburg effect" (mainly depending on glycolysis). Herein, we reviewed the function of novel bio-active molecules targeting oxidative phosphorylation (OXPHOS), mitochondrial membrane potential and mitochondrial dynamics. These molecules exhibit intriguing preclinical and clinical results and have been proven to be promising candidates to be further developed for glioma therapy. However, despite these initial encouraging results, it is imperative to rigorously assess the side effects of these metabolic drugs, which have a non-negligible toxicity profile.
Collapse
Affiliation(s)
- Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Anna Ghelardini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Anatomy Center, Department of Biomedical Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Azienda USL Toscana Nord Ovest, Spedali Riuniti di Livorno, 56121 Livorno, Italy;
- Department of Neurology, Foch Hospital, 92150 Suresnes, France
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| |
Collapse
|
10
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
11
|
Moon MJ, Kamasah JS, Sharma HN, Robertson BK, Abugri DA. Apigeninidin chloride disrupts Toxoplasma gondii Mitochondrial membrane potential and induce reactive oxygen species and metabolites production. Front Cell Infect Microbiol 2024; 14:1368019. [PMID: 39588510 PMCID: PMC11586383 DOI: 10.3389/fcimb.2024.1368019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/26/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Apigeninidin chloride (APi) is a form of 3-deoxyanthrocyanidins (3-DAs) abundantly produced by the red Sorghum bicolor plant. It has been previously reported to be effective against Toxoplasma gondii (T. gondii) tachyzoites grown in vitro with less cytotoxic effect. However, its possible mechanism(s) of action has not been elucidated. Biochemically, we discovered that APi induced high reactive oxygen species (ROS) and mitochondria superoxide (MitoSOX) productions in tachyzoites, leading to mitochondrial membrane potential (MMP) disruption in vitro. Methods To confirm our biochemical results at the molecular level, we performed a liquid chromatography-mass spectrometry (LC-MS) analysis on APi-treated parasites to assess any metabolite and lipid alterations often associated with high ROS/MitoSOX production in cells. Results Noteworthy is that we detected several important oxidative stress-induced metabolites such as hexanal, aldehydes, methyl undeo10-enoate, butadiynyl phenyl ketone, 16-hydroxyhexadecanoic acid (16-OH, 16:0), 2-hydroxytricosanoic acid (C23:0; O), 3-oxodecanosanoic acid (C22:1; O), 2-hydroxypropylsterate, and furan fatty acids F6 (19FU-FA). Discussion These metabolites are associated with lipid, protein, and nucleic acid disruptions. Using atovaquone (Atov) as a control, we observed that it disrupted intracellular tachyzoites' mitochondrial membrane potential, increased ROS and MitoSOX production, and altered metabolite and lipid production similar to what was observed with our experimental compound APi. Overall, our results indicated that APi targets T. gondii tachyzoite growth through inducing oxidative stress, mitochondrial dysfunction, and eventually parasite death.
Collapse
Affiliation(s)
- Miya Janelle Moon
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| | - Japhet Senyo Kamasah
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| | - Homa Nath Sharma
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| | - Daniel A. Abugri
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
12
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
13
|
Kami Reddy KR, Piyarathna DWB, Park JH, Putluri V, Amara CS, Kamal AHM, Xu J, Kraushaar D, Huang S, Jung SY, Eberlin LS, Johnson JR, Kittles RA, Ballester LY, Parsawar K, Siddiqui MM, Gao J, Langer Gramer A, Bollag RJ, Terris MK, Lotan Y, Creighton CJ, Lerner SP, Sreekumar A, Kaipparettu BA, Putluri N. Mitochondrial reprogramming by activating OXPHOS via glutamine metabolism in African American patients with bladder cancer. JCI Insight 2024; 9:e172336. [PMID: 39253977 PMCID: PMC11385078 DOI: 10.1172/jci.insight.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation-driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.
Collapse
Affiliation(s)
| | | | | | - Vasanta Putluri
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | | | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | - Jun Xu
- Department of Molecular and Cellular Biology
- Advanced Technology Cores
| | | | - Shixia Huang
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
- Huffington Department of Education, Innovation and Technology
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, and
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jabril R Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Rick A Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, Arizona, USA
| | - M Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Roni J Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Martha K Terris
- Department of Urology, Medical College of Georgia, Augusta, Georgia, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center
- Department of Medicine and
| | - Seth P Lerner
- Dan L Duncan Comprehensive Cancer Center
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| |
Collapse
|
14
|
Carrillo-Garmendia A, Madrigal-Perez LA, Regalado-Gonzalez C. The multifaceted role of quercetin derived from its mitochondrial mechanism. Mol Cell Biochem 2024; 479:1985-1997. [PMID: 37656383 DOI: 10.1007/s11010-023-04833-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Quercetin is a flavonoid with promising therapeutic applications; nonetheless, the phenotype exerted in some diseases is contradictory. For instance, anticancer properties may be explained by a cytotoxic mechanism, whereas antioxidant-related neuroprotection is a pro-survival process. According to the available literature, quercetin exerts a redox interaction with the electron transport chain (ETC) in the mitochondrion, affecting its membrane potential. It also affects ATP generation by oxidative phosphorylation, where ATP deprivation could partly explain its cytotoxic effect. Moreover, quercetin may support the generation of free radicals through redox reactions, causing a prooxidant effect. The nutrimental stress and prooxidant effect induced by quercetin might promote pro-survival properties such as antioxidant processes. Thus, in this review, we discuss the evidence supporting that quercetin redox interaction with the ETC could explain its beneficial and toxic properties.
Collapse
Affiliation(s)
| | - Luis Alberto Madrigal-Perez
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez #2120, Ciudad Hidalgo, Michoacán, 61100, México.
| | - Carlos Regalado-Gonzalez
- Cerro de las Campanas, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, 76010, México.
| |
Collapse
|
15
|
Kim J, Park SH, Kim DY, Ryu HW, Jun HS. Molecular Mechanisms of Anticarcinogenic Potential of Hydrocotyle umbellata and Its Major Components. Nutr Cancer 2024; 76:1018-1030. [PMID: 38994559 DOI: 10.1080/01635581.2024.2377344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Despite the development of several anticancer treatments, there remains a need for new drugs that can overcome resistance and reduce side effects. While the medicinal herb Hydrocotyle umbellata (H. umbellata) has been used to relieve pain and inflammation, its antitumor properties have not yet been explored. In this study, we investigated the anticarcinogenic potential of H. umbellata extract (HUE) and its major components, as well as the underlying molecular mechanisms. Our results showed that HUE inhibited the growth of various tumor cell lines, including B16F10, without affecting non-cancer cells. Furthermore, HUE was effective in treating and preventing tumor growth in mice. Our mechanistic studies revealed that HUE inhibited cellular respiration, thereby reducing tumor cell proliferation. When combined with 2-deoxy-D-glucose, HUE demonstrated an enhanced anticancer effect by increasing the rate apoptosis. Analysis of the ethyl acetate and n-butanol fractions of HUE identified 1,3,4-trihydroxy-2-butanyl-α-d-glucopyranoside and caffeoylquinic acid derivatives as the major components responsible for the observed anticancer effects. In conclusion, our findings suggest that HUE and its two major components have the potential to be developed as effective therapeutic agents for a wide range of tumors by targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Jaeyong Kim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Sang Hyuk Park
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheong-ju si, Chungcheongbuk-do, Republic of Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
16
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
17
|
Benzo Y, Prada JG, Dattilo MA, Bigi MM, Castillo AF, Mori Sequeiros Garcia MM, Poderoso C, Maloberti PM. Acyl-CoA synthetase 4 modulates mitochondrial function in breast cancer cells. Heliyon 2024; 10:e30639. [PMID: 38756582 PMCID: PMC11096749 DOI: 10.1016/j.heliyon.2024.e30639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Mitochondria are dynamic organelles that respond to cellular stress through changes in global mass, interconnection, and subcellular location. As mitochondria play an important role in tumor development and progression, alterations in energy metabolism allow tumor cells to survive and spread even in challenging conditions. Alterations in mitochondrial bioenergetics have been recently proposed as a hallmark of cancer, and positive regulation of lipid metabolism constitutes one of the most common metabolic changes observed in tumor cells. Acyl-CoA synthetase 4 (ACSL4) is an enzyme catalyzing the activation of long chain polyunsaturated fatty acids with a strong substrate preference for arachidonic acid (AA). High ACSL4 expression has been related to aggressive cancer phenotypes, including breast cancer, and its overexpression has been shown to positively regulate the mammalian Target of Rapamycin (mTOR) pathway, involved in the regulation of mitochondrial metabolism genes. However, little is known about the role of ACSL4 in the regulation of mitochondrial function and metabolism in cancer cells. In this context, our objective was to study whether mitochondrial function and metabolism, processes usually altered in tumors, are modulated by ACSL4 in breast cancer cells. Using ACSL4 overexpression in MCF-7 cells, we demonstrate that this enzyme can increase the mRNA and protein levels of essential mitochondrial regulatory proteins such as nuclear respiratory factor 1 (NRF-1), voltage-dependent anion channel 1 (VDAC1) and respiratory chain Complex III. Furthermore, respiratory parameters analysis revealed an increase in oxygen consumption rate (OCR) and in spare respiratory capacity (SRC), among others. ACSL4 knockdown in MDA-MB-231 cells led to the decrease in OCR and in SCR, supporting the role of ACSL4 in the regulation of mitochondrial bioenergetics. Moreover, ACSL4 overexpression induced an increase in glycolytic function, in keeping with an increase in mitochondrial respiratory activity. Finally, there was a decrease in mitochondrial mass detected in cells that overexpressed ACSL4, while the knockdown of ACSL4 expression in MDA-MB-231 cells showed the opposite effect. Altogether, these results unveil the role of ACSL4 in mitochondrial function and metabolism and expand the knowledge of ACSL4 participation in pathological processes such as breast cancer.
Collapse
Affiliation(s)
- Yanina Benzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G. Prada
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Melina A. Dattilo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Bigi
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Ana F. Castillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Mercedes Mori Sequeiros Garcia
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula M. Maloberti
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| |
Collapse
|
18
|
Beerkens APM, Boreel DF, Nathan JA, Neuzil J, Cheng G, Kalyanaraman B, Hardy M, Adema GJ, Heskamp S, Span PN, Bussink J. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging. Cancer Metab 2024; 12:13. [PMID: 38702787 PMCID: PMC11067257 DOI: 10.1186/s40170-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
| | - Daan F Boreel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport Qld, 4222, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
19
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Shang R, Liao Y, Zheng X. Inhibition of Wnt Signaling by Atovaquone Inhibits Gastric Cancer and Enhances Chemotherapy Effectiveness Through Activation of Casein Kinase 1α. Nutr Cancer 2024; 76:452-462. [PMID: 38494910 DOI: 10.1080/01635581.2024.2328377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Abnormal activation of the Wnt/β-catenin signaling pathway is a driving force behind the progression of gastric cancer. Atovaquone, known as an antimalarial drug, has emerged as a potential candidate for anti-cancer therapy. This study investigated atovaquone's effects on gastric cancer and its underlying mechanisms. Using gastric cancer cell lines, we found that atovaquone, at concentrations relevant to clinical use, significantly reduced their viability. Notably, atovaquone exhibited a lower effectiveness in reducing the viability of normal gastric cells compared to gastric cancer cells. We further demonstrated that atovaquone inhibited gastric cancer growth and colony formation. Mechanism studies revealed that atovaquone inhibited mitochondrial respiration and induced oxidative stress. Experiments using ρ0 cells, deficient in mitochondrial respiration, indicated a slightly weaker effect of atovaquone on inducing apoptosis compared to wildtype cells. Atovaquone increased phosphorylated β-catenin at Ser45 and Ser33/37/Thr41, elevated Axin, and reduced β-catenin. The inhibitory effects of atovaquone on β-catenin were reversed upon depletion of CK1α. Furthermore, the combination of atovaquone with paclitaxel suppressed gastric cancer growth and improved overall survival in mice. Given that atovaquone is already approved for clinical use, these findings suggest its potential as a valuable addition to the drug arsenal available for treating gastric cancer.
Collapse
Affiliation(s)
- Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuejiao Zheng
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
21
|
Fontana F, Macchi C, Anselmi M, Rizzuto AS, Ruscica M, Limonta P. PGC1-α-driven mitochondrial biogenesis contributes to a cancer stem cell phenotype in melanoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166897. [PMID: 37758066 DOI: 10.1016/j.bbadis.2023.166897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Little is known about the metabolic regulation of cancer stem cells (CSCs) in melanoma. Here, we used A375 and WM115 cell lines to dissect the role of mitochondria in conferring CSC traits. Notably, we observed that A375 and WM115 melanospheres, known to be enriched in ABCG2+ CSCs, showed higher mitochondrial mass compared with their adherent counterpart. In particular, they displayed increased PGC1-α expression and oxidative phosphorylation (OXPHOS) complex levels, leading to a metabolic switch characterized by enhanced mitochondrial membrane potential, oxygen consumption, ATP synthesis and ROS production. Interestingly, PGC1-α silencing resulted in the suppression of CSC features, including clonogenic ability, migration, spheroid formation and ABCG2 enrichment. Similarly, XCT790 and SR-18292, two PGC1-α inhibitors, were able not only to reduce melanoma tumorigenicity and invasion but also to block melanosphere growth and propagation and ABCG2+ cell proliferation. In conclusion, improved mitochondrial biogenesis is associated with a stem-like phenotype in melanoma, and therapeutically targeting the mitochondria-enriched CSC subpopulation might overcome tumor progression.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | | | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Zhang S, Yang R, Ouyang Y, Shen Y, Hu L, Xu C. Cancer stem cells: a target for overcoming therapeutic resistance and relapse. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0333. [PMID: 38164743 PMCID: PMC10845928 DOI: 10.20892/j.issn.2095-3941.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cells in cancers that are thought to initiate tumorous transformation and promote metastasis, recurrence, and resistance to treatment. Growing evidence has revealed the existence of CSCs in various types of cancers and suggested that CSCs differentiate into diverse lineage cells that contribute to tumor progression. We may be able to overcome the limitations of cancer treatment with a comprehensive understanding of the biological features and mechanisms underlying therapeutic resistance in CSCs. This review provides an overview of the properties, biomarkers, and mechanisms of resistance shown by CSCs. Recent findings on metabolic features, especially fatty acid metabolism and ferroptosis in CSCs, are highlighted, along with promising targeting strategies. Targeting CSCs is a potential treatment plan to conquer cancer and prevent resistance and relapse in cancer treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Rui Yang
- Department of Ultrasound in Medicine, Chengdu Wenjiang District People’s Hospital, Chengdu 611130, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Shen
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- School of Pharmacy, Macau University of Science and Technology, Macau SAR 999078, China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Yu-Yue Pathology Scientific Research Center, Chongqing 400039, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
23
|
Liu B, Zheng X, Li J, Yao P, Guo P, Liu W, Zhao G. Atovaquone inhibits colorectal cancer metastasis by regulating PDGFRβ/NF-κB signaling pathway. BMC Cancer 2023; 23:1070. [PMID: 37932661 PMCID: PMC10629062 DOI: 10.1186/s12885-023-11585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Colorectal cancer is a common malignant tumour. Invasive growth and distant metastasis are the main characteristics of its malignant biological behaviour, and they are also the primary factors leading to death in colon cancer patients. Atovaquone is an antimalarial drug, and its anticancer effect has recently been demonstrated in several cancer models in vitro and in vivo, but it has not been examined in the treatment of colorectal cancer. METHODS To elucidate the effect of atovaquone on colorectal cancer. We used RNA transcriptome sequencing, RT‒PCR and Western blot experiments to examine the expression of NF-κB (p-P65), EMT-related proteins and related inflammatory factors (IL1B, IL6, CCL20, CCL2, CXCL8, CXCL6, IL6ST, FAS, IL10 and IL1A). The effect of atovaquone on colorectal cancer metastasis was validated using an animal model of lung metastases. We further used transcriptome sequencing, the GCBI bioinformatics database and the STRING database to predict relevant target proteins. Furthermore, pathological sections were collected from relevant cases for immunohistochemical verification. RESULTS This study showed that atovaquone could inhibit colorectal cancer metastasis and invasion in vivo and in vitro, inhibit the expression of E-cadherin protein, and promote the protein expression of N-cadherin, vimentin, ZEB1, Snail and Slug. Atovaquone could inhibit EMT by inhibiting NF-κB (p-P65) and related inflammatory factors. Further bioinformatics analysis and verification showed that PDGFRβ was one of the targets of atovaquone. CONCLUSION In summary, atovaquone can inhibit the expression of NF-κB (p-P65) and related inflammatory factors by inhibiting the protein expression of p-PDGFRβ, thereby inhibiting colorectal cancer metastasis. Atovaquone may be a promising drug for the treatment of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Bin Liu
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Xin Zheng
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Li
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Peng Yao
- Department of Nephrology, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Peng Guo
- Chengdu Medical College, 610500, Chengdu, Sichuan, China
| | - Wei Liu
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
25
|
Mohi-Ud-Din R, Chawla A, Sharma P, Mir PA, Potoo FH, Reiner Ž, Reiner I, Ateşşahin DA, Sharifi-Rad J, Mir RH, Calina D. Repurposing approved non-oncology drugs for cancer therapy: a comprehensive review of mechanisms, efficacy, and clinical prospects. Eur J Med Res 2023; 28:345. [PMID: 37710280 PMCID: PMC10500791 DOI: 10.1186/s40001-023-01275-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chemotherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A systematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to different therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promoting apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments and improve patient outcomes in a cost-effective manner.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, 190001, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Pooja Sharma
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab, 143001, India
| | - Faheem Hyder Potoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 1982, 31441, Dammam, Saudi Arabia
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Ivan Reiner
- Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | | | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
26
|
Zheng XX, Chen JJ, Sun YB, Chen TQ, Wang J, Yu SC. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol 2023; 33:708-727. [PMID: 37137792 DOI: 10.1016/j.tcb.2023.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Previous studies have shown that mitochondria play core roles in not only cancer stem cell (CSC) metabolism but also the regulation of CSC stemness maintenance and differentiation, which are key regulators of cancer progression and therapeutic resistance. Therefore, an in-depth study of the regulatory mechanism of mitochondria in CSCs is expected to provide a new target for cancer therapy. This article mainly introduces the roles played by mitochondria and related mechanisms in CSC stemness maintenance, metabolic transformation, and chemoresistance. The discussion mainly focuses on the following aspects: mitochondrial morphological structure, subcellular localization, mitochondrial DNA, mitochondrial metabolism, and mitophagy. The manuscript also describes the recent clinical research progress on mitochondria-targeted drugs and discusses the basic principles of their targeted strategies. Indeed, an understanding of the application of mitochondria in the regulation of CSCs will promote the development of novel CSC-targeted strategies, thereby significantly improving the long-term survival rate of patients with cancer.
Collapse
Affiliation(s)
- Xiao-Xia Zheng
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Jun-Jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Yi-Bo Sun
- College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tian-Qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China; Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China; College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Jin-feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
27
|
Bintener T, Pacheco MP, Philippidou D, Margue C, Kishk A, Del Mistro G, Di Leo L, Moscardó Garcia M, Halder R, Sinkkonen L, De Zio D, Kreis S, Kulms D, Sauter T. Metabolic modelling-based in silico drug target prediction identifies six novel repurposable drugs for melanoma. Cell Death Dis 2023; 14:468. [PMID: 37495601 PMCID: PMC10372000 DOI: 10.1038/s41419-023-05955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.
Collapse
Affiliation(s)
- Tamara Bintener
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Greta Del Mistro
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Moscardó Garcia
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
28
|
Akhunzianov AA, Nesterova AI, Wanrooij S, Filina YV, Rizvanov AA, Miftakhova RR. Unravelling the Therapeutic Potential of Antibiotics in Hypoxia in a Breast Cancer MCF-7 Cell Line Model. Int J Mol Sci 2023; 24:11540. [PMID: 37511298 PMCID: PMC10380719 DOI: 10.3390/ijms241411540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotics inhibit breast cancer stem cells (CSCs) by suppressing mitochondrial biogenesis. However, the effectiveness of antibiotics in clinical settings is inconsistent. This inconsistency raises the question of whether the tumor microenvironment, particularly hypoxia, plays a role in the response to antibiotics. Therefore, the goal of this study was to evaluate the effectiveness of five commonly used antibiotics for inhibiting CSCs under hypoxia using an MCF-7 cell line model. We assessed the number of CSCs through the mammosphere formation assay and aldehyde dehydrogenase (ALDH)-bright cell count. Additionally, we examined the impact of antibiotics on the mitochondrial stress response and membrane potential. Furthermore, we analyzed the levels of proteins associated with therapeutic resistance. There was no significant difference in the number of CSCs between cells cultured under normoxic and hypoxic conditions. However, hypoxia did affect the rate of CSC inhibition by antibiotics. Specifically, azithromycin was unable to inhibit sphere formation in hypoxia. Erythromycin and doxycycline did not reduce the ratio of ALDH-bright cells, despite decreasing the number of mammospheres. Furthermore, treatment with chloramphenicol, doxycycline, and tetracycline led to the overexpression of the breast cancer resistance protein. Our findings suggest that hypoxia may weaken the inhibitory effects of antibiotics on the breast cancer model.
Collapse
Affiliation(s)
- Almaz A Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alfiya I Nesterova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Republican Clinical Oncology Dispensary Named after Prof. M.Z. Sigal, 420029 Kazan, Russia
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Faculty of Medicine, Umeå University, 907 36 Umeå, Sweden
| | - Yulia V Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
29
|
Doczi J, Karnok N, Bui D, Azarov V, Pallag G, Nazarian S, Czumbel B, Seyfried TN, Chinopoulos C. Viability of HepG2 and MCF-7 cells is not correlated with mitochondrial bioenergetics. Sci Rep 2023; 13:10822. [PMID: 37402778 DOI: 10.1038/s41598-023-37677-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
Alterations in metabolism are a hallmark of cancer. It is unclear if oxidative phosphorylation (OXPHOS) is necessary for tumour cell survival. In this study, we investigated the effects of severe hypoxia, site-specific inhibition of respiratory chain (RC) components, and uncouplers on necrotic and apoptotic markers in 2D-cultured HepG2 and MCF-7 tumour cells. Comparable respiratory complex activities were observed in both cell lines. However, HepG2 cells exhibited significantly higher oxygen consumption rates (OCR) and respiratory capacity than MCF-7 cells. Significant non-mitochondrial OCR was observed in MCF-7 cells, which was insensitive to acute combined inhibition of complexes I and III. Pre-treatment of either cell line with RC inhibitors for 24-72 h resulted in the complete abolition of respective complex activities and OCRs. This was accompanied by a time-dependent decrease in citrate synthase activity, suggesting mitophagy. High-content automated microscopy recordings revealed that the viability of HepG2 cells was mostly unaffected by any pharmacological treatment or severe hypoxia. In contrast, the viability of MCF-7 cells was strongly affected by inhibition of complex IV (CIV) or complex V (CV), severe hypoxia, and uncoupling. However, it was only moderately affected by inhibition of complexes I, II, and III. Cell death in MCF-7 cells induced by inhibition of complexes II, III, and IV was partially abrogated by aspartate. These findings indicate that OXPHOS activity and viability are not correlated in these cell lines, suggesting that the connection between OXPHOS and cancer cell survival is dependent on the specific cell type and conditions.
Collapse
Affiliation(s)
- Judit Doczi
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Noemi Karnok
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - David Bui
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Victoria Azarov
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Gergely Pallag
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Sara Nazarian
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Bence Czumbel
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | | | - Christos Chinopoulos
- Institute of Biochemistry and Molecular Biology, Department of Biochemistry, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
30
|
Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin Ther Targets 2023; 27:939-952. [PMID: 37736880 PMCID: PMC11034819 DOI: 10.1080/14728222.2023.2261631] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Drugs targeting mitochondria are emerging as promising antitumor therapeutics in preclinical models. However, a few of these drugs have shown clinical toxicity. Developing mitochondria-targeted modified natural compounds and US FDA-approved drugs with increased therapeutic index in cancer is discussed as an alternative strategy. AREAS COVERED Triphenylphosphonium cation (TPP+)-based drugs selectively accumulate in the mitochondria of cancer cells due to their increased negative membrane potential, target the oxidative phosphorylation proteins, inhibit mitochondrial respiration, and inhibit tumor proliferation. TPP+-based drugs exert minimal toxic side effects in rodents and humans. These drugs can sensitize radiation and immunotherapies. EXPERT OPINION TPP+-based drugs targeting the tumor mitochondrial electron transport chain are a new class of oxidative phosphorylation inhibitors with varying antiproliferative and antimetastatic potencies. Some of these TPP+-based agents, which are synthesized from naturally occurring molecules and FDA-approved drugs, have been tested in mice and did not show notable toxicity, including neurotoxicity, when used at doses under the maximally tolerated dose. Thus, more effort should be directed toward the clinical translation of TPP+-based OXPHOS-inhibiting drugs in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
31
|
Alharbi Y. Atovaquone exerts its anticancer effect by inhibiting Na +/K +-ATPase ion transport in canine cancer cells. Vet World 2023; 16:1185-1192. [PMID: 37577204 PMCID: PMC10421541 DOI: 10.14202/vetworld.2023.1185-1192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/29/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim New anticancer drugs are being developed to avoid the toxicity and chemoresistance of the currently available drugs. The Food and Drug Administration-approved anti-malarial drug atovaquone is known to act as a selective oxidative phosphorylation inhibitor in the mitochondria by competing with CO Q10 (mitochondrial complex II and III). This study aimed to investigate the effect of atovaquone by examining the Na+/K+-ATPase (NKA) activity in various canine cell lines. Materials and Methods Canine cell lines were treated with various concentrations (2.5, 5, 10, 15, and 20 μM) of atovaquone for 24, 48, and 72 h. Human cell lines were used as a control to validate the canine cancer cell lines. The activities of the drugs against the cancer cell lines were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromideassay. The cell metabolic activity was determined by measuring the activities of the nicotinamide adenine dinucleotide phosphate-dependent cellular oxidoreductase enzymes. The NKA activity was measured using the single-cell patch clamping assay. Results Atovaquone-induced apoptosis by elevating the concentration of reactive oxygen species (ROS) in the tumor cells, leading to cell death. Treatment of canine cancer cells with N-acetylcysteine (ROS inhibitor) reduced the activity of the drug. Furthermore, atovaquone inhibited more than 45% of the NKA ion current. Conclusion This study demonstrated effects of atovaquone against canine cancer cell lines. The data may prove beneficial in repurposing the drug as a new anticancer agent in canine clinical trials, which might aid in fighting human cancer.
Collapse
Affiliation(s)
- Yousef Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
32
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
34
|
Stevens AM, Schafer ES, Li M, Terrell M, Rashid R, Paek H, Bernhardt MB, Weisnicht A, Smith WT, Keogh NJ, Alozie MC, Oviedo HH, Gonzalez AK, Ilangovan T, Mangubat-Medina A, Wang H, Jo E, Rabik CA, Bocchini C, Hilsenbeck S, Ball ZT, Cooper TM, Redell MS. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers (Basel) 2023; 15:cancers15041344. [PMID: 36831684 PMCID: PMC9954468 DOI: 10.3390/cancers15041344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Survival of pediatric AML remains poor despite maximized myelosuppressive therapy. The pneumocystis jiroveci pneumonia (PJP)-treating medication atovaquone (AQ) suppresses oxidative phosphorylation (OXPHOS) and reduces AML burden in patient-derived xenograft (PDX) mouse models, making it an ideal concomitant AML therapy. Poor palatability and limited product formulations have historically limited routine use of AQ in pediatric AML patients. Patients with de novo AML were enrolled at two hospitals. Daily AQ at established PJP dosing was combined with standard AML therapy, based on the Medical Research Council backbone. AQ compliance, adverse events (AEs), ease of administration score (scale: 1 (very difficult)-5 (very easy)) and blood/marrow pharmacokinetics (PK) were collected during Induction 1. Correlative studies assessed AQ-induced apoptosis and effects on OXPHOS. PDX models were treated with AQ. A total of 26 patients enrolled (ages 7.2 months-19.7 years, median 12 years); 24 were evaluable. A total of 14 (58%) and 19 (79%) evaluable patients achieved plasma concentrations above the known anti-leukemia concentration (>10 µM) by day 11 and at the end of Induction, respectively. Seven (29%) patients achieved adequate concentrations for PJP prophylaxis (>40 µM). Mean ease of administration score was 3.8. Correlative studies with AQ in patient samples demonstrated robust apoptosis, OXPHOS suppression, and prolonged survival in PDX models. Combining AQ with chemotherapy for AML appears feasible and safe in pediatric patients during Induction 1 and shows single-agent anti-leukemic effects in PDX models. AQ appears to be an ideal concomitant AML therapeutic but may require intra-patient dose adjustment to achieve concentrations sufficient for PJP prophylaxis.
Collapse
Affiliation(s)
- Alexandra McLean Stevens
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(832)-824-4824; Fax: +1-(832)-825-1206
| | - Eric S. Schafer
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minhua Li
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maci Terrell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raushan Rashid
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hana Paek
- Department of Pharmacy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie B. Bernhardt
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison Weisnicht
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wesley T. Smith
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noah J. Keogh
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle C. Alozie
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailey H. Oviedo
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan K. Gonzalez
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamilini Ilangovan
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Haopei Wang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Eunji Jo
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cara A. Rabik
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bocchini
- Department of Pediatric Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan Hilsenbeck
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Todd M. Cooper
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michele S. Redell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Adderley J, Grau GE. Host-directed therapies for malaria: possible applications and lessons from other indications. Curr Opin Microbiol 2023; 71:102228. [PMID: 36395572 DOI: 10.1016/j.mib.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022]
Abstract
Host-directed therapies (HDT) are rapidly advancing as a new and clinically relevant strategy to treat infectious disease. The application of HDT can be broadly used to (i) inhibit host factors essential for pathogen development, including host protein kinases, (ii) control detrimental immune signalling, resulting from excessive release of cytokines, chemokines and extracellular vesicles and (iii) strengthen host defence mechanisms, such as tight junctions in the endothelium. For malaria and other eukaryotic parasite-causing diseases, HDTs could provide a novel avenue to combat the growing resistance seen across all antimicrobials and provide protection against the severe forms of disease through modulation of the host immune response.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine & Health, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
36
|
Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int J Biol Sci 2023; 19:897-915. [PMID: 36778129 PMCID: PMC9910000 DOI: 10.7150/ijbs.81609] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyun Shi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wenfeng Feng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 39216, Jackson, Mississippi, USA
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
37
|
Spatio-temporal modelling of phenotypic heterogeneity in tumour tissues and its impact on radiotherapy treatment. J Theor Biol 2023; 556:111248. [PMID: 36150537 DOI: 10.1016/j.jtbi.2022.111248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022]
Abstract
We present a mathematical model that describes how tumour heterogeneity evolves in a tissue slice that is oxygenated by a single blood vessel. Phenotype is identified with the stemness level of a cell and determines its proliferative capacity, apoptosis propensity and response to treatment. Our study is based on numerical bifurcation analysis and dynamical simulations of a system of coupled, non-local (in phenotypic "space") partial differential equations that link the phenotypic evolution of the tumour cells to local tissue oxygen levels. In our formulation, we consider a 1D geometry where oxygen is supplied by a blood vessel located on the domain boundary and consumed by the tumour cells as it diffuses through the tissue. For biologically relevant parameter values, the system exhibits multiple steady states; in particular, depending on the initial conditions, the tumour is either eliminated ("tumour-extinction") or it persists ("tumour-invasion"). We conclude by using the model to investigate tumour responses to radiotherapy, and focus on identifying radiotherapy strategies which can eliminate the tumour. Numerical simulations reveal how phenotypic heterogeneity evolves during treatment and highlight the critical role of tissue oxygen levels on the efficacy of radiation protocols that are commonly used in the clinic.
Collapse
|
38
|
The Effect of Oxidative Phosphorylation on Cancer Drug Resistance. Cancers (Basel) 2022; 15:cancers15010062. [PMID: 36612059 PMCID: PMC9817696 DOI: 10.3390/cancers15010062] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that oxidative phosphorylation (OXPHOS) is a target for the effective attenuation of cancer drug resistance. OXPHOS inhibitors can improve treatment responses to anticancer therapy in certain cancers, such as melanomas, lymphomas, colon cancers, leukemias and pancreatic ductal adenocarcinoma (PDAC). However, the effect of OXPHOS on cancer drug resistance is complex and associated with cell types in the tumor microenvironment (TME). Cancer cells universally promote OXPHOS activity through the activation of various signaling pathways, and this activity is required for resistance to cancer therapy. Resistant cancer cells are prevalent among cancer stem cells (CSCs), for which the main metabolic phenotype is increased OXPHOS. CSCs depend on OXPHOS to survive targeting by anticancer drugs and can be selectively eradicated by OXPHOS inhibitors. In contrast to that in cancer cells, mitochondrial OXPHOS is significantly downregulated in tumor-infiltrating T cells, impairing antitumor immunity. In this review, we summarize novel research showing the effect of OXPHOS on cancer drug resistance, thereby explaining how this metabolic process plays a dual role in cancer progression. We highlight the underlying mechanisms of metabolic reprogramming in cancer cells, as it is vital for discovering new drug targets.
Collapse
|
39
|
Hyroššová P, Milošević M, Škoda J, Vachtenheim Jr J, Rohlena J, Rohlenová K. Effects of metabolic cancer therapy on tumor microenvironment. Front Oncol 2022; 12:1046630. [PMID: 36582801 PMCID: PMC9793001 DOI: 10.3389/fonc.2022.1046630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Targeting tumor metabolism for cancer therapy is an old strategy. In fact, historically the first effective cancer therapeutics were directed at nucleotide metabolism. The spectrum of metabolic drugs considered in cancer increases rapidly - clinical trials are in progress for agents directed at glycolysis, oxidative phosphorylation, glutaminolysis and several others. These pathways are essential for cancer cell proliferation and redox homeostasis, but are also required, to various degrees, in other cell types present in the tumor microenvironment, including immune cells, endothelial cells and fibroblasts. How metabolism-targeted treatments impact these tumor-associated cell types is not fully understood, even though their response may co-determine the overall effectivity of therapy. Indeed, the metabolic dependencies of stromal cells have been overlooked for a long time. Therefore, it is important that metabolic therapy is considered in the context of tumor microenvironment, as understanding the metabolic vulnerabilities of both cancer and stromal cells can guide new treatment concepts and help better understand treatment resistance. In this review we discuss recent findings covering the impact of metabolic interventions on cellular components of the tumor microenvironment and their implications for metabolic cancer therapy.
Collapse
Affiliation(s)
- Petra Hyroššová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Mirko Milošević
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Josef Škoda
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Vachtenheim Jr
- 3rd Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| | - Kateřina Rohlenová
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
40
|
Jamialahmadi O, Salehabadi E, Hashemi-Najafabadi S, Motamedian E, Bagheri F, Mancina RM, Romeo S. Cellular Genome-Scale Metabolic Modeling Identifies New Potential Drug Targets Against Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:671-682. [PMID: 36508280 DOI: 10.1089/omi.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale metabolic modeling (GEM) is one of the key approaches to unpack cancer metabolism and for discovery of new drug targets. In this study, we report the Transcriptional Regulated Flux Balance Analysis-CORE (TRFBA-), an algorithm for GEM using key growth-correlated reactions using hepatocellular carcinoma (HCC), an important global health burden, as a case study. We generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to forecast potential drug targets for HCC. A total of 108 essential genes for growth were predicted by the TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterol, and steroid biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of nine drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Some of these drugs in this model performed better than Sorafenib, the first-line therapeutic against HCC. A HepG2 cell-specific GEM highlights sterol metabolism to be essential for cell growth. HSD11B2 downregulation results in lower cell growth. Most of the compounds, selected by drug repurposing approach, show a significant inhibitory effect on cell growth in a wide range of concentrations. These findings offer new molecular leads for drug discovery for hepatic cancer while also illustrating the importance of GEM and drug repurposing in cancer therapeutics innovation.
Collapse
Affiliation(s)
- Oveis Jamialahmadi
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Salehabadi
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Rosellina Margherita Mancina
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
41
|
Zhang N, Sundquist J, Sundquist K, Ji J. Proguanil and atovaquone use is associated with lower colorectal cancer risk: a nationwide cohort study. BMC Med 2022; 20:439. [PMID: 36357883 PMCID: PMC9650910 DOI: 10.1186/s12916-022-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Individuals with a family history of colorectal cancer (CRC) are at a high risk of developing CRC. Preclinical studies suggest that the anti-malaria drug proguanil and atovaquone might play a role in preventing CRC, but population-based evidence is still lacking. METHODS By accessing a couple of nationwide Swedish registers, we performed a cohort study to explore whether using proguanil and atovaquone might associate with a lower risk of CRC by adopting a new-user study design. Adults who have 1 or more first-degree relatives (parents or siblings) diagnosed with CRC were identified and linked with the Prescribed Drug Register to evaluate their administration history of proguanil and atovaquone. Survival analysis of the time to CRC diagnosis with Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS A total of 16,817 incident proguanil/atovaquone users were identified and matched with 168,170 comparisons, who did not use proguanil/atovaquone, on the ratio of 1:10. We found a significant negative association between proguanil/atovaquone use and risk of CRC (adjusted HR, 0.76; 95% CI, 0.62-0.93). Test for trend showed significant dose- and duration-response correlations (P < 0.001). The association was more pronounced in CRC diagnosed at an advanced stage than at an early stage (adjusted HR, 0.69 vs.0.81). CONCLUSIONS This national-wide population-based cohort study showed that the use of proguanil and atovaquone was associated with a reduced risk of CRC among individuals with a family history of CRC.
Collapse
Affiliation(s)
- Naiqi Zhang
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA.,Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA.,Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden
| |
Collapse
|
42
|
Manzanares LD, David J, Ren X, Yalom LK, Piccolo EB, Dehghan Y, David AJ, Hanauer SB, Sumagin R. Atovaquone attenuates experimental colitis by reducing neutrophil infiltration of colonic mucosa. Front Pharmacol 2022; 13:1011115. [PMID: 36313299 PMCID: PMC9614091 DOI: 10.3389/fphar.2022.1011115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 10/08/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease featuring aberrant accumulation of neutrophils in colonic mucosa and the luminal space. Although significant advances in UC therapy have been made with the development of novel biologics and small molecules targeting immune responses, success of most current therapies is still limited, with significant safety concerns. Thus, there is a need to develop additional safe and effective therapies for the treatment of UC. Antimalarial drugs have been safely used for many years to resolve tissue inflammation and the associated pathologies. Atovaquone is a recent FDA-approved antimalarial drug that has shown anti-viral and tumor-suppressive properties in vitro however, its role in mucosal inflammation has not been evaluated. Using pre-clinical murine DSS-induced colitis model combined with complementary in vivo peritonitis and ex vivo human neutrophil activation and chemotaxis assays we investigated functional and mechanistic impacts of atovaquone on disease resolution and neutrophil trafficking. We demonstrate that atovaquone promotes resolution of DSS-induced murine colitis by reducing neutrophil accumulation in the inflamed colonic mucosa. Mechanistically, we show that atovaquone suppressed induction of CD11b expression in neutrophils, reducing their polarization and migratory ability. Thus, our findings identify a new role of atovaquone in promoting resolution of mucosal inflammation, supporting the idea of potential repurposing of this FDA-approved drug as UC therapeutic.
Collapse
Affiliation(s)
- Laura D. Manzanares
- Laboratory 7-065 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph David
- Department of Medicine, Gastroenterology and Hepatology University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Xingsheng Ren
- Laboratory 7-065 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lenore K. Yalom
- Laboratory 7-065 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Enzo B. Piccolo
- Laboratory 7-065 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yalda Dehghan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Aidan J. David
- College of Arts and Sciences, Case Western Reserve Unviersity, Cleveland, OH, United States
| | - Stephen B. Hanauer
- Department of Medicine, Gastroenterology and Hepatology Northwestern Memorial Hospital, Chicago, IL, United States
| | - Ronen Sumagin
- Laboratory 7-065 Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
43
|
Azad A, Kong A. The Therapeutic Potential of Imidazole or Quinone-Based Compounds as Radiosensitisers in Combination with Radiotherapy for the Treatment of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194694. [PMID: 36230623 PMCID: PMC9563564 DOI: 10.3390/cancers14194694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Patients with curable head and neck cancers are usually treated with a combination of chemotherapy and radiotherapy, but they experience significant, severe side effects, which greatly affect their quality of life. Some of these patients still experience disease relapse after an intensive course of treatment due to tumours that are resistant to radiotherapy and chemotherapy because of hypoxia (lack of oxygen). In addition, some patients are not suitable for and/or are not able to have combined chemotherapy with radiotherapy due to their age or other physical conditions. Certain small-molecule drugs, which are used to treat various infections including malaria, have been shown to reduce hypoxia and thus make radiotherapy more effective. Therefore, their combination with radiotherapy could have less toxicities compared with the combination of chemotherapy with radiotherapy. Here, we discuss the promising results from preclinical work and clinical trials of these agents, and their potential use in the clinic, to reduce hypoxia and to sensitise radiotherapy. These agents could potentially be used for patients who are not suitable for combined chemotherapy and radiotherapy; they may also be used to reduce the dose of radiotherapy if able to enhance radiotherapy effect at lower dose in order to reduce toxicities while maintaining the treatment efficacy in a more personalised manner. Abstract The addition of platinum chemotherapy to primary radiotherapy (chemoradiation) improves survival outcomes for patients with head and neck squamous cell carcinoma (HNSCC), but it carries a high incidence of acute and long-term treatment-related complications, resulting in a poor quality of life. In addition, patients with significant co-morbidities, or older patients, cannot tolerate or do not benefit from concurrent chemoradiation. These patients are often treated with radiotherapy alone resulting in poor locoregional control and worse survival outcomes. Thus, there is an urgent need to assess other less toxic treatment modalities, which could become an alternative to chemoradiation in HNSCC. Currently, there are several promising anti-cancer drugs available, but there has been very limited success so far in replacing concurrent chemoradiation due to their low efficacy or increased toxicities. However, there is new hope that a treatment strategy that incorporates agents that act as radiosensitisers to improve the efficacy of conventional radiotherapy could be an alternative to more toxic chemotherapeutic agents. Recently, imidazole-based or quinone-based anti-malarial compounds have drawn considerable attention as potential radiosensitisers in several cancers. Here, we will discuss the possibility of using these compounds as radiosensitisers, which could be assessed as safe and effective alternatives to chemotherapy, particularly for patients with HNSCC that are not suitable for concurrent chemotherapy due to their age or co-morbidities or in metastatic settings. In addition, these agents could also be tested to assess their efficacy in combination with immunotherapy in recurrent and metastatic settings or in combination with radiotherapy and immunotherapy in curative settings.
Collapse
|
44
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
45
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
46
|
Montecino-Garrido H, Méndez D, Araya-Maturana R, Millas-Vargas JP, Wehinger S, Fuentes E. In Vitro Effect of Mitochondria-Targeted Triphenylphosphonium-Based Compounds (Honokiol, Lonidamine, and Atovaquone) on the Platelet Function and Cytotoxic Activity. Front Pharmacol 2022; 13:893873. [PMID: 35645840 PMCID: PMC9130573 DOI: 10.3389/fphar.2022.893873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction: Obtaining triphenylphosphonium salts derived from anticancer compounds to inhibit mitochondrial metabolism is of major interest due to their pivotal role in reactive oxygen species (ROS) production, calcium homeostasis, apoptosis, and cell proliferation. However, the use of this type of antitumor compound presents a risk of bleeding since the platelet activation is especially dependent on the mitochondrial function. In this study, we evaluated the in vitro effect of three triphenylphosphonium-based compounds, honokiol (HNK), lonidamine (LDN), and atovaquone (ATO), on the platelet function linked to the triphenylphosphonium cation by a lineal 10-carbon alkyl chain and also the decyltriphenylphosphonium salt (decylphos).Methods: Platelets obtained by phlebotomy from healthy donors were exposed in vitro to different concentrations (0.1–10 μM) of the three compounds; cellular viability, exposure of phosphatidylserine, the mitochondrial membrane potential (∆Ψm), intracellular calcium release, and intracellular ROS generation were measured. Platelet activation and aggregation were induced by agonists (adenosine diphosphate, thrombin receptor-activating peptide-6, convulxin, or phorbol-12-myristate-13-acetate) and were evaluated by flow cytometry and light transmission, respectively.Results: The three compounds showed a slight cytotoxic effect from 1 μM, and this was concomitant with a decrease in ∆Ψm and intracellular calcium increase. Only ATO produced a modest but significant increase in intra-platelet ROS. Also, the three compounds increased the exposure to phosphatidylserine in platelets expressed in platelets positive for annexin V. None of the compounds had an inhibitory effect on the aggregation or activation markers of platelets stimulated with three different agonists. Similar results were obtained with decylphos.Conclusion: Triphenylphosphonium derivatives showed slight platelet toxicity below 1 μM, probably associated with their effect on ∆Ψm and exposure to phosphatidylserine, but no significant effect on platelet activation and aggregation, making them an antitumoral alternative with a low risk of bleeding. However, future assays on animal models and human trials are required to evaluate if their effects with a low risk for hemostasis are replicated in vivo.
Collapse
Affiliation(s)
- Héctor Montecino-Garrido
- Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Universidad de Talca, Talca, Chile
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Universidad de Talca, Talca, Chile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (ACT210097), Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- *Correspondence: Eduardo Fuentes,
| |
Collapse
|
47
|
Kapur A, Mehta P, Simmons AD, Ericksen SS, Mehta G, Palecek SP, Felder M, Stenerson Z, Nayak A, Dominguez JMA, Patankar M, Barroilhet LM. Atovaquone: An Inhibitor of Oxidative Phosphorylation as Studied in Gynecologic Cancers. Cancers (Basel) 2022; 14:cancers14092297. [PMID: 35565426 PMCID: PMC9102822 DOI: 10.3390/cancers14092297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative phosphorylation is an active metabolic pathway in cancer. Atovaquone is an oral medication that inhibits oxidative phosphorylation and is FDA-approved for the treatment of malaria. We investigated its potential anti-cancer properties by measuring cell proliferation in 2D culture. The clinical formulation of atovaquone, Mepron, was given to mice with ovarian cancers to monitor its effects on tumor and ascites. Patient-derived cancer stem-like cells and spheroids implanted in NSG mice were treated with atovaquone. Atovaquone inhibited the proliferation of cancer cells and ovarian cancer growth in vitro and in vivo. The effect of atovaquone on oxygen radicals was determined using flow and imaging cytometry. The oxygen consumption rate (OCR) in adherent cells was measured using a Seahorse XFe96 Extracellular Flux Analyzer. Oxygen consumption and ATP production were inhibited by atovaquone. Imaging cytometry indicated that the majority of the oxygen radical flux triggered by atovaquone occurred in the mitochondria. Atovaquone decreased the viability of patient-derived cancer stem-like cells and spheroids implanted in NSG mice. NMR metabolomics showed shifts in glycolysis, citric acid cycle, electron transport chain, phosphotransfer, and metabolism following atovaquone treatment. Our studies provide the mechanistic understanding and preclinical data to support the further investigation of atovaquone's potential as a gynecologic cancer therapeutic.
Collapse
Affiliation(s)
- Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Pooja Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (P.M.); (G.M.)
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.D.S.); (S.P.P.)
| | - Spencer S. Ericksen
- Drug Development Core, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (P.M.); (G.M.)
- Department of Biomedical Engineering, Macromolecular Sciences and Engineering, Precision Health, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (A.D.S.); (S.P.P.)
| | - Mildred Felder
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Zach Stenerson
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
| | - Amruta Nayak
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA;
| | | | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
- Correspondence: (M.P.); (L.M.B.); Tel.: +1-608-263-1210 (M.P.); +1-608-265-2319 (L.M.B.)
| | - Lisa M. Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA; (A.K.); (M.F.); (Z.S.)
- Correspondence: (M.P.); (L.M.B.); Tel.: +1-608-263-1210 (M.P.); +1-608-265-2319 (L.M.B.)
| |
Collapse
|
48
|
Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora's Box of cancer stem cells. Stem Cell Res Ther 2022; 13:181. [PMID: 35505363 PMCID: PMC9066908 DOI: 10.1186/s13287-022-02856-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
Drug resistance is the main culprit of failure in cancer therapy that may lead to cancer relapse. This resistance mostly originates from rare, but impactful presence of cancer stem cells (CSCs). Ability to self-renewal and differentiation into heterogeneous cancer cells, and harboring morphologically and phenotypically distinct cells are prominent features of CSCs. Also, CSCs substantially contribute to metastatic dissemination. They possess several mechanisms that help them to survive even after exposure to chemotherapy drugs. Although chemotherapy is able to destroy the bulk of tumor cells, CSCs are left almost intact, and make tumor entity resistant to treatment. Eradication of a tumor mass needs complete removal of tumor cells as well as CSCs. Therefore, it is important to elucidate key features underlying drug resistance raised by CSCs in order to apply effective treatment strategies. However, the challenging point that threatens safety and specificity of chemotherapy is the common characteristics between CSCs and normal peers such as signaling pathways and markers. In the present study, we tried to present a comprehensive appraisal on CSCs, mechanisms of their drug resistance, and recent therapeutic methods targeting this type of noxious cells.
Collapse
Affiliation(s)
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- Cardiovascular Research Center, Shiraz University of Medical Sciences, 3rd Floor, Mohammad Rasoolallah Research Tower, Namazi Hospital, Shiraz, Iran.
| |
Collapse
|
49
|
Mania With Psychotic Symptoms After Malaria Prophylaxis With Atovaquone-Proguanil: A Case Report. J Clin Psychopharmacol 2022; 42:331-333. [PMID: 35489033 DOI: 10.1097/jcp.0000000000001541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Gao W, Zhang J, Wang W, Liu Z, Chen M, Hu X, Zeng L, Zheng C, Song H, Zhang Q. Drug Self-delivery Nanorods Enhance Photodynamic Therapy of Triple-Negative Breast Cancer by inhibiting Oxidative Phosphorylation. Int J Pharm 2022; 621:121775. [PMID: 35489603 DOI: 10.1016/j.ijpharm.2022.121775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/08/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) shows very high potential for the clinical treatment of triple-negative breast cancer. However, the efficacy of PDT is significantly weakened by tumor hypoxia, the relatively high intracellular glutathione levels and the active proliferation of cancer cells. To address these issues, we developed a novel drug self-delivery nanorod (defined as AINRs) through the hydrophobic interaction among the mitochondrial complex III inhibitor (atovaquone, ATO), the photosensitizer (indocyanine green, ICG) and the dispersion stabilizer (distearoyl phosphoethanolamine-polyethylene glycol 2000, DSPE-PEG 2000). The AINRs showed a rod-like morphology with a mean diameter of 120.6 ± 5.4 nm, a zeta potential of -26.35 ± 1.63 mV and a significantly high drug loading rate of 93.48%. The results of in vitro cell experiments involving triple-negative breast cancer cell lines (4T1 cells and MDA-MB-231 cells) indicated that the AINRs could effectively block the oxidative phosphorylation of cancer cells through the inhibition of mitochondrial complex III, which results in the reduction of endogenous oxygen consumption and the decrease of the intracellular ATP level. The reduction of ATP content further inhibited the glutathione synthesis and arrested the cell cycle at the S-phase, which results in enhanced in vitro PDT efficacy of ICG. The results of in vivo antitumor activity in 4T1-bearing mice showed that the tumor growth inhibition rate of the AINRs with near-infrared laser irradiation (NIR) was 90%, whereas the tumor growth inhibition rates of the AINRs without NIR, ICG with NIR and doxorubicin (3 mg/kg) were only 31.68%, 61.15% and 24.59%, respectively. In addition, the results of safety studies, including body weights, biochemical indicators and H&E staining images of the main organs demonstrated the security of the AINRs. In summary, this study showed that the oxidative phosphorylation inhibition of triple-negative breast cancer was a safe and effective method to enhance its PDT efficacy.
Collapse
Affiliation(s)
- Wenhao Gao
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Jialiang Zhang
- Innovation center for cancer research, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Weifeng Wang
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Mulan Chen
- Department of Breast Cancer, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Changqing Zheng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China
| | - Hongtao Song
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China; Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou 350025, PR China.
| | - Qian Zhang
- College of Pharmacy, Fujian Medical University, Fuzhou 350122, PR China.
| |
Collapse
|