1
|
Wei X, Li M, You J, Luo J, Zhai J, Zhang J, Feng J, Wang H, Zhou Y. A Procedural Overview of the Involvement of Small Molecules in the Nervous System in the Regulation of Bone Healing. Int J Nanomedicine 2025; 20:1263-1284. [PMID: 39906525 PMCID: PMC11792627 DOI: 10.2147/ijn.s505677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Clinically, a multitude of factors can contribute to the development of bone defects. In the process of bone healing, the nervous system plays a vital role in bone regeneration. Small molecules from the nervous system, such as neurotrophic factors and neuropeptides, have been found to stimulate osteoblast proliferation and differentiation by activating signaling pathways associated with bone calcification and angiogenesis. These small molecules play a crucial regulatory role at various stages of bone healing. The systematic release mechanism of small molecules within the nervous system through diverse bone tissue engineering materials holds significant clinical implications for the controlled regulation of the bone healing process. This review provides an overview of the involvement of various nervous system small molecules at different stages of bone healing and discusses their regulatory mechanisms, aiming to establish a theoretical foundation for programmed regulation in bone regeneration and design of replacement materials in bone tissue engineering.
Collapse
Affiliation(s)
- Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mucong Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Rivera-Torruco G, Muench MO, Valle-Rios R. Exploring extramedullary hematopoiesis: unraveling the hematopoietic microenvironments. FRONTIERS IN HEMATOLOGY 2024; 3:1371823. [PMID: 39668982 PMCID: PMC11636351 DOI: 10.3389/frhem.2024.1371823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hematopoiesis is a process by which all blood cells are formed. The mechanisms controlling it have been studied for decades. Surprisingly, while hematopoietic stem cells are among the most extensively studied stem cell types, the complete understanding of how they are regulated during development, adulthood, or in non-homeostatic conditions remains elusive. In this review, our primary focus is on research findings that explore where hematopoietic precursors are found in adults outside their primary niches in the bone marrow. This phenomenon is termed extramedullary hematopoiesis (EMH). Early in development hematopoietic stem cells migrate through different regions within and outside the embryo and later the fetus. Although, the primary home for hematopoietic progenitors is the adult bone marrow, it is now recognized that other adult organs may act as hematopoietic progenitor reservoirs both in mice and humans. The first reports about this topic were principally originated from clinical observations, in cases where the bone marrow was malfunctioning, leading to an aberrant hematopoiesis outside the bone marrow. It is worth highlighting that those extramedullary organs, like the small intestine or fat tissue, contain subsets of fully functioning hematopoietic progenitors demonstrated by both in vitro and in vivo studies. Nonetheless, there are still some unanswered questions regarding the source of these cells, how they differ in function compared to their counterparts in the bone marrow, and the specific roles they play within the tissues where they are located.
Collapse
Affiliation(s)
- Guadalupe Rivera-Torruco
- Cell Therapy Core, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Cell Therapy Core, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, Medical Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ricardo Valle-Rios
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
3
|
The Proangiogenic Potential of Rat Adipose-Derived Stromal Cells with and without Cell-Sheet Induction: A Comparative Study. Stem Cells Int 2022; 2022:2601764. [PMID: 36248258 PMCID: PMC9556194 DOI: 10.1155/2022/2601764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
A functional vasculature for survival remains a challenge for tissue regeneration, which is indispensable for oxygen and nutrient supply. Utilizing mesenchymal stromal cells (MSCs) to alleviate tissue ischemia and repair dysfunctional or damaged endothelium is a promising strategy. Compared to other populations of MSCs, adipose-derived stromal cells (ASCs) possess a more significant proangiogenic potential and are abundantly available. Cell sheet technology has recently been widely utilized in bone engineering. Compared to conventional methods of seeding seed cell suspension onto biological scaffolds, cell sheet technology prevents cell loss and preserves the extracellular matrix (ECM). Nevertheless, the proangiogenic potential of ASC sheets remains unknown. In this study, rat ASC sheets were constructed, and their macro- and microstructures were examined. In addition, we investigated the effects of ASCs and ASC sheets on the biological properties and angiogenic capacity of endothelial cells (ECs). The results demonstrated that the ASC sheets gradually thickened as the number of cells and ECM increased over time and that the cells were in an active state of secretion. Similar to ASC-CM, the conditioned medium (CM) of ASC sheets could significantly enhance the proliferative capacity of ECs. ASC sheet-CM has significant advantages over ASC-CM in promoting the migration and angiogenesis of ECs, where the exosomes secreted by ASC sheets play an essential role. Therefore, using ASC sheets for therapeutic tissue and organ regeneration angiogenesis may be a valuable strategy.
Collapse
|
4
|
Sun R, Bai L, Yang Y, Ding Y, Zhuang J, Cui J. Nervous System-Driven Osseointegration. Int J Mol Sci 2022; 23:ijms23168893. [PMID: 36012155 PMCID: PMC9408825 DOI: 10.3390/ijms23168893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Implants are essential therapeutic tools for treating bone fractures and joint replacements. Despite the in-depth study of osseointegration for more than fifty years, poor osseointegration caused by aseptic loosening remains one of the leading causes of late implant failures. Osseointegration is a highly sophisticated and spatiotemporal process in vivo involving the immune response, angiogenesis, and osteogenesis. It has been unraveled that the nervous system plays a pivotal role in skeletal health via manipulating neurotrophins, neuropeptides, and nerve cells. Herein, the research related to nervous system-driven osseointegration was systematically analyzed and reviewed, aiming to demonstrate the prominent role of neuromodulation in osseointegration. Additionally, it is indicated that the implant design considering the role of neuromodulation might be a promising way to prevent aseptic loosening.
Collapse
Affiliation(s)
- Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, College of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (J.C.); (L.B.)
| |
Collapse
|
5
|
Yang G, Zhuang L, Sun T, Yeo YH, Tao L, Zhang W, Ma W, Wu L, Yang Z, Yang Y, Xue D, Zhang J, Feng R, Matthias P. E, Dooley S, Seki E, Liu P, Liu C. Serum Glial Cell Line-Derived Neurotrophic Factor (sGDNF) Is a Novel Biomarker in Predicting Cirrhosis in Patients with Chronic Hepatitis B. Can J Gastroenterol Hepatol 2022; 2022:1048104. [PMID: 35855954 PMCID: PMC9288342 DOI: 10.1155/2022/1048104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES We assessed the potential of glial cell line-derived neurotrophic factor (GDNF) as a useful biomarker to predict cirrhosis in chronic hepatitis B (CHB) patients. METHODS A total of 735 patients from two medical centers (385 CHB patients and 350 healthy controls) were included to determine the association of serum and tissue GDNF levels with biopsy-proven cirrhosis. The diagnostic accuracy of serum GDNF (sGDNF) was estimated and compared with other indices of cirrhosis. RESULTS We showed significantly higher levels of sGDNF in CHB patients with fibrosis (28.4 pg/ml vs. 11.6 pg/ml in patients without) and patients with cirrhosis (33.8 pg/ml vs. 23.5 pg/ml in patients without). The areas under receiver operating curve (AUROCs) of sGDNF were 0.83 (95% confidence interval (CI): 0.80-0.87) for predicting liver fibrosis and 0.84 (95% CI: 0.79-0.89) for cirrhosis. Findings from the serum protein level and hepatic mRNA expression were consistent. Using the best cutoff to predict cirrhosis, we categorized the patients into sGDNF-high and sGDNF-low groups. The sGDNF-high group had significantly larger Masson's trichrome and reticulin staining-positive area, higher Scheuer score, and METAVIR fibrosis stage (all p < 0.001) but not steatosis. On multivariable regression, sGDNF was independently associated with cirrhosis with an odds ratio of 6.98 (95% CI: 1.10-17.94). Finally, we demonstrated that sGDNF outperformed AST to platelet ratio index, FIB-4, fibroscore, forn index, and fibrometer in differentiating F4 vs. F3. CONCLUSION Using serum, tissue mRNA, and biopsy data, our study revealed a significant potential of sGDNF as a novel noninvasive biomarker for cirrhosis in CHB patients.
Collapse
Affiliation(s)
- Guangyue Yang
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tiantian Sun
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yee Hui Yeo
- Division of General Internal Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Le Tao
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wei Zhang
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wenting Ma
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Liu Wu
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanqin Yang
- Department of Pathology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Dongying Xue
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Zhang
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Rilu Feng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ebert Matthias P.
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ping Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai 201203, China
| | - Cheng Liu
- Laboratory of Liver Disease, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- Experimental Center, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
6
|
Rasińska J, Klein C, Stahn L, Maidhof F, Pfeffer A, Schreyer S, Gossen M, Kurtz A, Steiner B, Hemmati‐Sadeghi S. Transposon‐mediated glial cell line‐derived neurotrophic factor overexpression in human adipose tissue‐derived mesenchymal stromal cells: A potential approach for neuroregenerative medicine? J Tissue Eng Regen Med 2022; 16:515-529. [DOI: 10.1002/term.3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Justyna Rasińska
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Charlotte Klein
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Laura Stahn
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Felix Maidhof
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Anna Pfeffer
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Stefanie Schreyer
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Manfred Gossen
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Virchow Campus Berlin Germany
- Institute of Active Polymers Helmholtz‐Zentrum Geesthacht Teltow Germany
| | - Andreas Kurtz
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT) Charité Virchow Campus Berlin Germany
| | - Barbara Steiner
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| | - Shabnam Hemmati‐Sadeghi
- Department of Neurology Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
7
|
Krawczenko A, Klimczak A. Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells and Their Contribution to Angiogenic Processes in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23052425. [PMID: 35269568 PMCID: PMC8910401 DOI: 10.3390/ijms23052425] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.
Collapse
|
8
|
Tran PM, Tang SS, Salgado-Pabón W. Staphylococcus aureus β-Toxin Exerts Anti-angiogenic Effects by Inhibiting Re-endothelialization and Neovessel Formation. Front Microbiol 2022; 13:840236. [PMID: 35185854 PMCID: PMC8851161 DOI: 10.3389/fmicb.2022.840236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus causes severe, life-threatening infections that often are complicated by severe local and systemic pathologies with non-healing lesions. A classic example is S. aureus infective endocarditis (IE), where the secreted hemolysin β-toxin potentiates the disease via its sphingomyelinase and biofilm ligase activities. Although these activities dysregulate human aortic endothelial cell activation, β-toxin effect on endothelial cell function in wound healing has not been addressed. With the use of the ex vivo rabbit aortic ring model, we provide evidence that β-toxin prevents branching microvessel formation, highlighting its ability to interfere with tissue re-vascularization and vascular repair. We show that β-toxin specifically targets both human aortic endothelial cell proliferation and cell migration and inhibits human umbilical vein endothelial cell rearrangement into capillary-like networks in vitro. Proteome arrays specific for angiogenesis-related molecules provided evidence that β-toxin promotes an inhibitory profile in endothelial cell monolayers, specifically targeting production of TIMP-1, TIMP-4, and IGFBP-3 to counter the effect of a pro-angiogenic environment. Dysregulation in the production of these molecules is known to result in sprouting defects (including deficient cell proliferation, migration, and survival), vessel instability and/or vascular regression. When endothelial cells are grown under re-endothelialization/wound healing conditions, β-toxin decreases the pro-angiogenic molecule MMP-8 and increases the anti-angiogenic molecule endostatin. Altogether, the data indicate that β-toxin is an anti-angiogenic virulence factor and highlight a mechanism where β-toxin exacerbates S. aureus invasive infections by interfering with tissue re-vascularization and vascular repair.
Collapse
Affiliation(s)
- Phuong M. Tran
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sharon S. Tang
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Kumari R, Dutta R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Pal HC, Verma SK. ALKBH5 Regulates SPHK1-Dependent Endothelial Cell Angiogenesis Following Ischemic Stress. Front Cardiovasc Med 2022; 8:817304. [PMID: 35127873 PMCID: PMC8811170 DOI: 10.3389/fcvm.2021.817304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Endothelial cells dysfunction has been reported in many heart diseases including acute myocardial infarction, and atherosclerosis. The molecular mechanism for endothelial dysfunction in the heart is still not clearly understood. We aimed to study the role of m6A RNA demethylase alkB homolog 5 (ALKBH5) in ECs angiogenesis during ischemic injury. Methods and Results ECs were treated with ischemic insults (lipopolysaccharide and 1% hypoxia) to determine the role of ALKBH5 in ECs angiogenesis. siRNA mediated ALKBH5 gene silencing was used for examining the loss of function. In this study, we report that ALKBH5 levels are upregulated following ischemia and are associated with maintaining ischemia-induced ECs angiogenesis. To decipher the mechanism of action, we found that ALKBH5 is required to maintain eNOS phosphorylation and SPHK1 protein levels. ALKBH5 silencing alone or with ischemic stress significantly increased SPHK1 m6A mRNA methylation. In contrast, METTL3 (RNA methyltransferase) overexpression resulted in the reduced expression of SPHK1. Conclusion We reported that ALKBH5 helps in the maintenance of angiogenesis in endothelial cells following acute ischemic stress via reduced SPHK1 m6A methylation and downstream eNOS-AKT signaling.
Collapse
Affiliation(s)
- Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Roshan Dutta
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Gbongbo Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Chandra Pal
- Department of Pathology, Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Suresh Kumar Verma
| |
Collapse
|
10
|
Xu M, Fang S, Ma X. CD73 + adipose-derived stem cells reduce scar formation through PLOD1. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:66. [PMID: 35282129 PMCID: PMC8848413 DOI: 10.21037/atm-21-6557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Background Reducing cutaneous scar formation is important for assessing the success of skin wound healing. Although it is generally accepted that adipose-derived mesenchymal stem cells (AMSCs) have substantial therapeutic potential, efforts are continuously made to improve the outcome of AMSC therapy. Post-transcriptional suppression of procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) in AMSCs has been shown to greatly reduce scar formation during skin wound healing, likely through modulating macrophage polarization. In the present study, we tested whether a CD73+ subpopulation of AMSCs could reduce scar formation compared with CD73– AMSCs. Methods The gene profile of CD73+ versus CD73– AMSCs was obtained from a validated public database, GSE167219. AMSCs were isolated from adipose tissue surrounding the groin of mice, after which CD73+ versus CD73– AMSCs were sorted using flow cytometry. PLOD1 levels were determined in CD73+ versus CD73– AMSCs. Then, PLOD1 in CD73– AMSCs was depleted by a short-hair interfering RNA against PLOD1 (sh-PLOD1), while PLOD1 in CD73+ AMSCs was increased by expression of a PLOD1 transgene. A blade was used to induce a skin injury on the middle back of the mice. Either CD73+ AMSCs or CD73+ PLOD1 AMSCs or CD73– AMSCs or CD73– sh-PLOD1 AMSCs were intravenously transplanted into the injured region of the mice. Fibrosis and the underlying mechanisms were investigated. Co-immunoprecipitation was performed to evaluate interaction between CD73 and PLOD1. Results CD73+ AMSCs expressed significantly lower levels of PLOD1, a potent stimulator of fibrosis, compared with CD73– AMSCs. Transplantation of CD73+ AMSCs generated significantly reduced fibrosis at the skin injury site compared with CD73– AMSCs. However, expression of PLOD1 in CD73+ AMSCs abolished its advantageous effects on fibrosis reduction, while depletion of PLOD1 in CD73– AMSCs improved the outcome of fibrosis to the levels of transplantation of CD73+ AMSCs. Co-immunoprecipitation showed no direct protein interaction between CD73 and PLOD1. Conclusions CD73+ AMSCs are a subgroup of AMSCs with better therapeutic effects on wound healing, and can inhibit scar formation through reduced PLOD1 in an indirect manner.
Collapse
Affiliation(s)
- Miao Xu
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Fang
- Department of Plastic and Reconstructive Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaorong Ma
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Xu M, Fang S, Xie A. Posttranscriptional control of PLOD1 in adipose-derived stem cells regulates scar formation through altering macrophage polarization. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1573. [PMID: 34790779 PMCID: PMC8576667 DOI: 10.21037/atm-21-4978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/06/2022]
Abstract
Background The level of cutaneous scar formation is a critical parameter to determine the success of skin wound healing. Adipose-derived mesenchymal stem cells (AMSCs) have been applied to improve treatment of cutaneous injury with the purpose of reducing scar formation. Methods The levels of procollagen-lysine 1,2-oxoglutarate 5-dioxygenase 1 (PLOD1) were assessed at scar sites. Then, PLOD1 in AMSCs was depleted by either expression of a PLOD1-specific short-hair interfering RNA (shPLOD1) or by expression of microRNA-449 (miR-449) that targets and suppresses protein translation of PLOD1 through 3 prime untranslated region (3'-UTR) interfering. For induction of skin injury, a blade cut of 1.5-cm long and 2-mm thick was made on the middle back of the mice. Transplantation of either AMSCs-shPLOD1 or AMSCs-miR-449 into the injured region of the mice was performed via tail vein injection. The fibrosis as well as underlying mechanisms were assessed. Results The AMSCs expressed high levels of PLOD1, a potent stimulator of fibrosis. We knocked down PLOD1 in AMSCs by expression of either shPLOD1 or miR-449. Transplantation of either AMSCs-shPLOD1 or AMSCs-miR-449 significantly reduced the fibrotic process in the injured region of the mice to a similar degree. Mechanistically, transplantation of either AMSCs-shPLOD1 or AMSCs-miR-449 shifted macrophage polarization from M2 to M1-like and reduced both reactive oxygen species (ROS) and activation of myofibroblasts from fibroblasts. Conclusions Suppression of PLOD1 levels in AMSCs either directly by shPLOD1 or indirectly by miR-449 may substantially improve the anti-fibrotic potential of AMSCs during wound healing, likely through altering macrophage polarization.
Collapse
Affiliation(s)
- Miao Xu
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Morton AB, Jacobsen NL, Segal SS. Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. Am J Physiol Cell Physiol 2021; 320:C1099-C1111. [PMID: 33852364 PMCID: PMC8285637 DOI: 10.1152/ajpcell.00501.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022]
Abstract
During embryogenesis, blood vessels and nerves develop with similar branching structure in response to shared signaling pathways guiding network growth. With both systems integral to physiological homeostasis, dual targeting of blood vessels and nerves to promote neurovascular regeneration following injury is an emerging therapeutic approach in biomedical engineering. A limitation to this strategy is that the nature of cross talk between emergent vessels and nerves during regeneration in an adult is poorly understood. Following peripheral nerve transection, intraneural vascular cells infiltrate the site of injury to provide a migratory pathway for mobilized Schwann cells of regenerating axons. As Schwann cells demyelinate, they secrete vascular endothelial growth factor, which promotes angiogenesis. Recent advances point to concomitant restoration of neurovascular architecture and function through simultaneous targeting of growth factors and guidance cues shared by both systems during regeneration. In the context of traumatic injury associated with volumetric muscle loss, we consider the nature of biomaterials used to engineer three-dimensional scaffolds, functionalization of scaffolds with molecular signals that guide and promote neurovascular growth, and seeding scaffolds with progenitor cells. Physiological success is defined by each tissue component of the bioconstruct (nerve, vessel, muscle) becoming integrated with that of the host. Advances in microfabrication, cell culture techniques, and progenitor cell biology hold great promise for engineering bioconstructs able to restore organ function after volumetric muscle loss.
Collapse
Affiliation(s)
- Aaron B Morton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Nicole L Jacobsen
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
13
|
Ru J, Guo L, Ji Y, Niu Y. Hydrostatic pressure induces osteogenic differentiation of adipose-derived mesenchymal stem cells through increasing lncRNA-PAGBC. Aging (Albany NY) 2020; 12:13477-13487. [PMID: 32661199 PMCID: PMC7377829 DOI: 10.18632/aging.103448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Induced osteogenesis of adipose-derived mesenchymal stem cells (AMSCs) has been used to facilitate bone regeneration. Specifically, hydrostatic pressure (HP) has been implicated as a key regulator of AMSC differentiation, whereas the mechanisms that underlie the effects of HP on osteogenesis of AMSCs are not fully understood. Long noncoding RNAs (lncRNAs) are emerging regulators for osteogenic differentiation from AMSCs. In the current study, we found that lncRNA-PAGBC was a specific lncRNA that significantly upregulated during osteogenic differentiation of AMSCs based on published database. HP increased lncRNA-PAGBC, which is a competitive endogenous RNA (ceRNA) that binds to the osteogenesis-inhibitory microRNA, miR-133b, to regulate osteogenic differentiation of AMSCs. Moreover, a key osteogenesis-trigger gene, runt-related transcription factor 2 (RUNX2), was identified as a target gene for miR-133b. Suppression of RUNX2 by miR-133b caused impaired osteogenic differentiation of AMSCs. Furthermore, lncRNA-PAGBC overexpression upregulated, whereas lncRNA-PAGBC silencing decreased the expression of RUNX2 through miR-133b. Together, these data suggest that HP induces osteogenic differentiation of AMSCs through increasing lncRNA-PAGBC.
Collapse
Affiliation(s)
- Jiangying Ru
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Lieping Guo
- Department of Oncology, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yinjun Ji
- Department of Trauma Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yunfei Niu
- Department of Trauma Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Lisse TS, Sharma M, Vishlaghi N, Pullagura SR, Braun RE. GDNF promotes hair formation and cutaneous wound healing by targeting bulge stem cells. NPJ Regen Med 2020; 5:13. [PMID: 32566252 PMCID: PMC7293257 DOI: 10.1038/s41536-020-0098-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Glial-cell-derived neurotrophic factor (GDNF) is a well-studied neuroregenerative factor; however, the degree to which it supports hair formation and skin wound repair is not known. By using a Gfra1 (GDNF family receptor alpha 1) knock-in reporter mouse line, GDNF signaling was found to occur within hair bulge stem cells (BSCs) during the initiation of the hair cycle and early stages of hair formation after depilation. Both recombinant and transgene overexpression of GDNF promoted BSC colony growth, hair formation, and skin repair after wounding through enhanced self-renewal of BSCs and commitment of BSC-derived progenitors into becoming epidermal cells at the injury site. Conditional ablation of Gfra1 among BSCs impaired the onset of the hair cycle, while conditional ablation of the GDNF family member signal transducer, Ret, within BSCs prevented the onset of the hair cycle and depilation-induced anagen development of hair follicles. Our findings reveal that GDNF promotes hair formation and wound repair and that bulge stem cells are critical mediators of both.
Collapse
Affiliation(s)
- Thomas S Lisse
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.,Department of Biology, The University of Miami, 1301 Memorial Drive, Cox Science Building, Coral Gables, FL 33124 USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33146 USA
| | - Manju Sharma
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Neda Vishlaghi
- Department of Biology, The University of Miami, 1301 Memorial Drive, Cox Science Building, Coral Gables, FL 33124 USA
| | - Sri Ramulu Pullagura
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, 04469 ME USA
| | - Robert E Braun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, 04469 ME USA
| |
Collapse
|
15
|
Tan J, Xu Y, Han F, Ye X. Genetical modification on adipose-derived stem cells facilitates facial nerve regeneration. Aging (Albany NY) 2020; 11:908-920. [PMID: 30728320 PMCID: PMC6382422 DOI: 10.18632/aging.101790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Adipose-derived stem cells (ASCs) have a demonstrative therapeutic potential in aging-associated facial nerve regeneration, in which ASCs work as a source of Schwann cells therapy as an alternative to autologous nerve grafts. However, the transplantation of ASCs may induce local fibrosis, which causes inferior outcome. Here, we aimed to use genetic modification approaches to reduce the fibrogenic properties of ASCs to improve their therapeutic effects on facial nerve regeneration. Since procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) is essential for hydroxylation of lysine residues in collagen telopeptides and for collagen pyridinoline cross-link formation during fibrosis, and since we found that ASCs expressed high levels of PLOD1, we depleted PLOD1 in ASCs by expression of either a short-hair interfering RNA for PLOD1 (shPLOD1) or a microRNA-449 (miR-449), the latter of which targets PLOD1 mRNA to suppress protein translation. Transplantation of either ASCs-shPLOD1 or ASCs-miR-449 or ASCs-control to repair a 6mm-gap in rat facial nerve was compared. Either ASCs-shPLOD1 or ASCs-miR-449 exhibited a better facial nerve function. Mechanistically, ASCs-shPLOD1 or ASCs-miR-449 significantly and similarly reduced the fibrosis in the injured region, likely through suppression of reactive oxygen species (ROS) and activation of myofibroblasts.
Collapse
Affiliation(s)
- Jian Tan
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yipin Xu
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Han
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xinhai Ye
- Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
16
|
Zhang YH, Ravi V, Qin G, Dai H, Zhang HX, Han FM, Wang X, Liu YH, Yin JP, Huang LM, Venkatesh B, Lin Q. Comparative genomics reveal shared genomic changes in syngnathid fishes and signatures of genetic convergence with placental mammals. Natl Sci Rev 2020; 7:964-977. [PMID: 34692118 PMCID: PMC8289055 DOI: 10.1093/nsr/nwaa002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Syngnathids (seahorses, pipefishes and seadragons) exhibit an array of morphological innovations including loss of pelvic fins, a toothless tubular mouth and male pregnancy. They comprise two subfamilies: Syngnathinae and Nerophinae. Genomes of three Syngnathinae members have been analyzed previously. In this study, we have sequenced the genome of a Nerophinae member, the Manado pipefish (Microphis manadensis), which has a semi-enclosed brood pouch. Comparative genomic analysis revealed that the molecular evolutionary rate of the four syngnathids is higher than that of other teleosts. The loss of all but one P/Q-rich SCPP gene in the syngnathids suggests a role for the lost genes in dentin and enameloid formation in teleosts. Genome-wide comparison identified a set of 118 genes with parallel identical amino acid substitutions in syngnathids and placental mammals. Association of some of these genes with placental and embryonic development in mammals suggests a role for them in syngnathid pregnancy.
Collapse
Affiliation(s)
- Yan-Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Vydianathan Ravi
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR 138673, Singapore
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Hui-Xian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Feng-Ming Han
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yu-Hong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jian-Ping Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Liang-Min Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Byrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR 138673, Singapore
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Dos Santos BP, Garbay B, Fenelon M, Rosselin M, Garanger E, Lecommandoux S, Oliveira H, Amédée J. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomater 2019; 99:154-167. [PMID: 31425892 DOI: 10.1016/j.actbio.2019.08.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Despite significant progress in the field of biomaterials for bone repair, the lack of attention to the vascular and nervous networks within bone implants could be one of the main reasons for the delayed or impaired recovery of bone defects. The design of innovative biomaterials should improve the host capacity of healing to restore a functional tissue, taking into account that the nerve systems closely interact with blood vessels in the bone tissue. The aim of this work is to develop a cell-free and growth factor-free hydrogel capable to promote angiogenesis and innervation. To this end, we have used elastin-like polypeptides (ELPs), poly(ethylene glycol) (PEG) and increasing concentrations of the adhesion peptide IKVAV (25% (w/w) representing 1.7 mM and 50% (w/w) representing 4.1 mM) to formulate and produce hydrogels. When characterized in vitro, hydrogels have fine-tunable rheological properties, microporous structure and are biocompatible. At the biological level, 50% IKVAV composition up-regulated Runx2, Osx, Spp1, Vegfa and Bmp2 in mesenchymal stromal cells and Tek in endothelial cells, and sustained the formation of long neurites in sensory neurons. When implanted subcutaneously in mice, hydrogels induced no signals of major inflammation and the 50% IKVAV composition induced higher vessel density and formation of nervous terminations in the peripheral tissue. This novel composite has important features for tissue engineering, showing higher osteogenic, angiogenic and innervation potential in vitro, being not inflammatory in vivo, and inducing angiogenesis and innervation subcutaneously. STATEMENT OF SIGNIFICANCE: One of the main limitations in the field of tissue engineering remains the sufficient vascularization and innervation during tissue repair. In this scope, the development of advanced biomaterials that can support these processes is of crucial importance. Here, we formulated different compositions of Elastin-like polypeptide-based hydrogels bearing the IKVAV adhesion sequence. These compositions showed controlled mechanical properties, and were degradable in vitro. Additionally, we could identify in vitro a composition capable to promote neurite formation and to modulate endothelial and mesenchymal stromal cells gene expression, in view of angiogenesis and osteogenesis, respectively. When tested in vivo, it showed no signs of major inflammation and induced the formation of a highly vascularized and innervated neotissue. In this sense, our approach represents a potential advance in the development of new strategies to promote tissue regeneration, taking into account both angiogenesis and innervation.
Collapse
Affiliation(s)
- Bruno Paiva Dos Santos
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France.
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Mathilde Fenelon
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France; CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
| | - Marie Rosselin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Hugo Oliveira
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Joëlle Amédée
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, Hashemzehi M, Asemi Z, Mirzaei HR, Salarinia R, Mirzaei H. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int 2019; 19:157. [PMID: 31198406 PMCID: PMC6558739 DOI: 10.1186/s12935-019-0870-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Fibromodulin (FMOD) is known as one of very important extracellular matrix small leucine-rich proteoglycans. This small leucine-rich proteoglycan has critical roles in the extracellular matrix organization and necessary for repairing of tissue in many organs. Given that the major task of FMOD is the modulation of collagen fibrillogenesis. However, recently observed that FMOD plays very important roles in the modulation of a variety of pivotal biological processes including angiogenesis, regulation of TGF-β activity, and differentiation of human fibroblasts into pluripotent cells, inflammatory mechanisms, apoptosis and metastatic related phenotypes. Besides these roles, FMOD has been considered as a new tumor-related antigen in some malignancies such as lymphoma, leukemia, and leiomyoma. Taken together, these findings proposed that FMOD could be introduced as diagnostic and therapeutic biomarkers in treatment of various cancers. Herein, for first time, we highlighted the various roles of FMOD in the cancerous conditions. Moreover, we summarized the diagnostic and therapeutic applications of FMOD in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Mohammadi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Somaye Noruzi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyede Atefe Hosseini
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- 3Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- 4Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Milad Hashemzehi
- Iranshahr University of Medical Sciences, Iranshahr, Iran.,6Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- 7Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Xu S, Liu C, Ji H. Concise Review: Therapeutic Potential of the Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Radiation-Induced Lung Injury: Progress and Hypotheses. Stem Cells Transl Med 2019; 8:344-354. [PMID: 30618085 PMCID: PMC6431606 DOI: 10.1002/sctm.18-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a common complication in radiotherapy of thoracic tumors and limits the therapeutic dose of radiation that can be given to effectively control tumors. RILI develops through a complex pathological process, resulting in induction and activation of various cytokines, infiltration by inflammatory cells, cytokine-induced activation of fibroblasts, and subsequent tissue remodeling by activated fibroblasts, ultimately leading to impaired lung function and respiratory failure. Increasing evidence shows that mesenchymal stem cells (MSCs) may play a main role in modulating inflammation and immune responses, promoting survival and repair of damaged resident cells and enhancing regeneration of damaged tissue through soluble paracrine factors and therapeutic extracellular vesicles. Therefore, the use of the MSC-derived secretome and exosomes holds promising potential for RILI therapy. Here, we review recent progress on the potential mechanisms of MSC therapy for RILI, with an emphasis on soluble paracrine factors of MSCs. Hypotheses on how MSC derived exosomes or MSC-released exosomal miRNAs could attenuate RILI are also proposed. Problems and translational challenges of the therapies based on the MSC-derived secretome and exosomes are further summarized and underline the need for caution on rapid clinical translation. Stem Cells Translational Medicine 2019;8:344-354.
Collapse
Affiliation(s)
- Siguang Xu
- Institute of Lung and Molecular TherapyXinxiang Medical UniversityXinxiangHenanPeople's Republic of China
| | - Cong Liu
- Institute of Lung and Molecular TherapyXinxiang Medical UniversityXinxiangHenanPeople's Republic of China
| | - Hong‐Long Ji
- Department of Cellular and Molecular BiologyUniversity of Texas Health Science Center at TylerTylerTexasUSA
- Texas Lung Injury InstituteUniversity of Texas Health Science Center at TylerTylerTexasUSA
| |
Collapse
|
20
|
Kiaie N, Aghdam RM, Tafti SHA, Gorabi AM. Stem Cell-Mediated Angiogenesis in Tissue Engineering Constructs. Curr Stem Cell Res Ther 2018; 14:249-258. [PMID: 30394215 DOI: 10.2174/1574888x13666181105145144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
Angiogenesis has always been a concern in the field of tissue engineering. Poor vascularization of engineered constructs is a problem for the clinical success of these structures. Among the various methods employed to induce angiogenesis, stem cells provide a promising tool for the future. The present review aims to present the application of stem cells in the induction of angiogenesis. Additionally, it summarizes recent advancements in stem cell-mediated angiogenesis of different tissue engineering constructs.
Collapse
Affiliation(s)
- Nasim Kiaie
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Tissue Engineering, Amirkabir University of Technology, Tehran 15875, Iran
| | - Rouhollah M Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed H Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita M Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Nahari E, Razi M. Silymarin amplifies apoptosis in ectopic endometrial tissue in rats with endometriosis; implication on growth factor GDNF, ERK1/2 and Bcl-6b expression. Acta Histochem 2018; 120:757-767. [PMID: 30195499 DOI: 10.1016/j.acthis.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/29/2018] [Accepted: 08/16/2018] [Indexed: 12/25/2022]
Abstract
The present prospective study was done to evaluate the effect of silymarin (SMN) on endometriotic-like legions establishment and growth in experimentally-induced endometriosis. For this purpose, the experimental endometriosis was induced in 12 rats and then the animals subdivided into endometriosis-sole and SMN (50 mg kg-1, orally)+endometriosis groups. Following 28 days, the legions establishment, size, Glial cell line-derived neurotrophic factor (GDNF), gfrα1, B Cell Lymphoma 6 (Bcl-6b), Bcl-2, extracellular regulator kinase (ERK1/2) expression ratios, angiogenesis, the apoptosis and fibrosis indices were investigated. The SMN significantly (P < 0.05) decreased the enometriotic-like legions establishment and size, decreased mRNA levels of GDNF, gfrα1, Bcl-6b and Bcl-2 and remarkably diminished GDNF, gfrα1, Bcl-6b and Bcl-2-positive cells distribution/mm2 of tissue versus endometriosis-sole group. The SMN + endometriosis group exhibited a significant (P < 0.05) enhancement in ERK1/2 expression and represented diminished vascularized area and increased apoptosis and fibrosis indices, as well. In conclusion, the SMN by down-regulating GDNF and its receptor gfrα1 expression inhibits GDNF-gfrα1 complex generation and consequently suppresses Bcl-6b expression. Moreover, the SMN by enhancing the ERK1/2 expression and by suppressing the Bcl-2 expression promotes the apoptosis pathway. Finally, the SMN by down-regulating the angiogenesis ratio accelerates apoptosis and consequently induces severe fibrosis in endometriotic-like legions.
Collapse
Affiliation(s)
- Elaheh Nahari
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, P.O. BOC: 1177, Urmia University, Urmia, Iran.
| |
Collapse
|
22
|
Chen M, Ba H, Lu C, Dai J, Sun J. Glial Cell Line-Derived Neurotrophic Factor (GDNF) Promotes Angiogenesis through the Demethylation of the Fibromodulin (FMOD) Promoter in Glioblastoma. Med Sci Monit 2018; 24:6137-6143. [PMID: 30176167 PMCID: PMC6131978 DOI: 10.12659/msm.911669] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Angiogenesis plays an important role in the progression of glioblastoma, with a high degree of malignancy. Previous studies have proved that glial cell line-derived neurotrophic factor (GDNF) and fibromodulin (FMOD) are strongly expressed in human glioblastoma. The purpose of this study was to explore the roles of GDNF and FMOD in angiogenesis and the molecular mechanisms underlying these roles in human glioblastoma. Material/Methods The effects of GDNF on the expression and secretion of vascular endothelial growth factor (VEGF) in human glioblastoma cell line U251 and angiogenesis in human umbilical vein endothelial cells (HUVECs) were investigated. The molecular mechanism of GDNF-induced expression of FMOD was explored. The roles of FMOD in GDNF-induced expression and secretion of VEGF and angiogenesis were also examined. Results In the present study, we showed that GDNF promoted the expression and secretion of VEGF in U251 cells. VEGF mediated GDNF-induced angiogenesis in human glioblastoma. In addition, GDNF significantly upregulated the expression of FMOD in U251 cells. Mechanistically, the results of luciferase reporter assay and methylation-specific PCR (MSP) demonstrated that GDNF facilitated the demethylation of the FMOD promoter. More importantly, we found that FMOD acted as an important mediator in VEGF expression and angiogenesis induced by GDNF in human glioblastoma. Conclusions Collectively, our data show that GDNF promotes angiogenesis through demethylation of the FMOD promoter in human glioblastoma, indicating that GDNF and FMOD may be potential therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Huajun Ba
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Chuan Lu
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Junxia Dai
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jun Sun
- Department of Neurosurgery, Wenzhou Central Hospital, Affiliated Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
23
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
24
|
Azhdari Tafti Z, Mahmoodi M, Hajizadeh MR, Ezzatizadeh V, Baharvand H, Vosough M, Piryaei A. Conditioned Media Derived from Human Adipose Tissue Mesenchymal Stromal Cells Improves Primary Hepatocyte Maintenance. CELL JOURNAL 2018; 20:377-387. [PMID: 29845792 PMCID: PMC6004997 DOI: 10.22074/cellj.2018.5288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Objective Recent advances in cell therapy have encouraged researchers to provide an alternative for treatment and
restoration of damaged liver through using hepatocytes. However, these cells quickly lose their functional capabilities in vitro.
Here, we aim to use the secretome of mesenchymal stromal cells (MSCs) to improve in vitro maintenance conditions for
hepatocytes.
Materials and Methods In this experimental study, following serum deprivation, human adipose tissue-derived MSCs
(hAT-MSCs) were cultured for 24 hours under normoxic (N) and hypoxic (H) conditions. Their conditioned media (CM)
were subsequently collected and labeled as N-CM (normoxia) and H-CM (hypoxia). Murine hepatocytes were isolated
by perfusion of mouse liver with collagenase, and were cultured in hepatocyte basal (William’s) medium supplemented
with 4% N-CM or H-CM. Untreated William’s and hepatocyte-specific media (HepZYM) were used as controls. Finally,
we evaluated the survival and proliferation rates, as well as functionality and hepatocyte-specific gene expressions of
the cells.
Results We observed a significant increase in viability of hepatocytes in the presence of N-CM and H-CM compared
to HepZYM on day 5, as indicated by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium) assay. Indocyanine green (ICG) uptake of hepatocytes in the H-CM and HepZYM groups on days 3 and
5 also suggested that H-CM maintained the hepatocytes at about the same level as the hepatocyte-specific medium.
The HepZYM group had significantly higher levels of albumin (Alb) and urea secretion compared to the other groups
(P<0.0001). However, there were no significant differences in cytochrome activity and cytochrome gene expression
profiles among these groups. Finally, we found a slightly, but not significantly higher concentration of vascular endothelial
growth factor (VEGF) in the H-CM group compared to the N-CM group (P=0.063).
Conclusion The enrichment of William’s basal medium with 4% hAT-MSC-H-CM improved some physiologic
parameters in a primary hepatocyte culture.
Collapse
Affiliation(s)
- Zahra Azhdari Tafti
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohamad Reza Hajizadeh
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Medical Genetics, Medical Laboratory Center, Royesh Medical Group, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
25
|
Fielder GC, Yang TWS, Razdan M, Li Y, Lu J, Perry JK, Lobie PE, Liu DX. The GDNF Family: A Role in Cancer? Neoplasia 2018; 20:99-117. [PMID: 29245123 PMCID: PMC5730419 DOI: 10.1016/j.neo.2017.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Mahalakshmi Razdan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
26
|
Chang PY, Zhang BY, Cui S, Qu C, Shao LH, Xu TK, Qu YQ, Dong LH, Wang J. MSC-derived cytokines repair radiation-induced intra-villi microvascular injury. Oncotarget 2017; 8:87821-87836. [PMID: 29152123 PMCID: PMC5675675 DOI: 10.18632/oncotarget.21236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
Microvascular injury initiates the pathogenesis of radiation enteropathy. As previously demonstrated, the secretome from mesenchymal stem cells contains various angiogenic cytokines that exhibited therapeutic potential for ischemic lesions. As such, the present study aimed to investigate whether cytokines derived from mesenchymal stem cells can repair endothelial injuries from irradiated intestine. Here, serum-free medium was conditioned by human adipose-derived mesenchymal stem cells, and we found that there were several angiogenic cytokines in the medium, including IL-8, angiogenin, HGF and VEGF. This medium promoted the formation of tubules between human umbilical cord vein endothelial cells and protected these cells against radiation-induced apoptosis in vitro. Likewise, our in vivo results revealed that repeated injections of mesenchymal stem cell-conditioned medium could accelerate the recovery of irradiated mice by reducing the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6 and TNF-α, and promoting intra-villi angiogenesis. Herein, intervention by conditioned medium could increase the number of circulating endothelial progenitors, whereas neutralizing SDF-1α and/or inhibiting PI3K would hamper the recruitment of endothelial progenitors to the injured sites. Such results suggested that SDF-1α and PI3K-mediated phosphorylation were required for intra-villi angiogenesis. To illustrate this, we found that conditioned medium enabled endothelial cells to increase intracellular levels of phosphorylated Akt Ser473, both under irradiated and steady state conditions, and to up-regulate the expression of the CXCR4 and CXCR7 genes. Collectively, the present results revealed the therapeutic effects of mesenchymal stem cell-derived cytokines on microvascular injury of irradiated intestine.
Collapse
Affiliation(s)
- Peng-Yu Chang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, Changchun Jilin 130022, P.R. China.,Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Bo-Yin Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shuang Cui
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Chao Qu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Li-Hong Shao
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Tian-Kai Xu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Ya-Qin Qu
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Li-Hua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Chinese Academy of Sciences, Changchun Jilin 130022, P.R. China.,Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
27
|
Fang H, Liu C, Yang M, Li H, Zhang F, Zhang W, Zhang J. Neurotrophic factor and Trk signaling mechanisms underlying the promotion of motor recovery after acute spinal cord injury in rats. Exp Ther Med 2017; 14:652-656. [PMID: 28672981 PMCID: PMC5488512 DOI: 10.3892/etm.2017.4516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/08/2017] [Indexed: 12/02/2022] Open
Abstract
Neurotrophic factor (NF) and Trk signaling mechanisms underlying the promotion of motor recovery following acute spinal cord injury (SCI) in rats were investigated. Thirty-six adult Sprague-Dawley rats of both genders were randomly divided into three groups: Sham-operated, model, and NF/Trk. Each group consisted of 12 rats, with four subgroups in each group: 1, 3, 5 and 7 days. Sham-operated rats received a laminectomy without SCI, while in model group rats, SCI was induced using an improved version of the Allen's method. After analepsia, sham-operated and model group rats were given normal saline via gavage, while the NF/Trk group received NFs and Trk. Lower limb function was measured using the Basso, Beattie and Bresnahan scale 1, 3, 5 and 7 days before and after surgery. Results were analyzed statistically. Six rats from each group were randomly selected for sacrifice at 1, 3, 5 and 7 days after the operation. Morphological changes in motor neurons in the anterior gray column were observed by hematoxylin and eosin, and Nissl staining. Brain-derived expression of NF (BNDF) and neurotrophin-3 (NT-3) was detected by immunofluorescence, and the number of positive cells was counted. Expression of Trk B and Trk protein C receptor was measured by western blotting. In the NF/Trk group, the expression of NF/Trk pathway components remarkably increased. In addition, the morphology of motor neurons in the anterior gray column was improved. Expression of BNDF and NT-3 was significantly increased in motor neurons of the anterior gray column in NF/Trk rats compared with those of sham-operated and model rats (P<0.05). NFs promote motor recovery following acute SCI in rats and may have valuable clinical applications.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Chong Liu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Huafeng Li
- Department of Anesthesiology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Weijing Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Jianping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
28
|
Shen T, Shen J, Zheng QQ, Li QS, Zhao HL, Cui L, Hong CY. Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells. Int J Ophthalmol 2017; 10:670-678. [PMID: 28546919 DOI: 10.18240/ijo.2017.05.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the impact of adipose-derived mesenchymal stem cells (ADSCs) on cell viability and extracellular matrix (ECM) synthesis of corneal stromal cells (CSCs). METHODS ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly co-cultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate (FITC)/proliferation indices (PI) assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase (MMP), such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis (early and late) between the negative control group (6.34% and 2.06%) and the ADCSs-treated group (4.69% and 1.59%). The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type (I, II, III, IV, and V) in CSCs were observed in CSCs/ADSCs group, 3.47-fold, 4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models. CONCLUSION ADSCs play a promotive role in CSCs' growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation in the plasticity and ECM synthesis of CSCs. This provided a new insight into the extensive role of ADSCs in CSCs and a potential molecular target for corneal therapy.
Collapse
Affiliation(s)
- Ting Shen
- Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Jiang Shen
- Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Qing-Qing Zheng
- Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Qiu-Shi Li
- Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Hai-Lan Zhao
- Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Lei Cui
- Beijing Shijitan Hospital, Beijing 100050, China
| | - Chao-Yang Hong
- Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China.,Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
29
|
Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis. Sci Rep 2017; 7:1575. [PMID: 28484241 PMCID: PMC5431546 DOI: 10.1038/s41598-017-01805-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
Collapse
|
30
|
Rybalko V, Hsieh PL, Ricles LM, Chung E, Farrar RP, Suggs LJ. Therapeutic potential of adipose-derived stem cells and macrophages for ischemic skeletal muscle repair. Regen Med 2017; 12:153-167. [PMID: 28244825 DOI: 10.2217/rme-2016-0094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Progressive ischemia due to peripheral artery disease causes muscle damage and reduced strength of the lower extremities. Autologous cell therapy is an attractive treatment to restore perfusion and improve muscle function. Adipose-derived stem cells (ASCs) have therapeutic potential in tissue repair, including polarizing effects on macrophages (MPs). MATERIALS & METHODS Co-culture systems of ASCs and MPs were analyzed for gene and protein expression modifications in ASC-conditioned MPs. Co-transplantation of MPs/ASCs in vivo led to improved skeletal muscle regeneration in a mouse model of peripheral artery disease. RESULTS ASCs/MPs therapy restored muscle function, increased perfusion and reduced inflammatory infiltrate. CONCLUSION Combined MPs/ASCs cell therapy is a promising approach to restore muscle function and stimulate local angiogenesis in the ischemic limb.
Collapse
Affiliation(s)
- Viktoriya Rybalko
- Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA
| | - Pei-Ling Hsieh
- Department of Kinesiology, The University of Texas at Austin, 1 University Station D3700, Austin, TX 78712, USA
| | - Laura M Ricles
- Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA
| | - Eunna Chung
- Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA
| | - Roger P Farrar
- Department of Kinesiology, The University of Texas at Austin, 1 University Station D3700, Austin, TX 78712, USA
| | - Laura J Suggs
- Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
31
|
Chade AR, Hall JE. Role of the Renal Microcirculation in Progression of Chronic Kidney Injury in Obesity. Am J Nephrol 2016; 44:354-367. [PMID: 27771702 DOI: 10.1159/000452365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity is largely responsible for the growing incidence and prevalence of diabetes, cardiovascular and renal diseases. Current strategies to prevent and treat obesity and its consequences have been insufficient to reverse the ongoing trends. Lifestyle modification or pharmacological therapies often produce modest weight loss which is not sustained and recurrence of obesity is frequently observed, leading to progression of target organ damage in many obese subjects. Therefore, research efforts have focused not only on the factors that regulate energy balance, but also on understanding mechanisms of target organ injury in obesity. Summary and Key Message: Microvascular (MV) disease plays a pivotal role in progressive kidney injury from different etiologies such as hypertension, diabetes, and atherosclerosis, which are all important consequences of chronic obesity. The MV networks are anatomical units that are closely adapted to specific functions of nutrition and removal of waste in every organ. Damage of the small vessels in several tissues and organs has been reported in obesity and may increase cardio-renal risk. However, the mechanisms by which obesity and its attendant cardiovascular and metabolic consequences interact to cause renal MV injury and chronic kidney disease are still unclear, although substantial progress has been made in recent years. This review addresses potential mechanisms and consequences of obesity-induced renal MV injury as well as current treatments that may provide protection of the renal microcirculation and slow progressive kidney injury in obesity.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Miss., USA
| | | |
Collapse
|
32
|
Van Pham P, Vu NB, Nguyen HT, Phan NK. Isolation of endothelial progenitor cells from human adipose tissue. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0024-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Bührer G, Rottensteiner U, Hoppe A, Detsch R, Dafinova D, Fey T, Greil P, Weis C, Beier JP, Boccacini AR, Horch RE, Arkudas A. Evaluation of in vivo angiogenetic effects of copper doped bioactive glass scaffolds in the AV loop model. BIOMEDICAL GLASSES 2016. [DOI: 10.1515/bglass-2016-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstracteffects of 3D scaffolds made from 45S5 bioactive glass (BG) doped with 1 wt. % copper ions in the arteriovenous loop model of the rat.Materials and Methods: An arteriovenous loop was built in the groin of 10 rats and inserted in 1% copper doped 45S5 BG scaffolds and fibrin. The scaffold and the AV loop were inserted in Teflon isolation chambers and explanted 3 weeks after implantation. Afterwards the scaffolds were analyzed by Micro-CT and histology regarding vascularization. Results were compared to plain 45S5 BG-based scaffolds from a previous study.Results: Micro-CT and histological evaluation showed consistent vascularization of the constructs. A tendency towards an increased vascularization in the copper doped BG group compared to plain BG constructs could be observed. However, therewas no significant difference in statistical analysis between both groups.Conclusions: This study shows results that support an increased angiogenetic effect of 1% copper doped 45S5 BG compared to regular 45S5 BG scaffolds in the rat arteriovenous loop model although these tendencies are not backed by statistical evidence. Maybe higher copper doses could lead to a statistically significant angiogenetic effect.
Collapse
|