1
|
Lyu K, Li J, Wu Y, Asselman J, Yang Z. Changes in population fitness and gene co-expression networks reveal the boosted impact of toxic cyanobacteria on Daphnia magna through microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137225. [PMID: 39823883 DOI: 10.1016/j.jhazmat.2025.137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures. We found that toxic Microcystis (TM) adversely affected the fitness of Daphnia populations (intrinsic rate of population increase), and these adverse effects were amplified in the presence of MPs. Through detailed observation, it was ascertained that MPs promoted the ingestion of TM, culminating in enhanced microcystin bioaccumulation. Using the Eco-Evo model, we found that there was potential absence of correlation between the MPs toxicity and the effect size of MPs on the TM. Utilizing gene set enrichment analysis (GSEA), we further identified a marked suppression of molecular pathways and entities crucial to individual growth and development in the TM-MPs consortium compared to exposure to TM alone. The present study provides important insights about the influence of MPs on cyanobacteria toxicity and the prediction the risk of harmful algal blooms in aquatic ecosystems.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiameng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuting Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, Ostend 8400, Belgium
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Baker D, Godwin CM, Khanam M, Burtner AM, Dick GJ, Denef VJ. Variation in resource competition traits among Microcystis strains is affected by their microbiomes. MLIFE 2023; 2:401-415. [PMID: 38818269 PMCID: PMC10989160 DOI: 10.1002/mlf2.12094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 06/01/2024]
Abstract
Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate μ max, half-saturation value for growth K s, and quota) as a function of N and P levels for four strains (NIES-843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half-saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis-intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, μ max, and K s are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource-use parameters.
Collapse
Affiliation(s)
- Dylan Baker
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Casey M. Godwin
- Cooperative Institute for Great Lakes Research, School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Muhtamim Khanam
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ashley M. Burtner
- Cooperative Institute for Great Lakes Research, School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Gregory J. Dick
- Cooperative Institute for Great Lakes Research, School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Vincent J. Denef
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Smith S, Mohamed A, Amaral JR, Kusi N, Smith A, Gordon SP, López-Sepulcre A. Rapid evolution of diet choice in an introduced population of Trinidadian guppies. Biol Lett 2023; 19:20220443. [PMID: 36693425 PMCID: PMC9873468 DOI: 10.1098/rsbl.2022.0443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Eco-evolutionary theory has brought an interest in the rapid evolution of functional traits. Among them, diet is an important determinant of ecosystem structure, affecting food web dynamics and nutrient cycling. However, it is largely unknown whether diet, or diet preference, has a hereditary basis and can evolve on contemporary timescales. Here, we study the diet preferences of Trinidadian guppies Poecilia reticulata collected from directly below an introduction site of fish transplanted from a high-predation environment into a low predation site where their densities and competition increased. Behavioural assays on F2 common garden descendants of the ancestral and derived populations showed that diet preference has rapidly evolved in the introduced population in only 12 years (approx. 36 generations). Specifically, we show that the preference for high-quality food generally found in high-predation guppies is lost in the newly derived low-predation population, who show an inertia toward the first encountered food. This result is predicted by theory stating that organisms should evolve less selective diets under higher competition. Demonstrating that diet preference can show rapid and adaptive evolution is important to our understanding of eco-evolutionary feedbacks and the role of evolution in ecosystem dynamics.
Collapse
Affiliation(s)
- Shawna Smith
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Amina Mohamed
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeferson Ribeiro Amaral
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nana Kusi
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Alexander Smith
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Swanne P. Gordon
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrés López-Sepulcre
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Schwarzenberger A. Negative Effects of Cyanotoxins and Adaptative Responses of Daphnia. Toxins (Basel) 2022; 14:770. [PMID: 36356020 PMCID: PMC9694520 DOI: 10.3390/toxins14110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/ strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia-cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia's filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia-cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia.
Collapse
Affiliation(s)
- Anke Schwarzenberger
- Limnological Institute, University Konstanz, Mainaustr. 252, 78464 Konstanz, Germany
| |
Collapse
|
5
|
Fernandez-Figueroa EG, Wilson AE. Local adaptation mediates direct and indirect effects of multiple stressors on consumer fitness. Oecologia 2022; 198:483-492. [PMID: 35119504 DOI: 10.1007/s00442-022-05118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022]
Abstract
Anthropogenic impacts are expected to increase the co-occurrence of stressors that can fundamentally alter ecosystem structure and function. To cope with stress, many organisms locally adapt, but how such adaptations affect the ability of an organism to manage co-occurring stressors is not well understood. In aquatic ecosystems, elevated temperatures and harmful algal blooms are common co-stressors. To better understand the role and potential trade-offs of local adaptations for mitigating the effects of stressors, Daphnia pulicaria genotypes that varied in their ability to consume toxic cyanobacteria prey (i.e., three tolerant and three sensitive) were exposed to five diets that included combinations of toxic cyanobacteria, Microcystis aeruginosa, and a green alga, Ankistrodesmus falcatus, under two temperatures (20 °C vs. 28 °C). A path analysis was conducted to understand how local adaptations affect energy allocation to intermediate life history traits (i.e., somatic growth, fecundity, survival) that maximize Daphnia fitness (i.e., population growth rate). Results from the 10-day study show that tolerant Daphnia genotypes had higher fitness than sensitive genotypes regardless of diet or temperature treatment, suggesting toxic cyanobacteria tolerance did not cause a decrease in fitness in the absence of cyanobacteria or under elevated temperatures. Results from the path analysis demonstrated that toxic cyanobacteria had a stronger effect on life history traits than temperature and that population growth rate was mainly constrained by reduced fecundity. These findings suggest that local adaptations to toxic cyanobacteria and elevated temperatures are synergistic, leading to higher survivorship of cyanobacteria-tolerant genotypes during summer cyanobacterial bloom events.
Collapse
Affiliation(s)
- Edna G Fernandez-Figueroa
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA.
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL, 36849, USA
| |
Collapse
|
6
|
Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett 2022; 25:307-319. [PMID: 34808704 PMCID: PMC9299012 DOI: 10.1111/ele.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
A popular idea in ecology is that trait variation among individuals from the same species may promote the coexistence of competing species. However, theoretical and empirical tests of this idea have yielded inconsistent findings. We manipulated intraspecific trait diversity in a ciliate competing with a nematode for bacterial prey in experimental microcosms. We found that intraspecific trait variation inverted the original competitive hierarchy to favour the consumer with variable traits, ultimately resulting in competitive exclusion. This competitive outcome was driven by foraging traits (size, speed and directionality) that increased the ciliate's fitness ratio and niche overlap with the nematode. The interplay between consumer trait variation and competition resulted in non-additive cascading effects-mediated through prey defence traits-on prey community assembly. Our results suggest that predicting consumer competitive population dynamics and the assembly of prey communities will require understanding the complexities of trait variation within consumer species.
Collapse
Affiliation(s)
| | - Iina Hepolehto
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiFinland
- Department of Computer ScienceUniversity of HelsinkiFinland
| | | |
Collapse
|
7
|
Kim DS, Jang K, Kim WS, Ryu M, Park JH, Kim YJ. Crystal Structure of H227A Mutant of Arginine Kinase in Daphnia magna Suggests the Importance of Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030884. [PMID: 35164149 PMCID: PMC8839106 DOI: 10.3390/molecules27030884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Arginine kinase (AK) plays a crucial role in the survival of Daphnia magna, a water flea and a common planktonic invertebrate sensitive to water pollution, owing to the production of bioenergy. AK from D. magna (DmAK) has four highly conserved histidine residues, namely, H90, H227, H284, and H315 in the amino acid sequence. In contrast to DmAK WT (wild type), the enzyme activity of the H227A mutant decreases by 18%. To identify the structure-function relationship of this H227A mutant enzyme, the crystal 3D X-ray structure has been determined and an unfolding assay using anilino-1-naphthalenesulfonic acid (ANS) fluorescence has been undertaken. The results revealed that when compared to the DmAK WT, the hydrogen bonding between H227 and A135 was broken in the H227A crystal structure. This suggests that H227 residue, closed to the arginine binding site, plays an important role in maintaining the structural stability and maximizing the enzyme activity through hydrogen bonding with the backbone oxygen of A135.
Collapse
Affiliation(s)
- Da Som Kim
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea; (D.S.K.); (W.S.K.); (M.R.)
| | - Kiyoung Jang
- Department of Lifestyle Medicine, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea;
| | - Wan Seo Kim
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea; (D.S.K.); (W.S.K.); (M.R.)
| | - Moonhee Ryu
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea; (D.S.K.); (W.S.K.); (M.R.)
| | - Jung Hee Park
- Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea; (D.S.K.); (W.S.K.); (M.R.)
- Advanced Institute of Environment and Bioscience, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: (J.H.P.); (Y.J.K.)
| | - Yong Ju Kim
- Department of Lifestyle Medicine, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea;
- Advanced Institute of Environment and Bioscience, College of Environmental & Bioresources Sciences, Jeonbuk National University, Iksan 54596, Korea
- Department of Oriental Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea
- Correspondence: (J.H.P.); (Y.J.K.)
| |
Collapse
|
8
|
Werner C, Otte KA, von Elert E. Phenotypic convergence in a natural Daphnia population acclimated to low temperature. Ecol Evol 2021; 11:15312-15324. [PMID: 34765180 PMCID: PMC8571613 DOI: 10.1002/ece3.8217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Fluidity of a given membrane decreases at lower ambient temperatures, whereas it rises at increasing temperatures, which is achieved through changes in membrane lipid composition. In consistence with homeoviscous adaptation theory, lower temperatures result in increased tissue concentrations of polyunsaturated fatty acids (PUFAs) in Daphnia magna, suggesting a higher PUFA requirement at lower temperatures. However, so far homeoviscous adaptation has been suggested for single or geographically separated Daphnia genotypes only. Here, we investigated changes in relative fatty acid (FA) tissue concentrations in response to a lower temperature (15°C) within a D. magna population. We determined juvenile growth rates (JGR) and FA patterns of 14 genotypes that were grown on Chlamydomonas klinobasis at 15°C and 20°C. We report significant differences of JGR and the relative body content of various FAs between genotypes at either temperature and between temperatures. Based on slopes of reaction norms, we found genotype-specific changes in FA profiles between temperatures suggesting that genotypes have different strategies to cope with changing temperatures. In a hierarchical clustering analysis, we grouped genotypes according to differences in direction and magnitude of changes in relative FA content, which resulted in three clusters of genotypes following different patterns of changes in FA composition. These patterns suggest a lower importance of the PUFA eicosapentaenoic acid (EPA, C20:5ω3) than previously assumed. We calculated an unsaturation index (UI) as a proxy for membrane fluidity at 15°C, and we neither found significant differences for this UI nor for fitness, measured as JGR, between the three genotype clusters. We conclude that these three genotype clusters represent different physiological solutions to temperature changes by altering the relative share of different FAs, but that their phenotypes converge with respect to membrane fluidity and JGR. These clusters will be subjected to different degrees of PUFA limitation when sharing the same diet.
Collapse
Affiliation(s)
- Christian Werner
- Aquatic Chemical EcologyInstitute for ZoologyUniversity of CologneKölnGermany
| | - Kathrin A. Otte
- Aquatic Chemical EcologyInstitute for ZoologyUniversity of CologneKölnGermany
| | - Eric von Elert
- Aquatic Chemical EcologyInstitute for ZoologyUniversity of CologneKölnGermany
| |
Collapse
|
9
|
Buley RP, Adams C, Belfiore AP, Fernandez-Figueroa EG, Gladfelter MF, Garner B, Wilson AE. Field evaluation of seven products to control cyanobacterial blooms in aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29971-29983. [PMID: 33580364 DOI: 10.1007/s11356-021-12708-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms negatively impact water quality in hypereutrophic systems that are common in aquaculture. However, few algaecides are approved for use in food-fish aquaculture. This study assessed the effectiveness of seven products, including hydrogen peroxide (as a concentrated liquid or in granular form (PAK-27)), peracetic acid (as VigorOx SP-15 and Peraclean), copper (as copper sulfate in unchelated (powder) or chelated (Captain) forms), and a clay-based product (as Phoslock) on phytoplankton (including cyanobacteria) and zooplankton biomass. Each product was tested in a 14-day laboratory and 35-day field experiment to assess their short- and long-term performance. Although some products (i.e., copper-based and liquid hydrogen peroxide) quickly reduced phytoplankton, effects were short-lived given that chlorophyll concentrations returned to starting concentrations within 21 days. In contrast, all but one product (i.e., concentrated liquid hydrogen peroxide) maintained low phycocyanin concentrations for 35 days. Zooplankton biomass trends showed large, negative effects for most algaecides; however, zooplankton rebounded for most treatments except for copper-based products. In general, copper-based products remain the most efficient and cheapest choice to reduce total phytoplankton biomass in aquaculture systems. However, peracetic acid-based products effectively and quickly reduced cyanobacteria while having marginal effects on beneficial algae and zooplankton. Such algaecides could be effective alternatives to copper-based products for aquaculture farmers.
Collapse
Affiliation(s)
- Riley P Buley
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Catie Adams
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Angelea P Belfiore
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Brynne Garner
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
10
|
Suikkanen S, Uusitalo L, Lehtinen S, Lehtiniemi M, Kauppila P, Mäkinen K, Kuosa H. Diazotrophic cyanobacteria in planktonic food webs. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Abstract
Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.
Collapse
|
12
|
Wejnerowski Ł, Falfushynska H, Horyn O, Osypenko I, Kokociński M, Meriluoto J, Jurczak T, Poniedziałek B, Pniewski F, Rzymski P. In Vitro Toxicological Screening of Stable and Senescing Cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins (Basel) 2020; 12:E400. [PMID: 32560354 PMCID: PMC7354461 DOI: 10.3390/toxins12060400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Toxicity of cyanobacteria is the subject of ongoing research, and a number of toxic metabolites have been described, their biosynthesis pathways have been elucidated, and the mechanism of their action has been established. However, several knowledge gaps still exist, e.g., some strains produce hitherto unknown toxic compounds, while the exact dynamics of exerted toxicity during cyanobacterial growth still requires further exploration. Therefore, the present study investigated the toxicity of extracts of nine freshwater strains of Aphanizomenon gracile, an Aphanizomenon sp. strain isolated from the Baltic Sea, a freshwater strain of Planktothrix agardhii, and two strains of Raphidiopsis raciborskii obtained from 25- and 70-day-old cultures. An in vitro experimental model based on Cyprinus carpio hepatocytes (oxidative stress markers, DNA fragmentation, and serine/threonine protein activity) and brain homogenate (cholinesterase activity) was employed. The studied extracts demonstrated toxicity to fish cells, and in general, all examined extracts altered at least one or more of considered parameters, indicating that they possess, to some degree, toxic potency. Although the time from which the extracts were obtained had a significant importance for the response of fish cells, we observed strong variability between the different strains and species. In some strains, extracts that originated from 25-day-old cultures triggered more harmful effects on fish cells compared to those obtained from 70-day-old cultures, whereas in other strains, we observed the opposite effect or a lack of a significant change. Our study revealed that there was no clear or common pattern regarding the degree of cyanobacterial bloom toxicity at a given stage of development. This means that young cyanobacterial blooms that are just forming can pose an equally toxic threat to aquatic vertebrates and ecosystem functioning as those that are stable or old with a tendency to collapse. This might be largely due to a high variability of strains in the bloom.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine; (O.H.); (I.O.)
| | - Mikołaj Kokociński
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland;
| | - Tomasz Jurczak
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland;
| | - Filip Pniewski
- Institute of Oceanography, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznań, Poland;
| |
Collapse
|
13
|
Effects of Harmful Blooms of Large-Sized and Colonial Cyanobacteria on Aquatic Food Webs. WATER 2020. [DOI: 10.3390/w12061587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacterial blooms are the most important and best studied type of harmful algal blooms in fresh waters and brackish coastal seas. We here review how and to which extent they resist grazing by zooplankton, how zooplankton responds to cyanobacterial blooms and how these effects are further transmitted to fish. Size, toxicity and poor nutritional value are widespread mechanisms of grazing defense by cyanobacteria. In some cases, defenses are inducible, in some they are obligate. However, to some extent zooplankton overcome grazing resistance, partly after evolutionary adaptation. Cyanotoxins are also harmful to fish and may cause fish kills. However, some fish species feed on Cyanobacteria, are able to reduce their abundance, and grow on a cyanobacterial diet. While reduced edibility for crustacean zooplankton tends to elongate the food chain from primary producers to fish, direct feeding by fish tends to shorten it. The few available comparative studies relating fish yield to nutrients or phytoplankton provide no indication that cyanobacteria should reduce the ratio fish production: primary production.
Collapse
|
14
|
Gu L, Qin S, Zhu S, Lu N, Sun Y, Zhang L, Huang Y, Lyu K, Chen Y, Yang Z. Microcystis aeruginosa affects the inducible anti-predator responses of Ceriodaphnia cornuta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113952. [PMID: 31935614 DOI: 10.1016/j.envpol.2020.113952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms are an increasing problem in a more eutrophic world. It is still a challenge to fully understand the influence of cyanobacteria on the interactions between predator and prey at higher trophic levels. The present study was mainly undertaken to understand the inducible anti-predator responses of cladocerans while using cyanobacteria as part of food. Specifically speaking, we focused on the anti-predator strategies of Ceriodaphnia cornuta in response to different predators (fish and Chaoborus larvae) under food with different proportions of Microcystis aeruginosa. The morphological (i.e., body size and the induction of horns) and life history traits (e.g., time to first reproduction, offspring number, and survival time) responses were measured under different proportions of M. aeruginosa (i.e., 0%, 20%, 40%, 60%, 80%, and 100%). Our results showed that both the life history and the inducible anti-predator responses of C. cornuta were significantly affected by different concentrations of M. aeruginosa. Specifically, lower concentrations of Microcystis (20%-60%) can significantly promote the horns induction under Chaoborus predation risks, and higher Microcystis concentrations (60%-100%) tend to enhance reproduction in response to fish predation risks, such as larger body size, decreased time to first reproduction, and increased total offspring number. Additionally, an increasing concentration of M. aeruginosa decreased the ability of C. cornuta to reverse horns when predation risks removed. Our findings indicated that cyanobacteria affecting life history traits and the subsequent indirect effects on anti-predator responses in cladocerans could impact the interactions between predator and prey at higher trophic levels and may consequently contribute to shaping the structure of the community in a cyanobacteria bloom area.
Collapse
Affiliation(s)
- Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shanshan Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Shuangshuang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Na Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yafen Chen
- State Key Laboratory of Lake and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
15
|
Jackrel SL, White JD, Evans JT, Buffin K, Hayden K, Sarnelle O, Denef VJ. Genome evolution and host‐microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom‐forming
Microcystis aeruginosa. Mol Ecol 2019; 28:3994-4011. [DOI: 10.1111/mec.15198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Sara L. Jackrel
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Jeffrey D. White
- Department of Biology Framingham State University Framingham MA USA
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Jacob T. Evans
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Kyle Buffin
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Kristen Hayden
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Orlando Sarnelle
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Vincent J. Denef
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
16
|
Consumer-resource dynamics is an eco-evolutionary process in a natural plankton community. Nat Ecol Evol 2019; 3:1351-1358. [DOI: 10.1038/s41559-019-0960-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022]
|
17
|
Chislock MF, Sarnelle O, Jernigan LM, Anderson VR, Abebe A, Wilson AE. Consumer adaptation mediates top-down regulation across a productivity gradient. Oecologia 2019; 190:195-205. [PMID: 30989361 DOI: 10.1007/s00442-019-04401-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Humans have artificially enhanced the productivity of terrestrial and aquatic ecosystems on a global scale by increasing nutrient loading. While the consequences of eutrophication are well known (e.g., harmful algal blooms and toxic cyanobacteria), most studies tend to examine short-term responses relative to the time scales of heritable adaptive change. Thus, the potential role of adaptation by organisms in stabilizing the response of ecological systems to such perturbations is largely unknown. We tested the hypothesis that adaptation by a generalist consumer (Daphnia pulicaria) to toxic prey (cyanobacteria) mediates the response of plankton communities to nutrient enrichment. Overall, the strength of Daphnia's top-down effect on primary producer biomass increased with productivity. However, these effects were contingent on prey traits (e.g., rare vs. common toxic cyanobacteria) and consumer genotype (i.e., tolerant vs sensitive to toxic cyanobacteria). Tolerant Daphnia strongly suppressed toxic cyanobacteria in nutrient-rich ponds, but sensitive Daphnia did not. In contrast, both tolerant and sensitive Daphnia genotypes had comparable effects on producer biomass when toxic cyanobacteria were absent. Our results demonstrate that organismal adaptation is critical for understanding and predicting ecosystem-level consequences of anthropogenic environmental perturbations.
Collapse
Affiliation(s)
- Michael F Chislock
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA.,Department of Environmental Science and Ecology, The College at Brockport, State University of New York, Brockport, NY, 14420, USA
| | - Orlando Sarnelle
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Lauren M Jernigan
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA
| | - Vernon R Anderson
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
18
|
Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev Camb Philos Soc 2018; 94:648-661. [PMID: 30294844 DOI: 10.1111/brv.12472] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Frédéric Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Julien Cucherousset
- CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Simon Blanchet
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
19
|
The ecological importance of intraspecific variation. Nat Ecol Evol 2017; 2:57-64. [PMID: 29203921 DOI: 10.1038/s41559-017-0402-5] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Human activity is causing wild populations to experience rapid trait change and local extirpation. The resulting effects on intraspecific variation could have substantial consequences for ecological processes and ecosystem services. Although researchers have long acknowledged that variation among species influences the surrounding environment, only recently has evidence accumulated for the ecological importance of variation within species. We conducted a meta-analysis comparing the ecological effects of variation within a species (intraspecific effects) with the effects of replacement or removal of that species (species effects). We evaluated direct and indirect ecological responses, including changes in abundance (or biomass), rates of ecological processes and changes in community composition. Our results show that intraspecific effects are often comparable to, and sometimes stronger than, species effects. Species effects tend to be larger for direct ecological responses (for example, through consumption), whereas intraspecific effects and species effects tend to be similar for indirect responses (for example, through trophic cascades). Intraspecific effects are especially strong when indirect interactions alter community composition. Our results summarize data from the first generation of studies examining the relative ecological effects of intraspecific variation. Our conclusions can help inform the design of future experiments and the formulation of strategies to quantify and conserve biodiversity.
Collapse
|
20
|
Microcystis aeruginosa strengthens the advantage of Daphnia similoides in competition with Moina micrura. Sci Rep 2017; 7:10245. [PMID: 28860619 PMCID: PMC5579008 DOI: 10.1038/s41598-017-10844-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
Microcystis blooms are generally associated with zooplankton shifts by disturbing interspecific relationships. The influence of Microcystis on competitive dominance by different sized zooplanktons showed species-specific dependence. We evaluated the competitive responses of small Moina micrura and large Daphnia similoides to the presence of Microcystis using mixed diets comprising 0%, 20%, and 35% of toxic M. aeruginosa, and the rest of green alga Chlorella pyrenoidosa. No competitive exclusion occurred for the two species under the tested diet combinations. In the absence of M. aeruginosa, the biomasses of the two cladocerans were decreased by the competition between them. However, the Daphnia was less inhibited with the higher biomass, suggesting the competitive dominance of Daphnia. M. aeruginosa treatment suppressed the population growths of the two cladocerans, with the reduced carrying capacities. Nonetheless, the population inhibition of Daphnia by competition was alleviated by the increased Microcystis proportion in diet. As a result, the competitive advantage of Daphnia became more pronounced, as indicated by the higher Daphnia: Moina biomass ratio with increased Microcystis proportions. These results suggested that M. aeruginosa strengthens the advantage of D. similoides in competition with M. micrura, which contributes to the diversified zooplankton shifts observed in fields during cyanobacteria blooms.
Collapse
|
21
|
Rudman SM, Kreitzman M, Chan KMA, Schluter D. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services. Trends Ecol Evol 2017; 32:403-415. [PMID: 28336183 DOI: 10.1016/j.tree.2017.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022]
Abstract
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| | - Maayan Kreitzman
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kai M A Chan
- Institute for Resources, Environment, and Sustainability, University of British Columbia, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
22
|
Local food web management increases resilience and buffers against global change effects on freshwaters. Sci Rep 2016; 6:29542. [PMID: 27386957 PMCID: PMC4937379 DOI: 10.1038/srep29542] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/20/2016] [Indexed: 11/18/2022] Open
Abstract
A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established.
Collapse
|
23
|
Urrutia-Cordero P, Ekvall MK, Hansson LA. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario. PLoS One 2016; 11:e0153032. [PMID: 27043823 PMCID: PMC4820120 DOI: 10.1371/journal.pone.0153032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Lake restoration practices based on reducing fish predation and promoting the dominance of large-bodied Daphnia grazers (i.e., biomanipulation) have been the focus of much debate due to inconsistent success in suppressing harmful cyanobacterial blooms. While most studies have explored effects of large-bodied Daphnia on cyanobacterial growth at the community level and/or on few dominant species, predictions of such restoration practices demand further understanding on taxa-specific responses in diverse cyanobacterial communities. In order to address these questions, we conducted three grazing experiments during summer in a eutrophic lake where the natural phytoplankton community was exposed to an increasing gradient in biomass of the large-bodied Daphnia magna. This allowed evaluating taxa-specific responses of cyanobacteria to Daphnia grazing throughout the growing season in a desired biomanipulation scenario with limited fish predation. Total cyanobacterial and phytoplankton biomasses responded negatively to Daphnia grazing both in early and late summer, regardless of different cyanobacterial densities. Large-bodied Daphnia were capable of suppressing the abundance of Aphanizomenon, Dolichospermum, Microcystis and Planktothrix bloom-forming cyanobacteria. However, the growth of the filamentous Dolichospermum crassum was positively affected by grazing during a period when this cyanobacterium dominated the community. The eutrophic lake was subjected to biomanipulation since 2005 and nineteen years of lake monitoring data (1996–2014) revealed that reducing fish predation increased the mean abundance (50%) and body-size (20%) of Daphnia, as well as suppressed the total amount of nutrients and the growth of the dominant cyanobacterial taxa, Microcystis and Planktothrix. Altogether our results suggest that lake restoration practices solely based on grazer control by large-bodied Daphnia can be effective, but may not be sufficient to control the overgrowth of all cyanobacterial diversity. Although controlling harmful cyanobacterial blooms should preferably include other measures, such as nutrient reductions, our experimental assessment of taxa-specific cyanobacterial responses to large-bodied Daphnia and long-term monitoring data highlights the potential of such biomanipulations to enhance the ecological and societal value of eutrophic water bodies.
Collapse
Affiliation(s)
- Pablo Urrutia-Cordero
- Department of Biology, Lund University, Ecology building, SE-223 62 Lund, Sweden
- Center for Environmental and Climate Research, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- * E-mail:
| | - Mattias K. Ekvall
- Department of Biology, Lund University, Ecology building, SE-223 62 Lund, Sweden
| | - Lars-Anders Hansson
- Department of Biology, Lund University, Ecology building, SE-223 62 Lund, Sweden
| |
Collapse
|
24
|
Ger KA, Urrutia-Cordero P, Frost PC, Hansson LA, Sarnelle O, Wilson AE, Lürling M. The interaction between cyanobacteria and zooplankton in a more eutrophic world. HARMFUL ALGAE 2016; 54:128-144. [PMID: 28073472 DOI: 10.1016/j.hal.2015.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
As blooms of cyanobacteria expand and intensify in freshwater systems globally, there is increasing interest in their ecological effects. In addition to being public health hazards, cyanobacteria have long been considered a poor quality food for key zooplankton grazers that link phytoplankton to higher trophic levels. While past laboratory studies have found negative effects of nutritional constraints and defensive traits (i.e., toxicity and colonial or filamentous morphology) on the fitness of large generalist grazers (i.e., Daphnia), cyanobacterial blooms often co-exist with high biomass of small-bodied zooplankton in nature. Indeed, recent studies highlight the remarkable diversity and flexibility in zooplankton responses to cyanobacterial prey. Reviewed here are results from a wide range of laboratory and field experiments examining the interaction of cyanobacteria and a diverse zooplankton taxa including cladocerans, copepods, and heterotrophic protists from temperate to tropical freshwater systems. This synthesis shows that longer exposure to cyanobacteria can shift zooplankton communities toward better-adapted species, select for more tolerant genotypes within a species, and induce traits within the lifetime of individual zooplankton. In turn, the function of bloom-dominated plankton ecosystems, the coupling between primary producers and grazers, the stability of blooms, and the potential to use top down biomanipulation for controlling cyanobacteria depend largely on the species, abundance, and traits of interacting cyanobacteria and zooplankton. Understanding the drivers and consequences of zooplankton traits, such as physiological detoxification and selective vs. generalist grazing behavior, are therefore of major importance for future studies. Ultimately, co-evolutionary dynamics between cyanobacteria and their grazers may emerge as a critical regulator of blooms.
Collapse
Affiliation(s)
- Kemal Ali Ger
- Department of Ecology, Center for Biosciences, Federal University of Rio Grande do Norte, RN, Brazil.
| | - Pablo Urrutia-Cordero
- Center for Environmental and Climate Research, Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - Orlando Sarnelle
- Department of Fisheries and Wildlife, 163A Natural Resources Building, Michigan State University, East Lansing, MI 48824, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Miquel Lürling
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology - Royal Netherlands Academy of Arts and Science, Wageningen, The Netherlands
| |
Collapse
|
25
|
Ger KA, Faassen EJ, Pennino MG, Lürling M. Effect of the toxin (microcystin) content of Microcystis on copepod grazing. HARMFUL ALGAE 2016; 52:34-45. [PMID: 28073469 DOI: 10.1016/j.hal.2015.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 05/08/2023]
Abstract
Although phytoplankton chemical defense may regulate plankton dynamics, demonstrating an ecologically relevant anti-grazer cue is challenging. Presented here is a novel approach to evaluate the quantitative effect of microcystin (MC), the most studied group of cyanobacterial metabolites, on grazing by the common copepod Eudiaptomus gracilis. A temperature-induced gradient in the intracellular MC concentration of three different Microcystis strains enabled the comparison of grazing pressure on cells of the same cyanobacterial strain producing different amounts of MC, in a diet with alternative food (Chlamydomonas). In all treatments, grazing pressure on Microcystis was inversely related to its MC-LR content, while selection for alternative prey was positively related to the MC-LR content of Microcystis. Moreover, grazing on Chlamydomonas also declined with increasing Microcystis MC-LR content, suggesting toxicity related inhibition of E. gracilis. The negative relation between cellular MC-LR concentration and feeding responses supported the anti-grazer hypothesis. Not all MC variants responded to temperature, and some were therefore not associated to grazing responses. Using an induced gradient in the concentration of a suspected phytoplankton defense metabolite to evaluate its quantitative relationship with grazing pressure offers an improved inference on the ecological roles of toxins. Results suggest that either MC-LR or a correlating trait may be inversely linked to the grazer pressure on Microcystis.
Collapse
Affiliation(s)
- Kemal Ali Ger
- Department of Ecology, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil; Department of Microbiology and Parasitology, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil.
| | - Elisabeth J Faassen
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Maria Grazia Pennino
- Department of Ecology, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal, RN, Brazil
| | - Miquel Lürling
- Department of Environmental Sciences, Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology - Royal Netherlands Academy of Arts and Science, Wageningen, The Netherlands
| |
Collapse
|
26
|
Driscoll WW, Hackett JD, Ferrière R. Eco-evolutionary feedbacks between private and public goods: evidence from toxic algal blooms. Ecol Lett 2015; 19:81-97. [PMID: 26612461 DOI: 10.1111/ele.12533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 01/18/2023]
Abstract
The importance of 'eco-evolutionary feedbacks' in natural systems is currently unclear. Here, we advance a general hypothesis for a particular class of eco-evolutionary feedbacks with potentially large, long-lasting impacts in complex ecosystems. These eco-evolutionary feedbacks involve traits that mediate important interactions with abiotic and biotic features of the environment and a self-driven reversal of selection as the ecological impact of the trait varies between private (small scale) and public (large scale). Toxic algal blooms may involve such eco-evolutionary feedbacks due to the emergence of public goods. We review evidence that toxin production by microalgae may yield 'privatised' benefits for individual cells or colonies under pre- and early-bloom conditions; however, the large-scale, ecosystem-level effects of toxicity associated with bloom states yield benefits that are necessarily 'public'. Theory predicts that the replacement of private with public goods may reverse selection for toxicity in the absence of higher level selection. Indeed, blooms often harbor significant genetic and functional diversity: bloom populations may undergo genetic differentiation over a scale of days, and even genetically similar lineages may vary widely in toxic potential. Intriguingly, these observations find parallels in terrestrial communities, suggesting that toxic blooms may serve as useful models for eco-evolutionary dynamics in nature. Eco-evolutionary feedbacks involving the emergence of a public good may shed new light on the potential for interactions between ecology and evolution to influence the structure and function of entire ecosystems.
Collapse
Affiliation(s)
- William W Driscoll
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, 5106, MN, USA.,Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197, 46 rue d'Ulm, Paris, F-75005, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85716, AZ, USA
| | - Jeremiah D Hackett
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85716, AZ, USA
| | - Régis Ferrière
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS UMR 8197, 46 rue d'Ulm, Paris, F-75005, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85716, AZ, USA
| |
Collapse
|
27
|
Lyu K, Zhang L, Zhu X, Cui G, Wilson AE, Yang Z. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:13-21. [PMID: 25575127 DOI: 10.1016/j.aquatox.2014.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Nutrient loading derived from anthropogenic activities into lakes have increased the frequency, severity and duration of toxic cyanobacterial blooms around the world. Although herbivorous zooplankton are generally considered to be unable to control toxic cyanobacteria, populations of some zooplankton, including Daphnia, have been shown to locally adapt to toxic cyanobacteria and suppress cyanobacterial bloom formation. However, little is known about the physiology of zooplankton behind this phenomenon. One possible explanation is that some zooplankton may induce more tolerance by elevating energy production, thereby adding more energy allocation to detoxification expenditure. It is assumed that arginine kinase (AK) serves as a core in temporal and spatial adenosine triphosphate (ATP) buffering in cells with high fluctuating energy requirements. To test this hypothesis, we studied the energetic response of a single Daphnia magna clone exposed to a toxic strain of Microcystis aeruginosa, PCC7806. Arginine kinase of D. magna (Dm-AK) was successfully cloned. An ATP-gua PtransN domain which was described as a guanidine substrate specificity domain and an ATP-gua Ptrans domain which was responsible for binding ATP were both identified in the Dm-AK. Phylogenetic analysis of AKs in a range of arthropod taxa suggested that Dm-AK was as dissimilar to other crustaceans as it was to insects. Dm-AK transcript level and ATP content in the presence of M. aeruginosa were significantly lower than those in the control diet containing only the nutritious chlorophyte, Scenedesmus obliquus, whereas the two parameters in the neonates whose mothers had been previously exposed to M. aeruginosa were significantly higher than those of mothers fed with pure S. obliquus. These findings suggest that Dm-AK might play an essential role in the coupling of energy production and utilization and the tolerance of D. magna to toxic cyanobacteria.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Guilian Cui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
28
|
Moya-Laraño J, Bilbao-Castro JR, Barrionuevo G, Ruiz-Lupión D, Casado LG, Montserrat M, Melián CJ, Magalhães S. Eco-Evolutionary Spatial Dynamics. ADV ECOL RES 2014. [DOI: 10.1016/b978-0-12-801374-8.00003-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|