1
|
Aldeli N, Hanano A. Unveiling the transcriptional pattern of epithelial ovarian carcinoma-related microRNAs-mRNAs network after mouse exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Reprod Toxicol 2025; 132:108863. [PMID: 39978740 DOI: 10.1016/j.reprotox.2025.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent organic environmental contaminant known to date, is recognized as a human carcinogen. Despite the documented link between TCDD exposure and epithelial ovarian cancer (EOC) in mammalian females, the molecular mechanisms underlying cancer initiation remain elusive. Emerging evidence suggests aberrant miRNA expression in various human malignancies, including OC. This work was performed to examine whether TCDD exposure in female mice disrupts the expression of miRNAs, particularly those known as OC-modulators. We conducted an extensive search in the PubMed database to identify miRNAs experimentally implicated in OC. Fifty-two miRNAs were identified as potential OC modulators and classified into two groups based on their abundance in OC. Group I comprised 24 miRNAs upregulated in OC, while Group II included 28 miRNAs downregulated in OC. Subsequently, we analyzed the expression of both groups in BALB/c mice ovaries following a single TCDD dose. Our findings revealed significant upregulation of 10 miRNAs from Group I (miR-21, miR-27a, miR-30a, miR-99a, miR-141, miR-182, miR-183, miR-200a, miR-200b, and miR-429) and significant downregulation of 12 miRNAs from Group II (let-7d, miR-15a, miR-19a, miR-23b, miR-34a, miR-34c, miR-125b-1, miR-133, miR-140, miR-199a, miR-210, and miR-383) in TCDD-exposed mouse ovaries. Furthermore, we identified OC-related genes targeted by miRNAs from both groups through an extensive search in PubMed databases. Using TR-qPCR, we evaluated the downstream impact of TCDD-dysregulated miRNAs on their target genes. Our results indicate that TCDD-induced upregulation of oncogenic miRNAs negatively regulates target genes associated with EOC, while downregulation of cancer-suppressor miRNAs positively regulates genes linked to EOC.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of science, Al Furat University, Deir-ez-Zor, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria.
| |
Collapse
|
2
|
Joudaki N, Khodadadi A, Shamshiri M, Dehnavi S, Asadirad A. Alterations in the expression of serum-derived exosome-enclosed inflammatory microRNAs in Covid-19 patients. Heliyon 2024; 10:e39303. [PMID: 39640730 PMCID: PMC11620257 DOI: 10.1016/j.heliyon.2024.e39303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction MicroRNAs in exosomes play a role in biological processes such as inflammation and Epithelial-mesenchymal transition (EMT). In EMT, epithelial cells undergo phenotypic changes and become similar to mesenchymal cells. EMT increases the invasion and metastasis of cancer cells. We aimed to evaluate the expression levels of miRNA-21, miRNA-218, miRNA-155, and miRNA-10b, which are effective in the pathway of inflammation and EMT in serum-derived exosome of COVID-19 patients. Method Blood samples were taken from 30 patients with COVID-19 and five healthy individuals as a control group. After separating the serum from the collected blood, the exosomes were purified from the serum. Relative expression of microRNAs was measured by real-time PCR method. Results The relative expression of miRNA-21, miRNA-218, and miRNA-155 in serum-derived exosomes of patients with COVID-19 had a significant increase (p < 0.0001). Also, the relative expression of miRNA-10b was significantly increased in the patient group (p < 0.01), but the changes in the expression level of miRNA-10b were not as significant as the changes in the expression level of other microRNAs. Conclusion miRNA-21, miRNA-218, miRNA-155, and miRNA-10b are involved in the pathogenesis of COVID-19 disease, and their transmission by exosomes leads to pathogenic lesions and problems in other parts of the body.
Collapse
Affiliation(s)
- Nazanin Joudaki
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Li L, Jiang H, Qiu Z, Wang Z, Hu Z. EFFECT OF MIR-21-3P ON INTESTINAL INJURY IN RATS WITH TRAUMATIC HEMORRHAGIC SHOCK RESUSCITATED WITH THE SODIUM BICARBONATE RINGER'S SOLUTION. Shock 2024; 61:776-782. [PMID: 38517274 DOI: 10.1097/shk.0000000000002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Background : This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. Methods : A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerase chain reaction. The expression of glycocalyx-, cell junction-, and PI3K/Akt/NF-κB signaling pathway-related proteins was analyzed by western blot. Results : MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, β-catenin, MMP2, and MMP9 was upregulated, the expression of E-cad was downregulated, and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The adverse effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx; increased the expression of SDC-1, HPA, β-catenin, MMP2, and MMP9 while decreasing E-cad expression; and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. Conclusion : MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.
Collapse
Affiliation(s)
| | | | | | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | | |
Collapse
|
4
|
Saadh MJ, Allela OQB, Sattay ZJ, Al Zuhairi RAH, Ahmad H, Eldesoky GE, Adil M, Ali MS. Deciphering the functional landscape and therapeutic implications of noncoding RNAs in the TGF-β signaling pathway in colorectal cancer: A comprehensive review. Pathol Res Pract 2024; 255:155158. [PMID: 38320438 DOI: 10.1016/j.prp.2024.155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-β (TGF-β) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-β signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-β signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-β pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-β signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-β signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-β signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-β signaling cascade through the manipulation of ncRNAs.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Zahraa Jasim Sattay
- Department of Medical Laboratory Technology l, University of imam Jaafar Al-Sadiq, Iraq
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, Rome 00186, Italy; Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
5
|
Arefnezhad R, Roghani-Shahraki H, Motedayyen H, Rezaei Tazangi F. Function of MicroRNAs in Normal and Abnormal Ovarian Activities: A Review Focus on MicroRNA-21. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:94-99. [PMID: 38368510 PMCID: PMC10875309 DOI: 10.22074/ijfs.2023.1985792.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 07/22/2023] [Indexed: 02/19/2024]
Abstract
Some failures in ovary function, like folliculogenesis and oogenesis, can give rise to various infertility-associated problems, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). PCOS influences 8 to 20% of women; while POI occurs in at least 1% of all women. Regrettably, the current therapies for these diseases have not sufficiently been effective, and finding a suitable strategy is still a puzzle. One of the helpful strategies for managing and treating these disorders is understanding the contributing pathogenesis and mechanisms. Recently, it has been declared that abnormal expression of microRNAs (miRNAs), as a subset of non-coding RNAs, is involved in the pathogenesis of reproductive diseases. Among the miRNAs, the roles of miRNA-21 in the pathogenesis of PCOS and POI have been highlighted in some documents; hence, the purpose of this mini-review was to summarize the evidences in conjunction with the functions of this miRNA and other effective microRNAs in the normal or abnormal functions of the ovary (i.e., PCOS and POI) with a mechanistic insight.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Rezaei Tazangi
- Department of Anatomy, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Basalova N, Illarionova M, Skryabina M, Vigovskiy M, Tolstoluzhinskaya A, Primak A, Chechekhina E, Chechekhin V, Karagyaur M, Efimenko A. Advances and Obstacles in Using CRISPR/Cas9 Technology for Non-Coding RNA Gene Knockout in Human Mesenchymal Stromal Cells. Noncoding RNA 2023; 9:49. [PMID: 37736895 PMCID: PMC10514828 DOI: 10.3390/ncrna9050049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNA (ncRNAs) genes have attracted increasing attention in recent years due to their widespread involvement in physiological and pathological processes and regulatory networks. The study of the function and molecular partners of ncRNAs opens up opportunities for the early diagnosis and treatment of previously incurable diseases. However, the classical "loss-of-function" approach in ncRNA function analysis is challenged due to some specific issues. Here, we have studied the potency of two CRISPR/Cas9 variants, wild-type (SpCas9wt) and nickase (SpCas9D10A) programmable nucleases, for the editing of extended DNA sequences in human mesenchymal stromal cells (MSCs). Editing the genes of fibrosis-related hsa-miR-21-5p and hsa-miR-29c-3p, we have shown that a pair of SpCas9D10A molecules can effectively disrupt miRNA genes within the genomes of MSCs. This leads not only to a decrease in the level of knockout miRNA in MSCs and MSC-produced extracellular vesicles, but also to a change in cell physiology and the antifibrotic properties of the cell secretome. These changes correlate well with previously published data for the knockdown of certain miRNAs. The proposed approach can be used to knock out ncRNA genes within the genomes of MSCs or similar cell types in order to study their function in biological processes.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maksim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Anastasia Tolstoluzhinskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Elizaveta Chechekhina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.B.); (M.V.); (A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (M.I.); (M.S.); (A.P.); (E.C.); (V.C.)
| |
Collapse
|
7
|
Jiang NJ, Yin YN, Lin J, Li WY, Long DR, Mei L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol Res Pract 2023; 248:154630. [PMID: 37393665 DOI: 10.1016/j.prp.2023.154630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.
Collapse
Affiliation(s)
- Ni-Jie Jiang
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ya-Nan Yin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Jiao Lin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Wen-Yuan Li
- West China Nursing School, Sichuan University, Chengdu, 610041, China
| | - De-Rong Long
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ling Mei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Waris, Hasnat A, Hasan S, Bano S, Sultana S, Ibhadon AO, Khan MZ. Development of nanozyme based sensors as diagnostic tools in clinic applications: a review. J Mater Chem B 2023; 11:6762-6781. [PMID: 37377089 DOI: 10.1039/d3tb00451a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since 1970, many artificial enzymes that imitate the activity and structure of natural enzymes have been discovered. Nanozymes are a group of nanomaterials with enzyme-mimetic properties capable of catalyzing natural enzyme processes. Nanozymes have attracted great interest in biomedicine due to their excellent stability, rapid reactivity, and affordable cost. The enzyme-mimetic activities of nanozymes may be modulated by numerous parameters, including the oxidative state of metal ions, pH, hydrogen peroxide (H2O2) level, and glutathione (GSH) concentration, indicating the tremendous potential for biological applications. This article delivers a comprehensive overview of the advances in the knowledge of nanozymes and the creation of unique and multifunctional nanozymes, and their biological applications. In addition, a future perspective of employing the as-designed nanozymes in biomedical and diagnostic applications is provided, and we also discuss the barriers and constraints for their further therapeutic use.
Collapse
Affiliation(s)
- Waris
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Abul Hasnat
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Shumaila Hasan
- Department of Chemistry, Integral University, Lucknow-226026, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Alex Omo Ibhadon
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
9
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
11
|
Lu B, Cao X, Chen X, Yue Y, Tang S, Xia F. MiR-518c-3p alleviates endometriosis by inhibiting ectopic endometrial migration and epithelial-mesenchymal transition via targeting ZNF608. Arch Gynecol Obstet 2023; 307:205-213. [PMID: 35275273 DOI: 10.1007/s00404-022-06439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/07/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The present study was performed to clarify the regulatory mechanism of miR-518c-3p in the progression of endometriosis (EMs). METHODS MicroRNAs (miRNAs) potentially acting on EMs were predicted by bioinformatics databases and validated in normal and ectopic endometrium. The miR-518c-3p mimics were transfected into endometrial stromal cells (ESCs), and cell growth, death, and proliferation marker proteins expression were detected. The targeting relationship of miR-518c-3p with zinc finger protein 608 (ZNF608) was validated by luciferase reporter assay. ESCs were incubated with miR-518c-3p mimics alone or co-transfected with pcDNA-ZNF608, and growth, death, as well as proliferation and epithelial-mesenchymal transition (EMT) marker protein expression were detected. A rat model of EMs overexpressing miR-518c-3p alone or ZNF608 simultaneously was constructed to detect ectopic endometrial cell apoptosis and cyst volume in rats. RESULTS MiR-518c-3p expression was downregulated in ectopic endometrium. MiR-518c-3p mimic inhibited migration, invasion and proliferation of ESCs, and promoted apoptosis. MiR-518c-3p targeted the 3'UTR of ZNF608. ZNF608 expression was upregulated in ESCs and ectopic endometrium, and the regulatory effect of pcDNA-ZNF608 on ESCs was opposite to that of miR-518c-3p mimics. ZNF608 overexpressing rats had greater endometrial cyst weight and volume, and decreased endometrial apoptosis compared with miR-518c-3p overexpressing alone. CONCLUSION MiR-518c-3p inhibited growth, metastasis and EMT of ESCs and decreased ectopic endometrial area in rats with EMs by targeting ZNF608.
Collapse
Affiliation(s)
- Bin Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Yunxiu Building, No.1 Shizi Street, Canglang District, Suzhou, 215006, Jiangsu, China
- Department of Obstetrics and Gynecology, Wuhu No.1 People's Hospital, Wuhu, 241000, Anhui, China
| | - Xiaohui Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, China
| | - Xinhua Chen
- Department of Obstetrics and Gynecology, Wuhu No.1 People's Hospital, Wuhu, 241000, Anhui, China
| | - Yan Yue
- Department of Obstetrics and Gynecology, Wuhu No.1 People's Hospital, Wuhu, 241000, Anhui, China
| | - Shiqing Tang
- Department of Obstetrics and Gynecology, Wuhu No.1 People's Hospital, Wuhu, 241000, Anhui, China
| | - Fei Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Yunxiu Building, No.1 Shizi Street, Canglang District, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
12
|
CircCSDE1 Regulates Proliferation and Differentiation of C2C12 Myoblasts by Sponging miR-21-3p. Int J Mol Sci 2022; 23:ijms231912038. [PMID: 36233353 PMCID: PMC9570022 DOI: 10.3390/ijms231912038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The growth and development of skeletal muscle is regulated by many factors, and recent studies have shown that circular RNAs (circRNAs) can participate in this process. The model of porcine skeletal muscle injury was constructed to search for circRNAs that can regulate the growth and development of skeletal muscle in pigs. Using whole-transcriptome sequencing and bioinformatics analysis, a novel circRNA (circCSDE1) was screened out, which is highly expressed in skeletal muscle. Functional studies in C2C12 cells demonstrated that circCSDE1 could promote proliferation and inhibit myoblast differentiation, while opposing changes were observed by circCSDE1 knockdown. A dual-luciferase reporter assay revealed that circCSDE1 directly targeted miR-21-3p to regulate the expression of the downstream target gene (Cyclin-dependent kinase 16, CDK16). Moreover, miR-21-3p could inhibit proliferation and promote myoblast differentiation in C2C12 cells, opposite with the effects of circCSDE1. Additionally, the rescue experiments offered further evidence that circCSDE1 and its target, miR-21-3p, work together to regulate myoblast proliferation and differentiation. This study provides a theoretical basis for further understanding the regulatory mechanisms of circRNAs.
Collapse
|
13
|
Wu X, Wang Y, Yang M, Wang Y, Wang X, Zhang L, Liao L, Li N, Mao M, Guan J, Ye F. Exploring prognostic value and regulation network of PPP1R1A in hepatocellular carcinoma. Hum Cell 2022; 35:1856-1868. [PMID: 36018458 DOI: 10.1007/s13577-022-00771-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Novel and accurate biomarkers are needed for early detection and progression evaluation of hepatocellular carcinoma (HCC). Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) has been studied in cancer biology; however, the expression pattern and biological function of PPP1R1A in HCC are unclear. The differentially expressed genes (DEGs) in HCC were screened by The Cancer Genome Atlas (TCGA) database. Real-time PCR and immunohistochemistry (IHC) assay were used to detect the expression of PPP1R1A in BALB/c mice, human normal tissues and corresponding tumor tissues, especially HCC. Then, Kaplan-Meier analysis of patients with HCC was performed to evaluate the relationship between PPP1R1A expression and prognosis. The transcriptional regulatory network of PPP1R1A was constructed based on the differentially expressed mRNAs, microRNAs and transcription factors (TFs). To explore the downstream regulation of PPP1R1A, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and immune infiltration score were performed. A total of 4 DEGs were screened out. PPP1R1A was differentially distributed and expressed in BALB/c mice and human tissues. PPP1R1A expression was higher in normal tissues than that in tumor tissues, and patients with higher PPP1R1A expression had better clinical outcome in HCC. In addition, we constructed miR-21-3p/TAL1/PPP1R1A transcriptional network. Furthermore, PPP1R1A may modulate the activation of PI3K-Akt pathway, cell cycle, glycogen metabolism and the recruitment of M2 macrophage in HCC. This study may help to clarify the function and mechanism of PPP1R1A in HCC and provide a potential biomarker for tumor prevention and treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Radiation Oncology, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi, China
| | - Yin Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingqiao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengyuan Mao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Feng Ye
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
15
|
Petkova V, Marinova D, Kyurkchiyan S, Stancheva G, Mekov E, Kachakova-Yordanova D, Slavova Y, Kostadinov D, Mitev V, Kaneva R. MiRNA expression profiling in adenocarcinoma and squamous cell lung carcinoma reveals both common and specific deregulated microRNAs. Medicine (Baltimore) 2022; 101:e30027. [PMID: 35984198 PMCID: PMC9388044 DOI: 10.1097/md.0000000000030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
The current study investigated the expression signatures of miRNAs in lung adenocarcinoma (LUAD) and squamous cell lung carcinoma (LUSC). miRNA profiling was performed using microarray in 12 LUAD and 12 LUSC samples and adjacent normal tissues. In LUAD, 107 miRNAs were significantly deregulated, whereas 235 miRNAs were deregulated in LUSC. Twenty-six miRNAs were common between the 2 cancer subtypes and 8 were prioritized for validation, in addition to 6 subtype-specific miRNAs. The RT-qPCR validation samples included 50 LUAD, 50 LUSC, and adjacent normal tissues. Eight miRNAs were validated in LUAD: 3 upregulated - miR-7-5p, miR-375-5p, miR-6785-3p, and 5 downregulated - miR-101-3p, miR-139-5p, miR-140-3p, miR-144-3p, miR-195-5p. Ten miRNAs were validated in the LUSC group: 3 upregulated - miR-7-5p, miR-21-3p, miR-650, and 7 downregulated - miR-95-5p, miR-140-3p, miR-144-3p, miR-195-5p, miR-375, miR-744-3p, and miR-4689-3p. Reactome pathway analysis revealed that the target genes of the deregulated miRNAs in LUAD were significantly enriched in cell cycle, membrane trafficking, gene expression processes, and EGFR signaling, while in LUSC, they were enriched in the immune system, transcriptional regulation by TP53, and FGFR signaling. This study identified distinct miRNA profiles in LUSC and LUAD, which are common and specific miRNAs that could be further investigated as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Dora Marinova
- Department of Health Care, UMHAT “Medika”, University of Ruse, Ruse, Bulgaria
| | - Silva Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Evgeni Mekov
- Department of Occupational Diseases, UMHAT “Sveti Ivan Rilski”, Medical University of Sofia, Sofia, Bulgaria
| | - Darina Kachakova-Yordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Yanina Slavova
- Department of Public Health and Social Activities, UMHAT “Medika”, University of Ruse, Ruse, Bulgaria
| | - Dimitar Kostadinov
- Department of Pulmonary Diseases, MHATPD “Sveta Sofia”, Medical University of Sofia, Sofia, Bulgaria
| | - Vanyo Mitev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
16
|
Fang W, Xia Y. LncRNA HLA-F-AS1 attenuates the ovarian cancer development by targeting miR-21-3p/PEG3 axis. Anticancer Drugs 2022; 33:671-681. [PMID: 35276697 DOI: 10.1097/cad.0000000000001288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dysregulated long noncoding RNA (lncRNA) HLA-F-AS1 is depicted in numerous cancers. However, its function in ovarian cancer has yet to be clarified. LncRNA HLA-F-AS1, miR-21-3p, and PEG3 expressions in ovarian cancer tissues and cells were measured via reverse transcription quantitative PCR. Scratch and CCK8 assays were performed to evaluate the cells' migratory and proliferative abilities, respectively. To assess the expressions of the apoptosis-related proteins Bax and Bcl-2, Western blotting was conducted. Anti-AGO2 RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were executed to study lncRNA HLA-F-AS1's and PEG3 3'UTR's interactions to miR-21-3p. Finally, the tumor growth in vivo was inspected by performing a xenograft experiment. Among the ovarian cancer tissues and cells, the expressions of PEG3 and lncRNA HLA-F-AS1 were depleted while an elevated miR-21-3p expression was observed. HLA-F-AS1's overexpression attenuated ovarian cancer development in vivo and in vitro . MiR-21-3p targeted PEG3 3'UTR while HLA-F-AS1 targeted miR-21-3p. HLA-F-AS1 overexpression mitigated the enhancement brought about by miR-21-3p mimic on ovarian cancer cells' proliferation and migration. Meanwhile, PEG3 overexpression abrogated miR-21-3p mimic's function as an oncogene in the progression of ovarian cancer. Ovarian cancer development is suppressed when lncRNA HLA-F-AS1 targets the miR-21-3p/PEG3 axis. This may possibly be a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Wenhong Fang
- Department of Gynecology and Obstetrics, Wuhan No.6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | | |
Collapse
|
17
|
Babian S, Salehpour S, Nazari L, Ghorbanmehr N. The expression level of mir-21-3p in platelet-rich plasma: A potential effective factor and predictive biomarker in recurrent implantation failure. Mol Reprod Dev 2022; 89:498-505. [PMID: 35892150 DOI: 10.1002/mrd.23636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/16/2022] [Accepted: 07/17/2022] [Indexed: 11/08/2022]
Abstract
Recurrent implantation failure (RIF) is the most important complication associated with in vitro fertilization (IVF). Despite the good quality of the transferred embryo, the success rate is rather disappointing. Therefore, predictive biomarkers for implantation are critical to making decisions about transferring high-quality embryos or cryopreserving them for cycles with a higher chance of implantation. Recently, intrauterine infusion of autologous platelet-rich plasma (PRP) has been proposed to increase the endometrial receptivity in RIF patients. PRP is rich in both growth factors and microRNAs (miRNAs). We investigated the possible association of mir-21-3p, mir-21-5p, mir-494-3p, mir-145-5p, and insulin-like growth factor-I (IGF-I) levels in PRP and platelet-poor plasma (PPP) samples with the pregnancy outcomes in RIF patients. The miRNA expression level and IGF-I concentration were assessed using real-time PCR and chemiluminescence methods respectively. Mir-21-3p was upregulated in PRP samples of the pregnant group in comparison to the nonpregnant group. There was no difference in the expression of mir-21-3p in PPP samples of these groups. The concentration of IGF-I was higher in PRP and PPP samples of the nonpregnant in comparison to the pregnant group. Receiver-operating characteristic curve analysis showed that mir-21-3p can be a valuable biomarker for the prediction of pregnancy chance in RIF patients treated with PRP.
Collapse
Affiliation(s)
- Scarlet Babian
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Saghar Salehpour
- Department of Obstetrics and Gynecology, Preventative Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Nazari
- Department of Obstetrics and Gynecology, Preventative Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
18
|
Liang H, Liu Y, Fu L, Li L, Gong N. Berberine inhibits the development of endometrial cancer through circ_ZNF608/miR-377-3p/COX2 axis. Autoimmunity 2022; 55:485-495. [PMID: 35876160 DOI: 10.1080/08916934.2021.2010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Huan Liang
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yi Liu
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Lian Fu
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ling Li
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Nianjin Gong
- Department of Respiratory Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
19
|
Noriega-Rivera R, Rivera-Serrano M, Rabelo-Fernandez RJ, Pérez-Santiago J, Valiyeva F, Vivas-Mejía PE. Upregulation of the Long Noncoding RNA CASC10 Promotes Cisplatin Resistance in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2022; 23:7737. [PMID: 35887085 PMCID: PMC9318856 DOI: 10.3390/ijms23147737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Despite initial responses to first-line treatment with platinum and taxane-based combination chemotherapy, most high-grade serous ovarian carcinoma (HGSOC) patients will relapse and eventually develop a cisplatin-resistant fatal disease. Due to the lethality of this disease, there is an urgent need to develop improved targeted therapies against HGSOC. Herein, we identified CASC10, a long noncoding RNA upregulated in cisplatin-resistant ovarian cancer cells and ovarian cancer patients. We performed RNA sequencing (RNA-seq) in total RNA isolated from the HGSOC cell lines OVCAR3 and OV-90 and their cisplatin-resistant counterparts. Thousands of RNA transcripts were differentially abundant in cisplatin-sensitive vs. cisplatin-resistant HGSOC cells. Further data filtering unveiled CASC10 as one of the top RNA transcripts significantly increased in cisplatin-resistant compared with cisplatin-sensitive cells. Thus, we focused our studies on CASC10, a gene not previously studied in ovarian cancer. SiRNA-mediated CASC10 knockdown significantly reduced cell proliferation and invasion; and sensitized cells to cisplatin treatment. SiRNA-mediated CASC10 knockdown also induced apoptosis, cell cycle arrest, and altered the expression of several CASC10 downstream effectors. Multiple injections of liposomal CASC10-siRNA reduced tumor growth and metastasis in an ovarian cancer mouse model. Our results demonstrated that CASC10 levels mediate the susceptibility of HGSOC cells to cisplatin treatment. Thus, combining siRNA-mediated CASC10 knockdown with cisplatin may represent a plausible therapeutic strategy against HGSOC.
Collapse
Affiliation(s)
- Ricardo Noriega-Rivera
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| | - Mariela Rivera-Serrano
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
| | - Robert J. Rabelo-Fernandez
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
| | - Josué Pérez-Santiago
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- School of Dental Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Fatima Valiyeva
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| |
Collapse
|
20
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
21
|
Lima TSM, Souza W, Geaquinto LRO, Sanches PL, Stepień EL, Meneses J, Fernández-de Gortari E, Meisner-Kober N, Himly M, Granjeiro JM, Ribeiro AR. Nanomaterial Exposure, Extracellular Vesicle Biogenesis and Adverse Cellular Outcomes: A Scoping Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1231. [PMID: 35407349 PMCID: PMC9000848 DOI: 10.3390/nano12071231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The progressively increasing use of nanomaterials (NMs) has awakened issues related to nanosafety and its potential toxic effects on human health. Emerging studies suggest that NMs alter cell communication by reshaping and altering the secretion of extracellular vesicles (EVs), leading to dysfunction in recipient cells. However, there is limited understanding of how the physicochemical characteristics of NMs alter the EV content and their consequent physiological functions. Therefore, this review explored the relevance of EVs in the nanotoxicology field. The current state of the art on how EVs are modulated by NM exposure and the possible regulation and modulation of signaling pathways and physiological responses were assessed in detail. This review followed the manual for reviewers produced by The Joanna Brigs Institute for Scoping Reviews and the PRISMA extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. The research question, "Do NMs modulate cellular responses mediated by EVs?" was analyzed following the PECO model (P (Population) = EVs, E (Exposure) = NMs, C (Comparator) = EVs without exposure to NMs, O (Outcome) = Cellular responses/change in EVs) to help methodologically assess the association between exposure and outcome. For each theme in the PECO acronym, keywords were defined, organized, and researched in PubMed, Science Direct, Scopus, Web of Science, EMBASE, and Cochrane databases, up to 30 September 2021. In vitro, in vivo, ex vivo, and clinical studies that analyzed the effect of NMs on EV biogenesis, cargo, and cellular responses were included in the analysis. The methodological quality assessment was conducted using the ToxRTool, ARRIVE guideline, Newcastle Ottawa and the EV-TRACK platform. The search in the referred databases identified 2944 articles. After applying the eligibility criteria and two-step screening, 18 articles were included in the final review. We observed that depending on the concentration and physicochemical characteristics, specific NMs promote a significant increase in EV secretion as well as changes in their cargo, especially regarding the expression of proteins and miRNAs, which, in turn, were involved in biological processes that included cell communication, angiogenesis, and activation of the immune response, etc. Although further studies are necessary, this work suggests that molecular investigations on EVs induced by NM exposure may become a potential tool for toxicological studies since they are widely accessible biomarkers that may form a bridge between NM exposure and the cellular response and pathological outcome.
Collapse
Affiliation(s)
- Thais S. M. Lima
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Wanderson Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Luths R. O. Geaquinto
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Priscila L. Sanches
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
| | - Ewa. L. Stepień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland;
| | - João Meneses
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Eli Fernández-de Gortari
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - Martin Himly
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - José M. Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
- Dental School, Fluminense Federal University, Niterói 24020-140, Brazil
| | - Ana R. Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| |
Collapse
|
22
|
Sanchez-Cruz P, Vazquez K, Lozada EL, Valiyeva F, Sharma R, Vivas PE, Alegria AE. Photosensitized co-generation of nitric oxide and singlet oxygen Enhanced toxicity against ovarian cancer cells. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:82. [PMID: 37035485 PMCID: PMC10081534 DOI: 10.1007/s11051-022-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/23/2022] [Indexed: 06/19/2023]
Abstract
Near micromolar concentrations of nitric oxide (NO) induce tumor cells death. However, an appropriate NO load has to be delivered selectively to the tumor site in order to avoid NO loss and secondary NO-induced effects. The encapsulation of millimolar concentrations of a NO source and an appropriate trigger of NO release within phospatidylcholine-based liposomes should provide an efficient tool for the selective release of the needed NO payload. In this work we report the photosensitized generation of singlet oxygen and NO from folate-targeted PEGylated liposomes, containing AlPcS4 as the sensitizer and S-nitrosoglutathione (GSNO), in millimolar amounts, as the NO source. Amounts of singlet oxygen detected outside the liposome when using PEGylated liposomes are near 200 % larger when GSNO is present inside the liposomes as compared to its absence. These liposomes, conjugated to folate, were found to enhance the photosensitized cytotoxicity to A2780CP20 ovarian cancer cells as compared to liposomes containing the sensitizer but no GSNO (30 % as compared to 70 % cell viability) under the conditions of this work. Fluorescense of AlPcS4 was observed inside cells incubated with folate-conjugated liposomes but not with liposomes without folate. The photosensitized activity enhancement by GSNO increased when light fluence or liposome concentration were increased. The majority of ovarian cancer patients are initially diagnosed with disseminated intra-abdominal disease (stages III-IV) and have a 5-year survival of less than 20%. This work suggests a novel ovarian cancer nodules treatment via the use of tumor-targeted liposome nanoparticles with the capability of generating simultaneously reactive oxygen and nitrogen species upon illumination with near-infrared light.
Collapse
Affiliation(s)
| | - Katerina Vazquez
- Department of Biochemistry, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Eunice L. Lozada
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Fatima Valiyeva
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Rohit Sharma
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | - Pablo E. Vivas
- Department of Biochemistry, UPR Medical Sciences Campus, San Juan, PR 00936
- Comprehensive Cancer Center, UPR Medical Sciences Campus, San Juan, PR 00936
| | | |
Collapse
|
23
|
Kanagasabai T, Li G, Shen TH, Gladoun N, Castillo-Martin M, Celada SI, Xie Y, Brown LK, Mark ZA, Ochieng J, Ballard BR, Cordon-Cardo C, Adunyah SE, Jin R, Matusik RJ, Chen Z. MicroRNA-21 deficiency suppresses prostate cancer progression through downregulation of the IRS1-SREBP-1 signaling pathway. Cancer Lett 2022; 525:46-54. [PMID: 34610416 DOI: 10.1016/j.canlet.2021.09.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Sterol regulatory element-binding protein 1 (SREBP-1), a master transcription factor in lipogenesis and lipid metabolism, is critical for disease progression and associated with poor outcomes in prostate cancer (PCa) patients. However, the mechanism of SREBP-1 regulation in PCa remains elusive. Here, we report that SREBP-1 is transcriptionally regulated by microRNA-21 (miR-21) in vitro in cultured cells and in vivo in mouse models. We observed aberrant upregulation of SREBP-1, fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC) in Pten/Trp53 double-null mouse embryonic fibroblasts (MEFs) and Pten/Trp53 double-null mutant mice. Strikingly, miR-21 loss significantly reduced cell proliferation and suppressed the prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, miR-21 inactivation decreased the levels of SREBP-1, FASN, and ACC in human PCa cells through downregulation of insulin receptor substrate 1 (IRS1)-mediated transcription and induction of cellular senescence. Conversely, miR-21 overexpression increased cell proliferation and migration; as well as the levels of IRS1, SREBP-1, FASN, and ACC in human PCa cells. Our findings reveal that miR-21 promotes PCa progression by activating the IRS1/SREBP-1 axis, and targeting miR-21/SREBP-1 signaling pathway can be a novel strategy for controlling PCa malignancy.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Tian Huai Shen
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Nataliya Gladoun
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Mireia Castillo-Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Yingqiu Xie
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Lakendria K Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zaniya A Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Carlos Cordon-Cardo
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
24
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
25
|
Vera DB, Fredes AN, Garrido MP, Romero C. Role of Mitochondria in Interplay between NGF/TRKA, miR-145 and Possible Therapeutic Strategies for Epithelial Ovarian Cancer. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010008. [PMID: 35054401 PMCID: PMC8779980 DOI: 10.3390/life12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the most lethal gynecological neoplasm, and epithelial ovarian cancer (EOC) accounts for 90% of ovarian malignancies. The 5-year survival is less than 45%, and, unlike other types of cancer, the proportion of women who die from this disease has not improved in recent decades. Nerve growth factor (NGF) and tropomyosin kinase A (TRKA), its high-affinity receptor, play a crucial role in pathogenesis through cell proliferation, angiogenesis, invasion, and migration. NGF/TRKA increase their expression during the progression of EOC by upregulation of oncogenic proteins as vascular endothelial growth factor (VEGF) and c-Myc. Otherwise, the expression of most oncoproteins is regulated by microRNAs (miRs). Our laboratory group reported that the tumoral effect of NGF/TRKA depends on the regulation of miR-145 levels in EOC. Currently, mitochondria have been proposed as new therapeutic targets to activate the apoptotic pathway in the cancer cell. The mitochondria are involved in a myriad of functions as energy production, redox control, homeostasis of Ca+2, and cell death. We demonstrated that NGF stimulation produces an augment in the Bcl-2/BAX ratio, which supports the anti-apoptotic effects of NGF in EOC cells. The review aimed to discuss the role of mitochondria in the interplay between NGF/TRKA and miR-145 and possible therapeutic strategies that may decrease mortality due to EOC.
Collapse
Affiliation(s)
- Daniela B. Vera
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Allison N. Fredes
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| |
Collapse
|
26
|
Bizzarri AR, Cannistraro S. Direct Interaction of miRNA and circRNA with the Oncosuppressor p53: An Intriguing Perspective in Cancer Research. Cancers (Basel) 2021; 13:6108. [PMID: 34885216 PMCID: PMC8657023 DOI: 10.3390/cancers13236108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are linear single-stranded non-coding RNAs oligonucleotides, widely distributed in cells, playing a key role as regulators of gene expression at post-transcriptional level. Circular RNAs (circRNAs) are single-stranded RNA oligonucleotides forming a covalently closed continuous loop, which confers them a high structural stability and which may code for proteins or act as gene regulators. Abnormal levels or dysregulation of miRNA or circRNA are linked to several cancerous pathologies, so that they are receiving a large attention as diagnostic and prognostic tools. Some miRNAs and circRNAs are strongly involved in the regulatory networks of the transcription factor p53, which plays a pivotal role as tumor suppressor. Overexpression of miRNAs and/or circRNAs, as registered in a number of cancers, is associated to a concomitant inhibition of the p53 onco-suppressive function. Among other mechanisms, it was recently suggested that a functional inhibition of p53 could arise from a direct interaction between p53 and oncogenic miRNAs or circRNAs; a mechanism that might be reminiscent of the p53 inhibition by some E3 ubiquitin ligase such as MDM2 and COP1. Such evidence might deserve important implications for restoring the p53 anticancer functionality, and pave the way to intriguing perspectives for novel therapeutic strategies. In the present paper, the experimental evidence of the interaction between p53 and miRNAs and/or circRNAs is reviewed and discussed in connection with the development of new anticancer approaches.
Collapse
|
27
|
Amirfallah A, Knutsdottir H, Arason A, Hilmarsdottir B, Johannsson OT, Agnarsson BA, Barkardottir RB, Reynisdottir I. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS One 2021; 16:e0260327. [PMID: 34797887 PMCID: PMC8604322 DOI: 10.1371/journal.pone.0260327] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the cancer most often diagnosed in women. MicroRNAs (MIRs) are short RNA molecules that bind mRNA resulting in their downregulation. MIR21 has been shown to be an oncomiR in most cancer types, including breast cancer. Most of the effects of miR-21 have been attributed to hsa-miR-21-5p that is transcribed from the leading strand of MIR21, but hsa-miR-21-3p (miR-21-3p), transcribed from the lagging strand, is much less studied. The aim of the study is to analyze whether expression of miR-21-3p is prognostic for breast cancer. MiR-21-3p association with survival, clinical and pathological characteristics was analyzed in a large breast cancer cohort and validated in three separate cohorts, including TCGA and METABRIC. Analytical tools were also used to infer miR-21-3p function and to identify potential target genes and functional pathways. The results showed that in the exploration cohort, high miR-21-3p levels associated with shorter survival and lymph node positivity. In the three validation cohorts, high miR-21-3p levels associated with pathological characteristics that predict worse prognosis. Specifically, in the largest validation cohort, METABRIC (n = 1174), high miR-21-3p levels associated with large tumors, a high grade, lymph node and HER2 positivity, and shorter breast-cancer-specific survival (HR = 1.38, CI 1.13–1.68). This association remained significant after adjusting for confounding factors. The genes with expression levels that correlated with miR-21-3p were enriched in particular pathways, including the epithelial-to-mesenchymal transition and proliferation. Among the most significantly downregulated targets were MAT2A and the tumor suppressive genes STARD13 and ZNF132. The results from this study emphasize that both 3p- and 5p-arms from a MIR warrant independent study. The data show that miR-21-3p overexpression in breast tumors is a marker of worse breast cancer progression and it affects genes in pathways that drive breast cancer by down-regulating tumor suppressor genes. The results suggest miR-21-3p as a potential biomarker.
Collapse
Affiliation(s)
- Arsalan Amirfallah
- Cell Biology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Adalgeir Arason
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Oskar T. Johannsson
- Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjarni A. Agnarsson
- Department of Oncology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rosa B. Barkardottir
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Inga Reynisdottir
- Cell Biology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
28
|
Abdallah F, Henriet E, Suet A, Arar A, Clemençon R, Malinge JM, Lecellier G, Baril P, Pichon C. miR-21-3p/IL-22 Axes Are Major Drivers of Psoriasis Pathogenesis by Modulating Keratinocytes Proliferation-Survival Balance and Inflammatory Response. Cells 2021; 10:2547. [PMID: 34685526 PMCID: PMC8534095 DOI: 10.3390/cells10102547] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that is mediated by complex crosstalk between immune cells and keratinocytes (KCs). Emerging studies have showed a specific psoriatic microRNAs signature, in which miR-21 is one of the most upregulated and dynamic miRNAs. In this study, we focused our investigations on the passenger miR-21-3p strand, which is poorly studied in skin and in psoriasis pathogenesis. Here, we showed the upregulation of miR-21-3p in an IMQ-induced psoriasiform mouse model. This upregulation was correlated with IL-22 expression and functionality, both in vitro and in vivo, and it occurred via STAT3 and NF-κB signaling. We identified a network of differentially expressed genes involved in abnormal proliferation control and immune regulatory genes implicated in the molecular pathogenesis of psoriasis in response to miR-21-3p overexpression in KCs. These results were confirmed by functional assays that validated the proliferative potential of miR-21-3p. All these findings highlight the importance of miR-21-3p, an underestimated miRNA, in psoriasis and provide novel molecular targets for therapeutic purposes.
Collapse
Affiliation(s)
- Florence Abdallah
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
| | - Elodie Henriet
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
| | - Amandine Suet
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
| | - Ali Arar
- Centre Hospitalier d’Orléans, 45071 Orléans, France;
| | - Rudy Clemençon
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
| | - Gaël Lecellier
- ENTROPIE, UMR250/9220, CEDEX, 98800 Noumea, New Caledonia, France;
- Laboratoire D’excellence “CORAIL”, USR 3278 CNRS-EPHE, Centre de Recherches Insulaires et Observatoire de l’Environnement, Papetoai, Moorea, Polynésie Française, Université de Paris-Saclay UVSQ, 55 Avenue de Paris, 78000 Versailles, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
- Faculté des Sciences, Université d’Orléans, Colléguim Sciences et Techniques, 45071 Orléans, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071 Orléans, France; (E.H.); (A.S.); (R.C.); (J.-M.M.); (P.B.)
- Faculté des Sciences, Université d’Orléans, Colléguim Sciences et Techniques, 45071 Orléans, France
| |
Collapse
|
29
|
Chen C, Liu YM, Fu BL, Xu LL, Wang B. MicroRNA-21: An Emerging Player in Bone Diseases. Front Pharmacol 2021; 12:722804. [PMID: 34557095 PMCID: PMC8452984 DOI: 10.3389/fphar.2021.722804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (MiRNAs) are small endogenous non-coding RNAs that bind to the 3′-untranslated region of target genes and promote their degradation or inhibit translation, thereby regulating gene expression. MiRNAs are ubiquitous in biology and are involved in many biological processes, playing an important role in a variety of physiological and pathological processes. MiRNA-21 (miR-21) is one of them. In recent years, miR-21 has received a lot of attention from researchers as an emerging player in orthopedic diseases. MiR-21 is closely associated with the occurrence, development, treatment, and prevention of orthopedic diseases through a variety of mechanisms. This review summarizes its effects on osteoblasts, osteoclasts and their relationship with osteoporosis, fracture, osteoarthritis (OA), osteonecrosis, providing a new way of thinking for the diagnosis, treatment and prevention of these bone diseases.
Collapse
Affiliation(s)
- Chen Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya-Mei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin-Lan Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang-Liang Xu
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Wang
- Department of Traumatology, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Bolayırlı IM, Önal B, Adıgüzel M, Konukoğlu D, Demirdağ Ç, Kurtuluş EM, Türegün FA, Uzun H. The Clinical Significance Of Circulating Mir-21, Mir-142, Mir-143, And Mir-146a In Patients With Prostate Cancer. J Med Biochem 2021; 41:191-198. [PMID: 35510208 PMCID: PMC9010042 DOI: 10.5937/jomb0-32046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer (PCa) is the most common type of solid tissue cancer among men in western countries. In this study, we determined the levels of circulating miR-21, miR-142, miR-143, miR-146a, and RNU 44 levels as controls for early diagnosis of PCa. Methods The circulating miRNA levels in peripheral blood samples from 43 localized PCa patients, 12 metastatic PCa (MET) patients, and a control group of, 42 benign prostate hyperplasia (BPH) patients with a total of 97 volunteers were determined the by PCR method. Results No differences in the DCT values were found among the groups. In PCa and PCaMet groups the expression of miR21 and miR142 were higher compared to the BHP group. No other differences were observed among the other groups. miR21 expression in the PCa group was 6.29 folds upregulated whereas in the PCaMet group 10.84 folds up-regulated. When the total expression of miR142 is evaluated, it showed a positive correlation with mir21 and mir 146 (both p<0.001). Also, the expression of miR146 shows a positive correlation with both miR21 and miR143 (both p<0.001). Expression of miRNAs was found to be an independent diagnostic factor in patients with Gleason score, PSA, and free PSA levels. Conclusions Our study showed that co-expression of miR21, miR-142, miR-143, and miR-146a and the upregulation of miR-21 resulted in increased prostate carcinoma cell growth. In the PCaMet group, miR21 is the most upregulated of all miRNAs. These markers may provide a novel diagnostic tool to help diagnose PCa with aggressive behavior.
Collapse
Affiliation(s)
- Ibrahim Murat Bolayırlı
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Bülent Önal
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Urology, Istanbul, Turkey
| | - Mutlu Adıgüzel
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Dildar Konukoğlu
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Çetin Demirdağ
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Urology, Istanbul, Turkey
| | - Eda Merve Kurtuluş
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Fethi Ahmet Türegün
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Urology, Istanbul, Turkey
| | - Hafize Uzun
- Istanbul Atlas University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
31
|
Wu Y, Darland DC, Zhao JX. Nanozymes-Hitting the Biosensing "Target". SENSORS (BASEL, SWITZERLAND) 2021; 21:5201. [PMID: 34372441 PMCID: PMC8348677 DOI: 10.3390/s21155201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Diane C. Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| |
Collapse
|
32
|
Cao J, Zhang Y, Mu J, Yang D, Gu X, Zhang J. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell 2021; 34:1185-1196. [PMID: 33813728 DOI: 10.1007/s13577-021-00522-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is a predominant gynecologic malignancy and correlated with high mortality and severe morbidity. Exosomal microRNAs (miRNAs) play crucial roles in various processes during the progression of ovarian cancer, such as cell proliferation, apoptosis, and invasion. However, the function of exosomal miR-21-5p in ovarian cancer is still unknown. Here, we found that miR-21-5p was upregulated in ovarian cancer tissues, plasma exosomes of ovarian cancer patients, and exosomes from ovarian cancer cells. MiR-21-5p was incorporated in the exosomes from the ovarian cancer cells. In addition, 5-ethynyl-2'-deoxyuridine (Edu), a marker of cancer cell proliferation, was enhanced by miR-21-5p mimic while reduced by miR-21-5p inhibitor in ovarian cancer cells. MiR-21-5p mimic could increase, but miR-21-5p inhibitor could decrease the migration and invasion of cancer cells. Ovarian cancer cell apoptosis was induced by miR-21-5p inhibitor. Moreover, miR-21-5p inhibitor could up-regulate the expression of pro-apoptotic cleaved caspase3 and Bax while downregulate the expression of anti-apoptotic Bcl2 in the cells. Exosomal miR-21-5p inhibited the expression of cyclin-dependent kinase 6 (CDK6) by targeting its 3'-untranslated region (3'-UTR) at both the mRNA and protein levels. Tumorigenicity analysis in nude mice revealed that exosomal miR-21-5p could increase tumor volume, size, and weight of ovarian cancer in vivo. Besides, miR-21-5p targeted CDK6 in tumor tissues of nude mice. In conclusion, exosomal miR-21-5p contributes to the progression of ovarian cancer by regulating CDK6. Our findings will provide novel insights into the mechanism of exosomal miR-21-5p in the development of ovarian cancer. Exosomal miR-21-5p may serve as a potential target for the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tianfei Lane, Mochou Road, Nanjing City, Jiangsu Province, 210004, People's Republic of China
| | - Yuan Zhang
- Department of Gynecology Oncology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, Anhui Province, 233000, People's Republic of China
| | - Juan Mu
- Department of Nutrition, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Dazhen Yang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tianfei Lane, Mochou Road, Nanjing City, Jiangsu Province, 210004, People's Republic of China
| | - Xiaoyan Gu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No. 123 Tianfei Lane, Mochou Road, Nanjing City, Jiangsu Province, 210004, People's Republic of China.
| | - Jing Zhang
- Department of Gynecology Oncology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, Anhui Province, 233000, People's Republic of China.
| |
Collapse
|
33
|
Sun Y, Liu W, Zhao Q, Zhang R, Wang J, Pan P, Shang H, Liu C, Wang C. Down-Regulating the Expression of miRNA-21 Inhibits the Glucose Metabolism of A549/DDP Cells and Promotes Cell Death Through the PI3K/AKT/mTOR/HIF-1α Pathway. Front Oncol 2021; 11:653596. [PMID: 34046349 PMCID: PMC8144645 DOI: 10.3389/fonc.2021.653596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
miRNA-21 is a single-stranded non-coding RNA that is highly expressed in a variety of tumor cells. It participates in tumor cell proliferation, metabolism, metastasis, and drug resistance. Here, we tested the potential mechanism of miRNA-21 in cisplatin-resistant non-small cell lung cancer A549/DDP (human lung adenocarcinoma drug-resistant cell line) cells. A549 and A549/DDP RNAs were sequenced to show that miRNA-21 was highly expressed in the latter, and this was verified by qRT-PCR. In addition, we found that miRNA-21 combined with cisplatin can significantly inhibit glycolysis and glycolysis rate-limiting enzyme protein expression in A549/DDP cells. We also found that miRNA-21 combined with cisplatin can promote A549/DDP cell death. Further investigations showed that miRNA-21 combined with cisplatin caused excessive inactivation of the pI3K/AKT/mTOR/HIF-1α signaling pathway in cisplatin-resistant A549/DDP cells. Hence, reduction of the expression of miRNA-21 in combination with cisplatin chemotherapy may effectively improve the therapeutic effect on patients with non-small cell lung cancer, and this may provide a theoretical basis for the treatment of this disease.
Collapse
Affiliation(s)
- Ye Sun
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Wenjun Liu
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qiuyu Zhao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | | | - Jianbo Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Pengyu Pan
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai Shang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chunying Liu
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chun Wang
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
34
|
Venosa A, Smith LC, Gow AJ, Zarbl H, Laskin JD, Laskin DL. Macrophage activation in the lung during the progression of nitrogen mustard induced injury is associated with histone modifications and altered miRNA expression. Toxicol Appl Pharmacol 2021; 423:115569. [PMID: 33971176 DOI: 10.1016/j.taap.2021.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Activated macrophages have been implicated in lung injury and fibrosis induced by the cytotoxic alkylating agent, nitrogen mustard (NM). Herein, we determined if macrophage activation is associated with histone modifications and altered miRNA expression. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in increases in phosphorylation of H2A.X in lung macrophages at 1 d and 3 d post-exposure. This DNA damage response was accompanied by methylation of histone (H) 3 lysine (K) 4 and acetylation of H3K9, marks of transcriptional activation, and methylation of H3K36 and H3K9, marks associated with transcriptional repression. Increases in histone acetyl transferase and histone deacetylase were also observed in macrophages 1 d and 28 d post-NM exposure. PCR array analysis of miRNAs (miR)s involved in inflammation and fibrosis revealed unique and overlapping expression profiles in macrophages isolated 1, 3, 7, and 28 d post-NM. An IPA Core Analysis of predicted mRNA targets of differentially expressed miRNAs identified significant enrichment of Diseases and Functions related to cell cycle arrest, apoptosis, cell movement, cell adhesion, lipid metabolism, and inflammation 1 d and 28 d post NM. miRNA-mRNA interaction network analysis revealed highly connected miRNAs representing key upstream regulators of mRNAs involved in significantly enriched pathways including miR-34c-5p and miR-27a-3p at 1 d post NM and miR-125b-5p, miR-16-5p, miR-30c-5p, miR-19b-3p and miR-148b-3p at 28 d post NM. Collectively, these data show that NM promotes histone remodeling and alterations in miRNA expression linked to lung macrophage responses during inflammatory injury and fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - L Cody Smith
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Zhao YJ, Zhang J, Wang YC, Wang L, He XY. MiR-450a-5p Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion and Promotes Apoptosis via Targeting CREB1 and Inhibiting AKT/GSK-3β Signaling Pathway. Front Oncol 2021; 11:633366. [PMID: 33854971 PMCID: PMC8039465 DOI: 10.3389/fonc.2021.633366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer seriously affects human health and research on gastric cancer is attracting more and more attentions. In recent years, molecular targets have become the research focus. Accumulating evidence indicates that miR-450a-5p plays a critical role in cancer progression. However, the biological role of miR-450a-5p in gastric carcinogenesis remains largely unknown. In this study, we explore the effects and mechanisms of miR-450a-5p on the development and progression of gastric cancer. We used gain-of-function approaches to investigate the role of miR-450a-5p on gastric cancer cell proliferation, migration, invasion, and apoptosis using biological and molecular techniques including real-time quantitative PCR (RT-qPCR), CCK-8, colony formation, flow cytometry, Western blot, wound healing, transwell chamber, dual luciferase reporter, and tumor xenograft mouse model. We found that gastric cancer cells have low expression of miR-450a-5p and overexpression of miR-450a-5p inhibited gastric cancer cell proliferation, migration and invasion, and induced apoptosis in vitro. Moreover, we demonstrated that ectopic expression of miR-450a-5p inhibited gastric cancer growth in vivo. At the molecular level, overexpression of miR-450a-5p significantly increased the expression of pro-apoptotic proteins, including caspase-3, caspase-9, and Bax, and inhibited the expression of anti-apoptotic protein Bcl-2. Luciferase reporter experiment suggested that camp response element binding protein 1 (CREB1) had a negative correlation with miR-450a-5p expression, and knockdown of CREB1 alleviated gastric cancer growth. Furthermore, we also found that miR-450a-5p inhibited the activation of AKT/GSK-3β signaling pathway to inhibit the progression of gastric cancer. Collectively, miR-450a-5p repressed gastric cancer cell proliferation, migration and invasion and induced apoptosis through targeting CREB1 by inhibiting AKT/GSK-3β signaling pathway. MiR-450a-5p could be a novel molecular target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ya-Jun Zhao
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Zhang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong-Cang Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liang Wang
- Center for Diagnostic Pathology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Zheng G, Zhang G, Zhao Y, Zheng Z. Screening of miRNAs as Prognostic Biomarkers for Colon Adenocarcinoma and Biological Function Analysis of Their Target Genes. Front Oncol 2021; 11:560136. [PMID: 33816220 PMCID: PMC8017316 DOI: 10.3389/fonc.2021.560136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
We constructed a prognostic risk model for colon adenocarcinoma (COAD) using microRNAs (miRNAs) as biomarkers. Clinical data of patients with COADs and miRNA-seq data were from TCGA, and the differential expression of miRNAs (carcinoma vs. para-carcinoma tissues) was assessed using R software. COAD data were randomly divided into Training and Testing Sets. A linear prognostic risk model was constructed using Cox regression analysis based on the Training Set. Patients were classified as high-risk or low-risk according to the score of the prognostic model. Survival analysis and receiver operating characteristic (ROC) curves were used to evaluate model performance. The gene targets in the prognostic model were identified and their biological functions were analyzed. Analysis of COAD and normal cell lines using qPCR was used to verify the model. There were 134 up-regulated and 140 down-regulated miRNAs. We used the Training Set to develop a prognostic model based on the expression of seven miRNAs. ROC analysis indicated this model had acceptable prediction accuracy (area under the curve=0.784). Kaplan-Meier survival analysis showed that overall survival was worse in the high-risk group. Cox regression analysis showed that the 7-miRNA Risk Score was an independent prognostic factor. The 2,863 predicted target genes were mainly enriched in the MAPK, PI3K-AKT, proteoglycans in cancer, and mTOR signaling pathways. For unknown reasons, expression of these miRNAs in cancerous and normal cells differed somewhat from model predictions. Regardless, the 7-miRNA Risk Score can be used to predict COAD prognosis and may help to guide clinical treatment.
Collapse
Affiliation(s)
- Guoliang Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, China
| | - GuoJun Zhang
- Department of Pathophysiology, College of Basic Medicine Science, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Shenyang, China
| |
Collapse
|
37
|
Wang Y, Chen G, Dai F, Zhang L, Yuan M, Yang D, Liu S, Cheng Y. miR-21 Induces Chemoresistance in Ovarian Cancer Cells via Mediating the Expression and Interaction of CD44v6 and P-gp. Onco Targets Ther 2021; 14:325-336. [PMID: 33469309 PMCID: PMC7811474 DOI: 10.2147/ott.s286639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ovarian cancer (OC), a representative female reproductive system tumor, is one of the most malignant tumors in female. The most important reason for its poor prognosis is because of its high rate of chemotherapy resistance. Results This study aims to explore the effects of miR-21 on the chemotherapy resistance of OC cells. The functions of miR-21 on proliferation, migration and invasion of OC cells were assessed by transwell, clonal formation and CCK8 assay. Expression levels of miR-21, P-gp and CD44v6 in SKOV3 (cisplatin sensitive) cells and SKOV3/DDP (cisplatin resistant) cells were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Si-CD44v6 was transfected into OC cells to detect the influence on P-glycoprotein (P-gp) expression. Immunofluorescence was used to detect the localization of CD44v6 and P-gp in cell. Co-immunoprecipitation was used to detect the relationship between CD44v6 and P-gp. Results showed that miR-21 expression in cisplatin-resistant SKOV3/DDP cells was significantly higher than that in SKOV3 cells, at the same time, cells proliferation, as well as invasion and migration ability were enhanced after the miR-21 mimics transfected into SKOV3 cisplatin-sensitive cells. Furthermore, miR-21 expression level affected the CD44v6 and P-gp expression. Immunofluorescence and co-immunoprecipitation showed that CD44v6 and P-gp protein could interact. Conclusion In conclusion, the high miR-21 expression level could increase the proliferation, invasion, and migration ability of OC cells. And the interaction of CD44v6 and P-gp may mediate miR-21 involvement in chemotherapy resistance of OC cells.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Gantao Chen
- Department of Gastroenterology, Third People's Hospital of Xiantao in Hubei Province, Wuhan 433000, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
38
|
Ji K, Wang X, Zhang A, Wen H. Prognostic value of microRNA-21 in epithelial ovarian carcinoma: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23849. [PMID: 33350775 PMCID: PMC7769334 DOI: 10.1097/md.0000000000023849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUD The expression of microRNA-21 has been shown to be associated with the prognosis in patients with malignant tumors. However, its prognostic value in epithelial ovarian carcinoma (EOC) remains controversial. This meta-analysis aimed to synthesize available data to clarify the association between microRNA-21 expression levels and clinical prognosis in EOC patients. METHODS Eligible literatures were searched from Embase, Google Scholar, PubMed, Web of Science, Medline, Cochrane Library, China Scientific Journal Database, China National Knowledge Infrastructure, Chinese BioMedical Database and Wanfang Database to identify eligible studies. Papers in English or Chinese published from their inception to November 2020 will be included. Methodological quality for each eligible trial will be assessed by using the Newcastle-Ottawa Quality Assessment Scale. Odds ratios or hazards ratios with corresponding 95% confidence intervals were pooled to estimate the prognosis value of microRNA-21 by using Stata 14.0 and Review Manager 5.3 software. RESULTS This study will provide a high-quality evidence-based medical evidence of the correlations between microRNA-21 expression and overall survival and disease-free survival. CONCLUSION The findings of this systematic review will show the effect of high expression of microRNA-21 on the prognosis of EOC patients. TRIAL REGISTRATION NUMBER INPLASY2020110064.
Collapse
Affiliation(s)
- Kun Ji
- Department of Clinical Laboratory, Liaocheng people's Hospital
| | - Xiaohua Wang
- Department of Clinical Laboratory, Liaocheng Fourth People's Hospital
| | | | - Hongwei Wen
- Department of Reproductive Endocrinology Laboratory, Reproductive Medicine, Liaocheng people's Hospital, Liaocheng, Shandong Province, P.R. China
| |
Collapse
|
39
|
Nikulin SV, Alekseev BY, Sergeeva NS, Karalkin PA, Nezhurina EK, Kirsanova VA, Sviridova IK, Akhmedova SA, Volchenko NN, Bolotina LV, Osipyants AI, Hushpulian DM, Topchiy MA, Asachenko AF, Koval AP, Shcherbo DS, Kiselev VI, Mikhaylenko DS, Schumacher U, Poloznikov AA. Breast cancer organoid model allowed to reveal potentially beneficial combinations of 3,3'-diindolylmethane and chemotherapy drugs. Biochimie 2020; 179:217-227. [PMID: 33098909 DOI: 10.1016/j.biochi.2020.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations represent promising therapeutic targets in cancer treatment. Recently it was revealed that small molecules have the potential to act as microRNA silencers. Capacity to bind the discrete stem-looped structure of pre-miR-21 and prevent its maturation opens opportunities to utilize such compounds for the prevention of initiation, progression, and chemoresistance of cancer. Molecular simulations performed earlier identified 3,3'-diindolylmethane (DIM) as a potent microRNA-21 antagonist. However, data on DIM and microRNA-21 interplay is controversial, which may be caused by the limitations of the cell lines.
Collapse
Affiliation(s)
- Sergey V Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, 101000, Russia; P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Boris Ya Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Nataliya S Sergeeva
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Pavel A Karalkin
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Elizaveta K Nezhurina
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Valentina A Kirsanova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Irina K Sviridova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Suraja A Akhmedova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Nadezhda N Volchenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Larisa V Bolotina
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - Andrey I Osipyants
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690091, Russia
| | - Dmitry M Hushpulian
- School of Biomedicine, Far Eastern Federal University, Vladivostok, 690091, Russia; Institute of Nanotechnology of Microelectronics, 32A Leninsky Prospekt, Moscow, 119991, Russia
| | - Maxim A Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey F Asachenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119991, Russia
| | - Anastasia P Koval
- Molecular Oncology Laboratory, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Dmitry S Shcherbo
- Molecular Oncology Laboratory, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Vsevolod I Kiselev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, 117997, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Andrey A Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, 101000, Russia; P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia.
| |
Collapse
|
40
|
Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ 2020; 8:e9994. [PMID: 32983652 PMCID: PMC7497610 DOI: 10.7717/peerj.9994] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Host miRNAs are known as important regulators of virus replication and pathogenesis. They can interact with various viruses through several possible mechanisms including direct binding of viral RNA. Identification of human miRNAs involved in coronavirus-host interplay becomes important due to the ongoing COVID-19 pandemic. In this article we performed computational prediction of high-confidence direct interactions between miRNAs and seven human coronavirus RNAs. As a result, we identified six miRNAs (miR-21-3p, miR-195-5p, miR-16-5p, miR-3065-5p, miR-424-5p and miR-421) with high binding probability across all analyzed viruses. Further bioinformatic analysis of binding sites revealed high conservativity of miRNA binding regions within RNAs of human coronaviruses and their strains. In order to discover the entire miRNA-virus interplay we further analyzed lungs miRNome of SARS-CoV infected mice using publicly available miRNA sequencing data. We found that miRNA miR-21-3p has the largest probability of binding the human coronavirus RNAs and being dramatically up-regulated in mouse lungs during infection induced by SARS-CoV.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Ksenia Kirdey
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexey Makhonin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
41
|
Kadkhoda S, Darbeheshti F, Tavakkoly-Bazzaz J. Identification of dysregulated miRNAs-genes network in ovarian cancer: An integrative approach to uncover the molecular interactions and oncomechanisms. Cancer Rep (Hoboken) 2020; 3:e1286. [PMID: 32886452 PMCID: PMC7941472 DOI: 10.1002/cnr2.1286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian (OV) cancer is considered as one of the most deadly malignancies in women, since it is unfortunately diagnosed in advanced stages. Nowadays, the importance of bioinformatics tools and their frequent usage in tracking dysregulated cancer‐related genes and pathways have been highlighted in researches. Aim The aim of this study is to investigate dysregulated miRNAs‐genes network and its function in OV tumors based on the integration of microarray data through a system biology approach. Methods Two microarray data (GSE119056 and GSE4122) were analyzed to explore the differentially expressed miRNAs (DEmiRs) and genes among OV tumors and normal tissues. Then, through the help of TargetScan, miRmap, and miRTarBase databases, the dysregulated miRNA‐gene network in OV tumors was constructed by Cytoscape. In the next step, co‐expression and protein‐protein interaction networks were made using GEPIA and STRING databases. Moreover, the functional analysis of the hub genes was done by DAVID, KEGG, and Enrichr databases. Eventually, the regulatory network of TF‐miRNA‐gene was constructed. Results The potential dysregulated miRNAs‐genes network in OV tumors has been constructed, including 109 differentially expressed genes (DEGs), 25 DEmiRs, and 213 interactions. Two down‐regulated microRNAs, miR‐660‐3p and hsa‐miR‐4510, have the most interactions with up‐expressed oncogenic DEGs. CDK1, PLK1, CCNB1, CCNA2, and EZH2 are involved in protein module, which show significant overexpression in OV tumors according to The Cancer Genome Atlas (TCGA) data. EZH2 shows amplification in OV tumors with remarkable percentage. The transcription factors TFAP2C and GATA4 have the pivotal regulatory functions in oncotranscriptomic profile of OV tumors. Conclusion In current study, we have collected and integrated different data to uncover the complex molecular interactions and oncomechanisms in OV tumors. The DEmiRs‐DEGs and TF‐miRNA‐gene networks reveal the potential interactions that could be a significant piece of the OV onco‐puzzle.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Circular RNA-9119 suppresses in ovarian cancer cell viability via targeting the microRNA-21-5p-PTEN-Akt pathway. Aging (Albany NY) 2020; 12:14314-14328. [PMID: 32675386 PMCID: PMC7425477 DOI: 10.18632/aging.103470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
We aimed to assess the regulatory role of circular RNA (circRNA)-9119 (circ9119) in ovarian cancer (OC) cell viability. The expression of circ9119 was clearly reduced in OC tissues and cell lines, whereas the microRNA-21-5p (miR-21) levels were elevated compared with those in normal healthy control tissues and immortalized fallopian epithelial cell line FTE187. Further, circ9119 was overexpressed, causing a notable decrease in the viability and proliferation of OC cells and an increase in apoptosis. Further study showed that circ9119 upregulation resulted in a decrease in miR-21 levels. Bioinformatics forecasting (starBase and TargetScan) and dual luciferase reporter assay demonstrated that circ9119 acts as an miR-21 sponge. Recovery of miR-21 expression in circ9119-overexpressing OC cells showed that miR-21 exhibited the opposite effect on circ9119; moreover, its recovery could suppress the effects of circ9119 overexpression, recover cell proliferation, and reduce apoptosis. Furthermore, miR-21 was found to target phosphatase and tensin homologue (PTEN) 3′ untranslated region. PTEN protein and mRNA expression was reduced in OC tissues and cells, whereas it was increased on transfection with an miR-21 inhibitor. Thus, circ9119 could regulate cell proliferation and apoptosis of OC cells via by acting as an miR-21 sponge and targeting the PTEN–Akt pathway.
Collapse
|
43
|
Alharbi M, Sharma S, Guanzon D, Lai A, Zuñiga F, Shiddiky MJA, Yamauchi Y, Salas-Burgos A, He Y, Pejovic T, Winters C, Morgan T, Perrin L, Hooper JD, Salomon C. miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102207. [PMID: 32334098 DOI: 10.1016/j.nano.2020.102207] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Carboplatin, administered as a single drug or in combination with paclitaxel, is the standard chemotherapy treatment for patients with ovarian cancer (OVCA). Recent evidence suggests that miRNAs associated with small extracellular vesicles (sEVs) participate in the development of chemoresistance. We studied the effect of carboplatin in a heterogeneity population of OVCA cells and their derived sEVs to identify mechanisms associated with chemoresistance. sEVs were quantified using an engineered superparamagnetic material, gold-loaded ferric oxide nanotubes and a screen-printed electrode. miR-21-3p, miR-21-5p, and miR-891-5p are enriched in sEVs, and they contribute to carboplatin resistance in OVCA. Using a quantitative MS/MS, miR-21-5p activates glycolysis and increases the expression of ATP-binding cassette family and a detoxification enzyme. miR-21-3p and miR-891-5p increase the expression of proteins involved in DNA repair mechanisms. Interestingly, the levels of miR-891-5p within sEVs are significantly higher in patients at risk of ovarian cancer relapse. Identification of miRNAs in sEVs also provides the opportunity to track them in biological fluids to potentially determine patient response to chemotherapy.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University Nathan Campus, Queensland, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yaowu He
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Carmen Winters
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Terry Morgan
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA; Department of Pathology, OHSU, Portland, OR, USA
| | - Lewis Perrin
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - John D Hooper
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Ochsner Clinic Foundation, New Orleans, USA.
| |
Collapse
|
44
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
45
|
Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040880. [PMID: 32260415 PMCID: PMC7226328 DOI: 10.3390/cancers12040880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.
Collapse
|
46
|
Yang Z, Liao B, Xiang X, Ke S. miR-21-5p promotes cell proliferation and G1/S transition in melanoma by targeting CDKN2C. FEBS Open Bio 2020; 10:752-760. [PMID: 32090490 PMCID: PMC7193168 DOI: 10.1002/2211-5463.12819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 02/02/2023] Open
Abstract
Human melanoma is a highly malignant tumor originating from cutaneous melanocytes. The noncoding RNA microRNA (miR)‐21‐5p has been reported to be expressed at high levels in malignant melanocytic skin tissues, but its potential functional role in melanoma remains poorly understood. Here, we explored the cellular effects of miR‐21‐5p on melanoma in vitro and the underlying mechanisms. Quantitative real‐time PCR was used to show that miR‐21‐5p is significantly up‐regulated in clinical samples from patients with melanoma as compared with adjacent noncancerous tissues. Overexpression of miR‐21‐5p significantly enhanced, whereas knockdown attenuated, cell proliferation and G1/S transition in melanoma cell lines (A375 and M14). Luciferase reporter assays were used to show that the cyclin‐dependent kinase inhibitor 2C (CDKN2C) is a downstream target of miR‐21‐5p. Furthermore, miR‐21‐5p mimics resulted in a decrease in CDKN2C expression, and CDKN2C expression was observed to be inversely correlated with miR‐21‐5p expression in melanoma tissues. Rescue experiments were performed to show that overexpression of CDKN2C partially reversed the effects of miR‐21‐5p up‐regulation on A375 cells. Consistently, knockdown of CDKN2C abolished the effects of miR‐21‐5p down‐regulation on A375 cells. Overall, our studies demonstrate that miR‐21‐5p can promote the growth of melanoma cells by targeting CDKN2C, which may induce G0/G1 phase arrest of melanoma cells.
Collapse
Affiliation(s)
- Zhaohui Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoyan Xiang
- Department of Burns and Plastic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Sha Ke
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
47
|
Xie W, Luo J, Pan C, Liu Y. SG-LSTM-FRAME: a computational frame using sequence and geometrical information via LSTM to predict miRNA-gene associations. Brief Bioinform 2020; 22:2032-2042. [PMID: 32181478 DOI: 10.1093/bib/bbaa022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION MircroRNAs (miRNAs) regulate target genes and are responsible for lethal diseases such as cancers. Accurately recognizing and identifying miRNA and gene pairs could be helpful in deciphering the mechanism by which miRNA affects and regulates the development of cancers. Embedding methods and deep learning methods have shown their excellent performance in traditional classification tasks in many scenarios. But not so many attempts have adapted and merged these two methods into miRNA-gene relationship prediction. Hence, we proposed a novel computational framework. We first generated representational features for miRNAs and genes using both sequence and geometrical information and then leveraged a deep learning method for the associations' prediction. RESULTS We used long short-term memory (LSTM) to predict potential relationships and proved that our method outperformed other state-of-the-art methods. Results showed that our framework SG-LSTM got an area under curve of 0.94 and was superior to other methods. In the case study, we predicted the top 10 miRNA-gene relationships and recommended the top 10 potential genes for hsa-miR-335-5p for SG-LSTM-core. We also tested our model using a larger dataset, from which 14 668 698 miRNA-gene pairs were predicted. The top 10 unknown pairs were also listed. AVAILABILITY Our work can be download in https://github.com/Xshelton/SG_LSTM. CONTACT luojiawei@hnu.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Briefings in Bioinformatics online.
Collapse
Affiliation(s)
- Weidun Xie
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Chu Pan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Ying Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
48
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
49
|
Inhibition of miR-214-3p Aids in Preventing Epithelial Ovarian Cancer Malignancy by Increasing the Expression of LHX6. Cancers (Basel) 2019; 11:cancers11121917. [PMID: 31810245 PMCID: PMC6966693 DOI: 10.3390/cancers11121917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
In human epithelial ovarian cancer (EOC), various miRNAs can function as either oncogenes or tumor suppressor genes. We investigated miRNAs known to be involved in EOC progression and analyzed their expression in tissues and serum-derived exosomes from benign serous cystadenoma, borderline serous tumor, low-grade serous ovarian cancer, and high-grade serous ovarian cancer patients (HGSO). The HGSO group was divided based on the platinum-free interval, which is defined as the duration from the completion of platinum-based chemotherapy to recurrence. We also analyzed the mRNA levels of target genes that candidate miRNAs might regulate in patient tissues. miR-214-3p was highly expressed in tissues and exosomes derived from EOC with high malignancy and also found to regulate the expression of LIM homeobox domain 6 (LHX6) mRNA. Serum exosomal levels of miR-214-3p were significantly increased in platinum-resistant HGSO (25.2-fold, p < 0.001) compared to the exosomal expression of benign tumor patients. On transfection of miR-214-3p inhibitor in EOC cells, cell proliferation was inhibited while apoptotic cell death was increased. Collectively, we suggest that miR-214-3p in serum exosomes can be a potential biomarker for the diagnosis and prognosis of ovarian tumor, and its inhibition can be a supportive treatment for EOC.
Collapse
|
50
|
Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019; 40:1410-1418. [PMID: 31399780 PMCID: PMC6786954 DOI: 10.1007/s00246-019-02180-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115
| | - Caroline E. Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Harvard Stem Cell Institute, Cambridge, MA 02138,Authors for Correspondence: ()
| | - C. Geoffrey Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Authors for Correspondence: ()
| |
Collapse
|