1
|
Xu R, Wang Z, Dong J, Yu M, Zhou Y. Lipoprotein(a) and panvascular disease. Lipids Health Dis 2025; 24:186. [PMID: 40413492 DOI: 10.1186/s12944-025-02600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Panvascular disease (PVD) is an emerging clinical concept that encompasses a spectrum of atherosclerotic conditions involving multiple major vascular beds, including the coronary, cerebral, peripheral, and valvular arteries. Although not formally recognized as a nosological entity, in this review, PVD is adopted as a conceptual framework to reflect the systemic nature of atherosclerosis affecting vascular territories supplying the heart, brain, and peripheral circulation. This perspective enables a more integrated understanding of disease processes across organ systems that are often studied in isolation. Lipoprotein(a) [Lp(a)] is a genetically regulated, low-density lipoprotein (LDL)-like particle that has garnered increasing attention as an independent pathogenic risk factor for PVD. Accumulating evidence from epidemiological, genetic, and mechanistic studies has confirmed the multifaceted role of Lp(a) in promoting atherogenesis, vascular calcification, inflammation, and thrombogenesis across multiple vascular beds. Elevated Lp(a) levels are associated with increased cardiovascular and cerebrovascular event risk, even after controlling for traditional risk factors. This review systematically outlines the structure, genetic determinants, and pathogenic mechanisms of Lp(a), and synthesizes current clinical evidence regarding its role in various PVD subtypes. The interactions between Lp(a) and traditional cardiovascular risk factors such as hypercholesterolemia, diabetes, and hypertension are explored in depth, highlighting their synergistic contributions to vascular injury and disease progression. Furthermore, sex-based differences in Lp(a)-associated risk, response to therapy, and biological behavior are discussed, providing insights into personalized cardiovascular risk stratification. In addition, the review summarizes current and emerging therapeutic strategies targeting Lp(a), including niacin, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), and gene-editing technologies. These advances offer promising new avenues for reducing residual cardiovascular risk attributable to elevated Lp(a). In conclusion, viewing Lp(a)-associated pathology through the lens of PVD provides a comprehensive and unifying approach to understanding its systemic impact. This framework supports the development of integrated risk assessment tools and multi-targeted interventions, ultimately aiming to improve outcomes for patients with complex, multisite vascular involvement.
Collapse
Affiliation(s)
- Ruiyan Xu
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Nanchang, 330031, China
| | - Zhenwei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jiayu Dong
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Nanchang, 330031, China
| | - Miao Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| | - Yue Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China.
| |
Collapse
|
2
|
Bae JY, Altin E. Optimal Medical Therapy in Peripheral Artery Disease. Interv Cardiol Clin 2025; 14:137-148. [PMID: 40049843 DOI: 10.1016/j.iccl.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Peripheral artery disease (PAD) is a highly prevalent subset of cardiovascular disease associated with significant limb-related and concomitant atherosclerotic complications, resulting in high morbidity and mortality. Consequently, appropriate identification and timely initiation of guideline-directed medical therapy is crucial. Despite its widespread prevalence, PAD remains underdiagnosed and undertreated, posing a substantial public health challenge. This review delves into the evidence-based nonpharmacological and pharmacologic treatment strategies for PAD, underscoring the necessity of a multidisciplinary approach.
Collapse
Affiliation(s)
- Ju Young Bae
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale New Haven Health Bridgeport Hospital, 256 Grant Street, Bridgeport, CT 06610, USA. https://twitter.com/sallyjybaeMD
| | - Elissa Altin
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; West Haven VA Medical Center, West Haven, CT, USA.
| |
Collapse
|
3
|
Salah AN, Hashem AH, Zaki MB, Abulsoud AI, Atta AM, Elkalla WS, Moustafa HAM, El-Dakroury WA, El-Tokhy FS, ElBoghdady JA, Rizk NI, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Alghamdi HO, Doghish AS. Targeted Therapies: The Role of Monoclonal Antibodies in Disease Management. J Biochem Mol Toxicol 2025; 39:e70163. [PMID: 39887821 DOI: 10.1002/jbt.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Monoclonal antibodies (mAbs) are a key class of biotherapeutic medicines used to treat a wide range of diseases, such as cancer, infectious diseases, autoimmune disorders, cardiovascular diseases, and hemophilia. They can be engineered for greater effectiveness and specific applications while maintaining their structural elements for immune targeting. Traditional immunoglobulin treatments have limited therapeutic uses and various adverse effects. That makes mAbs show rapid growth in the pharmaceutical market, with over 250 mAbs in clinical studies. Although mAbs offer higher specificity, they are less effective against complex antigens. They have become essential in treating diseases with limited medical options, providing innovative solutions that improve patients' quality of life through increasing survival rates, shortening the length of stay in hospitals with an improved treatment outcome, and reducing side effects. This review outlines the mechanisms, applications, and advancements of mAbs, highlighting their transformative role in modern medicine and their potential to shape future therapeutic interventions.
Collapse
Affiliation(s)
- Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menofia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Asmaa M Atta
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Wagiha S Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Huda O Alghamdi
- College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
4
|
Lai P, Xu S, Liu Z, Ling J, Tian K, Yan J, Chen D, Zhong Y, Xue J. Exploring research trends and hotspots on PCSK9 inhibitor studies: a bibliometric and visual analysis spanning 2007 to 2023. Front Cardiovasc Med 2024; 11:1474472. [PMID: 39650150 PMCID: PMC11621103 DOI: 10.3389/fcvm.2024.1474472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Background Following the identification of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, research in this area has experienced significant growth. However, a thorough bibliometric analysis of this burgeoning field remains conspicuously absent. The current study aims to delineate research hotspots and anticipate future trends on PCSK9 inhibitors employing bibliometric analysis. Methods A systematic search was conducted in the Web of Science Core Collection (WoSCC) to identify scholarly articles and reviews pertaining to PCSK9 inhibitors, yielding 1,812 documents. Data extraction was followed by analysis and visualization using Excel, VOSviewer, and CiteSpace software. Results A total of 1,812 publications were included in the final analysis. Ray, KK from the UK was the most prolific author, followed by Pordy, R from the USA. The USA led in publication output [number of publications (Np):776] and number of citations without self-citations (Nc) at 34,289, as well as an H-index of 93. "Cardiovascular System Cardiology" emerged as the predominant subject area. Amgen and the Journal of Clinical Lipidology were identified as the most active institution and journal, respectively. Keywords such as "lipoprotein(a)," "bempedoic acid," "percutaneous coronary intervention," "inclisiran," "peripheral artery disease," "mortality," and "endothelial dysfunction" are gaining prominence in the field. Conclusion The research on PCSK9 inhibitors is experiencing a sustained growth trajectory. The USA exerts considerable influence in this area, with the Journal of Clinical Lipidology expected to feature more groundbreaking studies. Research on "lipoprotein(a)", "bempedoic acid", "percutaneous coronary intervention", "peripheral artery disease", and "endothelial dysfunction" are poised to become focal points of future investigation.
Collapse
Affiliation(s)
- Ping Lai
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Shuquan Xu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Ziyou Liu
- Department of Heart Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiayuan Ling
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Kejun Tian
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianwei Yan
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Dong Chen
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yiming Zhong
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Physiology, School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Ozbek L, Abdel-Rahman SM, Unlu S, Guldan M, Copur S, Burlacu A, Covic A, Kanbay M. Exploring Adiposity and Chronic Kidney Disease: Clinical Implications, Management Strategies, Prognostic Considerations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1668. [PMID: 39459455 PMCID: PMC11509396 DOI: 10.3390/medicina60101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Obesity poses a significant and growing risk factor for chronic kidney disease (CKD), requiring comprehensive evaluation and management strategies. This review explores the intricate relationship between obesity and CKD, emphasizing the diverse phenotypes of obesity, including sarcopenic obesity and metabolically healthy versus unhealthy obesity, and their differential impact on kidney function. We discuss the epidemiological evidence linking elevated body mass index (BMI) with CKD risk while also addressing the paradoxical survival benefits observed in obese CKD patients. Various measures of obesity, such as BMI, waist circumference, and visceral fat assessment, are evaluated in the context of CKD progression and outcomes. Mechanistic insights into how obesity promotes renal dysfunction through lipid metabolism, inflammation, and altered renal hemodynamics are elucidated, underscoring the role of adipokines and the renin-angiotensin-aldosterone system. Furthermore, the review examines current strategies for assessing kidney function in obese individuals, including the strengths and limitations of filtration markers and predictive equations. The management of obesity and associated comorbidities like arterial hypertension, type 2 diabetes mellitus, and non-alcoholic fatty liver disease in CKD patients is discussed. Finally, gaps in the current literature and future research directions aimed at optimizing the management of obesity-related CKD are highlighted, emphasizing the need for personalized therapeutic approaches to mitigate the growing burden of this intertwined epidemic.
Collapse
Affiliation(s)
- Lasin Ozbek
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sama Mahmoud Abdel-Rahman
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Selen Unlu
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Mustafa Guldan
- Department of Medicine, Koç University School of Medicine, Istanbul 34450, Turkey; (L.O.); (S.M.A.-R.); (S.U.); (M.G.)
| | - Sidar Copur
- Department of Internal Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Alexandru Burlacu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Adrian Covic
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania;
- Nephrology Clinic, Dialysis, and Renal Transplant Center “C.I. Parhon” University Hospital, 700503 Iasi, Romania
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul 34450, Turkey
| |
Collapse
|
6
|
Ghalali A, Alhamdan F, Upadhyay S, Ganguly K, Larsson K, Palmberg L, Rahman M. Contrasting effects of intracellular and extracellular human PCSK9 on inflammation, lipid alteration and cell death. Commun Biol 2024; 7:985. [PMID: 39138259 PMCID: PMC11322528 DOI: 10.1038/s42003-024-06674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of the major regulators of low-density lipoprotein receptor (LDLR). Information on role and regulation of PCSK9 in lung is very limited. Our study focuses on understanding the role and regulation of PCSK9 in the lung. PCSK9 levels are higher in Bronchoalveolar lavage fluid (BALF) of smokers with or without chronic obstructive pulmonary diseases (COPD) compared to BALF of nonsmokers. PCSK9-stimulated cells induce proinflammatory cytokines and activation of MAPKp38. PCSK9 transcripts are highly expressed in healthy individuals compared to COPD, pulmonary fibrosis or pulmonary systemic sclerosis. Cigarette smoke extract reduce PCSK9 levels in undifferentiated pulmonary bronchial epithelial cells (PBEC) but induce in differentiated PBEC. PCSK9 inhibition affect biological pathways, induces lipid peroxidation, and higher level of apoptosis in response to staurosporine. Our results suggest that higher levels of PCSK9 in BALF acts as an inflammatory marker. Furthermore, extracellular and intracellular PCSK9 play different roles.
Collapse
Affiliation(s)
- Aram Ghalali
- Vascular Biology Program, Boston Children Hospital, Harvard Medical school, Boston, MA, USA
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Kjell Larsson
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Insitutet, Stockholm, Sweden.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Walley KR. Lessons From the LIPid Intensive Drug therapy for Sepsis Pilot (LIPIDS-P) Trial. Crit Care Med 2024; 52:1303-1306. [PMID: 39007572 DOI: 10.1097/ccm.0000000000006309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Affiliation(s)
- Keith R Walley
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Zhang B, Chuang GY, Biju A, Biner D, Cheng J, Wang Y, Bao S, Chao CW, Lei H, Liu T, Nazzari AF, Yang Y, Zhou T, Chen SJ, Chen X, Kong WP, Ou L, Parchment DK, Sarfo EK, SiMa H, Todd JP, Wang S, Woodward RA, Cheng C, Rawi R, Mascola JR, Kwong PD. Cholesterol reduction by immunization with a PCSK9 mimic. Cell Rep 2024; 43:114285. [PMID: 38819987 PMCID: PMC11305080 DOI: 10.1016/j.celrep.2024.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Biju
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Biner
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaxuan Cheng
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saran Bao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haotian Lei
- Research Technologies Branch, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Chen
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danealle K Parchment
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - HaoMin SiMa
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruth A Woodward
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
9
|
Reijman MD, Kusters DM, Wiegman A. Current and emerging monoclonal antibodies for treating familial hypercholesterolemia in children. Expert Opin Biol Ther 2024; 24:243-249. [PMID: 38501269 DOI: 10.1080/14712598.2024.2330948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Heterozygous familial hypercholesterolemia (HeFH) is a common genetic disorder caused by pathogenic variants in the LDL-C metabolism. Lifelong exposure to elevated LDL-C levels leads to a high risk of premature cardiovascular disease. To reduce that risk, children with HeFH should be identified and treated with lipid-lowering therapy. The cornerstone consists of statins and ezetimibe, but not in all patients this lowers the LDL-C levels to treatment targets. For these patients, more intensive lipid-lowering therapy is needed. AREAS COVERED In this review, we provide an overview of the monoclonal antibodies which are currently available or being tested for treating HeFH in childhood. EXPERT OPINION Monoclonal antibodies that inhibit PCSK9 are first in line lipid-lowering treatment options if oral statin and ezetimibe therapy are insufficient, due to intolerance or very high baseline LDL-C levels. Both evolocumab and alirocumab have been shown to be safe and effective in children with HeFH. For children, evolocumab has been registered from the age of 10 years old and alirocumab from the age of 8 years old. The costs of these new agents are much higher than oral therapy, which makes it important to only use them in a selected patient population.
Collapse
Affiliation(s)
- M Doortje Reijman
- Department of Pediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - D Meeike Kusters
- Department of Pediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Nair T. Role of PCSK9 inhibitors in the management of dyslipidaemia. Indian Heart J 2024; 76 Suppl 1:S44-S50. [PMID: 38195006 PMCID: PMC11019315 DOI: 10.1016/j.ihj.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Proprotein convertase subtilisin kexin9 (PCSK9) inhibitors are novel agents that lower LDL cholesterol and reduce cardio-vascular event rate. Being expensive, these agents are reserved for those with high risk or very high risk of CV events and with suboptimal response to statins and ezetimibe, with or without bempedoic acid or those intolerant to statins.
Collapse
Affiliation(s)
- Tiny Nair
- Head, Department of Cardiology, PRS Hospital, Trivandrum, 695002, Kerala, India.
| |
Collapse
|
11
|
Page MM, Hardikar W, Alex G, Bates S, Srinivasan S, Stormon M, Hall K, Evans HM, Johnston P, Chen J, Wigg A, John L, Ekinci EI, O'Brien RC, Jones R, Watts GF. Long-term outcomes of liver transplantation for homozygous familial hypercholesterolaemia in Australia and New Zealand. Atherosclerosis 2023; 387:117305. [PMID: 37863699 DOI: 10.1016/j.atherosclerosis.2023.117305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND AIMS Homozygous familial hypercholesterolaemia (FH) causes severe cardiovascular disease from childhood. Conventional drug therapy is usually ineffective; lipoprotein apheresis (LA) is often required. Liver transplantation (LT) can correct the metabolic defect but is considered a treatment of last resort. Newer drugs including lomitapide and evinacumab might reduce the need for apheresis and LT. We sought to determine the long-term outcomes following LT in Australia and New Zealand. METHODS We analysed demographic, biochemical and clinical data from all patients in Australia and New Zealand who have received LT for homozygous FH, identified from the Australia and New Zealand Liver and Intestinal Transplant Registry. RESULTS Nine patients (five female; one deceased; seven aged between 3 and 6 years at the time of LT and two aged 22 and 26 years) were identified. Mean follow-up was 14.1 years (range 4-27). Baseline LDL-cholesterol off all treatment was 23 ± 4.1 mmol/L. Mean LDL-cholesterol on medical therapy (including maximal statin therapy in all patients, ezetimibe in three and LA in five) was 11 ± 5.7 mmol/L (p < 0.001). After LT, mean LDL-cholesterol was 2.6 ± 0.9 mmol/L (p = 0.004) with three patients remaining on statin therapy and none on LA. One patient died from acute myocardial infarction (AMI) three years after LT. Two patients required aortic valve replacement, more than 10 years after LT. The remaining six patients were asymptomatic after eight to 21 years of follow-up. No significant adverse events associated with immunosuppression were reported. CONCLUSIONS LT for homozygous FH was highly effective in achieving substantial long-term reduction in LDL-cholesterol concentrations in all nine patients. LT remains an option for severe cases of homozygous FH where drug therapy combined with apheresis is ineffective or unfeasible.
Collapse
Affiliation(s)
- Michael M Page
- Medical School, The University of Western Australia, Perth, Australia; Western Diagnostic Pathology, Perth, Australia
| | - Winita Hardikar
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - George Alex
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Sue Bates
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Stormon
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Gastroenterology and Hepatology, The Children's Hospital at Westmead, Sydney, Australia
| | - Kat Hall
- Hepatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, Australia
| | - Helen M Evans
- Paediatric Gastroenterology and Hepatology, Starship Child Health, Auckland, New Zealand; Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter Johnston
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - John Chen
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alan Wigg
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Libby John
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Melbourne, Australia; The Australian Centre for Accelerating Diabetes Innovation, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Richard C O'Brien
- Department of Endocrinology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Robert Jones
- Hepatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Gerald F Watts
- Medical School, The University of Western Australia, Perth, Australia; Department of Cardiovascular Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
12
|
Shah AJ, Pavlatos N, Kalra DK. Preventive Therapies in Peripheral Arterial Disease. Biomedicines 2023; 11:3157. [PMID: 38137379 PMCID: PMC10741180 DOI: 10.3390/biomedicines11123157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Atherosclerosis, while initially deemed a bland proliferative process, is now recognized as a multifactorial-lipoprotein-mediated inflammation-driven pathway. With the rising incidence of atherosclerotic disease of the lower extremity arteries, the healthcare burden and clinical morbidity and mortality due to peripheral artery disease (PAD) are currently escalating. With a healthcare cost burden of over 21 billion USD and 200 million patients afflicted worldwide, accurate knowledge regarding the pathophysiology, presentation, and diagnosis of the disease is crucial. The role of lipoproteins and their remnants in atherosclerotic vessel occlusion and plaque formation and progression has been long established. This review paper discusses the epidemiology, pathophysiology, and presentation of PAD. PAD has been repeatedly noted to portend to poor cardiovascular and limb outcomes. We discuss major therapeutic avenues for the prevention of major cardiovascular adverse events and major limb adverse events in patients with PAD.
Collapse
Affiliation(s)
- Aangi J. Shah
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (A.J.S.); (N.P.)
| | - Nicholas Pavlatos
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; (A.J.S.); (N.P.)
| | - Dinesh K. Kalra
- Division of Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
13
|
El Hussein MT, Sharma A, Parmar K, Shelat K. Pharmacotherapeutics for dyslipidemia management. Nurse Pract 2023; 48:36-47. [PMID: 37227314 DOI: 10.1097/01.npr.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Effective management of dyslipidemia is of paramount importance to prevent cardiovascular (CV) complications. Using current clinical practice guidelines is recommended to correct lipid levels and prevent further pathologic processes. This article presents an overview of treatment options for patients with dyslipidemia and CV disease, with a special focus on the following drug classes: HMG-CoA reductase inhibitors (also called statins), cholesterol absorption inhibitors (ezetimibe), bile acid sequestrants, fibrates, icosapent ethyl, and PCSK9 inhibitors.
Collapse
|
14
|
Law SH, Chan HC, Ke GM, Kamatam S, Marathe GK, Ponnusamy VK, Ke LY. Untargeted Lipidomic Profiling Reveals Lysophosphatidylcholine and Ceramide as Atherosclerotic Risk Factors in apolipoprotein E Knockout Mice. Int J Mol Sci 2023; 24:ijms24086956. [PMID: 37108120 PMCID: PMC10138920 DOI: 10.3390/ijms24086956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Swetha Kamatam
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Shah SM, Shah J, Lakey SM, Garg P, Ripley DP. Pathophysiology, emerging techniques for the assessment and novel treatment of aortic stenosis. Open Heart 2023; 10:e002244. [PMID: 36963766 PMCID: PMC10040005 DOI: 10.1136/openhrt-2022-002244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Our perspectives on aortic stenosis (AS) are changing. Evolving from the traditional thought of a passive degenerative disease, developing a greater understanding of the condition's mechanistic underpinning has shifted the paradigm to an active disease process. This advancement from the 'wear and tear' model is a result of the growing economic and health burden of AS, particularly within industrialised countries, prompting further research. The pathophysiology of calcific AS (CAS) is complex, yet can be characterised similarly to that of atherosclerosis. Progressive remodelling involves lipid-protein complexes, with lipoprotein(a) being of particular interest for diagnostics and potential future treatment options.There is an unmet clinical need for asymptomatic patient management; no pharmacotherapies are proven to slow progression and intervention timing varies. Novel approaches are developing to address this through: (1) screening with circulating biomarkers; (2) development of drugs to slow disease progression and (3) early valve intervention guided by medical imaging. Existing biomarkers (troponin and brain natriuretic peptide) are non-specific, but cost-effective predictors of ventricular dysfunction. In addition, their integration with cardiovascular MRI can provide accurate risk stratification, aiding aortic valve replacement decision making. Currently, invasive intervention is the only treatment for AS. In comparison, the development of lipoprotein(a) lowering therapies could provide an alternative; slowing progression of CAS, preventing left ventricular dysfunction and reducing reliance on surgical intervention.The landscape of AS management is rapidly evolving. This review outlines current understanding of the pathophysiology of AS, its management and future perspectives for the condition's assessment and treatment.
Collapse
Affiliation(s)
- Syed Muneeb Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jay Shah
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Samuel Mark Lakey
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - David Paul Ripley
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
- Department of Cardiology, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| |
Collapse
|
16
|
Hughes-Hubley F, Iskander M, Cheng-Lai A, Frishman WH, Nawarskas J. Inclisiran: Small Interfering Ribonucleic Acid Injectable for the Treatment of Hyperlipidemia. Cardiol Rev 2022; 30:214-219. [PMID: 35666780 DOI: 10.1097/crd.0000000000000452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated plasma lipid levels, especially low-density lipoprotein, are correlated with atherosclerotic cardiovascular disease (ASCVD) and increased risk of ischemic heart disease and stroke. Statins are first-line agents for reducing low-density lipoprotein cholesterol (LDL-C) and the risk of major cardiovascular events, but patients with a genetic susceptibility or established ASCVD oftentimes remain subtherapeutic on statin therapy alone. Biotechnological advancements in medication therapy have led to the development of inclisiran, a recently approved twice-yearly injectable agent to help patients with heterozygous familial hypercholesterolemia and clinical ASCVD on a maximally tolerated statin to reach LDL-C targets. Inclisiran has demonstrated robust LDL-C reduction in clinical trials in combination with a favorable safety profile; however, the effect on cardiovascular clinical outcomes still remains under evaluation.
Collapse
Affiliation(s)
| | - Mina Iskander
- Department of Medicine, University of Miami/Jackson Health System, Miami, FL
| | - Angela Cheng-Lai
- From the Department of Pharmacy, Montefiore Medical Center, Bronx, NY
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - James Nawarskas
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM
| |
Collapse
|
17
|
Sun H, Meng W, Zhu J, Wang L. Antitumor activity and molecular mechanism of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:643-658. [PMID: 35307759 DOI: 10.1007/s00210-022-02200-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proprotein convertase family of proteins that activate other proteins in cells. Functionally, PCSK9 binds to the receptor of low-density lipoprotein particles (LDL) to regulate cholesterol metabolism and lipoprotein homeostasis in human body. PCSK9 inhibition is a novel pharmacological strategy to control hypercholesterolemia and cardiovascular diseases. Recently accumulating evidence realizes that PCSK9 possesses other roles in cells, such as regulation of tissue inflammatory response, intratumoral immune cell infiltration, and tumor progression. This review discussed the advancement of PCSK9 research on its role and underlying mechanisms in tumor development and progression. For example, PCSK9 inhibition could attenuate progression of breast cancer, glioma, colon tumor, hepatocellular cancer, prostate cancer, and lung adenocarcinoma and promote apoptosis of glioma, prostate cancer, and hepatocellular cancer cells. PCSK9 deficiency could reduce liver metastasis of B16F1 melanoma cells by lowering the circulating cholesterol levels. PCSK9 gene knockdown substantially attenuated mouse tumor growth in vivo by activation of cytotoxic T cells, although PCSK9 knockdown had no effect on morphology and growth rate of different mouse cancer cell lines in vitro. PCSK9 inhibition thus can be used to control human cancers. Future preclinical and clinical studies are warranted to define anti-tumor activity of PCSK9 inhibition.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Wen Meng
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Jie Zhu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China.
| |
Collapse
|
18
|
de Jesus M, Mohammed T, Singh M, Tiu JG, Kim AS. Etiology and Management of Dyslipidemia in Patients With Cancer. Front Cardiovasc Med 2022; 9:892335. [PMID: 35548413 PMCID: PMC9081373 DOI: 10.3389/fcvm.2022.892335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 01/19/2023] Open
Abstract
Patients with cancer are now living longer than ever before due to the growth and expansion of highly effective antineoplastic therapies. Many of these patients face additional health challenges, of which cardiovascular disease (CVD) is the leading contributor to morbidity and mortality. CVD and cancer share common biological mechanisms and risk factors, including lipid abnormalities. A better understanding of the relationship between lipid metabolism and cancer can reveal strategies for cancer prevention and CVD risk reduction. Several anticancer treatments adversely affect lipid levels, increasing triglycerides and/or LDL-cholesterol. The traditional CVD risk assessment tools do not include cancer-specific parameters and may underestimate the true long-term CVD risk in this patient population. Statins are the mainstay of therapy in both primary and secondary CVD prevention. The role of non-statin therapies, including ezetimibe, PCSK9 inhibitors, bempedoic acid and icosapent ethyl in the management of lipid disorders in patients with cancer remains largely unknown. A contemporary cancer patient needs a personalized comprehensive cardiovascular assessment, management of lipid abnormalities, and prevention of late CVD to achieve optimal overall outcomes.
Collapse
Affiliation(s)
- Mikhail de Jesus
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Turab Mohammed
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Meghana Singh
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - John G. Tiu
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Agnes S. Kim
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
19
|
Li S, Schooling CM. Investigating the effects of statins on ischemic heart disease allowing for effects on body mass index: a Mendelian randomization study. Sci Rep 2022; 12:3478. [PMID: 35241713 PMCID: PMC8894423 DOI: 10.1038/s41598-022-07344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite effective lipid reduction and corresponding benefits for cardiovascular disease prevention and treatment, statins have pleiotropic effects potentially increasing the risk of ischemic heart disease (IHD), particularly by increasing body mass index (BMI). We assessed whether the effects of genetically mimicked statins on IHD were strengthened by adjusting for BMI in men and women. We also assessed if increasing BMI was specific to statins in comparison to other major lipid-lowering treatments in current use, i.e., proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and ezetimibe. Using univariable and multivariable Mendelian randomization (MR) we found genetically mimicked effects of statins increased BMI (0.33, 95% confidence interval (CI) 0.28 to 0.38), but genetically mimicked PCSK9 inhibitors and ezetimibe did not. Genetically mimicked effects of statins on IHD reduction in both sexes (odds ratio (OR) 0.55 per unit decrease in effect size of low-density lipoprotein cholesterol (LDL-c), 95% confidence interval (CI) 0.40 to 0.76), was largely similar after adjusting for BMI, in both men (OR 0.48, 95% CI 0.38 to 0.61) and women (OR 0.66, 95% CI 0.53 to 0.82). Compared with variations in PCSK9 and NPC1L1, only variation in HMGCR was associated with higher BMI. The effects on IHD of mimicking statins were similar after adjusting for BMI in both men and women. The BMI increase due to statins does not seem to be a concern as regards the protective effects of statins on IHD, however other factors driving BMI and the protective effects of statins could be.
Collapse
Affiliation(s)
- Shun Li
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Rd, Pokfulam, Hong Kong, China
| | - C M Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Rd, Pokfulam, Hong Kong, China. .,School of Public Health and Health Policy, The City University of New York, 55 W 125 St, New York, NY, 10027, USA.
| |
Collapse
|
20
|
Akinnusi PA, Olubode SO, Alade AA, Ahmed SA, Ayekolu SF, Ogunlade TM, Gbore DJ, Rotimi OD, Ayodele AO. A molecular modeling approach for structure-based virtual screening and identification of novel anti-hypercholesterolemic agents from Grape. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Lee CF, Carley RE, Butler CA, Morrison AR. Rac GTPase Signaling in Immune-Mediated Mechanisms of Atherosclerosis. Cells 2021; 10:2808. [PMID: 34831028 PMCID: PMC8616135 DOI: 10.3390/cells10112808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease caused by atherosclerosis is a major cause of morbidity and mortality around the world. Data from preclinical and clinical studies support the belief that atherosclerosis is an inflammatory disease that is mediated by innate and adaptive immune signaling mechanisms. This review sought to highlight the role of Rac-mediated inflammatory signaling in the mechanisms driving atherosclerotic calcification. In addition, current clinical treatment strategies that are related to targeting hypercholesterolemia as a critical risk factor for atherosclerotic vascular disease are addressed in relation to the effects on Rac immune signaling and the implications for the future of targeting immune responses in the treatment of calcific atherosclerosis.
Collapse
Affiliation(s)
- Cadence F. Lee
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Rachel E. Carley
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Celia A. Butler
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan R. Morrison
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
22
|
Jahangir A, Sahra S, Krzyzak M. Can Clinicians Start Prescribing Inclisiran for Hypercholesterolemia Today? A Review of Clinical Studies for Internal Medicine Physicians and Endocrinologists. Cureus 2021; 13:e16664. [PMID: 34462692 PMCID: PMC8388613 DOI: 10.7759/cureus.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
The safety profile and efficacy margin of inclisiran as a lipid-lowering drug have been assessed in clinical trials and are underway in subgroups with relevant co-morbidities. This systematic review looks at the clinical trials that have been conducted to comment on its safety and efficacy. The conclusions can serve as a guide for practicing physicians and researchers for following current and future cohorts of patients. PubMed, Cochrane, Embase, Scopus, CINAHL, Web of Science, and Clinicaltrials.gov were searched comprehensively using the terms “Inclisiran”, “ALN-PCSsc”, and “ALN-PCS” using the Boolean operator “OR” with data cut-off date of June 28, 2020. The outcomes of safety and efficacy were collected and charted for the systematic review. In our study, eight clinical trials were included in the final study: the ORION (1,2,7,9-11) trials and two clinical trials (phase 1 randomized clinical trials) done before ORION trials. Favourable efficacy in terms of LDL levels and PSCK9 levels was observed across all eight clinical trials. No severe adverse effects, safety concerns, or fatalities attributable directly to inclisiran were reported. Therefore, our study results suggest a positive efficacy and safety profile of inclisiran as a lipid-lowering drug in clinical trials.
Collapse
Affiliation(s)
| | - Syeda Sahra
- Internal Medicine, Northwell Health, Staten Island, USA
| | | |
Collapse
|
23
|
Kamaruddin NN, Hajri NA, Andriani Y, Abdul Manan AF, Tengku Muhammad TS, Mohamad H. Acanthaster planci Inhibits PCSK9 and Lowers Cholesterol Levels in Rats. Molecules 2021; 26:5094. [PMID: 34443682 PMCID: PMC8398678 DOI: 10.3390/molecules26165094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases which in turn, lead to the highest number of mortalities globally. This pathophysiological condition is developed due to a constant elevated level of plasma cholesterols. Statin is currently the widely used treatment in reducing the level of cholesterols, however, it may cause adverse side effects. Therefore, there is an urgent need to search for new alternative treatment. PCSK9 is an enzyme responsible in directing LDL-receptor (LDL-R)/LDL-cholesterols (LDL-C) complex to lysosomal degradation, preventing the receptor from recycling back to the surface of liver cells. Therefore, PCSK9 offers a potential target to search for small molecule inhibitors which inhibit the function of this enzyme. In this study, a marine invertebrate Acanthaster planci, was used to investigate its potential in inhibiting PCSK9 and lowering the levels of cholesterols. Cytotoxicity activity of A. planci on human liver HepG2 cells was carried out using the MTS assay. It was found that methanolic extract and fractions did not exhibit cytotoxicity effect on HepG2 cell line with IC50 values of more than 30 µg/mL. A compound deoxythymidine also did not exert any cytotoxicity activity with IC50 value of more than 4 µg/mL. Transient transfection and luciferase assay were conducted to determine the effects of A. planci on the transcriptional activity of PCSK9 promoter. Methanolic extract and Fraction 2 (EF2) produced the lowest reduction in PCSK9 promoter activity to 70 and 20% of control at 12.5 and 6.25 μg/mL, respectively. In addition, deoxythymidine also decreased PCSK9 promoter activity to the lowest level of 60% control at 3.13 μM. An in vivo study using Sprague Dawley rats demonstrated that 50 and 100 mg/kg of A. planci methanolic extract reduced the total cholesterols and LDL-C levels to almost similar levels of untreated controls. The level of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) showed that the administration of the extract did not produce any toxicity effect and cause any damage to rat liver. The results strongly indicate that A. planci produced a significant inhibitory activity on PCSK9 gene expression in HepG2 cells which may be responsible for inducing the uptake of cholesterols by liver, thus, reducing the circulating levels of total cholesterols and LDL-C. Interestingly, A. planci also did show any adverse hepato-cytotoxicity and toxic effects on liver. Thus, this study strongly suggests that A. planci has a vast potential to be further developed as a new class of therapeutic agent in lowering the blood cholesterols and reducing the progression of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Tengku Sifzizul Tengku Muhammad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (N.N.K.); (N.A.H.); (Y.A.); (A.F.A.M.)
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (N.N.K.); (N.A.H.); (Y.A.); (A.F.A.M.)
| |
Collapse
|
24
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Magnasco L, Sepulcri C, Antonello RM, Di Bella S, Labate L, Luzzati R, Giacobbe DR, Bassetti M. The role of PCSK9 in infectious diseases. Curr Med Chem 2021; 29:1000-1015. [PMID: 34269657 DOI: 10.2174/0929867328666210714160343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many aspects of the physiological role of PCSK9 have been elucidated, particularly regarding its role in lipid metabolism, cardiovascular risk, and its role in innate immunity. Increasing evidence is available about the involvement of PCSK9 in the pathogenesis of viral infections, mainly HCV, and the regulation of host response to bacterial infections, primarily sepsis and septic shock. Moreover, the action of PCSK9 has been investigated as a crucial step in the pathogenesis of malaria infection and disease severity. OBJECTIVE This paper aims to review the available published literature on the role of PCSK9 in a wide array of infectious diseases. CONCLUSION Besides the ongoing investigation on PCSK9 inhibition among HIV-infected patients to treat HIV- and ART-related hyperlipidemia, preclinical studies indicate how PCSK9 is involved in reducing the replication of HCV. Interestingly, high plasmatic PCSK9 levels have been described in patients with sepsis. Moreover, a protective role of PCSK9 inhibition has also been proposed against dengue and SARS-CoV-2 viral infections. Finally, a loss of function in the PCSK9-encoding gene has been reported to reduce malaria infection mortality.
Collapse
Affiliation(s)
- Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Chiara Sepulcri
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | | | | | - Laura Labate
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
26
|
Afshar M, Yazdan-Ashoori S, Engert JC, Thanassoulis G. Drugs for Prevention and Treatment of Aortic Stenosis: How Close Are We? Can J Cardiol 2021; 37:1016-1026. [DOI: 10.1016/j.cjca.2021.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
|
27
|
Abstract
BACKGROUND Beyond their success in cardiovascular disease prevention, statins are increasingly recognized to have sex-specific pleiotropic effects. To gain additional insight, we characterized associations of genetically mimicked statins across the phenotype sex-specifically. We also assessed whether any apparently non-lipid effects identified extended to genetically mimicking other widely used lipid modifiers (proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and ezetimibe) or were a consequence of low-density lipoprotein cholesterol (LDL-c). METHODS We performed a sex-specific phenome-wide association study assessing the association of genetic variants in HMGCR, mimicking statins, with 1701 phenotypes. We used Mendelian randomization (MR) to assess if any non-lipid effects found were evident for genetically mimicked PCSK9 inhibitors and ezetimibe or for LDL-c. RESULTS As expected, genetically mimicking statins was inversely associated with LDL-c, apolipoprotein B (ApoB), and total cholesterol (TC) and positively associated with glycated hemoglobin (HbA1c) and was related to body composition. Genetically mimicking statins was also inversely associated with serum calcium, sex hormone-binding globulin (SHBG), and platelet count and positively associated with basal metabolic rate (BMR) and mean platelet volume. Stronger associations with genetically mimicked statins were evident for women than men for lipid traits (LDL-c, ApoB, and TC), calcium, and SHBG, but not for platelet attributes, body composition, or BMR. Genetically mimicking PCSK9 inhibitors or ezetimibe was also associated with lower lipids, but was not related to calcium, SHBG, BMR, or body composition. Genetically higher LDL-c increased lipids and decreased BMR, but did not affect calcium, HbA1c, platelet attributes, or SHBG with minor effects on body composition. CONCLUSIONS Similar inverse associations were found for genetically mimicking statins on lipid traits in men and women as for other lipid modifiers. Besides the positive associations with HbA1c, BMI (which may explain the higher BMR), and aspects of body composition in men and women, genetically mimicking statins was additionally associated with platelet attributes in both sexes and was inversely associated with serum calcium and SHBG in women. This genetic evidence suggests potential pathways that contribute to the effects of statins particularly in women. Further investigation is needed to confirm these findings and their implications for clinical practice.
Collapse
|
28
|
Karantas ID, Okur ME, Okur NÜ, Siafaka PI. Dyslipidemia Management in 2020: An Update on Diagnosis and Therapeutic Perspectives. Endocr Metab Immune Disord Drug Targets 2021; 21:815-834. [PMID: 32778041 DOI: 10.2174/1871530320666200810144004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world and dyslipidemia is one of the major risk factors. The current therapeutic strategies for cardiovascular diseases involve the management of risk factors, especially dyslipidemia and hypertension. Recently, the updated guidelines of dyslipidemia management were presented, and the newest data were included in terms of diagnosis, imaging, and treatment. In this targeted literature review, the researchers presented the most recent evidence on dyslipidemia management by including the current therapeutic goals for it. In addition, the novel diagnostic tools based on theranostics are shown. Finally, the future perspectives on treatment based on novel drug delivery systems and their potential to be used in clinical trials were also analyzed. It should be noted that dyslipidemia management can be achieved by the strict lifestyle change, i.e., by adopting a healthy life, and choosing the most suitable medication. This review can help medical professionals as well as specialists of other sciences to update their knowledge on dyslipidemia management, which can lead to better therapeutic outcomes and newer drug developments.
Collapse
Affiliation(s)
| | - Mehmet E Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
29
|
Yuet WC, Ebert D, Jann M. Neurocognitive effects associated with proprotein convertase subtilisin-kexin type 9 inhibitor use: a narrative review. Ther Adv Drug Saf 2021; 12:2042098620959271. [PMID: 33763200 PMCID: PMC7944525 DOI: 10.1177/2042098620959271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/17/2020] [Indexed: 11/15/2022] Open
Abstract
Neurocognitive adverse events have been observed with the widespread use of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors or “statins,” which reduce low-density lipoprotein cholesterol (LDL-C) levels and subsequently cardiovascular risk. The United States Food and Drug Association directed manufacturers of proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors to monitor for neurocognitive adverse events due to their potent effects on LDL-C reduction, which is a proposed mechanism for neuronal cell dysfunction. Other proposed mechanisms for PCSK9 inhibitor-associated neurocognitive adverse events include N-methyl-d-aspartate receptor modulation, dysregulation of lipid and glucose metabolism, and patient-specific risk factors for cognitive impairment. The purpose of this narrative review article is to describe the proposed mechanisms, incidence of neurocognitive adverse events from phase II and III trials for PCSK9 inhibitors, neurocognitive assessments utilized in clinical trials, and clinical implications. Given the increasing prevalence of PCSK9 inhibitor use and the neurocognitive adverse events observed with prior lipid-lowering therapies, clinicians should be aware of the risks associated with PCSK9 inhibitors, especially when therapy is indicated for patients at high risk for cardiovascular events. Overall, the incidence of PCSK9 inhibitor-associated neurocognitive appears to be uncommon. However, additional prospective studies evaluating cognitive impairment may be beneficial to determine the long-term safety of these agents.
Collapse
Affiliation(s)
- Wei C Yuet
- Department of Pharmacy Clinical Services, JPS Health Network, 1500 S. Main Street, Fort Worth, TX 76104, USA
| | - Didi Ebert
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Michael Jann
- Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
30
|
Sunil B, Foster C, Wilson DP, Ashraf AP. Novel therapeutic targets and agents for pediatric dyslipidemia. Ther Adv Endocrinol Metab 2021; 12:20420188211058323. [PMID: 34868544 PMCID: PMC8637781 DOI: 10.1177/20420188211058323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Landmark studies have convincingly demonstrated that atherosclerosis begins in youth. While generally asymptomatic, an increasing number of youth with disorders of lipid and lipoprotein metabolism, such as familial hypercholesterolemia, are being identified through selective and universal screening. While a heart healthy lifestyle is the foundation of treatment for all youth with dyslipidemia, lipid-lowering therapy may be required by some to prevent morbidity and premature mortality, especially when initiated at a young age. When appropriate, use of statins has become standard of care for reducing low-density lipoprotein cholesterol, while fibrates may be beneficial in helping to lower triglycerides. Many therapeutic options commonly used in adults are not yet approved for use in youth less than 18 years of age. Although currently available lipid-lowering therapy is well tolerated and safe when administered to youth, response to treatment may vary and some conditions lack an efficient therapeutic option. Thus, newer agents are needed to aid in management. Many are in development and clinical trials in youth are currently in progress but will require FDA approval before becoming commercially available. Many utilize novel approaches to favorably alter lipid and lipoprotein metabolism. In the absence of long-term outcome data of youth who were treated beginning at an early age, clinical registries may prove to be useful in monitoring safety and efficacy and help to inform clinical decision-making. In this manuscript, we review currently available and novel therapeutic agents in development for the treatment of elevated cholesterol and triglycerides.
Collapse
Affiliation(s)
- Bhuvana Sunil
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Don P. Wilson
- Cardiovascular Health and Risk Prevention,
Pediatric Endocrinology and Diabetes, Cook Children’s Medical Center, Fort
Worth, TX, USA
| | | |
Collapse
|
31
|
Castillo-Díaz LA, Ruiz-Pacheco JA, Elsawy MA, Reyes-Martínez JE, Enríquez-Rodríguez AI. Self-Assembling Peptides as an Emerging Platform for the Treatment of Metabolic Syndrome. Int J Nanomedicine 2020; 15:10349-10370. [PMID: 33376325 PMCID: PMC7762440 DOI: 10.2147/ijn.s278189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome comprises a cluster of comorbidities that represent a major risk of developing chronic diseases, such as type II diabetes, cardiovascular diseases, and stroke. Alarmingly, metabolic syndrome reaches epidemic proportions worldwide. Today, lifestyle changes and multiple drug-based therapies represent the gold standard to address metabolic syndrome. However, such approaches face two major limitations: complicated drug therapeutic regimes, which in most cases could lead to patient incompliance, and limited drug efficacy. This has encouraged scientists to search for novel routes to deal with metabolic syndrome and related diseases. Within such approaches, self-assembled peptide formulations have emerged as a promising alternative for treating metabolic syndrome. In particular, self-assembled peptide hydrogels, either as acellular or cell-load three-dimensional scaffoldings have reached significant relevance in the biomedical field to prevent and restore euglycemia, as well as for controlling cardiovascular diseases and obesity. This has been possible thanks to the physicochemical tunability of peptides, which are developed from a chemical toolbox of versatile amino acids enabling flexibility of designing a wide range of self-assembled/co-assembled nanostructures forming biocompatible viscoelastic hydrogels. Peptide hydrogels can be combined with several biological entities, such as extracellular matrix proteins, drugs or cells, forming functional biologics with therapeutic ability for treatment of metabolic syndrome-comorbidities. Additionally, self-assembly peptides combine safety, tolerability, and effectivity attributes; by this presenting a promising platform for the development of novel pharmaceuticals capable of addressing unmet therapeutic needs for diabetes, cardiovascular disorders and obesity. In this review, recent advances in developing self-assembly peptide nanostructures tailored for improving treatment of metabolic syndrome and related diseases will be discussed from basic research to preclinical research studies. Challenges facing the development of approved medicinal products based on self-assembling peptide nanomaterials will be discussed in light of regulatory requirement for clinical authorization.
Collapse
Affiliation(s)
| | - Juan Alberto Ruiz-Pacheco
- West Biomedical Research Center, National Council of Science and Technology, Guadalajara, Jalisco, Mexico
| | - Mohamed Ahmed Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, Leicestershire, UK
| | | | | |
Collapse
|
32
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
33
|
Essa H, Torella F, Lip GYH. Current and emerging drug treatment strategies for peripheral arterial disease. Expert Opin Pharmacother 2020; 21:1603-1616. [DOI: 10.1080/14656566.2020.1774556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hani Essa
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart & Chest Hospital , Liverpool, UK
| | - Francesco Torella
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart & Chest Hospital , Liverpool, UK
- Liverpool Vascular and Endovascular Service, Royal Liverpool University Hospital, Liverpool, UK
- School of Physical Sciences, University of Liverpool , UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart & Chest Hospital , Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| |
Collapse
|
34
|
Chionchio A, Galmer A, Hirsh B. Primary and Novel Lipid-Lowering Therapies to Reduce Risk in Patients With Peripheral Arterial Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:94. [DOI: 10.1007/s11936-019-0791-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Iqbal Z, Dhage S, Mohamad JB, Abdel-Razik A, Donn R, Malik R, Ho JH, Liu Y, Adam S, Isa B, Stefanutti C, Soran H. Efficacy and safety of PCSK9 monoclonal antibodies. Expert Opin Drug Saf 2019; 18:1191-1201. [DOI: 10.1080/14740338.2019.1681395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zohaib Iqbal
- Cardiovascular Trials Unit, The Old St Mary’s Hospital, Central Manchester University Hospitals, Manchester, UK
| | - Shaishav Dhage
- Cardiovascular Trials Unit, The Old St Mary’s Hospital, Central Manchester University Hospitals, Manchester, UK
| | | | - Alaa Abdel-Razik
- Cardiovascular Trials Unit, The Old St Mary’s Hospital, Central Manchester University Hospitals, Manchester, UK
| | - Rachelle Donn
- Cardiovascular Research Group, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Rayaz Malik
- Department of Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Jan Hoong Ho
- Cardiovascular Trials Unit, The Old St Mary’s Hospital, Central Manchester University Hospitals, Manchester, UK
| | - Yifen Liu
- Cardiovascular Research Group, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Safwaan Adam
- Cardiovascular Trials Unit, The Old St Mary’s Hospital, Central Manchester University Hospitals, Manchester, UK
| | - Basil Isa
- Department of Endocrinology and Diabetes, Wythenshawe Hospital, Manchester, UK
| | - Claudia Stefanutti
- Department of Molecular Medicine, Sapienza’ University of Rome, Rome, Italy
| | - Handrean Soran
- Cardiovascular Trials Unit, The Old St Mary’s Hospital, Central Manchester University Hospitals, Manchester, UK
| |
Collapse
|
36
|
Anti-Atherosclerotic and Anti-Inflammatory Effects of Curcumin on Hypercholesterolemic Male Rabbits. Indian J Clin Biochem 2019; 36:74-80. [PMID: 33505130 DOI: 10.1007/s12291-019-00858-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022]
Abstract
Curcumin has a potent antioxidant and anti-inflammatory properties that may suppress inflammatory component of atherosclerosis. It has been demonstrated that curcumin derivatives can reduce the formation of arterial fatty streaks in cholesterol-fed rabbits. Therefore in this study we evaluated the protective effects of Curcumin on the progression of atherosclerosis. 20 mature rabbits were included for this study; they were randomly divided into four groups each of 5. Group 1: (normal control) were fed corn pellets diet and tab water, group 2: (high cholesterol diet control) were kept on cholesterol rich diet (2% cholesterol) and tab water. Group 3: (cholesterol and rosuvastatin treated group) were kept on cholesterol rich diet (2% cholesterol) and 2.5 mg/kg/day Rosuvastatin dispersed in DW and given orally, group 4: (cholesterol and curcumin treated group) were kept on cholesterol rich diet (2% cholesterol) and 0.2% curcumin added with corn pellets. The study continued for 12 weeks then assessment of serum level of high sensitive C-reactive protein, ICAM1, VCAM1 and PCSK9 was carried out at the end of the study. Total antioxidant activity of curcumin was also determined. Histopathological examination of aortic tissues for atherosclerotic changes was also carried out. Atherogenic (cholesterol rich diet) induced an increment in serum level of TC, LDL, VLDL and TG with concomitant decrement in serum level of HDL and increased atherogenic index. Treatment with curcumin produced substantial reduction in serum TC, LDL, TG with no effect on HDL level thus decreased atherogenic index. Rabbits treated with curcumin showed a significant reduction in the serum level of high sensitive C-reactive protein, ICAM1, VCAM, PCSK9 serum expression and aortic total antioxidant capacity. Curcumin has a potent anti-inflammatory and anti- oxidant effects against atherosclerosis so exerts a protective role by decreasing lipid oxidation and inflammatory markers.
Collapse
|
37
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
38
|
The Cholesterol-Modulating Effect of Methanol Extract of Pigeon Pea ( Cajanus cajan (L.) Millsp.) Leaves on Regulating LDLR and PCSK9 Expression in HepG2 Cells. Molecules 2019; 24:molecules24030493. [PMID: 30704067 PMCID: PMC6385019 DOI: 10.3390/molecules24030493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pigeon pea (Cajanus cajan (L.) Millsp.) is a legume crop consumed as an indigenous vegetable in the human diet and a traditional medicinal plant with therapeutic properties. The current study highlights the cholesterol-modulating effect and underlying mechanisms of the methanol extract of Cajanus cajan L. leaves (MECC) in HepG2 cells. We found that MECC increased the LDLR expression, the cell-surface LDLR levels and the LDL uptake activity in HepG2 cells. We further demonstrated that MECC suppressed the proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA and protein expression, but not affected the expression of other cholesterol or lipid metabolism-related genes including inducible degrader of LDLR (IDOL), HMG-CoA reductase (HMGCR), fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC1), and liver X receptor-α (LXR-α) in HepG2 cells. Furthermore, we demonstrated that MECC down-regulated the PCSK9 gene expression through reducing the amount of nuclear hepatocyte nuclear factor-1α (HNF-1α), a major transcriptional regulator for activation of PCSK9 promoter, but not that of nuclear sterol-responsive element binding protein-2 (SREBP-2) in HepG2 cells. Finally, we identified the cajaninstilbene acid, a main bioactive stilbene component in MECC, which significantly modulated the LDLR and PCSK9 expression in HepG2 cells. Our current data suggest that the cajaninstilbene acid may contribute to the hypocholesterolemic activity of Cajanus cajan L. leaves. Our findings support that the extract of Cajanus cajan L. leaves may serve as a cholesterol-lowering agent.
Collapse
|
39
|
PCSK9 inhibition 2018: riding a new wave of coronary prevention. Clin Sci (Lond) 2019; 133:205-224. [DOI: 10.1042/cs20171300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
AbstractProprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates the low-density lipoprotein cholesterol (LDL-c) receptor and thus circulating LDL-c levels. With overwhelming evidence now supporting the reduction in LDL-c to lower the risk of cardiovascular disease, PCSK9 inhibitors represent an important therapeutic target, particularly in high-risk populations. Here, we summarise and update the science of PCSK9, including its discovery and the development of various inhibitors, including the now approved monoclonal antibodies. In addition, we summarise the clinical applications of PCSK9 inhibitors in a range of patient populations, as well as the major randomised controlled trials investigating their use in coronary prevention.
Collapse
|
40
|
Affiliation(s)
- Rachel Hajar
- Department of Cardiology, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
41
|
Fazekas-Lavu M, Tonks KTT, Samaras K. Benchmarks of Diabetes Care in Men Living With Treated HIV-Infection: A Tertiary Center Experience. Front Endocrinol (Lausanne) 2018; 9:634. [PMID: 30429826 PMCID: PMC6220317 DOI: 10.3389/fendo.2018.00634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022] Open
Abstract
Treated human immunodeficiency virus (HIV) infection is associated with high rates of type 2 diabetes mellitus (DM), metabolic syndrome and central obesity/body fat partitioning disorders. To our knowledge, there are no available data comparing diabetes care in people with both HIV+DM vs. DM alone (DM-controls) within the same service and evaluating if benchmarked standards of care are being met in people with HIV+DM. This study evaluated the frequency that people with HIV+DM met the benchmarked American Diabetes Association (ADA) standards of care in diabetes (targets for HbA1c, blood pressure, lipid levels, complication screening, and healthy weight), compared to age- and sex- matched controls with diabetes, in an urban teaching hospital. The frequency of diabetes complications and rates of obesity and metabolic syndrome were also examined. All participants were male; individuals with HIV+DM (n = 30) were similar to DM-controls (n = 30) for age, diabetes duration and smoking status, but were more frequently non-obese compared to DM controls (92 vs. 55%, respectively, p = 0.003). Only 41% of HIV+DM met HbA1c targets, compared with 70% of DM-controls (p = 0.037). Blood pressure targets were poorly met in both HIV+DM and DM-controls: 43 vs. 23%, respectively (p = 0.12); LDL cholesterol targets were met in 65 vs. 67% (p = 1.0). Benchmarked complication screening rates were similar between HIV+DM vs. DM-controls for annual foot examination (53 vs. 67%, respectively, p = 0.29); biennial retinal examination (83 vs. 77%, respectively, p = 0.52); and annual urinary albumin measurement (77 vs. 67%, respectively, p = 0.39). The prevalence of diabetes complications was similar between HIV+DM compared to DM-controls: macrovascular complications were present in 23% in both groups (p = 1.0); the prevalence of microvascular complications was 40 vs. 30%, respectively (p = 0.51). Achieving the standard of care benchmarks for diabetes in people with both HIV-infection and diabetes is of particular importance to mitigate against the accelerated cardiometabolic outcomes observed in those with treated HIV infection. HIV+DM were less likely to achieve HbA1c targets than people with diabetes, but without HIV. People with HIV+DM may require specific strategies to ensure care benchmarks are met.
Collapse
Affiliation(s)
- Monika Fazekas-Lavu
- Department of Endocrinology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Katherine T. T. Tonks
- Department of Endocrinology, St Vincent's Hospital, Darlinghurst, NSW, Australia
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Katherine Samaras
- Department of Endocrinology, St Vincent's Hospital, Darlinghurst, NSW, Australia
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
42
|
Sarsam S, Berry A, Degheim G, Singh R, Zughaib M. Real-world use of PCSK9 inhibitors: A single-center experience. J Int Med Res 2018; 47:265-270. [PMID: 30280628 PMCID: PMC6384467 DOI: 10.1177/0300060518800595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Hyperlipidemia is an important risk factor for atherosclerotic cardiovascular disease. Many patients are intolerant to or have limited benefit from statins. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been approved for treating hyperlipidemia in these patients. We sought to investigate the impact of these medications in a real-world cardiology practice. METHODS This was a retrospective study of 17 patients with either heterozygous familial hypercholesterolemia or established atherosclerotic cardiovascular disease with low-density lipoprotein cholesterol (LDL-C) levels above the treatment target despite maximally tolerated statins. Baseline lipid profile was compared with a repeat lipid profile obtained 4 to 6 weeks after initiating treatment with a PCSK9 inhibitor. RESULTS The average duration of PCSK9 inhibitor treatment was 10.7 months. Lipid profile comparison showed that total cholesterol decreased from 243 ± 72 to 148 ± 39 (mg/dL) (39% reduction), triglycerides decreased from 185 ± 86 to 149 ± 62 (mg/dL) (19.5% reduction), high-density lipoprotein cholesterol increased from 56 ± 20 to 62 ± 26 (mg/dL) (10.7% increase), and LDL-C decreased from 154 ± 30 to 57 ± 32 (mg/dL) (63% reduction) from baseline. CONCLUSIONS PCSK9 inhibitors as add-on therapy to maximally tolerated statins resulted in an approximately 63% reduction in LDL-C.
Collapse
Affiliation(s)
- Sinan Sarsam
- Providence Providence-Park Hospitals, Department of Cardiology, Michigan State University (Southeast Campus), Southfield, MI, USA
| | - Abeer Berry
- Providence Providence-Park Hospitals, Department of Cardiology, Michigan State University (Southeast Campus), Southfield, MI, USA
| | - George Degheim
- Providence Providence-Park Hospitals, Department of Cardiology, Michigan State University (Southeast Campus), Southfield, MI, USA
| | - Robby Singh
- Providence Providence-Park Hospitals, Department of Cardiology, Michigan State University (Southeast Campus), Southfield, MI, USA
| | - Marcel Zughaib
- Providence Providence-Park Hospitals, Department of Cardiology, Michigan State University (Southeast Campus), Southfield, MI, USA
| |
Collapse
|
43
|
PCSK9 in cholesterol metabolism: from bench to bedside. Clin Sci (Lond) 2018; 132:1135-1153. [DOI: 10.1042/cs20180190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Dyslipidemia, and specifically elevated low-density lipoprotein (LDL) cholesterol, is one of the most important cardiovascular risk factors. Statins are considered first line therapy for the primary and secondary prevention of cardiovascular disease. However, statins may not be adequate treatment for elevated circulating LDL levels and are ineffective in certain familial hypercholesterolemias. The discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulatory protein that affects LDL receptors, offers a new alternative for these patients. Moreover, gain-of-function PCSK9 mutations were discovered to be the root cause of familial autosomal dominant hypercholesterolemia. Inhibition of PSCK9 reduces plasma LDL levels, even in patients for whom statins are ineffective or not tolerated. Alirocumab and evolocumab, human monoclonal antibodies that inhibit PCSK9, have been approved to lower LDL levels. While there are drawbacks to these treatments, including adverse events, administration by subcutaneous injection, and high cost, these drugs are indicated for the treatment of atherosclerotic cardiovascular disease and familial hypercholesterolemia as adjunct to diet and maximally tolerated statin therapy. PCSK9 inhibitors may work synergistically with statins to lower LDL. Novel approaches to PCSK9 inhibition are currently in development with the aim of providing safe and effective treatment options to decrease cardiovascular event burden, ideally at lower cost and with oral bioavailability.
Collapse
|
44
|
Lee S, Cannon CP. Combination Lipid-Lowering Therapies for the Prevention of Recurrent Cardiovascular Events. Curr Cardiol Rep 2018; 20:55. [PMID: 29802475 DOI: 10.1007/s11886-018-0997-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW There has been confusion following the 2013 American College of Cardiology/American Heart Association (ACC/AHA) Lipid guidelines on the role of non-statin medications for cardiovascular prevention. RECENT FINDINGS Several recent large trials have also now shown that lowering LDL with non-statins reduces cardiovascular events. In ASCVD patients on statins, adding ezetimibe or a PCSK9 inhibitor led to reductions in CV events in the IMPROVE IT, FOURIER, and most recently the ODYSSEY-OUTCOMES trials. Additional novel therapies reducing LDL and other atherogenic lipoproteins are in development during this exciting time in this field. With recent evidence, the 2017 ACC Expert Consensus Decision pathway calls for initial therapy with statins, monitoring LDL levels, and then adding ezetimibe and/or PCSK9 inhibitors to further lower LDL-C to targets based on the patient's risk.
Collapse
Affiliation(s)
- Sara Lee
- Temple University School of Pharmacy, 1625 Annin St, Philadelphia, PA, 19146, USA
| | - Christopher P Cannon
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Zhang J, Tecson KM, Rocha NA, McCullough PA. Usefulness of alirocumab and evolocumab for the treatment of patients with diabetic dyslipidemia. Proc (Bayl Univ Med Cent) 2018; 31:180-184. [PMID: 29706812 DOI: 10.1080/08998280.2018.1441255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023] Open
Abstract
In 2015, the US Food and Drug Administration (FDA) approved the anti-proprotein convertase subtilsin/kexin type 9 (PCSK9) monoclonal antibodies, alirocumab and evolocumab, to treat patients with hypercholesterolemia and mixed dyslipidemia. Since then, considerable attention has been paid to the use of these monoclonal antibodies for the treatment of diabetic dyslipidemia with a goal of reducing the risk for cardiovascular disease. Recently, consensus statements on the clinical use of PCSK9 inhibitors in patients with type 2 diabetes mellitus, who are unable to achieve the goal of low-density lipoprotein cholesterol (<70 mg/dL or <1.8 mmol/L), have been published by panels of experts in Greece, Europe (European Society of Cardiology and European Atherosclerosis Society Task Force), and the United States (American College of Cardiology Consensus Committee). On December 1, 2017, the FDA approved evolocumab to prevent heart attack, stroke, and coronary revascularization. In this article, we review recent advances concerning the pathophysiology of diabetic dyslipidemia, the physiology of PCSK9, the mechanisms of action of PCSK9 inhibitors, clinical trials examining PCSK9 inhibitors in type 2 diabetes, and perspectives of nonstatin therapy in the treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Jun Zhang
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Kristen M Tecson
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Natalia A Rocha
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Division of Cardiology, Baylor Jack and Jane Hamilton Hospital, Dallas, Texas
| |
Collapse
|
46
|
Nhoek P, Chae HS, Masagalli JN, Mailar K, Pel P, Kim YM, Choi WJ, Chin YW. Discovery of Flavonoids from Scutellaria baicalensis with Inhibitory Activity Against PCSK 9 Expression: Isolation, Synthesis and Their Biological Evaluation. Molecules 2018; 23:E504. [PMID: 29495284 PMCID: PMC6100156 DOI: 10.3390/molecules23020504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Nine flavonoids were isolated and identified from a chloroform-soluble fraction of the roots of Scutellaria baicalensis through a bioactivity-guided fractionation using a proprotein convertase subtilisin/kexin type 9 (PCSK9) monitoring assay in HepG2 cells. All structures were established by interpreting the corresponding spectroscopic data and comparing measured values from those in the literature. All compounds were assessed for their ability to inhibit PCSK9 mRNA expression; compounds 1 (3,7,2'-trihydroxy-5-methoxy-flavanone) and 4 (skullcapflavone II) were found to suppress PCSK9 mRNA via SREBP-1. Furthermore, compound 1 was found to increase low-density lipoprotein receptor protein expression. Also, synthesis of compound 1 as a racemic mixture form (1a) was completed for the first time. Natural compound 1 and synthetic racemic 1a were evaluated for their inhibitory activities against PCSK9 mRNA expression and the results confirmed the stereochemistry of 1 was important.
Collapse
Affiliation(s)
| | | | - Jagadeesh Nagarajappa Masagalli
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Karabasappa Mailar
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Pisey Pel
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Won Jun Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea.
| |
Collapse
|
47
|
Abstract
Atherosclerosis is a progressive disease of large arteries and a leading cause of cardiovascular diseases and stroke. Chronic inflammation, aberrant immune response, and disturbances to key enzymes involved with lipid metabolism are characteristic features of atherosclerosis. Apart from targeting the derangements in lipid metabolism, therapeutic modulation to regulate chronic inflammation and the immune system response may prove to be very promising strategies in the management of atherosclerosis. In recent years, various targets have been studied for the treatment of atherosclerosis. PCSK9, a serine protease, actively targets the LDL-R and causes lysosomal degradation, which leads to excessive accumulation of LDL-C. Regulatory T cells (Tregs) and Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) affects the adaptive and innate immune response, respectively, and thus, therapeutic intervention of either of these targets would directly modulate disease progression. Advanced atherosclerotic lesions are characterized by an accumulation of apoptotic cells. Cluster of differentiation-47 (CD47), an anti-phagocytic known as the "don't eat me" signaling molecule, inhibits efferocytosis, which causes accumulation of cell debris in plaque. ADAMTS and Notch signaling potentially affect the formation of neointima by modulation of extracellular matrix components such as macrophages and vascular smooth muscle cells. This review provides insights on the molecular targets for therapeutic intervention of atherosclerosis, their effect at various stages of atherosclerosis development, and the therapies that have been designed and currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
48
|
Kosmas CE, Silverio D, Ovalle J, Montan PD, Guzman E. Patient adherence, compliance, and perspectives on evolocumab for the management of resistant hypercholesterolemia. Patient Prefer Adherence 2018; 12:2263-2266. [PMID: 30464416 PMCID: PMC6214408 DOI: 10.2147/ppa.s149423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Evolocumab is a PCSK9 inhibitor which is administered subcutaneously, and when added to statin therapy it has been shown to cause a significant incremental LDL-C reduction, leading to a reduction of cardiovascular risk. Evolocumab has a favorable side effect profile, and its self-administration at home appears to be safe and effective with the appropriate training and instructions from a health care provider. Current studies are showing encouraging results regarding adherence to evolocumab in real-life settings, and adherence rates to evolocumab appear to be better than those to statins. However, further larger studies are needed for a more definitive assessment of the short- and long-term patient adherence rates to evolocumab. In addition, reductions in the price of evolocumab may also be necessary to improve cost-effectiveness of the drug.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, New York, NY, USA,
| | - Delia Silverio
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Julio Ovalle
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Peter D Montan
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
49
|
Abstract
INTRODUCTION Evolocumab is an injectable, fully human monoclonal antibody and a member of the newest class of low density lipoprotein cholesterol (LDL-C) lowering agents called proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. The PCSK9 inhibitors are the most significant advance in lipid therapy since the introduction of the first statin 30 years ago. Areas covered: The PCSK9 monoclonal antibodies have demonstrated a consistently high LDL-C lowering efficacy with and without statins and/or other lipid lowering therapies (LLT). LDL-C levels achieved with these agents are lower than has ever been possible before. This review will focus on the overall safety of evolocumab including cognitive impairment, very low LDL-C levels, new onset diabetes and glucose abnormalities, effect on vitamin E and steroid hormones, liver and muscle abnormalities, and immunogenicity and injection site reactions. The phase II and III clinical trials had relatively low patient-years of exposure, but the open label extension studies and the recently published outcomes trial, FOURIER, will be the focus of this paper. The safety profile of evolocumab to date is remarkable and extremely encouraging as will be demonstrated. Expert opinion: The PCSK9 inhibitors will be responsible for a new era in lipid therapy that will expand our knowledge of lipid levels and cardiovascular disease (CVD) prevention with an efficacy and safety profile not previously available in clinical practice.
Collapse
Affiliation(s)
- Eli M Roth
- a Division of Cardiovascular Health and Disease , University of Cincinnati & Sterling Research Group LTD , Cincinnati , OH , USA
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease is the leading cause of morbidity and mortality in the United States and therapies aimed at lipid modification are important for the reduction of cardiovascular risk. There have been many exciting advances in lipid management over the recent years. This review discusses these recent advances as well as the direction of future studies. RECENT FINDINGS Several recent clinical trials support low-density lipoprotein cholesterol (LDL-c) reduction beyond maximal statin therapy for improved cardiovascular outcomes. Ezetimibe reduced LDL-c beyond maximal statin therapy and was associated with improved cardiovascular outcomes for high-risk populations. Further LDL-c reduction may also be achieved with proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibition and a recent trial, Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER), was the first to show reduction in cardiovascular events for evolocumab. Additional outcome studies of monoclonal antibody and RNA-targeted PCSK9 inhibitors are underway. Quantitative high-density lipoprotein cholesterol (HDL-c) improvements have failed to have clinical impact to date; most recently, cholesteryl ester transfer protein inhibitors and apolipoprotein infusions have demonstrated disappointing results. There are still ongoing trials in both of these areas, but some newer therapies are focusing on HDL functionality and not just the absolute HDL-c levels. There are several ongoing studies in triglyceride reduction including fatty acid therapy, inhibition of apolipoprotein C-3 or ANGTPL3 and peroxisome proliferator-activated receptor-α agonists. SUMMARY Lipid management continues to evolve and these advances have the potential to change clinical practice in the coming years.
Collapse
|