1
|
Frappier-Lecomte J, Bergeron P, Réale D, Houle C, Garant D. The influence of relatedness on parental reproductive success and offspring fitness in Eastern chipmunks breeding in fluctuating environments. J Evol Biol 2025; 38:652-662. [PMID: 40163672 DOI: 10.1093/jeb/voaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/13/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Mate choice and multiple paternity have been widely studied in natural populations, especially in research assessing inbreeding avoidance mechanisms. Ecological factors are expected to affect the costs and benefits of mate choice and multiple paternity, for instance, through their effects on the availability of partners. However, the relative importance and variation of those costs/benefits across fluctuating environmental contexts remains to be established. Here, we used reproduction data collected over 18 years on a wild population of Eastern chipmunks (Tamias striatus) to assess the influence of relatedness among mating partners on their reproductive success and on their offspring fitness in different breeding contexts. In southern Québec, chipmunks live in a pulse resource system where they anticipate masting events of the American beech (Fagus grandifolia) and breed during the summer preceding and/or the spring following a mast. We found that, within a litter, less genetically related sires were assigned more offspring than more closely related ones. This relationship was significant during the summer breeding seasons only, which is characterized by high availability of food and mating partners in the environment. Multiple paternity was also more frequent during summer breeding than during spring breeding. We found no additional effect of parental relatedness on the juvenile survival, longevity, or reproductive success of their offspring. Our results could suggest the presence of context-specific inbreeding avoidance mechanisms by females or differential mortality of offspring at early stages linked to inbreeding depression. Altogether, our findings provide a better understanding of the influence of fluctuating environments on reproduction in small mammals.
Collapse
Affiliation(s)
| | - Patrick Bergeron
- Department of Biology and Biochemistry, Bishop's University, Sherbrooke, QC, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Carolyne Houle
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Brownlee MB, Bergeron P, Réale D, Garant D. Effects of home range size and burrow fidelity on survival and reproduction in eastern chipmunks (Tamias striatus) across different environmental contexts. Oecologia 2024; 207:5. [PMID: 39644330 DOI: 10.1007/s00442-024-05649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Survival and reproductive success are greatly influenced by how an individual uses its surrounding environment, which can differ across spatial scales. To better understand the habitat-fitness relationships of animals, it is essential to study space use at multiple spatial scales. Here, we used 13 years of capture-mark-recapture and burrow location data to investigate how two different aspects of space use influence the survival and female reproduction in a wild population of eastern chipmunks (Tamias striatus) in southern Québec. We quantified home range size and site fidelity in a population experiencing massive inter-annual variations in food availability due to the masting of American beech trees (Fagus grandifolia). We found that site fidelity tended to increase the probability of reproduction but that this effect was strongly dependent on the context of beech seed production: probability of reproduction was higher for females that were faithful from a mast year to the following non-mast year. Site fidelity was not related to survival and we found no significant effect of home range size on either fitness trait. Our results indicate that, in our study system, different aspects of space use affect fitness traits in different ways. We emphasize the importance of examining multiple spatial scales in related analyses.
Collapse
Affiliation(s)
- Megan B Brownlee
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Patrick Bergeron
- Department of Biology and Biochemistry, Bishop's University, Sherbrooke, Québec, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Stephens RB, Willems JS, Yamasaki M, Costello CA, Rowe RJ. Resource availability alters breeding strategies in a small mammal community. J Anim Ecol 2024; 93:1303-1315. [PMID: 39073110 DOI: 10.1111/1365-2656.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Following a resource pulse, animals may finance reproduction by consuming concurrently available resources (income breeding) or by storing resources for future reproduction (capital breeding). Understanding how these reproductive strategies are used is important for determining the ecological mechanisms that structure timing of reproduction and that drive interannual population fluctuations in animals. We gathered a reproductive dataset for five small mammal species over a 12-year period in Northeastern USA during which six masting events of American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis) occurred. Masting created alternate years where seeds were either available late (masting year) or early (cached from the previous year) in the breeding season. The small mammal species differed in reliance on seeds and overwintering strategies. We quantified the diet using stable isotopes and recorded reproduction timing, proportion breeding and litter size in females and testes size in males. Timing of seed availability minimally affected litter size but strongly affected proportion breeding and timing of reproduction. During masting years (late seed availability), a higher proportion of females reproduced, with breeding taking place later in the season (lactation timed with peak seed availability), although the delay was restricted in Napaeozapus insignis, an obligate hibernator. After a fall mast, cached seeds were used as capital in the following spring (early seed availability) to support a litter that, depending on the species, occurred 24-79 days sooner than a mast year. No late-season reproduction occurred in years with early seed availability except for Myodes gapperi which produced a second litter, likely financed by fungal consumption. Males also showed strong responses to seed availability, mirroring female reproduction with testes size staying constant in years with late seed availability and sharply decreasing over the breeding season in years with early seed availability. Our results highlight that although photoperiod and temperature broadly set bounds of the breeding season in temperate environments, resource availability influences the reproductive strategies that species use, which in turn alters reproductive timing and can drive large inter-annual population fluctuations. Differences in overwintering strategies and diet may further modulate reproductive timing and output relative to resource pulses.
Collapse
Affiliation(s)
- Ryan B Stephens
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Joshua S Willems
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Mariko Yamasaki
- Forest Sciences Laboratory, USDA Forest Service Northern Research Station, Durham, New Hampshire, USA
| | - Christine A Costello
- Forest Sciences Laboratory, USDA Forest Service Northern Research Station, Durham, New Hampshire, USA
| | - Rebecca J Rowe
- Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
4
|
Zhang H, Niu H, Steele MA, Peng L, He H, Li A, Yi X, Li H, Zhang Z. Masting promotes transformation from predation to mutualism in an oak-weevil-rodent system. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1514-1524. [PMID: 38558376 DOI: 10.1007/s11427-023-2517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 04/04/2024]
Abstract
The significance of ecological non-monotonicity (a function whose first derivative changes signs) in shaping the structure and functions of the ecosystem has recently been recognized, but such studies involving high-order interactions are rare. Here, we have proposed a three-trophic conceptual diagram on interactions among trees, rodents, and insects in mast and non-mast years and tested the hypothesis that oak (Quercus wutaishanica) masting could result in increased mutualism and less predation in an oak-weevil-rodent system in a warm temperate forest of China. Our 14-year dataset revealed that mast years coincided with a relatively low rodent abundance but a high weevil abundance. Masting not only benefited seedling recruitment of oaks through increased dispersal by rodents but also a decrease in predation by rodents and weevils, as well as an increase in the overwintering survival of rodents. Masting appeared to have increased weevil survival by reducing predation of infested acorns by rodents. These results suggest that masting benefits all participants in the plant-insect-rodent system by increasing mutualism and reducing predation behavior (i.e., a non-monotonic function). Our study highlights the significance of masting in maintaining the diversity and function of the forest ecosystem by facilitating the transformation from predation to mutualism among trophic species.
Collapse
Affiliation(s)
- Hongmao Zhang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Hongyu Niu
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, 18766, USA
| | - Liqing Peng
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huimin He
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Aoqiang Li
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Zwolak R, Clement D, Sih A, Schreiber SJ. Granivore abundance shapes mutualism quality in plant-scatterhoarder interactions. THE NEW PHYTOLOGIST 2024; 241:1840-1850. [PMID: 38044708 DOI: 10.1111/nph.19443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Conditional mutualisms involve costs and benefits that vary with environmental factors, but mechanisms driving these dynamics remain poorly understood. Scatterhoarder-plant interactions are a prime example of this phenomenon, as scatterhoarders can either increase or reduce plant recruitment depending on the balance between seed dispersal and predation. We explored factors that drive the magnitude of net benefits for plants in this interaction using a mathematical model, with parameter values based on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). We measured benefits as the percentage of germinating seeds, and examined how varying rodent survival (reflecting, e.g. changes in predation pressure), the rate of seed loss to other granivores, the abundance of alternative food resources, and changes in masting patterns affect the quality of mutualism. We found that increasing granivore abundance can degrade the quality of plant-scatterhoarder mutualism due to increased cache pilferage. Scatterhoarders are predicted to respond by increasing immediate consumption of gathered seeds, leading to higher costs and reduced benefits for plants. Thus, biotic changes that are detrimental to rodent populations can be beneficial for tree recruitment due to adaptive behavior of rodents. When scatterhoarder populations decline too drastically (< 5 individuals ha-1 ); however, tree recruitment may also suffer.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Dale Clement
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Andrew Sih
- Center of Population Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Sebastian J Schreiber
- Center of Population Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Gaudreau-Rousseau C, Bergeron P, Réale D, Garant D. Environmental and individual determinants of burrow-site microhabitat selection, occupancy, and fidelity in eastern chipmunks living in a pulsed-resource ecosystem. PeerJ 2023; 11:e15110. [PMID: 36987456 PMCID: PMC10040179 DOI: 10.7717/peerj.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Background Habitat selection has major consequences on individual fitness, particularly selection for breeding sites such as nests or burrows. Theory predicts that animals will first use optimal habitats or rearrange their distribution by moving to higher-quality habitats whenever possible, for instance when another resident disperses or dies, or when environmental changes occur. External constraints, such as predation risk or resource abundance, and interindividual differences in age, sex and body condition can lead to variation in animals' perception of habitat quality. Following habitat use by individuals over their lifetime is thus essential to understand the causes of variation in habitat selection within a population. Methods We used burrow occupancy data collected over eight years to assess burrow-site selection in a population of wild eastern chipmunks (Tamias striatus) relying on pulsed resources. We first compared characteristics of burrow microhabitats with those of equivalent unused plots. We then investigated the factors influencing the frequency of burrow occupation over time, and the individual and environmental causes of annual burrow fidelity decisions. Results Our results indicate that chipmunks select microhabitats with a greater number of woody debris and greater slopes. Microhabitats of burrows with higher occupancy rates had a lower shrub stratum, were less horizontally opened and their occupants' sex-ratio was skewed towards males. Burrow fidelity was higher in non-mast years and positively related to the occupant's age, microhabitat canopy cover and density of large red maples. Conclusion The quality of a burrow microhabitat appears to be determined in part by characteristics that favour predation avoidance, but consideration of occupancy and fidelity patterns over several years also highlighted the importance of including individual and contextual factors in habitat selection studies.
Collapse
Affiliation(s)
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop’s University, Sherbrooke, Québec, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
7
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
8
|
Dri GF, Hunter ML, Witham J, Mortelliti A. Pulsed resources and the resource‐prediction strategy: a field‐test using a 36‐year study of small mammals. OIKOS 2022. [DOI: 10.1111/oik.09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gabriela Franzoi Dri
- Dept of Wildlife, Fisheries, and Conservation Biology, Univ. of Maine Orono Maine USA
| | - Malcolm L. Hunter
- Dept of Wildlife, Fisheries, and Conservation Biology, Univ. of Maine Orono Maine USA
| | - Jack Witham
- Holt Research Forest – Center for Research on Sustainable Forests, Univ. of Maine Arrowsic Maine USA
| | - Alessio Mortelliti
- Dept of Wildlife, Fisheries, and Conservation Biology, Univ. of Maine Orono Maine USA
| |
Collapse
|
9
|
Cachelou J, Saint-Andrieux C, Baubet E, Nivois E, Richard E, Gaillard JM, Gamelon M. Does mast seeding shape mating time in wild boar? A comparative study. Biol Lett 2022; 18:20220213. [PMID: 35855608 PMCID: PMC9297015 DOI: 10.1098/rsbl.2022.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
In seasonal environments, the timing of reproduction often matches with the peak of food resources. One well-known effect of global warming is an earlier phenology of resources, leading to a possible mismatch between the timing of reproduction for consumers and food peak. However, global warming may also change the dynamics of food resources, such as the intensity and frequency of pulsed mast seeding. How quantitative changes in mast seeding influence the timing of reproduction of seed consumers remains unexplored. Here, we assess how yearly variation in mast seeding influences mating time in wild boar (Sus scrofa), a widespread seed consumer species. We took advantage of the intensive monitoring of both female reproduction (1636 females) and acorn production over 6 consecutive years across 15 populations of wild boar in the wild. We found that mating time occurs earlier when acorn production increases in most but not all populations. In two out of 15 populations, heavy females mated earlier than light ones. Our findings demonstrate that mast seeding advances the mating time in some populations, which could perhaps impact how boars respond to climate change.
Collapse
Affiliation(s)
- Jessica Cachelou
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Lyon 1, Villeurbanne, France
- Office Français de la Biodiversité, DRAS-Service conservation et gestion des espèces à enjeux, Montfort, Birieux 01330, France
- Fondation François Sommer, Pôle Nature, 3e arrondissement de Paris, 75003 Paris, France
| | - Christine Saint-Andrieux
- Office Français de la Biodiversité, DRAS-Service anthropisation et fonctionnement des écosystèmes terrestres, 8 Chemin de la Sablière, ZA SUD 67560 Rosheim, France
| | - Eric Baubet
- Office Français de la Biodiversité, DRAS-Service conservation et gestion des espèces à enjeux, Montfort, Birieux 01330, France
| | - Eveline Nivois
- Office Français de la Biodiversité, DRAS-Service conservation et gestion des espèces à enjeux, Chemin du Longeau, Rozérieulles 57160, France
| | - Emmanuelle Richard
- Fondation François Sommer, Pôle Nature, 3e arrondissement de Paris, 75003 Paris, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Lyon 1, Villeurbanne, France
| | - Marlène Gamelon
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Lyon 1, Villeurbanne, France
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Nathoo R, Garant D, Réale D, Bergeron P. The feast and the famine: spring body mass variations and life-history traits in a pulse resource ecosystem. Am Nat 2022; 200:598-606. [DOI: 10.1086/720729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Gharnit E, Dammhahn M, Garant D, Réale D. Resource Availability, Sex, and Individual Differences in Exploration Drive Individual Diet Apecialization. Am Nat 2022; 200:1-16. [DOI: 10.1086/719669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zwolak R, Clement D, Sih A, Schreiber SJ. Mast seeding promotes evolution of scatter-hoarding. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200375. [PMID: 34657470 PMCID: PMC8520775 DOI: 10.1098/rstb.2020.0375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
Many plant species worldwide are dispersed by scatter-hoarding granivores: animals that hide seeds in numerous, small caches for future consumption. Yet, the evolution of scatter-hoarding is difficult to explain because undefended caches are at high risk of pilferage. Previous models have attempted to solve this problem by giving cache owners large advantages in cache recovery, by kin selection, or by introducing reciprocal pilferage of 'shared' seed resources. However, the role of environmental variability has been so far overlooked in this context. One important form of such variability is masting, which is displayed by many plant species dispersed by scatterhoarders. We use a mathematical model to investigate the influence of masting on the evolution of scatter-hoarding. The model accounts for periodically varying annual seed fall, caching and pilfering behaviour, and the demography of scatterhoarders. The parameter values are based mostly on research on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). Starvation of scatterhoarders between mast years decreases the population density that enters masting events, which leads to reduced seed pilferage. Satiation of scatterhoarders during mast events lowers the reproductive cost of caching (i.e. the cost of caching for the future rather than using seeds for current reproduction). These reductions promote the evolution of scatter-hoarding behaviour especially when interannual variation in seed fall and the period between masting events are large. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.
Collapse
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Dale Clement
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew Sih
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Sebastian J. Schreiber
- Department of Evolution and Ecology and Center of Population Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
13
|
Santostefano F, Allegue H, Garant D, Bergeron P, Réale D. Indirect genetic and environmental effects on behaviors, morphology, and life-history traits in a wild Eastern chipmunk population. Evolution 2021; 75:1492-1512. [PMID: 33855713 DOI: 10.1111/evo.14232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Additive genetic variance in a trait reflects its potential to respond to selection, which is key for adaptive evolution in the wild. Social interactions contribute to this genetic variation through indirect genetic effects-the effect of an individual's genotype on the expression of a trait in a conspecific. However, our understanding of the evolutionary importance of indirect genetic effects in the wild and of their strength relative to direct genetic effects is limited. In this study, we assessed how indirect genetic effects contribute to genetic variation of behavioral, morphological, and life-history traits in a wild Eastern chipmunk population. We also compared the contribution of direct and indirect genetic effects to traits evolvabilities and related these effects to selection strength across traits. We implemented a novel approach integrating the spatial structure of social interactions in quantitative genetic analyses, and supported the reliability of our results with power analyses. We found indirect genetic effects for trappability and relative fecundity, little direct genetic effects in all traits and a large role for direct and indirect permanent environmental effects. Our study highlights the potential evolutionary role of social permanent environmental effects in shaping phenotypes of conspecifics through adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Francesca Santostefano
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Hassen Allegue
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Dany Garant
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop's University, Sherbrooke, Québec, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Vernouillet A, Fortin MJ, Fiola ML, Villard MA. Do Female Songbirds Avoid a Mammalian Nest Predator When Selecting Their Nest Site? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Perceived predation risk can elicit strong behavioral responses in potential prey. During nest building, songbirds exhibit anti-predator behaviors under experimental conditions. Here, we hypothesized that females of two ground-nesting songbird species, the Ovenbird (Seiurus aurocapilla) and the Hermit Thrush (Catharus guttatus), would use naturally available cues of predation risk when selecting their nest site, thereby avoiding activity hotspots of Eastern Chipmunks (Tamias striatus), a predator on songbird nests and fledglings. Chipmunks are highly vocal, thus providing cues of their presence. We mapped chipmunk detections and songbird nests over four successive years in study plots located in mature deciduous forest of New Brunswick, Canada. Chipmunk activity varied by an order of magnitude among study plots and years. Nests were built further away from chipmunk detections than expected by chance in some, but not all, plot-year combinations. When comparing study plots, the proportion of nests built within hotspots of chipmunk activity was four times lower in the two plots where chipmunk activity was highest. Yet, we did not find clear evidence that chipmunk avoidance provided fitness benefits, possibly because this behavior procured little protection at high chipmunk densities. The persistence of this avoidance behavior in our focal species of ground-nesting songbirds might be linked to the benefits it procures at intermediate chipmunk densities.
Collapse
|
15
|
Dantzer B, McAdam AG, Humphries MM, Lane JE, Boutin S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J Anim Ecol 2020; 89:2397-2414. [PMID: 32929740 DOI: 10.1111/1365-2656.13341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
Long-term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context. Many previous studies have only investigated life-history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness-relevant traits to better understand their population-level responses to those environmental fluctuations. For the past 32 years, we have conducted a long-term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi-year field experiments to examine the physiological and life-history responses of individual red squirrels to fluctuations in food abundance and conspecific density. Our long-term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change. As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life-history plasticity, as does experimental food supplementation. Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life-history plasticity. Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life-history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology. We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life-history plasticity.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew G McAdam
- Department for Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Murray M Humphries
- Natural Resource Sciences Department, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Touzot L, Schermer É, Venner S, Delzon S, Rousset C, Baubet É, Gaillard JM, Gamelon M. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild boar as a case study. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02134. [PMID: 32299142 DOI: 10.1002/eap.2134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Mast seeding in temperate oak populations shapes the dynamics of seed consumers and numerous communities. Mast seeding responds positively to warm spring temperatures and is therefore expected to increase under global warming. We investigated the potential effects of changes in oak mast seeding on wild boar population dynamics, a widespread and abundant consumer species. Using long-term monitoring data, we showed that abundant acorn production enhances the proportion of breeding females. With a body-mass-structured population model and a fixed hunting rate of 0.424, we showed that high acorn production over time would lead to an average wild boar population growth rate of 1.197 whereas non-acorn production would lead to a stable population. Finally, using climate projections and a mechanistic model linking weather data to oak reproduction, we predicted that mast seeding frequency might increase over the next century, which would lead to increase in both wild boar population size and the magnitude of its temporal variation. Our study provides rare evidence that some species could greatly benefit from global warming thanks to higher food availability and therefore highlights the importance of investigating the cascading effects of changing weather conditions on the dynamics of wild animal populations to reliably assess the effects of climate change.
Collapse
Affiliation(s)
- Laura Touzot
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Éliane Schermer
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | | | - Cyril Rousset
- Direction de la Recherche et de l'Appui Scientifique - Unité Ongulés Sauvages, Office Français de la Biodiversité, 2 bis rue des Religieuses, Châteauvillain, 52120, France
| | - Éric Baubet
- Direction de la Recherche et de l'Appui Scientifique - Unité Ongulés Sauvages, Office Français de la Biodiversité, Birieux, 01330, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, F-69622, France
| | - Marlène Gamelon
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| |
Collapse
|
17
|
Gagnon MF, Lafleur C, Landry-Cuerrier M, Humphries MM, Kimmins S. Torpor expression is associated with differential spermatogenesis in hibernating eastern chipmunks. Am J Physiol Regul Integr Comp Physiol 2020; 319:R455-R465. [PMID: 32783688 DOI: 10.1152/ajpregu.00328.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hibernators suppress physiological processes when expressing torpor, yet little is known about the effects of torpor on male reproductive physiology. Studies of hibernating mammals suggest that deep torpor negatively impacts spermatogenesis and that transitions between torpor and euthermic arousals increase cellular oxidative stress, with potentially damaging effects on sperm. Here, we hypothesize that variation in torpor expression affects the reproductive readiness of hibernators by impacting their sperm production. To test this, we examined the relationship between torpor expression and spermatogenesis in captive eastern chipmunks (Tamias striatus). We determined torpor depth with temperature data loggers and assessed its relationship with spermatogenesis by examining spermatogenic progression, cell division, sperm counts, sperm maturity, and DNA damage. We show that deep hibernators (high levels of torpor) largely halted spermatogenesis in late hibernation in comparison with shallow hibernators (low levels of torpor), where ongoing spermatogenesis was observed. Despite these differences in spermatogenic state during hibernation, spermatogenic progression, sperm numbers, and maturity did not differ in spring, potentially reflecting similar degrees of reproductive readiness. Interestingly, shallow hibernators exhibited higher rates of DNA damage in spermatogenic cells during hibernation, with this trend reversing in spring. Our results thus indicate that once heterothermy is terminated, deep hibernators resume spermatogenesis but are characterized by higher rates of DNA damage in spermatogenic cells at the seasonal stage when spring mating commences. Therefore, our study confirmed posthibernation recovery of sperm production but also a potential impact of deep torpor expression during winter on DNA damage in spring.
Collapse
Affiliation(s)
- Marianne F Gagnon
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Christine Lafleur
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Manuelle Landry-Cuerrier
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Murray M Humphries
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sarah Kimmins
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Railsback SF, Harvey BC, Ayllón D. Contingent trade-off decisions with feedbacks in cyclical environments: testing alternative theories. Behav Ecol 2020. [DOI: 10.1093/beheco/araa070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Many animals make contingent decisions, such as when and where to feed, as trade-offs between growth and risk when these vary not only with activity and location but also 1) in cycles such as the daily light cycle and 2) with feedbacks due to competition. Theory can assume an individual decides whether and where to feed, at any point in the light cycle and under any new conditions, by predicting future conditions and maximizing an approximate measure of future fitness. We develop four such theories for stream trout and evaluate them by their ability to reproduce, in an individual-based model, seven patterns observed in real trout. The patterns concern how feeding in four circadian phases—dawn, day, dusk, and night—varies with predation risk, food availability, temperature, trout density, physical habitat, day length, and circadian cycles in food availability. We found that theory must consider the full circadian cycle: decisions at one phase must consider what happens in other phases. Three theories that do so could reproduce almost all the patterns, and their ability to let individuals adapt decisions over time produced higher average fitness than any fixed behavior cycle. Because individuals could adapt by selecting among habitat patches as well as activity, multiple behaviors produced similar fitness. Our most successful theories base selection of habitat and activity at each phase on memory of survival probabilities and growth rates experienced 1) in the three previous phases of the current day or 2) in each phase of several previous days.
Collapse
Affiliation(s)
- Steven F Railsback
- Lang Railsback & Associates, Arcata, CA, USA
- Department of Mathematics, Humboldt State University, Arcata, CA, USA
| | - Bret C Harvey
- U.S. Forest Service, Pacific Southwest Research Station, Arcata, CA, USA
| | - Daniel Ayllón
- Complutense University of Madrid (UCM), Faculty of Biology, Department of Biodiversity, Ecology and Evolution, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
19
|
Garant D. Natural and human-induced environmental changes and their effects on adaptive potential of wild animal populations. Evol Appl 2020; 13:1117-1127. [PMID: 32684950 PMCID: PMC7359845 DOI: 10.1111/eva.12928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/26/2022] Open
Abstract
A major challenge of evolutionary ecology over the next decades is to understand and predict the consequences of the current rapid and important environmental changes on wild populations. Extinction risk of species is linked to populations' evolutionary potential and to their ability to express adaptive phenotypic plasticity. There is thus a vital need to quantify how selective pressures, quantitative genetics parameters, and phenotypic plasticity, for multiple traits in wild animal populations, may vary with changes in the environment. Here I review our previous research that integrated ecological and evolutionary theories with molecular ecology, quantitative genetics, and long-term monitoring of individually marked wild animals. Our results showed that assessing evolutionary and plastic changes over time and space, using multi-trait approaches, under a realistic range of environmental conditions are crucial steps toward improving our understanding of the evolution and adaptation of natural populations. Our current and future work focusses on assessing the limits of adaptive potential by determining the factors constraining the evolvability of plasticity, those generating covariation among genetic variance and selection, as well as indirect genetic effects, which can affect population's capacity to adjust to environmental changes. In doing so, we aim to provide an improved assessment of the spatial and temporal scale of evolutionary processes in wild animal populations.
Collapse
Affiliation(s)
- Dany Garant
- Département de biologieFaculté des SciencesUniversité de SherbrookeSherbrookeQCCanada
| |
Collapse
|
20
|
Vandal K, Houle C, Archambault A, Réale D, Garant D. Development and characterization of 14 microsatellites for the eastern chipmunk, Tamias striatus. Mol Biol Rep 2020; 47:6393-6397. [DOI: 10.1007/s11033-020-05586-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
|
21
|
Paquette C, Garant D, Savage J, Réale D, Bergeron P. Individual and environmental determinants of Cuterebra bot fly parasitism in the eastern chipmunk (Tamias striatus). Oecologia 2020; 193:359-370. [PMID: 32566968 DOI: 10.1007/s00442-020-04685-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/09/2020] [Indexed: 01/12/2023]
Abstract
Understanding the interactions between parasites, hosts, and their shared environment is central to ecology. Variation in infestation prevalence may be the result of varying environmental and population characteristics; however, variations in parasitism may also depend on individual characteristics that influence both the exposure and susceptibility to parasites. Using 12 years of data from a population of wild eastern chipmunks relying on pulsed food resources, we investigated the determinants of bot fly parasitism at both the population and individual level. We assessed the relationship between infestation prevalence and weather conditions, population size and food abundance. Then, we assessed the relationship between infestation intensity and chipmunk behavior, sex, age, body mass and food abundance. Precipitation, temperature and population size were positively related to infestation prevalence, while beech masts were negatively related to infestation prevalence, highlighting the importance of local environmental conditions on hosts and parasites. We also found that the influence of activity and exploration on infestation intensity varied according to sex in adults. More active and faster exploring males had more parasites compared to females, suggesting that reproductive behaviors may influence parasite exposure. For juveniles, infestation intensity was greater when juveniles emerged in the spring as opposed to fall, possibly because spring emergence is synchronized with the peak of bot fly eggs in the environment, low food availability and longer activity period. Our results suggest that the environmental, population and host characteristics that are advantageous for reproduction and resource acquisition may come at the cost of increasing parasitism.
Collapse
Affiliation(s)
- Chelsey Paquette
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jade Savage
- Department of Biological Sciences, Bishop's University, Sherbrooke, QC, J1M 1Z7, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop's University, Sherbrooke, QC, J1M 1Z7, Canada
| |
Collapse
|
22
|
Ruf T, Bieber C. Physiological, Behavioral, and Life-History Adaptations to Environmental Fluctuations in the Edible Dormouse. Front Physiol 2020; 11:423. [PMID: 32431626 PMCID: PMC7214925 DOI: 10.3389/fphys.2020.00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 11/22/2022] Open
Abstract
The edible dormouse (Glis glis, formerly Myoxus glis) is a small arboreal mammal inhabiting deciduous forests in Europe. This rodent shows behavioral and physiological adaptations to three types of environmental fluctuations: (i) predictable seasonal variation in climate and food resources (ii) unpredictable year-to-year fluctuation in seed-production by trees and (iii) day-to-day variation in ambient temperature and precipitation. They cope with seasonally fluctuating conditions by seasonal fattening and hibernation. Dormice have adjusted to tree-mast fluctuations, i.e., pulsed resources, by sensing future seed availability in spring, and restricting reproduction to years with at least some seed production by beech and oak trees, which are a crucial food-resource for fast-growing juveniles in fall. Finally, dormice respond to short-term drops in ambient temperature by increased use of daily torpor as well as by huddling in groups of up to 24 conspecifics. These responses to environmental fluctuations strongly interact with each other: Dormice are much more prone to using daily torpor and huddling in non-reproductive years, because active gonads can counteract torpor and energy requirements for reproduction may prevent the sharing of food resources associated with huddling. Accordingly, foraging activity in fall is much more intense in reproductive mast years. Also, depending on their energy reserves, dormice may retreat to underground burrows in the summers of non-reproductive years, causing an extension of the hibernation season to up to 11.4 months. In addition to these interactions, responses to environmental fluctuations are modulated by the progression of life-history stages. With increasing age and diminishing chances of future reproduction, females reproduce with increasing frequency even under suboptimal environmental conditions. Simultaneously, older dormice shorten the hibernation season and phase-advance the emergence from hibernation in spring, apparently to occupy good breeding territories early, despite increased predation risk above ground. All of the above adaptions, i.e., huddling, torpor, hibernation, and reproduction skipping do not merely optimize energy-budgets but also help to balance individual predation risk against reproductive success, which adds another layer of complexity to the ability to make flexible adjustments in this species.
Collapse
Affiliation(s)
- Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
23
|
Wang R, Zhang X, Shi YS, Li YY, Wu J, He F, Chen XY. Habitat fragmentation changes top-down and bottom-up controls of food webs. Ecology 2020; 101:e03062. [PMID: 32239497 DOI: 10.1002/ecy.3062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
Top-down and bottom-up controls regulate the structure and stability of ecosystems, but their relative roles in terrestrial systems have been debated. Here we studied a hydro-inundated land-bridge system in subtropical China and tested the relative importance of these two controls in determining the rodent-mediated regeneration of a locally dominant tree species. Our results showed that both controls operated in terrestrial habitats and that their relative importance switched as habitat size changed. Habitat loss initially removed predators of rodents that released rodent populations and triggered massive seed predation (top-down control), leading to reduced seedling establishment. A further reduction in habitat size led to decrease in rodent population that was supposed to increase seedling survival of the tree species, but the decline in habitat size deteriorated the abiotic environments (bottom-up control) that severely prevented seedling recruitment. As the ongoing global land use change is creating increasing number of small-sized forest fragments, our findings provide novel insights into the restoration of seriously fragmented forests.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xin Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi-Su Shi
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianguo Wu
- School of Life Sciences & Global Institute of Sustainability, Arizona State University, Tempe, Arizona, 85287-4501, USA
| | - Fangliang He
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
24
|
Gharnit E, Bergeron P, Garant D, Réale D. Exploration profiles drive activity patterns and temporal niche specialization in a wild rodent. Behav Ecol 2020. [DOI: 10.1093/beheco/araa022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Individual niche specialization can have important consequences for competition, fitness, and, ultimately, population dynamics and ecological speciation. The temporal window and the level of daily activity are niche components that may vary with sex, breeding season, food supply, population density, and predator’s circadian rhythm. More recently, ecologists emphasized that traits such as dispersal and space use could depend on personality differences. Boldness and exploration have been shown to correlate with variation in foraging patterns, habitat use, and home range. Here, we assessed the link between exploration, measured from repeated novel environment tests, activity patterns, and temporal niche specialization in wild eastern chipmunks (Tamias striatus). Intrinsic differences in exploration should drive daily activity patterns through differences in energy requirements, space use, or the speed to access resources. We used collar-mounted accelerometers to assess whether individual exploration profiles predicted: 1) daily overall dynamic body acceleration, reflecting overall activity levels; 2) mean activity duration and the rate of activity sequences, reflecting the structure of daily activity; and 3) patterns of dawn and dusk activity, reflecting temporal niche differentiation. Exploration and overall activity levels were weakly related. However, both dawn activity and rate of activity sequences increased with the speed of exploration. Overall, activity patterns varied according to temporal variability in food conditions. This study emphasizes the role of intrinsic behavioral differences in activity patterns in a wild animal population. Future studies will help us understand how yearly seasonality in reproduction, food abundance, and population density modulate personality-dependent foraging patterns and temporal niche specialization.
Collapse
Affiliation(s)
- Elouana Gharnit
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbooke, Sherbrooke, QC, Canada
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Tissier ML, Réale D, Garant D, Bergeron P. Consumption of red maple in anticipation of beech mast‐seeding drives reproduction in eastern chipmunks. J Anim Ecol 2020; 89:1190-1201. [DOI: 10.1111/1365-2656.13183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Denis Réale
- Département des Sciences Biologiques Université du Québec à Montréal Montréal QC Canada
| | - Dany Garant
- Département de Biologie Université de Sherbrooke Sherbrooke QC Canada
| | | |
Collapse
|
26
|
Bouffard J, Garant D, Bergeron P. Dynamics of ground-nest egg depredation by rodents in a mixed-wood forest. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Predation is a leading cause of nest failure in birds, which has significant consequences on their population dynamics. Rodents commonly prey on nests in deciduous forest habitats. This has important implications considering how rodent populations fluctuate with changes in resource availability, such as synchronized but intermittent tree-seed production (mast). In this study, we investigated ground-nest egg predation by rodents over 2 years characterized by high and low beech (Fagus grandifolia Ehrh.) seed availability (mast vs. no-mast years). We used artificial nests monitored by motion-sensing cameras on a study site where eastern chipmunk (Tamias striatus (Linnaeus, 1758)) local abundance was known. We placed the artificial nests in areas of high and low chipmunk abundance as proxy of predation risk. Blue Jays (Cyanocitta cristata (Linnaeus, 1758)) depredated the most eggs overall, but rodent population and egg depredation increased in 2018 following the 2017 mast. However, chipmunks were minor predators and their local abundance did not reflect predation risk. Our results highlight the complexity of predation dynamics on ground-nesting birds and the importance of studying them locally and over multiple years.
Collapse
Affiliation(s)
- Jeremie Bouffard
- Department of Biological Sciences, Bishop’s University, 2600 College Street, Sherbrooke, QC J1M 1Z7, Canada
| | - Dany Garant
- Département de Biologie, Université de Sherbrooke, 2500, boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop’s University, 2600 College Street, Sherbrooke, QC J1M 1Z7, Canada
| |
Collapse
|
27
|
Leung C, Angers B, Bergeron P. Epigenetic anticipation for food and reproduction. ENVIRONMENTAL EPIGENETICS 2020; 6:dvz026. [PMID: 32015901 PMCID: PMC6991620 DOI: 10.1093/eep/dvz026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Physiological changes in anticipation of cyclic environmental events are common for the persistence of populations in fluctuating environments (e.g. seasons). However, dealing with sporadic resources such as the intermittent production of seed masting trees may be challenging unless reliable cues also make them predictable. To be adaptive, the anticipation of such episodic events would have to trigger the corresponding physiological response. Epigenetic modifications could result in such physiological anticipatory responses to future changes. The eastern chipmunk (Tamias striatus) is known to adjust its reproductive activity to match juvenile weaning with peak seed availability of masting trees, which are essential for their survival. We therefore expected that epigenetic changes would be linked to spring reproductive initiation in anticipation for beech seed availability in fall. We correlated the variation of DNA methylation profiles of 114 adult chipmunks captured in May with beech seeds abundance in September, over 4 years, for three distinct populations, as well as individuals sampled twice during reproductive and non-reproductive years. The significant correlation between spring epigenetic variation and the amount of food in the fall confirmed the phenotypic flexibility of individuals according to environmental fluctuations. Altogether, these results underlined the key role of epigenetic processes in anticipatory responses enabling organisms to persist in fluctuating environments.
Collapse
Affiliation(s)
- Christelle Leung
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, J1M 1Z7, Canada
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, J1M 1Z7, Canada
| |
Collapse
|
28
|
Santostefano F, Garant D, Bergeron P, Montiglio P, Réale D. Social selection acts on behavior and body mass but does not contribute to the total selection differential in eastern chipmunks. Evolution 2019; 74:89-102. [DOI: 10.1111/evo.13875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Francesca Santostefano
- Département des Sciences BiologiquesUniversité du Québec à Montréal Montréal Canada
- Département de Biologie, Faculté des SciencesUniversité de Sherbrooke Sherbrooke Québec Canada
| | - Dany Garant
- Département de Biologie, Faculté des SciencesUniversité de Sherbrooke Sherbrooke Québec Canada
| | - Patrick Bergeron
- Department of Biological SciencesBishop's University Sherbrooke Québec Canada
| | | | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à Montréal Montréal Canada
| |
Collapse
|
29
|
Clark JS, Nuñez CL, Tomasek B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James S. Clark
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
- Department of Statistical Science Duke University Durham North Carolina 27708 USA
| | - Chase L. Nuñez
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| | - Bradley Tomasek
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| |
Collapse
|
30
|
Possible relations between reproduction of the yellow-necked mouse (Sylvaemus flavicollis) and oak yield. RUSSIAN JOURNAL OF THERIOLOGY 2019. [DOI: 10.15298/rusjtheriol.18.1.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Granados A, Bernard H, Brodie JF. The influence of logging on vertebrate responses to mast fruiting. J Anim Ecol 2019; 88:892-902. [PMID: 30895613 DOI: 10.1111/1365-2656.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
Abstract
Periods of extreme food abundance, such as irregular masting events, can dramatically affect animal populations and communities, but the extent to which anthropogenic disturbances alter animal responses to mast events is not clear. In South-East Asia, dipterocarp trees reproduce in mast fruiting events every 2-10 years in some of the largest masting events on the planet. These trees, however, are targeted for selective logging, reducing the intensity of fruit production and potentially affecting multiple trophic levels. Moreover, animal responses to resource pulse events have largely been studied in systems where the major mast consumers have been extirpated. We sought to evaluate the influence of human-induced habitat disturbance on animal responses to masting in a system where key mast consumers remain extant. We used motion-triggered camera traps to quantify terrestrial mammal and bird occurrences in Sabah, Malaysian Borneo, relative to variation in fruit biomass from 69 plant families during a major (2014) and minor (2015) masting event and a non-mast year (2013), in both logged and unlogged forests. Bearded pigs (Sus barbatus) showed the clearest responses to masting and occurrence rates were highest in unlogged forest in the year following the major mast, suggesting that the pulse in fruit availability increased immigration or reproduction. We also detected local-scale spatial tracking of dipterocarp fruits in bearded pigs in unlogged forest, while this was equivocal in other species. In contrast, pigs and other vertebrate taxa in our study showed limited response to spatial or temporal variation in fruit availability in logged forest. Our findings suggest that vertebrates, namely bearded pigs, may respond to masting via movement and increased reproduction, but that these responses may be attenuated by habitat disturbance.
Collapse
Affiliation(s)
- Alys Granados
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Gunung Palung Orangutan Project, Ketapang, West Kalimantan, Indonesia
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, Montana
| |
Collapse
|
32
|
Tissier ML, Marchandeau S, Habold C, Handrich Y, Eidenschenck J, Kourkgy C. Weeds as a predominant food source: a review of the diet of common hamsters
Cricetus cricetus
in farmlands and urban habitats. Mamm Rev 2019. [DOI: 10.1111/mam.12149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mathilde L. Tissier
- Office National de la Chasse et de la Faune Sauvage Au bord du Rhin F‐67150 Gerstheim France
| | | | - Caroline Habold
- Université de StrasbourgCNRSIPHC UMR 7178 F‐67000 Strasbourg France
| | - Yves Handrich
- Université de StrasbourgCNRSIPHC UMR 7178 F‐67000 Strasbourg France
| | - Julien Eidenschenck
- Office National de la Chasse et de la Faune Sauvage Au bord du Rhin F‐67150 Gerstheim France
| | - Charlotte Kourkgy
- Office National de la Chasse et de la Faune Sauvage Au bord du Rhin F‐67150 Gerstheim France
| |
Collapse
|
33
|
Bogdziewicz M, Marino S, Bonal R, Zwolak R, Steele MA. Rapid aggregative and reproductive responses of weevils to masting of North American oaks counteract predator satiation. Ecology 2018; 99:2575-2582. [PMID: 30182480 DOI: 10.1002/ecy.2510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/07/2018] [Accepted: 08/20/2018] [Indexed: 11/09/2022]
Abstract
The predator satiation hypothesis posits that masting helps plants escape seed predation through starvation of predators in lean years, followed by satiation of predators in mast years. Importantly, successful satiation requires sufficiently delayed bottom-up effects of seed availability on seed consumers. However, some seed consumers may be capable of quick aggregative and reproductive responses to masting, which may jeopardize positive density dependence of seed survival. We used a 17-yr data set on seed production and insect (Curculio weevils) infestation of three North American oaks species (northern red Quercus rubra, white Q. alba, and chestnut oak Q. montana) to test predictions of the predation satiation hypothesis. Furthermore, we tested for the unlagged numerical response of Curculio to acorn production. We found that masting results in a bottom-up effect on the insect population; both through increased reproductive output and aggregation at seed-rich trees. Consequently, mast seeding in two out of three studied oaks (white and chestnut oak) did not help to escape insect seed predation, whereas, in the red oak, the escape depended on the synchronization of mast crops within the population. Bottom-up effects of masting on seed consumer populations are assumed to be delayed, and therefore to have negligible effects on seed survival in mast years. Our research suggests that insect populations may be able to mount rapid reproductive and aggregative responses when seed availability increases, possibly hindering satiation effects of masting. Many insect species are able to quickly benefit from pulsed resources, making mechanisms described here potentially relevant in many other systems.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Shealyn Marino
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Raul Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Calle Virgen Puerto, 2, 10600, Plasencia, Spain.,DITEG Research Group, University of Castilla-La Mancha, Calle Altagracia, 50, 13003 Ciudad Real, Toledo, Spain
| | - Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Michael A Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| |
Collapse
|
34
|
Le Coeur C, Pisanu B, Chapuis JL, Robert A. Within- and between-year variations of reproductive strategy and cost in a population of Siberian chipmunks. Oecologia 2018; 188:765-776. [PMID: 30219947 DOI: 10.1007/s00442-018-4259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
Reproduction costs depend on the general life-history strategies employed by organisms for resource acquisition, the decision rules on resource allocation, and the resource availability. Although the predictability of resource availability is expected to influence the breeding strategy, the relationship between predictability and strategy has rarely been investigated at the population level. One reason is that, while the resource availability is commonly variable in space and time, their predictability is generally assumed constant. Here, we addressed the temporal variation of the breeding strategy and its associated survival cost in a hibernating population of Tamias sibiricus, in which food resources vary in their availability between years and in their predictability within years. Based on 11 years of mark-recapture data, we used multi-event modelling to investigate seasonal variations in reproduction costs of female chipmunks that breed twice a year (spring and summer). In summer, during which a large variety and quantity of resources is available (income breeding strategy), the proportion of breeding females was consistent across years and reproduction yielded no mortality cost. In contrast, in spring, the proportion of breeding females was positively correlated with the amount of resources available for hibernation (partial capital breeding strategy). Spring reproduction yielded no immediate cost, but induced a delayed mortality cost over the next winter if future unknown conditions were unfavorable. Our findings highlight complex temporal reproductive patterns in a short-lived species: not only does the modality of resource acquisition vary among seasons, but also the decision rule to breed and its associated cost.
Collapse
Affiliation(s)
- Christie Le Coeur
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne-Université, 61 rue Buffon, 75005, Paris, France.
| | - Benoît Pisanu
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne-Université, 61 rue Buffon, 75005, Paris, France
| | - Jean-Louis Chapuis
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne-Université, 61 rue Buffon, 75005, Paris, France
| | - Alexandre Robert
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne-Université, 61 rue Buffon, 75005, Paris, France
| |
Collapse
|
35
|
Pearse IS, LaMontagne JM, Koenig WD. Inter-annual variation in seed production has increased over time (1900-2014). Proc Biol Sci 2018; 284:rspb.2017.1666. [PMID: 29212721 DOI: 10.1098/rspb.2017.1666] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Mast seeding, or masting, is the highly variable and spatially synchronous production of seeds by a population of plants. The production of variable seed crops is typically correlated with weather, so it is of considerable interest whether global climate change has altered the variability of masting or the size of masting events. We compiled 1086 datasets of plant seed production spanning 1900-2014 and from around the world, and then analysed whether the coefficient of variation (CV) in seed set, a measure of masting, increased over time. Over this 115-year period, seed set became more variable for plants as a whole and for the particularly well-studied taxa of conifers and oaks. The increase in CV corresponded with a decrease in the long-term mean of seed set of plant species. Seed set CV increased to a greater degree in plant taxa with a tendency towards masting. Seed set is becoming more variable among years, especially for plant taxa whose masting events are known to affect animal populations. Such subtle change in reproduction can have wide-ranging effects on ecosystems because seed crops provide critical resources for a wide range of taxa and have cascading effects throughout food webs.
Collapse
Affiliation(s)
- Ian S Pearse
- Illinois Natural History Survey, 1816 S. Oak St., Champaign, IL 61820, USA .,US Geological Survey, Fort Collins Science Center, Center Ave Bldg C, Ft Collins, CO 80526, USA
| | - Jalene M LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Walter D Koenig
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY 14850, USA.,Hastings Reservation, University of California Berkeley, Carmel Valley, CA 93924, USA
| |
Collapse
|
36
|
Fiola ML, Vernouillet A, Villard MA. Linking songbird nest predation to seedling density: Sugar maple masting as a resource pulse in a forest food web. Ecol Evol 2018; 7:10733-10742. [PMID: 29299253 PMCID: PMC5743542 DOI: 10.1002/ece3.3581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/22/2017] [Accepted: 10/08/2017] [Indexed: 11/10/2022] Open
Abstract
The ecological literature presents considerable evidence for top‐down forcing on the maintenance of species diversity. Yet, in temperate forests, bottom‐up forces often exert a strong influence on ecosystem functioning. Here, we report on the indirect influence of a pulsed resource, sugar maple (Acer saccharum) seed production, on nest survival in a migratory songbird. We hypothesized that seed production in year t would determine daily nest survival rate in year t + 1 through its effects on seed‐eating rodents. We used the density of sugar maple seedlings (with cotyledons) in year t + 1 as a proxy for seed production in year t and predicted that it would be inversely related to songbird nest survival the same year. We estimated the density of sugar maple seedlings, eastern chipmunk (Tamias striatus) activity, and daily nest survival rate in the ovenbird (Seiurus aurocapilla) over four successive years in a northern hardwood forest of New Brunswick, Canada. Seedling density varied by two orders of magnitude between years, whereas an index of chipmunk activity changed by an order of magnitude. Both variables were positively correlated and negatively correlated to daily nest survival rate. A logistic‐exposure model including only seedling density received the greatest level of support (lowest AICc). Previous studies have reported the effect of sugar maple masting on seed‐eating rodent populations, but the strong link we report between seedling density and songbird nest survival is novel. A nocturnal seed‐eating nest predator, deer mouse (Peromyscus maniculatus), was not considered in our models, which may explain why chipmunk was not the best predictor of daily nest survival rate. The trophic linkages we observed are remarkably strong for a temperate forest ecosystem and might become more prevalent in northeastern North America, at least on calcium‐rich soils, with the loss of large‐diameter beech trees as a result of beech bark disease.
Collapse
Affiliation(s)
| | - Alizée Vernouillet
- Department of Biological Sciences University of Manitoba Winnipeg MB Canada
| | - Marc-André Villard
- Département de biologie, chimie et géographie Université du Québec à Rimouski Rimouski QC Canada
| |
Collapse
|
37
|
Kenny HV, Wright AN, Piovia-Scott J, Yang LH, Spiller DA, Schoener TW. Marine subsidies change short-term foraging activity and habitat utilization of terrestrial lizards. Ecol Evol 2018; 7:10701-10709. [PMID: 29299250 PMCID: PMC5743576 DOI: 10.1002/ece3.3560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 12/04/2022] Open
Abstract
Resource pulses are brief periods of unusually high resource abundance. While population and community responses to resource pulses have been relatively well studied, how individual consumers respond to resource pulses has received less attention. Local consumers are often the first to respond to a resource pulse, and the form and timing of individual responses may influence how the effects of the pulse are transmitted throughout the community. Previous studies in Bahamian food webs have shown that detritivores associated with pulses of seaweed wrack provide an alternative prey source for lizards. When seaweed is abundant, lizards (Anolis sagrei) shift to consuming more marine‐derived prey and increase in density, which has important consequences for other components of the food web. We hypothesized that the diet shift requires individuals to alter their habitat use and foraging activity and that such responses may happen very rapidly. In this study, we used recorded video observations to investigate the immediate responses of lizards to an experimental seaweed pulse. We added seaweed to five treatment plots for comparison with five control plots. Immediately after seaweed addition, lizards decreased average perch height and increased movement rate, but these effects persisted for only 2 days. To explore the short‐term nature of the response, we used our field data to parametrize heuristic Markov chain models of perch height as a function of foraging state. These models suggest a “Synchronized‐satiation Hypothesis,” whereby lizards respond synchronously and feed quickly to satiation in the presence of a subsidy (causing an initial decrease in average perch height) and then return to the relative safety of higher perches. We suggest that the immediate responses of individual consumers to resource pulse events can provide insight into the mechanisms by which these consumers ultimately influence community‐level processes.
Collapse
Affiliation(s)
- Heather V Kenny
- Department of Wildlife, Fish, and Conservation Biology University of California Davis CA USA
| | - Amber N Wright
- Department of Biology University of Hawai'i at Mānoa Honolulu HI USA
| | - Jonah Piovia-Scott
- School of Biological Sciences Washington State University Vancouver WA USA
| | - Louie H Yang
- Department of Entomology and Nematology University of California Davis CA USA
| | - David A Spiller
- Department of Evolution and Ecology University of California Davis CA USA
| | - Thomas W Schoener
- Department of Evolution and Ecology University of California Davis CA USA
| |
Collapse
|
38
|
Cornils JS, Hoelzl F, Huber N, Zink R, Gerritsmann H, Bieber C, Schwarzenberger F, Ruf T. The insensitive dormouse: reproduction skipping is not caused by chronic stress in Glis glis. J Exp Biol 2018; 221:jeb.183558. [DOI: 10.1242/jeb.183558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022]
Abstract
Entire populations of edible dormice (Glis glis) can skip reproduction in years without mast seeding of deciduous trees (particularly beech or oak seed), because juveniles require high caloric seeds for growth and fattening prior to hibernation. We hypothesized that, in mast failure years, female dormice may be forced to spend larger amounts of time foraging for low-quality food, which should increase their exposure to predators, mainly owls. This may lead to chronic stress, i.e., long-term increased secretion of Glucocorticoids (GC), which can have inhibitory effects on reproductive function in both female and male mammals. We monitored reproduction in free-living female dormice over three years with varying levels of food availability, and performed a supplemental feeding experiment. To measure stress hormone levels, we determined fecal GC metabolite (GCM) concentrations collected during the day, which reflect hormone secretion rates in the previous nocturnal activity phase. We found that year-to-year differences in beech mast significantly affected fecal GCM levels and reproduction. However, contrary to our hypothesis, GCM levels were lowest in a non-mast year without reproduction, and significantly elevated in full-mast and intermediate years, as well as under supplemental feeding. Variation in owl density in our study area had no influence on GCM levels. Consequently, we conclude that down-regulation of gonads and reproduction skipping in mast-failure years in this species is not caused by chronic stress. Thus, in edible dormice, delayed reproduction apparently is profitable in response to the absence of energy-rich food in non-mast years, but not in response to chronic stress.
Collapse
Affiliation(s)
- Jessica S. Cornils
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Franz Hoelzl
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Nikolaus Huber
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Richard Zink
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Hanno Gerritsmann
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Franz Schwarzenberger
- Institute for Medical Biochemistry, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| |
Collapse
|
39
|
St-Hilaire É, Réale D, Garant D. Determinants, selection and heritability of docility in wild eastern chipmunks (Tamias striatus). Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2320-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Reynolds RT, Lambert JS, Flather CH, White GC, Bird BJ, Baggett LS, Lambert C, Bayard De Volo S. Long-term demography of the Northern Goshawk in a variable environment. WILDLIFE MONOGRAPHS 2017. [DOI: 10.1002/wmon.1023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard T. Reynolds
- Rocky Mountain Research Station; 240 West Prospect Road Fort Collins CO 80526 USA
| | - Jeffrey S. Lambert
- Rocky Mountain Research Station; 240 West Prospect Road Fort Collins CO 80526 USA
| | - Curtis H. Flather
- Rocky Mountain Research Station; 240 West Prospect Road Fort Collins CO 80526 USA
| | - Gary C. White
- Department of Fisheries and Wildlife and Conservation Biology; Colorado State University; Fort Collins CO 80523 USA
| | - Benjamin J. Bird
- Rocky Mountain Research Station; 240 West Prospect Road Fort Collins CO 80526 USA
| | - L. Scott Baggett
- Rocky Mountain Research Station; 240 West Prospect Road Fort Collins CO 80526 USA
| | - Carrie Lambert
- Rocky Mountain Research Station; 240 West Prospect Road Fort Collins CO 80526 USA
| | | |
Collapse
|
41
|
Cornils JS, Hoelzl F, Rotter B, Bieber C, Ruf T. Edible dormice ( Glis glis) avoid areas with a high density of their preferred food plant - the European beech. Front Zool 2017; 14:23. [PMID: 28428805 PMCID: PMC5397747 DOI: 10.1186/s12983-017-0206-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 11/20/2022] Open
Abstract
Background Numerous species, especially among rodents, are strongly affected by the availability of pulsed resources. The intermittent production of large seed crops in northern hemisphere tree species (e.g., beech Fagus spec.,oak Quercus spec., pine trees Pinus spec.) are prime examples of these resource pulses. Adult edible dormice are highly dependent on high energy seeds to maximize their reproductive output. For juvenile dormice the energy rich food is important to grow and fatten in a very short time period prior to hibernation. While these erratic, often large-scale synchronized mast events provide overabundant seed availability, a total lack of seed production can be observed in so-called mast failure years. We hypothesized that dormice either switch territories between mast and non-mast years, to maximize energy availability or select habitats in which alternative food sources are also available (e.g., fleshy fruits, cones). To analyze the habitat preferences of edible dormice we performed environmental niche factor analyses (ENFA) for 9 years of capture-recapture data. Results As expected, the animals mainly used areas with high canopy closure and vertical stratification, probably to avoid predation. Surprisingly, we found that dormice avoided areas with high beech tree density, but in contrast preferred areas with a relatively high proportion of coniferous trees. Conifer cones and leaves can be an alternative food source for edible dormice and are less variable in availability. Conclusion Therefore, we conclude that edible dormice try to avoid areas with large fluctuations in food availability to be able to survive years without mast in their territory.
Collapse
Affiliation(s)
- Jessica S Cornils
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Franz Hoelzl
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Birgit Rotter
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| | - Thomas Ruf
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstraße 1, 1160 Vienna, Austria
| |
Collapse
|
42
|
Dammhahn M, Landry‐Cuerrier M, Réale D, Garant D, Humphries MM. Individual variation in energy‐saving heterothermy affects survival and reproductive success. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12797] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Melanie Dammhahn
- Département des Sciences Biologiques Université du Québec à Montréal CP 8888 succursale centre‐ville Montréal QCH3C 3P8 Canada
- Animal Ecology Institute for Biochemistry and Biology Faculty of Natural Sciences University of Potsdam Maulbeerallee 1 14469 Potsdam Germany
| | - Manuelle Landry‐Cuerrier
- Natural Resource Sciences Macdonald Campus McGill University Sainte‐Anne‐de‐Bellevue QC H9X3V9 Canada
| | - Denis Réale
- Département des Sciences Biologiques Université du Québec à Montréal CP 8888 succursale centre‐ville Montréal QCH3C 3P8 Canada
| | - Dany Garant
- Département de Biologie Faculté des Sciences Université de Sherbrooke Sherbrooke QCJ1K 2R1 Canada
| | - Murray M. Humphries
- Natural Resource Sciences Macdonald Campus McGill University Sainte‐Anne‐de‐Bellevue QC H9X3V9 Canada
| |
Collapse
|
43
|
Selonen V, Wistbacka R. Siberian flying squirrels do not anticipate future resource abundance. BMC Ecol 2016; 16:51. [PMID: 27842537 PMCID: PMC5109687 DOI: 10.1186/s12898-016-0107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022] Open
Abstract
Background One way to cope with irregularly occurring resources is to adjust reproduction according to the anticipated future resource availability. In support of this hypothesis, few rodent species have been observed to produce, after the first litter born in spring, summer litters in anticipation of autumn’s seed mast. This kind of behaviour could eliminate or decrease the lag in population density normally present in consumer dynamics. We focus on possible anticipation of future food availability in Siberian flying squirrels, Pteromys volans. We utilise long-term data set on flying squirrel reproduction spanning over 20 years with individuals living in nest-boxes in two study areas located in western Finland. In winter and early spring, flying squirrels depend on catkin mast of deciduous trees. Thus, the temporal availability of food resource for Siberian flying squirrels is similar to other mast-dependent rodent species in which anticipatory reproduction has been observed. Results We show that production of summer litters was not related to food levels in the following autumn and winter. Instead, food levels before reproduction, in the preceding winter and spring, were related to production of summer litters. In addition, the amount of precipitation in the preceding winter was found to be related to the production of summer litters. Conclusions Our results support the conclusion that Siberian flying squirrels do not anticipate the mast. Instead, increased reproductive effort in female flying squirrels is an opportunistic event, seized if the resource situation allows.
Collapse
Affiliation(s)
- Vesa Selonen
- Department of Biology, Section of Ecology, University of Turku, 20014, Turku, Finland.
| | - Ralf Wistbacka
- Department of Biology, University of Oulu, 90014, Oulu, Finland
| |
Collapse
|
44
|
LaZerte S, Kramer D. Activity of eastern chipmunks (Tamias striatus) during the summer and fall. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2016-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Measuring activity of small mammals in the field is challenging because they are often out of view. We used a novel method, based on temperatures of collar radio transmitters, to quantify the proportion of time eastern chipmunks (Tamias striatus (L., 1758)) spent active, curled up resting, and torpid during the summer and fall of 2 years in southern Quebec. Time active over the 24 h day was lower in a nonmast (8%) than a mast (26%) year. In the mast year, activity varied strongly from a low of 7% during the summer lull to a high of 35% in the fall. Chipmunks that exploited a feeder had higher activity (33%) than chipmunks that did not (19%). Activity was higher during the day, but some activity occurred at night. Daily activity patterns varied strongly among seasonal periods. There was no evidence of torpor during the summer lull. Torpor started much earlier in the nonmast than in the mast year and occurred more at night than during the day. Overall, our study suggests that activity in this food-storing hibernator is positively influenced by food availability and indicates that thermosensitive radiotelemetry is a promising method for recording continuous activity.
Collapse
Affiliation(s)
- S.E. LaZerte
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
| | - D.L. Kramer
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
45
|
Paterson JT, Rotella JJ, Arrigo KR, Garrott RA. Tight coupling of primary production and marine mammal reproduction in the Southern Ocean. Proc Biol Sci 2016; 282:20143137. [PMID: 25854885 DOI: 10.1098/rspb.2014.3137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polynyas are areas of open water surrounded by sea ice and are important sources of primary production in high-latitude marine ecosystems. The magnitude of annual primary production in polynyas is controlled by the amount of exposure to solar radiation and sensitivity to changes in sea-ice extent. The degree of coupling between primary production and production by upper trophic-level consumers in these environments is not well understood, which prevents reliable predictions about population trajectories for species at higher trophic levels under potential future climate scenarios. In this study, we find a strong, positive relationship between annual primary production in an Antarctic polynya and pup production by ice-dependent Weddell seals. The timing of the relationship suggests reproductive effort increases to take advantage of high primary production occurring in the months after the birth pulse. Though the proximate causal mechanism is unknown, our results indicate tight coupling between organisms at disparate trophic levels on a short timescale, deepen our understanding of marine ecosystem processes, and raise interesting questions about why such coupling exists and what implications it has for understanding high-latitude ecosystems.
Collapse
Affiliation(s)
| | - Jay J Rotella
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| | - Kevin R Arrigo
- Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305-4216, USA
| | - Robert A Garrott
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
46
|
Affiliation(s)
- Michał Bogdziewicz
- Dept of Systematic Zoology; Faculty of Biology, Adam Mickiewicz University; Umultowska 89 PL-61-614 Poznań Poland
- Dept of Biology; Tufts University; 163 Packard Ave Medford MA 02155 USA
| | - Rafał Zwolak
- Dept of Systematic Zoology; Faculty of Biology, Adam Mickiewicz University; Umultowska 89 PL-61-614 Poznań Poland
| | - Elizabeth E. Crone
- Dept of Biology; Tufts University; 163 Packard Ave Medford MA 02155 USA
- Harvard Forest, Harvard University; Petersham MA 01366 USA
| |
Collapse
|
47
|
Immediate or lagged responses of a red squirrel population to pulsed resources. Oecologia 2014; 177:401-11. [DOI: 10.1007/s00442-014-3148-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
48
|
Intra-individual variability in fecal cortisol metabolites varies with lifetime exploration and reproductive life history in eastern chipmunks (Tamias striatus). Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1812-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Montiglio PO, Garant D, Bergeron P, Messier GD, Réale D. Pulsed resources and the coupling between life-history strategies and exploration patterns in eastern chipmunks (Tamias striatus). J Anim Ecol 2014; 83:720-8. [DOI: 10.1111/1365-2656.12174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/24/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Pierre-Olivier Montiglio
- Chaire de recherche du Canada en écologie comportementale; Département des Sciences Biologiques; Université du Québec à Montréal; CP 8888 succursale centre-ville Montréal QC H3C 3P8 Canada
| | - Dany Garant
- Département de biologie; Faculté des sciences; Université de Sherbrooke; 2500 boul. de l'Université Sherbrooke QC J1K 2R1 Canada
| | - Patrick Bergeron
- Département de biologie; Faculté des sciences; Université de Sherbrooke; 2500 boul. de l'Université Sherbrooke QC J1K 2R1 Canada
| | - Gabrielle Dubuc Messier
- Chaire de recherche du Canada en écologie comportementale; Département des Sciences Biologiques; Université du Québec à Montréal; CP 8888 succursale centre-ville Montréal QC H3C 3P8 Canada
| | - Denis Réale
- Chaire de recherche du Canada en écologie comportementale; Département des Sciences Biologiques; Université du Québec à Montréal; CP 8888 succursale centre-ville Montréal QC H3C 3P8 Canada
| |
Collapse
|
50
|
Flaherty EA, Noakes AG, Ben-David M. Saphenous venipuncture for field collection of blood from least chipmunks. WILDLIFE SOC B 2013. [DOI: 10.1002/wsb.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elizabeth A. Flaherty
- Department of Zoology and Physiology; University of Wyoming; Department 3166, 1000 E University Avenue Laramie WY 82071 USA
| | - Andi G. Noakes
- Department of Biological Sciences; University of Notre Dame; 100 Galvin Life Sciences Center Notre Dame IN 46556 USA
| | - Merav Ben-David
- Department of Zoology and Physiology and Program in Ecology; University of Wyoming; Department 3166, 1000 E University Avenue Laramie WY 82071 USA
| |
Collapse
|