1
|
Menge BA. Impacts of Birds vs. Invertebrate Predators on Rocky Intertidal Community Structure. Ecol Evol 2025; 15:e71121. [PMID: 40109554 PMCID: PMC11919729 DOI: 10.1002/ece3.71121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Most studies of species interactions in rocky intertidal communities focus on invertebrate predators and herbivores interacting with sessile invertebrates and macrophytes. However, shorebirds are usually a conspicuous presence on rocky shores and eat sessile and mobile invertebrate prey, often including invertebrate predators and herbivores. Inspired by classic studies of strong bird predation effects in rocky intertidal habitats in Washington state (USA) and South Africa, I tested the effects of bird and invertebrate (sea stars, whelks) predation at multiple sites, wave exposures, and zones on the central Oregon coast from spring 1996 to fall 1997. To gain insight into the effects of birds relative to the effects of invertebrate predators, I used a crossed design, with bird exclusions (present and absent) and invertebrate predator removal (present and reduced). Compared to Washington state and South Africa, birds had little effect on the abundance of sessile or mobile prey in wave-exposed mid, wave-exposed low, and wave-protected mid zones at 2-4 sites. I suggest that differences between Oregon results and those in Washington and South Africa were driven by differences in bird abundance associated with whether the study site had resident colonies of shorebirds (primarily gulls, crows, and oystercatchers). That is, offshore islands often have resident breeding colonies such as in the Washington and South African studies, while sites in this study were all on the mainland where gulls were mostly transient visitors, while resident oystercatchers were usually limited to one or two pairs per site. Comparison with other marine and terrestrial experimental tests suggests that top-down effects of birds often vary in strength, and thus, future investigations should seek to understand the factors that underlie this variation.
Collapse
Affiliation(s)
- Bruce A. Menge
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
2
|
Meunier ZD, Hacker SD, Menge BA. Regime shifts in rocky intertidal communities associated with a marine heatwave and disease outbreak. Nat Ecol Evol 2024; 8:1285-1297. [PMID: 38831017 DOI: 10.1038/s41559-024-02425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD). Here we measured the community structure before, during and after the MHW onset and SSWD outbreak in a 15-year succession experiment conducted in a rocky intertidal meta-ecosystem spanning 13 sites on four capes in Oregon and northern California, United States. Kelp abundance declined during the MHW due to extreme temperatures, while gooseneck barnacle and mussel abundances increased due to reduced predation pressure after the loss of Pisaster from SSWD. Using several methods, we detected regime shifts from substrate- or algae-dominated to invertebrate-dominated alternative states at two capes. After water temperatures cooled and Pisaster population densities recovered, community structure differed from pre-disturbance conditions, suggesting low resilience. Consequently, thermal stress and predator loss can result in regime shifts that fundamentally alter community structure even after restoration of baseline conditions.
Collapse
Affiliation(s)
- Zechariah D Meunier
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
| | - Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
3
|
Gravem SA, Poirson BN, Robinson JW, Menge BA. Resistance of rocky intertidal communities to oceanic climate fluctuations. PLoS One 2024; 19:e0297697. [PMID: 38809830 PMCID: PMC11135789 DOI: 10.1371/journal.pone.0297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 05/31/2024] Open
Abstract
A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.
Collapse
Affiliation(s)
- Sarah A. Gravem
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Brittany N. Poirson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Jonathan W. Robinson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Jacquet C, Carraro L, Altermatt F. Meta‐ecosystem dynamics drive the spatial distribution of functional groups in river networks. OIKOS 2022. [DOI: 10.1111/oik.09372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claire Jacquet
- Dept of Aquatic Ecology, Swiss Federal Inst. of Aquatic Science and Technology Eawag Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| | - Luca Carraro
- Dept of Aquatic Ecology, Swiss Federal Inst. of Aquatic Science and Technology Eawag Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| | - Florian Altermatt
- Dept of Aquatic Ecology, Swiss Federal Inst. of Aquatic Science and Technology Eawag Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| |
Collapse
|
5
|
Spiecker BJ, Menge BA. Coastal upwelling may strengthen the controls of herbivory and light over the population dynamics of
Hedophyllum sessile
in the Oregon rocky intertidal. Ecol Evol 2022. [DOI: 10.1002/ece3.9218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Barbara J. Spiecker
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| | - Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis Oregon USA
| |
Collapse
|
6
|
Bauer B, Berti E, Ryser R, Gauzens B, Hirt MR, Rosenbaum B, Digel C, Ott D, Scheu S, Brose U. Biotic filtering by species' interactions constrains food-web variability across spatial and abiotic gradients. Ecol Lett 2022; 25:1225-1236. [PMID: 35286010 DOI: 10.1111/ele.13995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
Despite intensive research on species dissimilarity patterns across communities (i.e. β-diversity), we still know little about their implications for variation in food-web structures. Our analyses of 50 lake and 48 forest soil communities show that, while species dissimilarity depends on environmental and spatial gradients, these effects are only weakly propagated to the networks. Moreover, our results show that species and food-web dissimilarities are consistently correlated, but that much of the variation in food-web structure across spatial, environmental, and species gradients remains unexplained. Novel food-web assembly models demonstrate the importance of biotic filtering during community assembly by (1) the availability of resources and (2) limiting similarity in species' interactions to avoid strong niche overlap and thus competitive exclusion. This reveals a strong signature of biotic filtering processes during local community assembly, which constrains the variability in structural food-web patterns across local communities despite substantial turnover in species composition.
Collapse
Affiliation(s)
- Barbara Bauer
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Zoological Institute and Museum & Institute for Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Emilio Berti
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Remo Ryser
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benoit Gauzens
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Myriam R Hirt
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benjamin Rosenbaum
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - David Ott
- Institute of Landscape Ecology, University of Münster, Münster, Germany.,Centre for Biodiversity Monitoring, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Stefan Scheu
- JFB Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Ulrich Brose
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Abstract
Climate change threatens to destabilize ecological communities, potentially moving them from persistently occupied "basins of attraction" to different states. Increasing variation in key ecological processes can signal impending state shifts in ecosystems. In a rocky intertidal meta-ecosystem consisting of three distinct regions spread across 260 km of the Oregon coast, we show that annually cleared sites are characterized by communities that exhibit signs of increasing destabilization (loss of resilience) over the past decade despite persistent community states. In all cases, recovery rates slowed and became more variable over time. The conditions underlying these shifts appear to be external to the system, with thermal disruptions (e.g., marine heat waves, El Niño-Southern Oscillation) and shifts in ocean currents (e.g., upwelling) being the likely proximate drivers. Although this iconic ecosystem has long appeared resistant to stress, the evidence suggests that subtle destabilization has occurred over at least the last decade.
Collapse
|
8
|
Spiecker BJ, Menge BA. El Niño and marine heatwaves: Ecological impacts on Oregon rocky intertidal kelp communities at local to regional scales. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis OR USA
| |
Collapse
|
9
|
Ishida K, Tachibana M, Hori M, Okuda T, Yamamoto T, Nakaoka M, Noda T. Quantifying the dynamics of rocky intertidal sessile communities along the Pacific coast of Japan: implications for ecological resilience. Sci Rep 2021; 11:16073. [PMID: 34373494 PMCID: PMC8352913 DOI: 10.1038/s41598-021-95348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Long-term patterns in trajectories of natural communities provide insights into ecological resilience, but their assessment requires long-term census data. We analyzed 16-year census data for intertidal communities from 30 rocky shores along Japan’s Pacific coast to assign community change to four possible trajectories (stable, reversible, abrupt, or linear) representing different aspects of ecological resilience, and to estimate multiple metrics of temporal invariability (species richness, species composition, and community abundance). We examined (1) how the prevalence of the four trajectories differs among regions, (2) how the features (model coefficients) of each trajectory vary among regions, and (3) how the temporal invariabilities differ among trajectories and regions. We found that the stable trajectory was the most common. Its features differed among regions, with a faster recovery to steady-state equilibrium in low-latitude regions. Furthermore, trajectories and temporal invariabilities both varied among regions, seemingly in association with the strength of ocean current fluctuations. Thus, the relationship between community temporal invariability and trajectory may be weak or absent, at least at the regional scale.
Collapse
Affiliation(s)
- Ken Ishida
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| | - Michikusa Tachibana
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masakazu Hori
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4, Fukura, Kanazawa-ku, Yokohama, 236-8648, Japan
| | - Takehiro Okuda
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4, Fukura, Kanazawa-ku, Yokohama, 236-8648, Japan
| | - Tomoko Yamamoto
- Faculty of Fisheries, Kagoshima University, 4-50-20, Simoarata, Kagoshima, 890-0056, Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Aikappu, Akkeshi, Hokkaido, 088-1113, Japan
| | - Takashi Noda
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
10
|
Valdivia N, López DN, Fica‐Rojas E, Catalán AM, Aguilera MA, Araya M, Betancourtt C, Burgos‐Andrade K, Carvajal‐Baldeon T, Escares V, Gartenstein S, Grossmann M, Gutiérrez B, Kotta J, Morales‐Torres DF, Riedemann‐Saldivia B, Rodríguez SM, Velasco‐Charpentier C, Villalobos VI, Broitman BR. Stability of rocky intertidal communities, in response to species removal, varies across spatial scales. OIKOS 2021. [DOI: 10.1111/oik.08267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nelson Valdivia
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Santiago Chile
| | - Daniela N. López
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Univ. Católica de Chile Santiago Chile
| | - Eliseo Fica‐Rojas
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Alexis M. Catalán
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Moisés A. Aguilera
- Depto de Ciencias, Facultad de Artes Liberales, Univ. Adolfo Ibáñez, Diagonal Las Torres Santiago Chile
| | - Marjorie Araya
- Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Santiago Chile
| | - Claudia Betancourtt
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Katherine Burgos‐Andrade
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Thais Carvajal‐Baldeon
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Valentina Escares
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Simon Gartenstein
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Mariana Grossmann
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Bárbara Gutiérrez
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Jonne Kotta
- Estonian Marine Inst., Univ. of Tartu Tallinn Estonia
| | - Diego F. Morales‐Torres
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Bárbara Riedemann‐Saldivia
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Sara M. Rodríguez
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | | | - Vicente I. Villalobos
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Bernardo R. Broitman
- Depto de Ciencias, Facultad de Artes Liberales, Univ. Adolfo Ibáñez Viña del Mar Chile
- Instituto Milenio en Socio‐Ecologia Costera (SECOS) & Núcleo Milenio UPWELL
| |
Collapse
|
11
|
Menge BA, Foley MM, Robart MJ, Richmond E, Noble M, Chan F. Keystone predation: trait‐based or driven by extrinsic processes? Assessment using a comparative‐experimental approach. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
| | - Melissa M. Foley
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- San Francisco Estuary Institute 4911 Central Avenue Richmond California 94804 USA
| | - Matthew J. Robart
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Vantuna Research Group Occidental College 1600 Campus Road Los Angeles California 90041 USA
| | - Erin Richmond
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Joint Institute for the Study of the Atmosphere and the Ocean University of Washington Seattle Washington 98115 USA
- Marine Mammal Laboratory Alaska Fisheries Science Center NOAA Seattle Washington 98105 USA
| | - Mae Noble
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
- Fenner School of Environment and Society The Australian National University B48 Linnaeus Way Acton Australian Capital Territory 2601 Australia
| | - Francis Chan
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331‐2914 USA
| |
Collapse
|
12
|
From Marine Metacommunities to Meta-ecosystems: Examining the Nature, Scale and Significance of Resource Flows in Benthic Marine Environments. Ecosystems 2020. [DOI: 10.1007/s10021-020-00580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Rose JM, Blanchette CA, Chan F, Gouhier TC, Raimondi PT, Sanford E, Menge BA. Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry. PLoS One 2020; 15:e0234075. [PMID: 32678823 PMCID: PMC7367448 DOI: 10.1371/journal.pone.0234075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/18/2020] [Indexed: 12/02/2022] Open
Abstract
Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate “hot” (more extreme) and “cold” (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate.
Collapse
Affiliation(s)
- Jeremy M. Rose
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Carol A. Blanchette
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Tarik C. Gouhier
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - Peter T. Raimondi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Eric Sanford
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
14
|
Biogeography of Macrophyte Elemental Composition: Spatiotemporal Modification of Species-Level Traits. Ecosystems 2020. [DOI: 10.1007/s10021-020-00484-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Hacker SD, Menge BA, Nielsen KJ, Chan F, Gouhier TC. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology 2019; 100:e02763. [PMID: 31127616 DOI: 10.1002/ecy.2763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/11/2022]
Abstract
Understanding the relative roles of species interactions and environmental factors in structuring communities has historically focused on local scales where manipulative experiments are possible. However, recent interest in predicting the effects of climate change and species invasions has spurred increasing attention to processes occurring at larger spatial and temporal scales. The "meta-ecosystem" approach is an ideal framework for integrating processes operating at multiple scales as it explicitly considers the influence of local biotic interactions and regional flows of energy, materials, and organisms on community structure. Using a comparative-experimental design, we asked (1) what is the relative importance of local biotic interactions and oceanic processes in determining rocky intertidal community structure in the low zone within the Northern California Current System, and (2) what factors are most important in regulating this structure and why? We focused on functional group interactions between macrophytes and sessile invertebrates and their consumers (grazers, predators), how these varied across spatial scales, and with ocean-driven conditions (upwelling, temperature) and ecological subsidies (nutrients, phytoplankton, sessile invertebrate recruits). Experiments were conducted at 13 sites divided across four capes in Oregon and northern California. Results showed that biotic interactions were variable in space and time but overall, sessile invertebrates had no effect on macrophytes while macrophytes had weakly negative effects on sessile invertebrates. Consumers, particularly predators, also had weakly negative effects on both functional groups. Overall, we found that 40-49% of the variance in community structure at the local scale was explained by external factors (e.g., spatial scale, time, upwelling, temperature, ecological subsidies) vs. 19-39% explained by functional group interactions. When individual functional group interaction strengths were used, only 2-3% of the variation was explained by any one functional group while 28-54% of the variation was explained by external factors. We conclude that community structure in the low intertidal zone is driven primarily by external factors at the regional scale with local biotic interactions playing a secondary role.
Collapse
Affiliation(s)
- Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331-2914, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331-2914, USA
| | - Karina J Nielsen
- Estuary and Ocean Science Center, San Francisco State University, Tiburon, California, 94920, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331-2914, USA
| | - Tarik C Gouhier
- Marine Science Institute, Northeastern University, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
16
|
Zuercher R, Galloway AWE. Coastal marine ecosystem connectivity: pelagic ocean to kelp forest subsidies. Ecosphere 2019. [DOI: 10.1002/ecs2.2602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rachel Zuercher
- University of California Santa Cruz Santa Cruz California 95060 USA
| | - Aaron W. E. Galloway
- Oregon Institute of Marine Biology University of Oregon Charleston Oregon 97420 USA
| |
Collapse
|
17
|
Kimbro DL, White JW, Grosholz ED. The dynamics of open populations: integration of top–down, bottom–up and supply–side influences on intertidal oysters. OIKOS 2018. [DOI: 10.1111/oik.05892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David L. Kimbro
- Dept of Marine and Environmental Science, Northeastern Univ Nahant MA 01908 USA
| | - J. Wilson White
- Dept of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State Univ Newport OR USA
| | - Edwin D. Grosholz
- Dept of Environmental Science and Policy, Univ. of California Davis Davis CA USA
| |
Collapse
|
18
|
Menge BA, Menge DNL. Testing the intermittent upwelling hypothesis: comment. Ecology 2018; 100:e02476. [DOI: 10.1002/ecy.2476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Bruce A. Menge
- Department of Integrative Biology Oregon State University Corvallis Oregon 97331 USA
| | - Duncan N. L. Menge
- Department of Ecology, Evolution and Environmental Biology Columbia University New York New York 10027 USA
| |
Collapse
|
19
|
Gounand I, Harvey E, Little CJ, Altermatt F. Meta-Ecosystems 2.0: Rooting the Theory into the Field. Trends Ecol Evol 2018; 33:36-46. [DOI: 10.1016/j.tree.2017.10.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/06/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022]
|
20
|
Lamy T, Reed DC, Rassweiler A, Siegel DA, Kui L, Bell TW, Simons RD, Miller RJ. Scale-specific drivers of kelp forest communities. Oecologia 2018; 186:217-233. [PMID: 29101467 DOI: 10.1007/s00442-017-3994-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/25/2017] [Indexed: 12/01/2022]
Abstract
Identifying spatial scales of variation in natural communities and the processes driving them is critical for obtaining a predictive understanding of biodiversity. In this study, we focused on diverse communities inhabiting productive kelp forests on shallow subtidal rocky reefs in southern California, USA. We combined long-term community surveys from 86 sites with detailed environmental data to determine what structures assemblages of fishes, invertebrates and algae at multiple spatial scales. We identified the spatial scales of variation in species composition using a hierarchical analysis based on eigenfunctions, and assessed how sea surface temperature (SST), water column chlorophyll, giant kelp biomass, wave exposure and potential propagule delivery strength contributed to community variation at each scale. Spatial effects occurring at multiple scales explained 60% of the variation in fish assemblages and 52% of the variation in the assemblages of invertebrates and algae. Most variation occurred over broad spatial scales (> 200 km) consistent with spatial heterogeneity in SST and potential propagule delivery strength, while the latter also explained community variation at medium scales (65-200 km). Small scale (1-65 km) community variation was substantial but not linked to any of the measured drivers. Conclusions were consistent for both reef fishes and benthic invertebrates and algae, despite sharp differences in their adult mobility. Our results demonstrate the scale dependence of environmental drivers on kelp forest communities, showing that most species were strongly sorted along oceanographic conditions over various spatial scales. Such spatial effects must be integrated into models assessing the response of marine ecosystems to climate change.
Collapse
Affiliation(s)
- Thomas Lamy
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA.
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Andrew Rassweiler
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - David A Siegel
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
- Department of Geography, University of California, Santa Barbara, CA, 93106, USA
| | - Li Kui
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Tom W Bell
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
| | - Rachel D Simons
- Earth Research Institute, University of California, CA, 93106, Santa Barbara, USA
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
21
|
Local and regional stressors interact to drive a salinization-induced outbreak of predators on oyster reefs. Ecosphere 2017. [DOI: 10.1002/ecs2.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Lany NK, Zarnetske PL, Gouhier TC, Menge BA. Incorporating Context Dependency of Species Interactions in Species Distribution Models. Integr Comp Biol 2017; 57:159-167. [PMID: 28881933 DOI: 10.1093/icb/icx057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SYNOPSIS Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same pattern to a lesser degree, although this pattern was not significant. This work bridges the disciplines of biogeography and community ecology to develop tools to better understand the direct and indirect effects of abiotic conditions on ecological communities.
Collapse
Affiliation(s)
- Nina K Lany
- Department of Forestry, and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Phoebe L Zarnetske
- Department of Forestry, and Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
23
|
Scrosati RA, Ellrich JA. Unimodal relationship between small-scale barnacle recruitment and the density of pre-existing barnacle adults. PeerJ 2017; 5:e3444. [PMID: 28603678 PMCID: PMC5463980 DOI: 10.7717/peerj.3444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Recruitment is a key demographic process for population persistence. This paper focuses on barnacle (Semibalanus balanoides) recruitment. In rocky intertidal habitats from the Gulf of St. Lawrence coast of Nova Scotia (Canada), ice scour is common during the winter. At the onset of intertidal barnacle recruitment in early May (after sea ice has fully melted), mostly only adult barnacles and bare substrate are visible at high elevations in wave-exposed habitats. We conducted a multiannual study to investigate if small-scale barnacle recruitment could be predicted from the density of pre-existing adult barnacles. In a year that exhibited a wide adult density range (ca. 0–130 individuals dm−2), the relationship between adult density and recruit density (scaled to the available area for recruitment, which excluded adult barnacles) was unimodal. In years that exhibited a lower adult density range (ca. 0–40/50 individuals dm−2), the relationship between adult and recruit density was positive and resembled the lower half of the unimodal relationship. Overall, adult barnacle density was able to explain 26–40% of the observed variation in recruit density. The unimodal adult–recruit relationship is consistent with previously documented intraspecific interactions. Between low and intermediate adult densities, the positive nature of the relationship relates to the previously documented fact that settlement-seeking larvae are chemically and visually attracted to adults, which might be important for local population persistence. Between intermediate and high adult densities, where population persistence may be less compromised and the abundant adults may limit recruit growth and survival, the negative nature of the relationship suggests that adult barnacles at increasingly high densities stimulate larvae to settle elsewhere. The unimodal pattern may be especially common on shores with moderate rates of larval supply to the shore, because high rates of larval supply may swamp the coast with settlers, decoupling recruit density from local adult abundance.
Collapse
Affiliation(s)
- Ricardo A. Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Julius A. Ellrich
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
24
|
Allgeier JE, Burkepile DE, Layman CA. Animal pee in the sea: consumer-mediated nutrient dynamics in the world's changing oceans. GLOBAL CHANGE BIOLOGY 2017; 23:2166-2178. [PMID: 28217892 DOI: 10.1111/gcb.13625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 05/13/2023]
Abstract
Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top-down changes for biogeochemical cycles via consumer-mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom-up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity-ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems.
Collapse
Affiliation(s)
- Jacob E Allgeier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
25
|
Menge BA, Bracken MES, Lubchenco J, Leslie HM. Alternative state? Experimentally induced
F
ucus
canopy persists 38 yr in an
A
scophyllum‐
dominated community. Ecosphere 2017. [DOI: 10.1002/ecs2.1725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bruce A. Menge
- Department of Integrative Biology Oregon State University Cordley Hall 3029 Corvallis Oregon 97331 USA
| | - Matthew E. S. Bracken
- Department of Ecology and Evolutionary Biology University of California 321 Steinhaus Hall Irvine California 92697 USA
| | - Jane Lubchenco
- Department of Integrative Biology Oregon State University Cordley Hall 3029 Corvallis Oregon 97331 USA
| | - Heather M. Leslie
- Darling Marine Center and School of Marine Sciences University of Maine 193 Clarks Cove Road Walpole Maine 04573 USA
| |
Collapse
|
26
|
Valdivia N, Segovia-Rivera V, Fica E, Bonta CC, Aguilera MA, Broitman BR. Context-dependent functional dispersion across similar ranges of trait space covered by intertidal rocky shore communities. Ecol Evol 2017; 7:1882-1891. [PMID: 28331595 PMCID: PMC5355202 DOI: 10.1002/ece3.2762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 11/23/2022] Open
Abstract
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected.
Collapse
Affiliation(s)
- Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Valdivia Chile
| | - Viviana Segovia-Rivera
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Eliseo Fica
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile
| | - César C Bonta
- Instituto de Ciencias Marinas y Limnológicas Facultad de Ciencias Universidad Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Moisés A Aguilera
- Departamento de Biología Marina Facultad de Ciencias del Mar Universidad Católica del Norte Coquimbo Chile
| | - Bernardo R Broitman
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA) Universidad Católica del Norte Coquimbo Chile
| |
Collapse
|
27
|
Massol F, Altermatt F, Gounand I, Gravel D, Leibold MA, Mouquet N. How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. OIKOS 2017. [DOI: 10.1111/oik.03893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- François Massol
- CNRS, Univ. de Lille, UMR 8198 Evo-Eco-Paleo, SPICI group; FR-59000 Lille France
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Isabelle Gounand
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Dominique Gravel
- Dépt de biologie; Univ. de Sherbrooke, Sherbrooke, Canada, and: Québec Center for Biodiversity Science; Quebec Canada
| | - Mathew A. Leibold
- Dept of Integrative Biology; Univ. of Texas at Austin; Austin TX USA
| | - Nicolas Mouquet
- 7 UMR MARBEC (MARine Biodiversity, Exploitation and Conservation); Univ. de Montpellier; Montpellier France
| |
Collapse
|
28
|
Pennings SC, Zengel S, Oehrig J, Alber M, Bishop TD, Deis DR, Devlin D, Hughes AR, Hutchens JJ, Kiehn WM, McFarlin CR, Montague CL, Powers S, Proffitt CE, Rutherford N, Stagg CL, Walters K. Marine ecoregion and
D
eepwater
H
orizon
oil spill affect recruitment and population structure of a salt marsh snail. Ecosphere 2016. [DOI: 10.1002/ecs2.1588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Steven C. Pennings
- Department of Biology and Biochemistry University of Houston Houston Texas 77204 USA
| | - Scott Zengel
- Research Planning, Inc. (RPI) Tallahassee Florida 32303 USA
| | | | - Merryl Alber
- Department of Marine Sciences University of Georgia Athens Georgia 30602 USA
| | - T. Dale Bishop
- No Bones Coastal Biological Consultants, LLC 1114 Hyatt Avenue Murrells Inlet South Carolina 29576 USA
| | | | - Donna Devlin
- Department of Biological Sciences Harbor Branch Oceanographic Institution Florida Atlantic University 5600 U.S. 1 N Fort Pierce Florida 34946 USA
| | - A. Randall Hughes
- Marine and Environmental Science Northeastern University Nahant Massachusetts 01908 USA
| | - John J. Hutchens
- Department of Biology Coastal Carolina University PO Box 261954 Conway South Carolina 29528 USA
| | | | | | - Clay L. Montague
- Howard T. Odum Center For Wetlands Department of Environmental Engineering Sciences University of Florida Gainesville Florida 32611 USA
| | - Sean Powers
- Department of Marine Sciences University of South Alabama Mobile Alabama 36688 USA
| | - C. Edward Proffitt
- Department of Biological Sciences Harbor Branch Oceanographic Institution Florida Atlantic University 5600 U.S. 1 N Fort Pierce Florida 34946 USA
| | - Nicolle Rutherford
- Emergency Response Division National Oceanic and Atmospheric Administration Seattle Washington 98115 USA
| | - Camille L. Stagg
- U.S. Geological Survey Wetland and Aquatic Research Center Lafayette Louisiana 70506 USA
| | - Keith Walters
- Department of Marine Science Coastal Carolina University PO Box 261954 Conway South Carolina 29528 USA
| |
Collapse
|
29
|
Liebowitz DM, Nielsen KJ, Dugan JE, Morgan SG, Malone DP, Largier JL, Hubbard DM, Carr MH. Ecosystem connectivity and trophic subsidies of sandy beaches. Ecosphere 2016. [DOI: 10.1002/ecs2.1503] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Dina M. Liebowitz
- California Ocean Science Trust 1330 Broadway, Suite 1530 Oakland California 94612 USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95060 USA
| | - Karina J. Nielsen
- Department of Biology Romberg Tiburon Center for Environmental Studies San Francisco State University Tiburon California 94920 USA
| | - Jenifer E. Dugan
- Marine Science Institute University of California Santa Barbara Santa Barbara California 93106 USA
| | - Steven G. Morgan
- Department of Environmental Science and Policy Bodega Marine Laboratory University of California Davis Bodega Bay California 94923 USA
| | - Daniel P. Malone
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95060 USA
| | - John L. Largier
- Department of Environmental Science and Policy Bodega Marine Laboratory University of California Davis Bodega Bay California 94923 USA
| | - David M. Hubbard
- Marine Science Institute University of California Santa Barbara Santa Barbara California 93106 USA
| | - Mark H. Carr
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California 95060 USA
| |
Collapse
|
30
|
Scrosati RA, Ellrich JA. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005-2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ 2016; 4:e2623. [PMID: 27812421 PMCID: PMC5088617 DOI: 10.7717/peerj.2623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
On the Gulf of St. Lawrence coast of Nova Scotia (Canada), recruitment of the barnacle Semibalanus balanoides occurs in May and June. Every year in June between 2005 and 2016, we recorded recruit density for this barnacle at the same wave-exposed rocky intertidal location on this coast. During these 12 years, mean recruit density was lowest in 2015 (198 recruits dm-2) and highest in 2007 (969 recruits dm-2). The highest recruit density observed in a single quadrat was 1,457 recruits dm-2 (in 2011) and the lowest was 34 recruits dm-2 (in 2015). Most barnacle recruits appear during May, which suggests that most pelagic larvae (which develop over 5-6 weeks before benthic settlement) are in the water column in April. An AICc-based model selection approach identified sea surface temperature (SST) in April and the abundance of phytoplankton (food for barnacle larvae, measured as chlorophyll-a concentration -Chl-a-) in April as good explanatory variables. Together, April SST and April Chl-a explained 51% of the observed interannual variation in recruit density, with an overall positive influence. April SST was positively related to March-April air temperature (AT). April Chl-a was negatively related to the April ratio between the number of days with onshore winds (which blow from phytoplankton-limited offshore waters) and the number of days with alongshore winds (phytoplankton is more abundant on coastal waters). Therefore, this study suggests that climatic processes affecting April SST and April Chl-a indirectly influence intertidal barnacle recruitment by influencing larval performance.
Collapse
Affiliation(s)
- Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University , Antigonish, Nova Scotia , Canada
| | - Julius A Ellrich
- Department of Biology, St. Francis Xavier University , Antigonish, Nova Scotia , Canada
| |
Collapse
|
31
|
Wagner T, Fergus CE, Stow CA, Cheruvelil KS, Soranno PA. The statistical power to detect cross‐scale interactions at macroscales. Ecosphere 2016. [DOI: 10.1002/ecs2.1417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tyler Wagner
- U.S. Geological SurveyPennsylvania Cooperative Fish and Wildlife Research UnitThe Pennsylvania State University University Park Pennsylvania 16802 USA
| | - C. Emi Fergus
- Department of Fisheries and WildlifeMichigan State University East Lansing Michigan 48824 USA
| | - Craig A. Stow
- NOAA Great Lakes Laboratory Ann Arbor Michigan 48108 USA
| | - Kendra S. Cheruvelil
- Department of Fisheries and WildlifeMichigan State University East Lansing Michigan 48824 USA
- Lyman Briggs CollegeMichigan State University East Lansing Michigan 48825 USA
| | - Patricia A. Soranno
- Department of Fisheries and WildlifeMichigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
32
|
Sepúlveda RD, Valdivia N. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake. PLoS One 2016; 11:e0157910. [PMID: 27383744 PMCID: PMC4934883 DOI: 10.1371/journal.pone.0157910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
Determining the effects of unpredictable disturbances on dynamic ecological systems is challenged by the paucity of appropriate temporal and spatial coverage of data. On 27 February 2010, an 8.8 Mw mega-earthquake and tsunami struck central Chile and caused coastal land-level changes, massive damage to coastal infrastructure, and widespread mortality of coastal organisms. Wave-exposed sandy beaches showed significant changes of species abundances from before to after the earthquake, but the highly dynamic biotic and abiotic conditions of these habitats make difficult to draw clear-cut conclusions from these patterns. Here, we analysed a beyond-BACI (Before-After Control-Impact) sampling design to test whether the effects of the Maule earthquake on sandy-shore species diversity, abundance, and structure were heterogeneous along the shore. Invertebrate species abundances were quantified before (i.e. February 2010) and after (i.e. March 2010, September 2010, and March 2011) the earthquake at three sandy shores randomly located within the earthquake rupture area and three sites within a “control” area located >400 km southward from epicentre. Immediately after the earthquake took place, the three sites located in the rupture area showed anomalous beach-profile uplifts that did not comply with the erosion (i.e. “negative” uplifts) that regularly occurs during late summer in the region. Species richness, abundance, and community structure significantly varied from before to after the strike, but these patterns of change varied among sites within both areas. Only the site with the strongest and persistent beach-profile uplift within the rupture area showed significant concomitant changes in species richness and community structure; after 13 months, this community showed a similar multivariate structure to the before-disturbance state. This site, in particular, was located in the section of the rupture area that received most of the impact of the after-earthquake tsunami. Therefore, our results suggest that the effects of the Maule mega-earthquake on the ecological communities were spatially heterogeneous and highly localised. We suggest that high mobility and other species’ adaptations to the dynamic environmental conditions of sandy beaches might explain the comparatively high resilience of these assemblages. With this work we hope to motivate further experimental research on the role of individual- and population-level properties in the response of sandy-beach communities to interacting sources of disturbances.
Collapse
Affiliation(s)
- Roger D. Sepúlveda
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro de Investigación: South American Research Group on Coastal Ecosystems (SARCE), Universidad Simón Bolívar, Caracas, Venezuela
- * E-mail:
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro de Investigación FONDAP: Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
33
|
Fuentes-Santos I, Labarta U, Álvarez-Salgado XA, Fernández-Reiriz MJ. Solar irradiance dictates settlement timing and intensity of marine mussels. Sci Rep 2016; 6:29405. [PMID: 27384527 PMCID: PMC4935941 DOI: 10.1038/srep29405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 11/08/2022] Open
Abstract
Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance.
Collapse
Affiliation(s)
- Isabel Fuentes-Santos
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Marinas (IIM), C/Eduardo Cabello 6, 36208 Vigo, Spain
| | - Uxío Labarta
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Marinas (IIM), C/Eduardo Cabello 6, 36208 Vigo, Spain
| | - X. Antón Álvarez-Salgado
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Marinas (IIM), C/Eduardo Cabello 6, 36208 Vigo, Spain
| | - Mª José Fernández-Reiriz
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigaciones Marinas (IIM), C/Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
34
|
Kroeker KJ, Sanford E, Rose JM, Blanchette CA, Chan F, Chavez FP, Gaylord B, Helmuth B, Hill TM, Hofmann GE, McManus MA, Menge BA, Nielsen KJ, Raimondi PT, Russell AD, Washburn L. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol Lett 2016; 19:771-9. [PMID: 27151381 DOI: 10.1111/ele.12613] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Abstract
Although theory suggests geographic variation in species' performance is determined by multiple niche parameters, little consideration has been given to the spatial structure of interacting stressors that may shape local and regional vulnerability to global change. Here, we use spatially explicit mosaics of carbonate chemistry, food availability and temperature spanning 1280 km of coastline to test whether persistent, overlapping environmental mosaics mediate the growth and predation vulnerability of a critical foundation species, the mussel Mytilus californianus. We find growth was highest and predation vulnerability was lowest in dynamic environments with frequent exposure to low pH seawater and consistent food. In contrast, growth was lowest and predation vulnerability highest when exposure to low pH seawater was decoupled from high food availability, or in exceptionally warm locations. These results illustrate how interactions among multiple drivers can cause unexpected, yet persistent geographic mosaics of species performance, interactions and vulnerability to environmental change.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Eric Sanford
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA.,Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Jeremy M Rose
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Carol A Blanchette
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | | | - Brian Gaylord
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA.,Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Brian Helmuth
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Tessa M Hill
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA.,Department of Earth & Planetary Sciences, University of California Davis, Davis, CA, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Margaret A McManus
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Karina J Nielsen
- Romberg Tiburon Center, San Francisco State University, San Francisco, CA, USA
| | - Peter T Raimondi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ann D Russell
- Department of Earth & Planetary Sciences, University of California Davis, Davis, CA, USA
| | - Libe Washburn
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA.,Department of Geography, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
35
|
Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and Temperature Effects from Long-Term Research. PLoS One 2016; 11:e0153994. [PMID: 27144391 PMCID: PMC4856327 DOI: 10.1371/journal.pone.0153994] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Sea star wasting disease (SSWD) first appeared in Oregon in April 2014, and by June had spread to most of the coast. Although delayed compared to areas to the north and south, SSWD was initially most intense in north and central Oregon and spread southward. Up to 90% of individuals showed signs of disease from June-August 2014. In rocky intertidal habitats, populations of the dominant sea star Pisaster ochraceus were rapidly depleted, with magnitudes of decline in density among sites ranging from -2x to -9x (59 to 84%) and of biomass from -2.6x to -15.8x (60 to 90%) by September 2014. The frequency of symptomatic individuals declined over winter and persisted at a low rate through the spring and summer 2015 (~5-15%, at most sites) and into fall 2015. Disease expression included six symptoms: initially with twisting arms, then deflation and/or lesions, lost arms, losing grip on substrate, and final disintegration. SSWD was disproportionally higher in orange individuals, and higher in tidepools. Although historically P. ochraceus recruitment has been low, from fall 2014 to spring 2015 an unprecedented surge of sea star recruitment occurred at all sites, ranging from ~7x to 300x greater than in 2014. The loss of adult and juvenile individuals in 2014 led to a dramatic decline in predation rate on mussels compared to the previous two decades. A proximate cause of wasting was likely the "Sea Star associated Densovirus" (SSaDV), but the ultimate factors triggering the epidemic, if any, remain unclear. Although warm temperature has been proposed as a possible trigger, SSWD in Oregon populations increased with cool temperatures. Since P. ochraceus is a keystone predator that can strongly influence the biodiversity and community structure of the intertidal community, major community-level responses to the disease are expected. However, predicting the specific impacts and time course of change across west coast meta-communities is difficult, suggesting the need for detailed coast-wide investigation of the effects of this outbreak.
Collapse
|