1
|
Portas A, Carriot N, Barry-Martinet R, Ortalo-Magné A, Hajjoul H, Dormoy B, Culioli G, Quillien N, Briand JF. Shear stress controls prokaryotic and eukaryotic biofilm communities together with EPS and metabolomic expression in a semi-controlled coastal environment in the NW Mediterranean Sea. ENVIRONMENTAL MICROBIOME 2024; 19:109. [PMID: 39695832 DOI: 10.1186/s40793-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
While waves, swells and currents are important drivers of the ocean, their specific influence on the biocolonization of marine surfaces has been little studied. The aim of this study was to determine how hydrodynamics influence the dynamics of microbial communities, metabolic production, macrofoulers and the associated vagile fauna. Using a field device simulating a shear stress gradient, a multi-scale characterization of attached communities (metabarcoding, LC-MS, biochemical tests, microscopy) was carried out for one month each season in Toulon Bay (northwestern Mediterranean). Shear stress appeared to be the primary factor influencing biomass, EPS production and community structure and composition. Especially, the transition from static to dynamic conditions, characterized by varying shear stress intensities, had a more pronounced effect on prokaryotic and eukaryotic beta-diversity than changes in shear stress intensity or seasonal physico-chemical parameters. In static samples, mobile microbe feeders such as arthropods and nematodes were predominant, whereas shear stress favored the colonization of sessile organisms and heterotrophic protists using the protective structure of biofilms for growth. The increase in shear stress resulted in a decrease in biomass but an overproduction of EPS, specifically exopolysaccharides, suggesting an adaptive response to withstand shear forces. Metabolite analysis highlighted the influence of shear stress on community dynamics. Specific metabolites associated with static conditions correlated positively with certain bacterial and algal groups, indirectly indicating reduced grazer control with increasing shear stress.
Collapse
Affiliation(s)
- Aurélie Portas
- France Energies Marines, Plouzané, France.
- Laboratoire MAPIEM, Université de Toulon, Toulon, France.
| | - Nathan Carriot
- Laboratoire MAPIEM, Université de Toulon, Toulon, France
| | | | | | - Houssam Hajjoul
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Bruno Dormoy
- Laboratoire d'Analyses de Surveillance et d'Expertise de La Marine (LASEM), Toulon, France
| | - Gérald Culioli
- Laboratoire MAPIEM, Université de Toulon, Toulon, France
- IMBE, Aix Marseille Université, Avignon Université, CNRS, IRD, Avignon, France
| | | | | |
Collapse
|
2
|
Meira A, Byers JE, Sousa R. A global synthesis of predation on bivalves. Biol Rev Camb Philos Soc 2024; 99:1015-1057. [PMID: 38294132 DOI: 10.1111/brv.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
3
|
Reustle JW, Belgrad BA, McKee A, Smee DL. Barnacles as biological flow indicators. PeerJ 2023; 11:e15018. [PMID: 37090116 PMCID: PMC10120587 DOI: 10.7717/peerj.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 04/25/2023] Open
Abstract
Hydrodynamic stress shapes the flora and fauna that exist in wave-swept environments, alters species interactions, and can become the primary community structuring agent. Yet, hydrodynamics can be difficult to quantify because instrumentation is expensive, some methods are unreliable, and accurately measuring spatial and temporal differences can be difficult. Here, we explored the utility of barnacles as potential biological flow-indicators. Barnacles, nearly ubiquitous within estuarine environments, have demonstrated notable phenotypic plasticity in the dimensions of their feeding appendages (cirri) and genitalia in response to flow. In high flow, barnacles have shorter, stockier cirri with shorter setae; in low flow, barnacles have longer, thinner cirri with longer setae. By measuring the relative differences in cirral dimensions, comparative differences in flow among locations can be quantified. We tested our hypothesis that ivory barnacles (Amphibalanus eburneus) could be useful biological flow indicators in two experiments. First, we performed reciprocal transplants of A. eburneus between wave protected and wave exposed areas to assess changes in morphology over 4 weeks as well as if changes dissipated when barnacles were relocated to a different wave habitat. Then, in a second study, we transplanted barnacles into low (<5 cm/s) and high flow (>25 cm/s) environments that were largely free of waves and shielded half of the transplanted barnacles to lessen flow speed. In both experiments, barnacles had significant differences in cirral morphologies across high and low flow sites. Transplanting barnacles revealed phenotypic changes occur within two weeks and can be reversed. Further, ameliorating flow within sites did not affect barnacle morphologies in low flow but had pronounced effects in high flow environments, suggesting that flow velocity was the primary driver of barnacle morphology in our experiment. These results highlight the utility of barnacles as cheap, accessible, and biologically relevant indicators of flow that can be useful for relative comparisons of flow differences among sites.
Collapse
Affiliation(s)
- Joseph W.N.L. Reustle
- Department of Marine and Environmental Science, Hampton University, Hampton, VA, United States of America
| | | | - Amberle McKee
- Dauphin Island Sea Lab, Dauphin Island, AL, United States of America
| | - Delbert L. Smee
- Dauphin Island Sea Lab, Dauphin Island, AL, United States of America
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, United States of America
| |
Collapse
|
4
|
Pruett JL, Weissburg MJ. Environmental stress gradients regulate the relative importance of predator density- and trait-mediated indirect effects in oyster reef communities. Ecol Evol 2021; 11:796-805. [PMID: 33520167 PMCID: PMC7820151 DOI: 10.1002/ece3.7082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Predators affect community structure by influencing prey density and traits, but the importance of these effects often is difficult to predict. We measured the strength of blue crab predator effects on mud crab prey consumption of juvenile oysters across a flow gradient that inflicts both physical and sensory stress to determine how the relative importance of top predator density-mediated indirect effects (DMIEs) and trait-mediated indirect effects (TMIEs) change within systems. Overall, TMIEs dominated in relatively benign flow conditions where blue crab predator cues increased oyster survivorship by reducing mud crab-oyster consumption. Blue crab DMIEs became more important in high sensory stress conditions, which impaired mud crab perception of blue crab chemical cues. At high physical stress, the environment benefitted oyster survival by physically constraining mud crabs. Thus, factors that structure communities may be predicted based on an understanding of how physical and sensory performances change across environmental stress gradients.
Collapse
Affiliation(s)
- Jessica L. Pruett
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| | - Marc J. Weissburg
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
5
|
Vozzo ML, Cumbo VR, Crosswell JR, Bishop MJ. Wave energy alters biodiversity by shaping intraspecific traits of a habitat‐forming species. OIKOS 2020. [DOI: 10.1111/oik.07590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria L. Vozzo
- Dept of Biological Sciences, Macquarie Univ. North Ryde NSW 2109 Australia
- Sydney Inst. of Marine Science Mosman NSW 2088 Australia
| | - Vivian R. Cumbo
- Dept of Biological Sciences, Macquarie Univ. North Ryde NSW 2109 Australia
| | | | - Melanie J. Bishop
- Dept of Biological Sciences, Macquarie Univ. North Ryde NSW 2109 Australia
- Sydney Inst. of Marine Science Mosman NSW 2088 Australia
| |
Collapse
|
6
|
Draper AM, Weissburg MJ. Impacts of Global Warming and Elevated CO2 on Sensory Behavior in Predator-Prey Interactions: A Review and Synthesis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Hayman NT, Hentschel BT, Renick VC, Anderson TW. Combined effects of flow speed and sub-lethal insecticide exposure on predator-prey interactions between the California killifish and an infaunal polychaete. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:117-131. [PMID: 30547329 DOI: 10.1007/s10646-018-2005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrodynamics and pollution affect estuarine populations, but their ecological effects have rarely been studied in combination. We conducted two laboratory experiments to quantify whether predator-prey interactions between California killifish, Fundulus parvipinnis, and the polychaete Polydora cornuta vary with flow speed and chlorpyrifos exposure. In one experiment, only F. parvipinnis was exposed to chlorpyrifos; in the other, only P. cornuta was exposed. The flume included a 300-cm2 area of sediment with 24 P. cornuta in a central patch (98 cm2). We videotaped groups of three killifish for 50 min at one of four flow speeds (6, 9, 12, or 15 cm/s) and recorded the proportion of bites directed at the prey patch. Unexposed killifish directed 70% of their bites at the prey patch at 6 cm/s, and prey-patch selection decreased as flow increased. Killifish exposed to chlorpyrifos directed 41% of their bites at the prey patch at 6 cm/s with reduced prey-patch selection relative to unexposed fish at 9 and 12 cm/s. At 15 cm/s, both exposed and unexposed fish displayed non-selective biting. Worms were videotaped to quantify their deposit- and suspension-feeding activities. Exposing worms to chlorpyrifos reduced total feeding activity by ~30%. Suspension feeding was more common at faster flow speeds, but the time worms spent suspension feeding relative to deposit feeding was unaffected by chlorpyrifos. No behavioral changes were noted in either species when the other was exposed to chlorpyrifos. This study highlights how hydrodynamic conditions can alter the relative importance of a toxicant's effects on predator-prey interactions.
Collapse
Affiliation(s)
- Nicholas T Hayman
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA.
| | - Brian T Hentschel
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - Violet C Renick
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | - Todd W Anderson
- Department of Biology and Coastal and Marine Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| |
Collapse
|
8
|
Lunt J, Smee DL. Turbidity interferes with foraging success of visual but not chemosensory predators. PeerJ 2015; 3:e1212. [PMID: 26401444 PMCID: PMC4579029 DOI: 10.7717/peerj.1212] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022] Open
Abstract
Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.
Collapse
Affiliation(s)
- Jessica Lunt
- Current affiliation: Smithsonian Marine Station , Fort Pierce, FL , USA
| | - Delbert L Smee
- Department of Life Sciences, Texas A&M University-Corpus Christi , Corpus Christi, TX , USA
| |
Collapse
|
9
|
Lenihan HS, Hench JL, Holbrook SJ, Schmitt RJ, Potoski M. Hydrodynamics influence coral performance through simultaneous direct and indirect effects. Ecology 2015. [DOI: 10.1890/14-1115.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Frey DL, Gagnon P. Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities. PLoS One 2015; 10:e0118583. [PMID: 25774674 PMCID: PMC4361626 DOI: 10.1371/journal.pone.0118583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.
Collapse
Affiliation(s)
- Desta L. Frey
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada, A1C 5S7
| | - Patrick Gagnon
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada, A1C 5S7
| |
Collapse
|
11
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments. Oecologia 2012; 172:79-91. [PMID: 23250631 DOI: 10.1007/s00442-012-2488-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
Abstract
Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.
Collapse
|
13
|
Weissburg M, Atkins L, Berkenkamp K, Mankin D. Dine or dash? Turbulence inhibits blue crab navigation in attractive–aversive odor plumes by altering signal structure encoded by the olfactory pathway. J Exp Biol 2012; 215:4175-82. [DOI: 10.1242/jeb.077255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Blue crabs can distinguish and navigate to attractive (food) odors even when aversive odors (injured crab metabolites) are released nearby. Blue crabs in these conditions detect the aversive odor and avoid it, but find the attractive source with nearly the same success rate as when the attractive source is presented alone. Spatially and temporally distinct odor filaments appear to signal to foragers that the two odor sources are not co-located, and hence navigating to the attractive odor entails an acceptable risk of predation. However, environmentally produced turbulence suppresses tracking by homogenizing the two odors; blue crabs fail to track to the attractive source when the aversive source is present, even though turbulence does not substantially inhibit tracking to the attractive source alone. Removal of sensory input from aesthetascs on the antennules, but not chemosensors on the legs, rescues navigation to attractive–aversive dual plumes in turbulent conditions. These results suggest that mixing in the natural environment may amplify the effects of predators by suppressing tracking to food odors when aversive cues are present, and that the olfactory pathway mediates the response.
Collapse
Affiliation(s)
- Marc Weissburg
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Lorin Atkins
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Kimberly Berkenkamp
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | - Danielle Mankin
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| |
Collapse
|
14
|
Knights AM, Firth LB, Walters K. Interactions between multiple recruitment drivers: post-settlement predation mortality and flow-mediated recruitment. PLoS One 2012; 7:e35096. [PMID: 22493734 PMCID: PMC3320868 DOI: 10.1371/journal.pone.0035096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dispersal is a primary driver in shaping the future distribution of species in both terrestrial and marine systems. Physical transport by advection can regulate the distance travelled and rate of propagule supply to a habitat but post-settlement processes such as predation can decouple supply from recruitment. The effect of flow-mediated recruitment and predation on the recruitment success of an intertidal species, the eastern oyster Crassostrea virginica was evaluated in two-replicated field experiments. Two key crab species were manipulated to test predator identity effects on oyster mortality. FINDINGS Recruitment was ∼58% higher in high flow compared to low flow, but predation masked those differences. Predation mortality was primarily attributed to the blue crab Callinectes sapidus, whilst the mud crab Panopeus herbstii had no effect on recruit mortality. Recruit mortality from predation was high when recruit densities were high, but when recruit density was low, predation effects were not seen. Under high recruitment (supply), predation determined maximum population size and in low flow environments, recruitment success is likely determined by a combination of recruitment and resource limitation but not predation. CONCLUSIONS Four processes are demonstrated: (1) Increases in flow rate positively affect recruitment success; (2) In high flow (recruitment) environments, resource availability is less important than predation; (3) predation is an important source of recruit mortality, but is dependent upon recruit density; and (4) recruitment and/or resource limitation is likely a major driver of population structure and functioning, modifying the interaction between predators and prey. Simultaneous testing of flow-mediated recruitment and predation was required to differentiate between the role of each process in determining population size. Our results reinforce the importance of propagule pressure, predation and post-settlement mortality as important determinants of population growth and persistence, but demonstrate that they should not be considered mutually exclusive.
Collapse
Affiliation(s)
- Antony M Knights
- Department of Marine Science, Coastal Carolina University, Conway, South Carolina, United States of America.
| | | | | |
Collapse
|
15
|
Robinson EM, Smee DL, Trussell GC. Green crab (Carcinus maenas) foraging efficiency reduced by fast flows. PLoS One 2011; 6:e21025. [PMID: 21687742 PMCID: PMC3110245 DOI: 10.1371/journal.pone.0021025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 05/18/2011] [Indexed: 11/25/2022] Open
Abstract
Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities.
Collapse
Affiliation(s)
- Elizabeth M. Robinson
- Department of Life Sciences, Texas A&M University – Corpus Christi, Corpus Christi, Texas, United States of America
| | - Delbert L. Smee
- Department of Life Sciences, Texas A&M University – Corpus Christi, Corpus Christi, Texas, United States of America
- * E-mail:
| | - Geoffrey C. Trussell
- Center of Marine Science, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|