1
|
Zhou G, Liu JX, Liu J, Yang J, Qiao X, Cao M, Jiang M. Ants may buffer the Janzen-Connell effect in a tropical forest in Southwest China. Ecology 2024; 105:e4380. [PMID: 39031002 DOI: 10.1002/ecy.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/11/2024] [Accepted: 05/24/2024] [Indexed: 07/22/2024]
Abstract
Mutualistic symbioses between ants and plants are widespread in nature. Ants can deter unwanted pests and provide protection for plants in return for food or housing rewards. Using a long-term demographic dataset in a tropical seasonal rain forest in Southwest China, we found that associations with ants positively influenced seedling survival and adult growth, and also, species with extrafloral nectaries experienced weaker conspecific negative density dependence compared with species without extrafloral nectaries. Furthermore, we found strong evidence suggesting that species in our forest experienced conspecific density dependence, which we interpreted as heavy pest pressure that may drive the development of anti-pest symbioses such as the plant-ant relationship. Our findings suggest that ants and conspecific neighbors play important but inverse roles on plant survival and growth and that ants can buffer tree neighborhood interactions in this tropical forest.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jikun Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
LaManna JA, Hartig F, Myers JA, Freckleton RP, Detto M, Surendra A, Doolittle CJ, Bachelot B, Bagchi R, Comita LS, DeFilippis DM, Huanca-Nunez N, Hülsmann L, Jevon FV, Johnson DJ, Krishnadas M, Magee LJ, Mangan SA, Milici VR, Murengera ALB, Schnitzer SA, Smith DJB, Stein C, Sullivan MK, Torres E, Umaña MN, Delavaux CS. Consequences of Local Conspecific Density Effects for Plant Diversity and Community Dynamics. Ecol Lett 2024; 27:e14506. [PMID: 39354892 DOI: 10.1111/ele.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 10/03/2024]
Abstract
Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics.
Collapse
Affiliation(s)
- Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert P Freckleton
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Akshay Surendra
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Cole J Doolittle
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Bénédicte Bachelot
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - David M DeFilippis
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Lisa Hülsmann
- Ecosystem Analysis and Simulation (EASI) Lab, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Fiona V Jevon
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Meghna Krishnadas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lukas J Magee
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Scott A Mangan
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, USA
| | - Valerie R Milici
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel J B Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Claudia Stein
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, Alabama, USA
| | - Megan K Sullivan
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Ethan Torres
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
3
|
Singh JP, Bottos EM, Van Hamme JD, Fraser LH. Microbial composition and function in reclaimed mine sites along a reclamation chronosequence become increasingly similar to undisturbed reference sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170996. [PMID: 38369136 DOI: 10.1016/j.scitotenv.2024.170996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Mine reclamation historically focuses on enhancing plant coverage to improve below and aboveground ecology. However, there is a great need to study the role of soil microorganisms in mine reclamation, particularly long-term studies that track the succession of microbial communities. Here, we investigate the trajectory of microbial communities of mining sites reclaimed between three and 26 years. We used high-throughput amplicon sequencing to characterize the bacterial and fungal communities. We quantified how similar the reclaimed sites were to unmined, undisturbed reference sites and explored the trajectory of microbial communities along the reclamation chronosequence. We also examined the ecological processes that shape the assembly of bacterial communities. Finally, we investigated the functional potential of the microbial communities through metagenomic sequencing. Our results reveal that the reclamation age significantly impacted the community compositions of bacterial and fungal communities. As the reclamation age increases, bacterial and fungal communities become similar to the unmined, undisturbed reference site, suggesting a favorable succession in microbial communities. The bacterial community assembly was also significantly impacted by reclamation age and was primarily driven by stochastic processes, indicating a lesser influence of environmental properties on the bacterial community. Furthermore, our read-based metagenomic analysis showed that the microbial communities' functional potential increasingly became similar to the reference sites. Additionally, we found that the plant richness increased with the reclamation age. Overall, our study shows that both above- and belowground ecological properties of reclaimed mine sites trend towards undisturbed sites with increasing reclamation age. Further, it demonstrates the importance of microbial genomics in tracking the trajectory of ecosystem reclamation.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| | - Eric M Bottos
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - Lauchlan H Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
4
|
Li T, Yang H, Zhang N, Dong L, Wu A, Wu Q, Zhao M, Liu H, Li Y, Wang Y. Synergistic effects of arbuscular mycorrhizal fungi and biochar are highly beneficial to Ligustrum lucidum seedlings in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11214-11227. [PMID: 38217817 DOI: 10.1007/s11356-024-31870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Cadmium (Cd) contamination is a widespread environmental issue. There is a lack of knowledge about the impacts of applying arbuscular mycorrhizal fungi (AMF) and biochar, either alone or in their combination, on alleviating Cd phytotoxicity in Ligustrum lucidum. Therefore, a pot experiment was conducted in a greenhouse, where L. lucidum seedlings were randomly subjected to four regimes of AMF treatments (inoculation with sterilized AMF, with Rhizophagus irregularis, Diversispora versiformis, alone or a mixture of these two fungi), and two regimes of biochar treatments (with or without rice-husk biochar), as well as three regimes of Cd treatments (0, 15, and 150 mg kg-1), to examine the responses of growth, photosynthetic capabilities, soil enzymatic activities, nutritional concentrations, and Cd absorption of L. lucidum plants to the interactive effects of AMF, biochar, and Cd. The results demonstrated that under Cd contaminations, AMF alone significantly increased plant total dry weight, soil pH, and plant nitrogen (N) concentration by 84%, 3.2%, and 13.2%, respectively, and inhibited soil Cd transferring to plant shoot by 42.2%; biochar alone significantly enhanced net photosynthetic rate, soil pH, and soil catalase of non-mycorrhizal plants by 16.4%, 9%, and 11.9%, respectively, and reduced the soil Cd transferring to plant shoot by 44.7%; the additive effect between AMF and biochar greatly enhanced plant total dry weight by 101.9%, and reduced the soil Cd transferring to plant shoot by 51.6%. Furthermore, dual inoculation with D. versiformis and R. irregularis conferred more benefits on plants than the single fungal species did. Accordingly, amending Cd-contaminated soil with the combination of mixed-fungi inoculation and biochar application performed the best than either AMF or biochar alone. These responses may have been attributed to higher mycorrhizal colonization, soil pH, biomass accumulation, and biomass allocation to the roots, as well as photosynthetic capabilities. In conclusion, the combined use of mixed-fungi involving D. versiformis and R. irregularis and biochar addition had significant synergistic effects on enhancing plant performance and reducing Cd uptake of L. lucidum plants in Cd-contaminated soil.
Collapse
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huan Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Naili Zhang
- State Key Laboratory of Efficient Production of Forest Resources and the Key Laboratory of Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Lijia Dong
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, China
| | - Aiping Wu
- Ecology Department, College of Environment and Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha, 410128, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Mingshui Zhao
- Zhejiang Tianmu Mountain National Nature Reserve Administration, Hangzhou, 311311, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Liu M, Wang H, Lin Z, Ke J, Zhang P, Zhang F, Ru D, Zhang L, Xiao Y, Liu X. Arbuscular mycorrhizal fungi inhibit necrotrophic, but not biotrophic, aboveground plant pathogens: a meta-analysis and experimental study. THE NEW PHYTOLOGIST 2024; 241:1308-1320. [PMID: 37964601 DOI: 10.1111/nph.19392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023]
Abstract
Microbial mutualists can profoundly modify host species ecology and evolution, by extension altering interactions with other microbial species, including pathogens. Arbuscular mycorrhizal fungi (AMF) may moderate infections by pathogens, but the direction and strength of these effects can be idiosyncratic. To assess how the introduction of AMF impacts the incidence and severity of aboveground plant diseases (i.e. 'disease impact'), we conducted a meta-analysis of 130 comparisons derived from 69 published studies. To elucidate the potential mechanisms underlying the influence of AMF on pathogens, we conducted three glasshouse experiments involving six non-woody plant species, yielded crucial data on leaf nutrient composition, plant defense compounds, and transcriptomes. Our meta-analysis revealed that the inoculation of AMF lead to a reduction in disease impact. More precisely, AMF inoculation was associated with a decrease in necrotrophic diseases, while no significant impact on biotrophic diseases. Chemical and transcriptome analyses suggested that these effects may be driven by AMF regulation of jasmonic acid and salicylic acid signaling pathways in glasshouse experiments. However, changes in plant nutritional status and secondary chemicals may also regulate disease impact. These results emphasize the importance of incorporating pathogen life history when predicting how microbial mutualisms affect disease impact.
Collapse
Affiliation(s)
- Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongqian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Junsheng Ke
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
Jiang F, Bennett JA, Crawford KM, Heinze J, Pu X, Luo A, Wang Z. Global patterns and drivers of plant-soil microbe interactions. Ecol Lett 2024; 27:e14364. [PMID: 38225803 DOI: 10.1111/ele.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri M Crawford
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| | - Johannes Heinze
- Department of Biodiversity, Heinz Sielmann Foundation, Wustermark (OT Elstal), Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Xucai Pu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Delavaux CS, Angst JK, Espinosa H, Brown M, Petticord DF, Schroeder JW, Broders K, Herre EA, Bever JD, Crowther TW. Fungal community dissimilarity predicts plant-soil feedback strength in a lowland tropical forest. Ecology 2024; 105:e4200. [PMID: 37897325 DOI: 10.1002/ecy.4200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/09/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
Soil microbes impact plant community structure and diversity through plant-soil feedbacks. However, linking the relative abundance of plant pathogens and mutualists to differential plant recruitment remains challenging. Here, we tested for microbial mediation of pairwise feedback using a reciprocal transplant experiment in a lowland tropical forest in Panama paired with amplicon sequencing of soil and roots. We found evidence that plant species identity alters the microbial community, and these changes in microbial composition alter subsequent growth and survival of conspecific plants. We also found that greater community dissimilarity between species in their arbuscular mycorrhizal and nonpathogenic fungi predicted increased positive feedback. Finally, we identified specific microbial taxa across our target functional groups that differentially accumulated under conspecific settings. Collectively, these findings clarify how soil pathogens and mutualists mediate net feedback effects on plant recruitment, with implications for management and restoration.
Collapse
Affiliation(s)
- Camille S Delavaux
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, USA
- Kansas Biological Survey, The University of Kansas, Lawrence, Kansas, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Janika K Angst
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - Hilario Espinosa
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Sistema Nacional de Investigación, SENACYT, Panama City, Panama
- Universidad de Panama, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Botánica, Panama City, Panama
- Coiba Scientific Station (Coiba AIP), Panama City, Panama
| | - Makenna Brown
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Daniel F Petticord
- Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Kirk Broders
- Smithsonian Tropical Research Institute, Panama City, Panama
- Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, Illinois, USA
| | - Edward A Herre
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - James D Bever
- Kansas Biological Survey, The University of Kansas, Lawrence, Kansas, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| |
Collapse
|
8
|
Wood KEA, Kobe RK, Ibáñez I, McCarthy-Neumann S. Tree seedling functional traits mediate plant-soil feedback survival responses across a gradient of light availability. PLoS One 2023; 18:e0293906. [PMID: 38011125 PMCID: PMC10681222 DOI: 10.1371/journal.pone.0293906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
1. Though not often examined together, both plant-soil feedbacks (PSFs) and functional traits have important influences on plant community dynamics and could interact. For example, seedling functional traits could impact seedling survivorship responses to soils cultured by conspecific versus heterospecific adults. Furthermore, levels of functional traits could vary with soil culturing source. In addition, these relationships might shift with light availability, which can affect trait values, microbe abundance, and whether mycorrhizal colonization is mutualistic or parasitic to seedlings. 2. To determine the extent to which functional traits mediate PSFs via seedling survival, we conducted a field experiment. We planted seedlings of four temperate tree species across a gradient of light availability and into soil cores collected beneath conspecific (sterilized and live) and heterospecific adults. We monitored seedling survival twice per week over one growing season, and we randomly selected subsets of seedlings to measure mycorrhizal colonization and phenolics, lignin, and NSC levels at three weeks. 3. Though evidence for PSFs was limited, Acer saccharum seedlings exhibited positive PSFs (i.e., higher survival in conspecific than heterospecific soils). In addition, soil microbes had a negative effect on A. saccharum and Prunus serotina seedling survival, with reduced survival in live versus sterilized conspecific soil. In general, we found higher trait values (measured amounts of a given trait) in conspecific than heterospecific soils and higher light availability. Additionally, A. saccharum survival increased with higher levels of phenolics, which were higher in conspecific soils and high light. Quercus alba survival decreased with higher AMF colonization. 4. We demonstrate that functional trait values in seedlings as young as three weeks vary in response to soil source and light availability. Moreover, seedling survivorship was associated with trait values for two species, despite both drought and heavy rainfall during the growing season that may have obscured survivorship-trait relationships. These results suggest that seedling traits could have an important role in mediating the effects of local soil source and light levels on seedling survivorship and thus plant traits could have an important role in PSFs.
Collapse
Affiliation(s)
- Katherine E. A. Wood
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Richard K. Kobe
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah McCarthy-Neumann
- Department of Forestry, Michigan State University, East Lansing, Michigan, United States of America
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, United States of America
| |
Collapse
|
9
|
Delavaux CS, LaManna JA, Myers JA, Phillips RP, Aguilar S, Allen D, Alonso A, Anderson-Teixeira KJ, Baker ME, Baltzer JL, Bissiengou P, Bonfim M, Bourg NA, Brockelman WY, Burslem DFRP, Chang LW, Chen Y, Chiang JM, Chu C, Clay K, Cordell S, Cortese M, den Ouden J, Dick C, Ediriweera S, Ellis EC, Feistner A, Freestone AL, Giambelluca T, Giardina CP, Gilbert GS, He F, Holík J, Howe RW, Huaraca Huasca W, Hubbell SP, Inman F, Jansen PA, Johnson DJ, Kral K, Larson AJ, Litton CM, Lutz JA, Malhi Y, McGuire K, McMahon SM, McShea WJ, Memiaghe H, Nathalang A, Norden N, Novotny V, O'Brien MJ, Orwig DA, Ostertag R, Parker GG'J, Pérez R, Reynolds G, Russo SE, Sack L, Šamonil P, Sun IF, Swanson ME, Thompson J, Uriarte M, Vandermeer J, Wang X, Ware I, Weiblen GD, Wolf A, Wu SH, Zimmerman JK, Lauber T, Maynard DS, Crowther TW, Averill C. Mycorrhizal feedbacks influence global forest structure and diversity. Commun Biol 2023; 6:1066. [PMID: 37857800 PMCID: PMC10587352 DOI: 10.1038/s42003-023-05410-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
Collapse
Affiliation(s)
- Camille S Delavaux
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland.
| | - Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Salomón Aguilar
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - David Allen
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Alfonso Alonso
- Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Kristina J Anderson-Teixeira
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Forest Global Earth Observatory, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Matthew E Baker
- Geography & Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
| | | | - Pulchérie Bissiengou
- Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Libreville, Gabon
| | - Mariana Bonfim
- Department of Biology, Temple Ambler Field Station, Temple University, Ambler, PA, USA
| | - Norman A Bourg
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Warren Y Brockelman
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Pathum Thani, Thailand
| | | | - Li-Wan Chang
- Taiwan Forestry Research Institute, Taipei City, Taipei, Taiwan, ROC
| | - Yang Chen
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jyh-Min Chiang
- Department of Life Science, Tunghai University, Taichung City, Taiwan, ROC
| | - Chengjin Chu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Susan Cordell
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI, USA
| | - Mary Cortese
- Department of Biology, Temple Ambler Field Station, Temple University, Ambler, PA, USA
| | - Jan den Ouden
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Christopher Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sisira Ediriweera
- Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Erle C Ellis
- Geography & Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Anna Feistner
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Amy L Freestone
- Department of Biology, Temple Ambler Field Station, Temple University, Ambler, PA, USA
| | - Thomas Giambelluca
- University of Hawaii at Manoa, 1910 East-West Rd., Honolulu, HI, USA
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, USA
| | | | - Gregory S Gilbert
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Jan Holík
- Department of Forest Ecology, Silva Tarouca Research Institute, Průhonice, Czech Republic
| | - Robert W Howe
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA
| | - Walter Huaraca Huasca
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Faith Inman
- Department of Biology, University of Hawaii, Hilo, HI, USA
| | - Patrick A Jansen
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Daniel J Johnson
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, USA
| | - Kamil Kral
- Department of Forest Ecology, Silva Tarouca Research Institute, Průhonice, Czech Republic
| | - Andrew J Larson
- Department of Forest Management, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- The Wilderness Institute, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Creighton M Litton
- University of Hawaii at Manoa, 1910 East-West Rd., Honolulu, HI, USA
- Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, USA
| | - James A Lutz
- The Ecology Center, Utah State University, Logan, UT, USA
- Wildland Resources Department, Utah State University, Logan, UT, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Krista McGuire
- Department of Biology, University of Oregon, Eugene, OR, USA
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, NJ, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Hervé Memiaghe
- Department of Biology, University of Oregon, Eugene, OR, USA
- Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Pathum Thani, Thailand
| | - Natalia Norden
- Programa Ciencias de la Biodiversidad, Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt, Bogota, Colombia
| | - Vojtech Novotny
- Biology Centre, Institute of Entomology, Czech Academy of Sciences, Budějovice, Czech Republic
| | - Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - David A Orwig
- Harvard Forest, Harvard University, Petersham, MA, USA
| | | | | | - Rolando Pérez
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Glen Reynolds
- The Royal Society SEARRP (UK/Malaysia), Kota Kinabalu, Sabah, Malaysia
| | - Sabrina E Russo
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pavel Šamonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Průhonice, Czech Republic
| | - I-Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hsinchu, Taiwan, ROC
| | - Mark E Swanson
- School of the Environment, Washington State University, Pullman, WA, USA
| | | | - Maria Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - John Vandermeer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xihua Wang
- Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ian Ware
- U.S. Forest Service, Institute of Pacific Islands Forestry, Pacific Southwest Research Station, Hilo, HI, USA
| | - George D Weiblen
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Amy Wolf
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA
| | - Shu-Hui Wu
- Botanical Garden Division, Taiwan Forestry Research Institute, Taipei City, Taiwan, ROC
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Thomas Lauber
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | - Daniel S Maynard
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | - Thomas W Crowther
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | - Colin Averill
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| |
Collapse
|
10
|
Xue L, Liu P, Wu A, Dong L, Wu Q, Zhao M, Liu H, Li Y, Zhang N, Wang Y. Resistance of Mycorrhizal Cinnamomum camphora Seedlings to Salt Spray Depends on K + and P Uptake. J Fungi (Basel) 2023; 9:964. [PMID: 37888220 PMCID: PMC10607215 DOI: 10.3390/jof9100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Salt spray is a major environmental issue in coastal areas. Cinnamomum camphora is an economically important tree species that grows in the coastal areas of southern China. Arbuscular mycorrhizal fungi (AMF) can alleviate the detrimental effects of abiotic stress on host plants. However, the mechanism by which AMF mitigates the adverse effects of salt spray on C. camphora remains unclear. A pot experiment was conducted in a greenhouse, where C. camphora seedlings were exposed to four AMF regimes (inoculation with sterilized fungi, with Glomus tortuosum, Funneliformis mosseae, either alone or in combination) and three salt spray regimes (applied with distilled water, 7, and 14 mg NaCl cm-2) in order to investigate the influence on root functional traits and plant growth. The results showed that higher salt spray significantly decreased the K+ uptake, K+/Na+ ratio, N/P ratio, total dry weight, and salinity tolerance of non-mycorrhizal plants by 37.9%, 71%, 27.4%, 12.7%, and 221.3%, respectively, when compared with control plants grown under non-salinity conditions. Mycorrhizal inoculation, particularly with a combination of G. tortuosum and F. mosseae, greatly improved the P uptake, total dry weight, and salinity tolerance of plants grown under higher salt spray conditions by 51.0%, 36.7%, and 130.9%, respectively, when compared with their counterparts. The results show that AMF can alleviate the detrimental effects of salt spray on C. camphora seedlings. Moreover, an enhanced uptake of K+ and P accounted for the resistance of the plants to salt spray. Therefore, pre-inoculation with a combination of G. tortuosum and F. mosseae to improve nutrient acquisition is a potential method of protecting C. camphora plants against salt spray stress in coastal areas.
Collapse
Affiliation(s)
- Lin Xue
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Peng Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Aiping Wu
- Ecology Department, College of Environment and Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China;
| | - Lijia Dong
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China;
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Mingshui Zhao
- Zhejiang Tianmu Mountain National Nature Reserve Administration, Hangzhou 311311, China;
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| | - Naili Zhang
- State Key Laboratory of Efficient Production of Forest Resources and the Key Laboratory of Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; (L.X.); (P.L.); (Q.W.); (H.L.); (Y.L.)
| |
Collapse
|
11
|
Zhang R, Qu S, Zhang B, Gao Y, Xing F. Interactive effects between the invasive weed Stellera chamaejasme and grass: can arbuscular mycorrhizal fungi and fungal pathogens coregulate interspecific relationships? Front Microbiol 2023; 14:1236891. [PMID: 37711687 PMCID: PMC10498474 DOI: 10.3389/fmicb.2023.1236891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
The interaction between poisonous weeds and neighboring plants is complex. Poisonous weeds frequently have a competitive advantage in the interaction between poisonous weeds and neighboring plants. Arbuscular mycorrhizal fungi (AMF) and plant pathogenic fungi (PPF) are closely related to the interspecific relationships of plants. However, the role of AMF and PPF between poisonous weeds and neighboring grasses remains unclear. Here, we designed a pot experiment to determine the interspecific relationship between Leymus chinensis and Stellera chamaejasme and the regulation of AMF and PPF. The results showed that interactive effects between L. chinensis and S. chamaejasme significantly inhibited the aboveground growth of both but promoted the underground growth of L. chinensis. As the proportions of S. chamaejasme increased, the total nitrogen content and pH in the rhizosphere soil of L. chinensis were reduced, the soil pH of S. chamaejasme was reduced, and the relative abundance of AMF in the rhizosphere soil of L. chinensis significantly increased and that of S. chamaejasme decreased considerably. The relative abundances of PPF in the rhizosphere soil of both in the mono-cultures were significantly higher than those in the mixed cultures. Structural equation modeling indicated that soil abiotic (pH and N availability) and biotic (AMF and PPF) factors are major drivers explaining the interactive effects between L. chinensis and S. chamaejasme. We provided new evidence for the interspecific interactions between poisonous weeds and neighboring grasses and revealed the regulatory role of AMF and PPF in the interactive effects of both plants. This study will provide a scientific basis for the prevention and control of poisonous weeds and the vegetation restoration of degraded grasslands in the future.
Collapse
Affiliation(s)
- Ruohui Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Shanmin Qu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Ying Gao
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Fu Xing
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
12
|
Yu J, Niu Y, You Y, Cox CJ, Barrett RL, Trias-Blasi A, Guo J, Wen J, Lu L, Chen Z. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. THE NEW PHYTOLOGIST 2023; 236:1140-1153. [PMID: 36305244 DOI: 10.1111/nph.18289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/22/2022] [Indexed: 05/20/2023]
Abstract
Hybridization caused by frequent environmental changes can lead both to species diversification (speciation) and to speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan-Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence. We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focused on reticulations in the trifoliolate lineage in the HHM region using a population-level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation. Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal-spatial framework. Around the HHM region, at least three hybridization hot spots were identified, one of which showed evidence of ongoing speciation reversal. We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
| | | | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
13
|
Wu Y, Brown A, Ricklefs RE. Host-specific soil microbes contribute to habitat restriction of closely related oaks ( Quercus spp.). Ecol Evol 2022; 12:e9614. [PMID: 36523531 PMCID: PMC9745265 DOI: 10.1002/ece3.9614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Habitat divergence among close relatives is a common phenomenon. Studying the mechanisms behind habitat divergence is fundamental to understanding niche partitioning, species diversification, and other evolutionary processes. Recent studies found that soil microbes regulate the abundance and diversity of plant species. However, it remains unclear whether soil microbes can affect the habitat distributions of plants and drive habitat divergence. To fill in this knowledge gap, we investigated whether soil microbes might restrict habitat distributions of closely related oaks (Quercus spp.) in eastern North America. We performed a soil inoculum experiment using two pairs of sister species (i.e., the most closely related species) that show habitat divergence: Quercus alba (local species) vs. Q. michauxii (foreign), and Q. shumardii (local) vs. Q. acerifolia (foreign). To test whether host-specific soil microbes are responsible for habitat restriction, we investigated the impact of local sister live soil (containing soil microbes associated with local sister species) on the survival and growth of local and foreign species. Second, to test whether habitat-specific soil microbes are responsible for habitat restriction, we examined the effect of local habitat live soil (containing soil microbes within local sister's habitats, but not directly associated with local sister species) on the seedlings of local and foreign species. We found that local sister live soil decreased the survival and biomass of foreign species' seedlings while increasing those of local species, suggesting that host-specific soil microbes could potentially mediate habitat exclusion. In contrast, local habitat live soil did not differentially affect the survival or biomass of the local vs. foreign species. Our study indicates that soil microbes associated with one sister species can suppress the recruitment of the other host species, contributing to the habitat partitioning of close relatives. Considering the complex interactions with soil microbes is essential for understanding the habitat distributions of closely related plants.
Collapse
Affiliation(s)
- Yingtong Wu
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Alicia Brown
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Robert E. Ricklefs
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| |
Collapse
|
14
|
Dai D, Yang J, Wu Y, Zhang W, Wu X, Liu Y, Xing H, Liu Y. Correlation between fine root traits and pathogen richness depends on plant mycorrhizal types. OIKOS 2022. [DOI: 10.1111/oik.09354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Dai
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
| | - Jiarong Yang
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
| | - Yougui Wu
- Fengyangshan‐Baishanzu National Nature Reserve Zhejiang Province China
| | - Wenhua Zhang
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
| | - Xian Wu
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
| | - Yajing Liu
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
| | - Hua Xing
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
| | - Yu Liu
- ECNU‐Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal Univ. Shanghai China
- Shanghai Inst. of Pollution Control and Ecological Security Shanghai China
| |
Collapse
|
15
|
Wang Y, Zhang M, Li S, Li P, Lang Z. Effects of Insect-Resistant Maize HGK60 on Community Diversity of Bacteria and Fungi in Rhizosphere Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:2824. [PMID: 36365278 PMCID: PMC9653938 DOI: 10.3390/plants11212824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The influence of biotech crops on microbial communities in rhizosphere soil is an important issue in biosafety assessments. The transgenic maize HGK60 harboring the Bt cry1Ah gene enhanced the resistance to lepidopteran pests, while the ecological risk of HGK60 maize on rhizosphere microorganisms is unclear. In this study, we comprehensively analyzed the diversity and composition of bacterial and fungal communities in the rhizosphere soil around Bt maize HGK60 and the near-isogenic non-Bt maize ZD958 at four growth stages via a high-throughput sequencing technique. The results showed that HGK60 maize unleashed temporary effects on the bacterial and fungal diversity and richness during the study plant's development, which would be restored after one cycle of plant cultivation due to the application of the same agricultural management. The differences of bacterial and fungal communities were marked by seasonality, while the different growth stage was the important factor as opposed to the cultivar contributing to the shifts in the bacterial and fungal communities' structure. This study will provide useful information regarding the impact of Bt transgenic maize on the soil microbiome and a theoretical basis for the development of a safety assessment approach for Bt maize in China.
Collapse
Affiliation(s)
| | | | | | | | - Zhihong Lang
- Correspondence: ; Tel.: +86-10-82109842; Fax: +86-10-82106142
| |
Collapse
|
16
|
Tree mycorrhizal type mediates conspecific negative density dependence effects on seedling herbivory, growth, and survival. Oecologia 2022; 199:907-918. [PMID: 35920917 DOI: 10.1007/s00442-022-05224-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Tree mycorrhizal type plays an important role in promoting plant species diversity and coexistence, via its mediating role in conspecific negative density dependence (CNDD), i.e., the process by which an individual's performance is impaired by the density of conspecific plants. Previous findings suggest that ectomycorrhizal (EM) tree species are generally less susceptible to CNDD than arbuscular mycorrhizal (AM) tree species, due to the chemical and physical protection that EM fungi provide their host with. We examined how CNDD effects on leaf herbivory, seedling growth, and survival differ between AM and EM seedlings of ten tree species collected over 3 years in an old-growth temperate forest in northeastern China. We found that AM and EM seedlings differed in how conspecific density affected their leaf herbivory, seedling growth, and survival. Specifically, AM seedlings leaf herbivory rates significantly increased with increasing conspecific seedling and adult density, and their growth and survival rates decreased with increasing conspecific adult density, these patterns were, however, absent in EM seedlings. Our work suggests that AM seedlings have a performance disadvantage relative to EM seedlings related to the negative effects from conspecific neighbors. We highlight the importance of integrating information on seedling leaf herbivory, seedling growth, to provide further understanding on potential mechanisms driving differences in CNDD between AM and EM tree seedlings.
Collapse
|
17
|
Yu HW, He WM. Arbuscular Mycorrhizal Fungi Compete Asymmetrically for Amino Acids with Native and Invasive Solidago. MICROBIAL ECOLOGY 2022; 84:131-140. [PMID: 34406446 DOI: 10.1007/s00248-021-01841-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and soil amino acids both affect plant performance. However, little is known about how AMF compete for amino acids with native and invasive congeners. We conducted a factorial experiment (inoculation, native and invasive species, and amino acids) to examine the competition for amino acids between soil microbes and both native and invasive congeners. The competition for amino acids between AMF and invasive Solidago canadensis was weaker than that observed between AMF and native S. decurrens. This asymmetric competition increased the growth advantage of S. canadensis over S. decurrens. The efficacy (biomass production per unit of nitrogen supply) of amino acids compared to ammonium was smaller in S. canadensis than in S. decurrens when both species were grown without inoculation, but the opposite was the case when both species were grown with AMF. AMF and all microbes differentially altered four phenotypic traits (plant height, leaf chlorophyll content, leaf number, and root biomass allocation) and the pathways determining the effects of amino acids on growth advantages. These findings suggest that AMF could enhance plant invasiveness through asymmetric competition for amino acids and that amino acid-driven invasiveness might be differentially regulated by different microbial guilds.
Collapse
Affiliation(s)
- Hong-Wei Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei-Ming He
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Guo X, Wang P, Wang X, Li Y, Ji B. Specific Plant Mycorrhizal Responses Are Linked to Mycorrhizal Fungal Species Interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:930069. [PMID: 35755699 PMCID: PMC9226604 DOI: 10.3389/fpls.2022.930069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 05/21/2023]
Abstract
Effects of arbuscular mycorrhizal fungi (AMF) on plants span the continuum from mutualism to parasitism due to the plant-AMF specificity, which obscures the utilization of AMF in the restoration of degraded lands. Caragana korshinskii, Hedysarum laeve, Caragana microphylla, and Poa annua are the most frequently used plants for revegetation in Kubuqi Desert, China, and the influence of AMF on their re-establishment remains to be explored further. Herein, using a greenhouse experiment, we tested the plant-AMF feedbacks between the four plant species and their conspecific or heterospecific AMF, retrieved from their rhizosphere in the Kubuqi Desert. AMF showed beneficial effects on plant growth for all these plant-AMF pairs. Generally, AMF increased the biomass of C. korshinskii, H. laeve, C. microphylla, and P. annua by 97.6, 50.6, 46.5, and 381.1%, respectively, relative to control. In addition, the AMF-plant specificity was detected. P. annua grew best, but C. microphylla grew worst with conspecific AMF communities. AMF community from P. annua showed the largest beneficial effect on all the plants (with biomass increased by 63.9-734.4%), while the AMF community from C. microphylla showed the least beneficial effect on all the plants (with biomass increased by 9.9-59.1%), except for P. annua (a 292.4% increase in biomass). The magnitude of AMF effects on plant growth was negatively correlated with the complexity of the corresponding AMF co-occurrence networks. Overall, this study suggests that AMF effects on plant growth vary due to plant-AMF specificity. We also observed the broad-spectrum benefits of the native AMF from P. annua, which indicates its potential utilization in the restoration of the desert vegetation.
Collapse
Affiliation(s)
- Xin Guo
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Ping Wang
- Command Center for Integrated Natural Resource Survey, China Geological Survey, Beijing, China
| | - Xinjie Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yaoming Li
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Baoming Ji
- School of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Holík J, Janík D. Seed and seedling predation by vertebrates mediates the effects of adult trees in two temperate tree species. Oecologia 2022; 199:625-636. [PMID: 35661249 DOI: 10.1007/s00442-022-05203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Specialised natural enemies can locally suppress seeds and seedlings near conspecific adults more than far from them. Whilst this is thought to facilitate species coexistence, the relative contribution of multiple enemies to whether heterospecific seeds and seedlings rather than conspecifics perform better beneath a particular adult species remains less clear, especially in regions with spatially extensive monodominant stands. We designed a field exclusion experiment to separate the effects of fungi, insects and vertebrates on the seedling establishment and early survival of two temperate tree species, Fagus sylvatica and Picea abies, in the adult tree monocultures of these species. Our experiment demonstrates the key role of vertebrates in mediating the effects of adult trees on seeds and seedlings. Due to vertebrates and partly insects, Fagus sylvatica seedlings survived worse beneath conspecific than heterospecific adults and were also outperformed by Picea abies seedlings beneath their own adults. Picea abies seedling establishment was higher beneath conspecific than heterospecific adults, but Fagus sylvatica seedlings outperformed them beneath their own adults. The impact of enemies on Picea abies establishment beneath conspecific adults was less clear. Fungi did not influence seedling establishment and survival. Our findings highlight the need to compare enemy impacts on each seedling species beneath conspecific and heterospecific adults with their impacts on conspecific and heterospecific seedlings beneath a particular adult species. Such evaluations can shed more light on the role of enemies in tree communities by identifying the plant-enemy interactions that facilitate species coexistence and those that promote species monodominance.
Collapse
Affiliation(s)
- Jan Holík
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00, Brno, Czech Republic.
- Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - David Janík
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, 602 00, Brno, Czech Republic
| |
Collapse
|
20
|
Liang Y, Pan F, Jiang Z, Li Q, Pu J, Liu K. Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. BMC PLANT BIOLOGY 2022; 22:188. [PMID: 35410135 PMCID: PMC8996662 DOI: 10.1186/s12870-022-03514-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi and roots play important roles in plant nutrient acquisition, especially in nutrient poor and heterogeneous soils. However, whether an accumulation strategy of AM fungi and root exists in such soils of karst shrubland ecosystems remains unclear. Root traits related to nutrient acquisition (root biomass, AM colonisation, root acid phosphatase activity and N2 fixation) were measured in two N2-fixing plants (i.e. Albizia odoratissima (Linn. f.) Benth. and Cajanus cajan (Linn.) Millsp.) that were grown in heterogeneous or homogeneous nutrient (ammonium) soil with and without AM fungi inoculation. RESULTS Both of these plants had higher AM colonisation, root biomass and relative growth rate (RGR), but lower N2 fixation and root acid phosphatase activity in the rhizosphere in the heterogeneous soil environment, than that in the homogeneous soil environment. Plants grown in the AM fungi-inoculated heterogeneous soil environment had increased root biomass and root acid phosphatase activity compared with those grown in soil without inoculation. AM colonisation was negatively correlated with the N2 fixation rate of A. odoratissima, while it was not significantly correlated with the root phosphatase activity. CONCLUSIONS Our results indicated that enhanced AM symbiosis and root biomass increased the absorptive surfaces for nutrient acquisition, highlighting the accumulation strategies of AM and root traits for plant nutrient acquisition in nutrient poor and heterogeneous soils of the karst shrubland ecosystem.
Collapse
Affiliation(s)
- Yueming Liang
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, No.50 Qixing Road, Qixing District, Guilin, 541004, Guangxi, China
| | - Fujing Pan
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, No.12 Jiangan Road, Qixing District, Guilin, 541004, Guangxi, China.
| | - Zhongcheng Jiang
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, No.50 Qixing Road, Qixing District, Guilin, 541004, Guangxi, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, No.50 Qixing Road, Qixing District, Guilin, 541004, Guangxi, China.
- International Research Center On Karst Under the Auspices of UNESCO, No.50 Qixing Road, Qixing District, Guilin, 541004, Guangxi, China.
| | - Junbing Pu
- Key Laboratory of Karst Dynamics, Ministry of Natural and Resources & Guangxi Zhuangzu Autonomy Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, No.50 Qixing Road, Qixing District, Guilin, 541004, Guangxi, China
| | - Kunping Liu
- Huanjiang Observation and Research Station for Karst Eco-Systems, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Huanjiang, 547100, China
| |
Collapse
|
21
|
Segnitz RM, Russo SE, Peay KG. Interactions with soil fungi alter density dependence and neighborhood effects in a locally abundant dipterocarp species. Ecol Evol 2022; 12:e8478. [PMID: 35127017 PMCID: PMC8796921 DOI: 10.1002/ece3.8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators. Intrinsic correlation between proximity to adult conspecifics (i.e., recruitment neighborhood) and local seedling density, arising from dispersal, makes it difficult to separate the independent and interactive factors that contribute to recruitment success. Here, we present a field experiment in which we manipulated both the recruitment neighborhood and seedling density to explore how they interact to influence the growth and survival of Dryobalanops aromatica, a dominant ectomycorrhizal tree species in a Bornean tropical rainforest. First, we found that both local seedling density and recruitment neighborhood had effects on performance of D. aromatica seedlings, though the nature of these impacts varied between growth and survival. Second, we did not find strong evidence that the effect of density on seedling survival is dependent on the presence of conspecific adult trees. However, accumulation of mutualistic fungi beneath conspecifics adults does facilitate establishment of D. aromatica seedlings. In total, our results suggest that recruitment near adult conspecifics was not associated with a performance cost and may have weakly benefitted recruiting seedlings. Positive effects of conspecifics may be a factor facilitating the regional hyperabundance of this species. Synthesis: Our results provide support for the idea that dominant species in diverse forests may escape the localized recruitment suppression that limits abundance in rarer species.
Collapse
Affiliation(s)
- R. Max Segnitz
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Sabrina E. Russo
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - Kabir G. Peay
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
- Woods Institute for the EnvironmentStanfordCaliforniaUSA
| |
Collapse
|
22
|
Kuang J, Han S, Chen Y, Bates CT, Wang P, Shu W. Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest. ISME COMMUNICATIONS 2021; 1:65. [PMID: 36755184 PMCID: PMC9723750 DOI: 10.1038/s43705-021-00072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, "generalist" pathogens are likely segregated, while hosting more abundant unique, "specialist" ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal "fingerprinting" into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.
Collapse
Affiliation(s)
- Jialiang Kuang
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, China.
| | - Shun Han
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Colin T Bates
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
23
|
Teste FP, Laliberté E. A test of the Janzen‐Connell hypothesis in a species‐rich Mediterranean woodland. Ecosphere 2021. [DOI: 10.1002/ecs2.3821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- François P. Teste
- Grupo de Estudios Ambientales IMASL‐CONICET & Universidad Nacional de San Luis Av. Ejercito de los Andes 950 (5700) San Luis Argentina
- School of Biological Sciences The University of Western Australia Crawley Western Australia 6009 Australia
| | - Etienne Laliberté
- School of Biological Sciences The University of Western Australia Crawley Western Australia 6009 Australia
- Département de sciences biologiques Institut de recherche en biologie végétale Centre sur la biodiversité Université de Montréal 4101 Sherbrooke Est Montreal Qubec H1X 2B2 Canada
| |
Collapse
|
24
|
Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat Commun 2021; 12:5686. [PMID: 34584090 PMCID: PMC8478921 DOI: 10.1038/s41467-021-25971-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Plant-soil feedbacks are shaped by microbial legacies that plants leave in the soil. We tested the persistence of these legacies after subsequent colonization by the same or other plant species using 6 typical grassland plant species. Soil fungal legacies were detectable for months, but the current plant effect on fungi amplified in time. By contrast, in bacterial communities, legacies faded away rapidly and bacteria communities were influenced strongly by the current plant. However, both fungal and bacterial legacies were conserved inside the roots of the current plant species and their composition significantly correlated with plant growth. Hence, microbial soil legacies present at the time of plant establishment play a vital role in shaping plant growth even when these legacies have faded away in the soil due the growth of the current plant species. We conclude that soil microbiome legacies are reversible and versatile, but that they can create plant-soil feedbacks via altering the endophytic community acquired during early ontogeny. Legacies of past plant communities are likely to influence plant-soil interactions. Here, the authors report a reciprocal transplant experiment showing that soil microbial legacies shaped by previous plants persist for soil fungi and root endophytes but can be reversed by a next generation of plants for soil bacteria.
Collapse
|
25
|
Ren J, Fang S, Lin G, Lin F, Yuan Z, Ye J, Wang X, Hao Z, Fortunel C. Tree growth response to soil nutrients and neighborhood crowding varies between mycorrhizal types in an old-growth temperate forest. Oecologia 2021; 197:523-535. [PMID: 34542674 DOI: 10.1007/s00442-021-05034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Forest dynamics are shaped by both abiotic and biotic factors. Trees associating with different types of mycorrhizal fungi differ in nutrient use and dominate in contrasting environments, but it remains unclear whether they exhibit differential growth responses to local abiotic and biotic gradients where they co-occur. We used 9-year tree census data in a 25-ha old-growth temperate forest in Northeast China to examine differences in tree growth response to soil nutrients and neighborhood crowding between tree species associating with arbuscular mycorrhizal (AM), ectomycorrhizal (EM), and dual-mycorrhizal (AEM) fungi. In addition, we tested the role of individual-level vs species-level leaf traits in capturing differences in tree growth response to soil nutrients and neighborhood crowding across mycorrhizal types. Across 25 species, soil nutrients decreased AM tree growth, while neighborhood crowding reduced both AM and EM tree growth, and neither soil nor neighbors impacted AEM tree growth. Across mycorrhizal types, individual-level traits were stronger predictors of tree growth than species-level traits. However, most traits poorly mediated tree growth response to soil nutrients and neighborhood crowding. Our findings indicate that mycorrhizal types strongly shape differences in tree growth response to local soil and crowding gradients, and suggest that including plant-mycorrhizae associations in future work offers great potential to improve our understanding of forest dynamics.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Shuai Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guigang Lin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fei Lin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zuoqiang Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ji Ye
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xugao Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhanqing Hao
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China. .,Research Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| |
Collapse
|
26
|
Germain SJ, Lutz JA. Shared friends counterbalance shared enemies in old forests. Ecology 2021; 102:e03495. [PMID: 34309021 DOI: 10.1002/ecy.3495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant-soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large-diameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.
Collapse
Affiliation(s)
- Sara J Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| |
Collapse
|
27
|
Kuyper TW. Networks of friends and foes and the fate of tree seedlings. THE NEW PHYTOLOGIST 2021; 230:1688-1689. [PMID: 33843064 DOI: 10.1111/nph.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
28
|
Liang M, Shi L, Burslem DFRP, Johnson D, Fang M, Zhang X, Yu S. Soil fungal networks moderate density-dependent survival and growth of seedlings. THE NEW PHYTOLOGIST 2021; 230:2061-2071. [PMID: 33506513 DOI: 10.1111/nph.17237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees. Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density-dependent effects on seedling growth and survival. Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi. Our findings reveal a critical role of common fungal networks in mitigating negative density-dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.
Collapse
Affiliation(s)
- Minxia Liang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liuqing Shi
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Miao Fang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinyi Zhang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
29
|
Jin H, Yuan Y, Li J. Host functional traits affect plant responses to pathogen stress: A meta-analysis. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2021.103703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Toju H. Aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate tree community assembly. Oecologia 2021; 195:773-784. [PMID: 33598833 DOI: 10.1007/s00442-021-04868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
Ectomycorrhizal (EcM) tree species often become more dominant than arbuscular mycorrhizal (AM) tree species in temperate forests, but they generally coexist. Theory predicts that ecological feedback mediated by aboveground herbivory and/or belowground microbes could explain these dominance/coexistence patterns. An experimental test of how aboveground/belowground organisms associated with AM/EcM trees mediate ecological feedbacks has been lacking at the community-level. By establishing AM and EcM tree sapling assemblages in mesocosms and then introducing seedlings of each type in a reciprocal planting experiment, we compared seedling performance under varying sapling species (conspecifics, heterospecifics within the same and different mycorrhizal types), using traits that reflect either aboveground herbivory-mediated feedback or belowground fungal-mediated feedback or both. When examining seedling traits that reflect aboveground herbivory-mediated feedbacks (i.e., foliar damage), AM plants tended to experience less foliar damage and EcM plants more damage under conspecific versus heterospecific saplings within the same mycorrhizal types, and aboveground herbivory-mediated feedback was species-specific rather than mycorrhizal type-specific. Conversely, when examining traits that reflect belowground fungal-mediated feedbacks, both AM and EcM plant species often exhibited mycorrhizal type-specific feedbacks (e.g., greater aboveground biomass under the same versus different mycorrhizal-type saplings) rather than species-specific feedbacks. Furthermore, tree species affected by herbivory-mediated feedback were less affected by belowground feedback, indicating that the relative importance of the feedbacks varied among plant species. Analysis of plant-associated organisms verified that the feedback outcomes corresponded with species accumulation of belowground fungi (but not of aboveground herbivores). Thus, aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate temperate tree diversity.
Collapse
Affiliation(s)
- Kohmei Kadowaki
- Field Science Education and Research Center, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan. .,The Hakubi Center for Advanced Research, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan.
| | - Satoshi Yamamoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Yoshida-nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Akifumi S Tanabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Hirano 2 509-3, Otsu, 520-2113, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
31
|
Qin F, Yu S. Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:616726. [PMID: 33643349 PMCID: PMC7907608 DOI: 10.3389/fpls.2021.616726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Mixed-species forest plantation is a sound option to facilitate ecological restoration, plant diversity and ecosystem functions. Compatible species combinations are conducive to reconstruct plant communities that can persist at a low cost without further management and even develop into natural forest communities. However, our understanding of how the compatibility of mycorrhizal types mediates species coexistence is still limited, especially in a novel agroforestry system. Here, we assessed the effects of mycorrhizal association type on the survival and growth of native woody species in mixed-species Eucalyptus plantations. To uncover how mycorrhizal type regulates plant-soil feedbacks, we first conducted a pot experiments by treating distinct mycorrhizal plants with soil microbes from their own or other mycorrhizal types. We then compared the growth response of arbuscular mycorrhizal plants and ectomycorrhizal plants to different soil microbial compositions associated with Eucalyptus plants. We found that the type of mycorrhizal association had a significant impact on the survival and growth of native tree species in the Eucalyptus plantations. The strength and direction of the plant-soil feedbacks of focal tree species depended on mycorrhizal type. Non-mycorrhizal plants had consistent negative feedbacks with the highest survival in the Eucalyptus plantations, whereas nitrogen-fixing plants had consistent positive feedbacks and the lowest survival. Arbuscular mycorrhizal and ectomycorrhizal plants performed varied feedback responses to soil microbes from distinct mycorrhizal plant species. Non-mycorrhizal plants grew better with Eucalyptus soil microbes while nitrogen-fixing plants grew worse with their own conspecific soil microbes. Different soil microbial compositions of Eucalyptus consistently increased the aboveground growth of arbuscular mycorrhizal plants, but the non-mycorrhizal microbial composition of the Eucalyptus soil resulted in greater belowground growth of ectomycorrhizal plants. Overall, Eucalyptus plants induced an unfavorable soil community, impeding coexistence with other mycorrhizal plants. Our study provides consistent observational and experimental evidence that mycorrhizal-mediated plant-microbial feedback on species coexistence among woody species. These findings are with important implications to optimize the species combinations for better design of mixed forest plantations.
Collapse
|
32
|
Relationship between Soil Fungi and Seedling Density in the Vicinity of Adult Conspecifics in an Arid Desert Forest. FORESTS 2021. [DOI: 10.3390/f12010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Research Highlights: 1. Soil fungi have a higher influence on seedling density compared to soil environmental factors; 2. Host-specific pathogens and beneficial fungi affect seeding density via different influencing mechanisms. Background and Objectives: The growth and development of seedlings are the key processes that affect forest regeneration and maintain community dynamics. However, the influencing factors of seedling growth around their adult conspecifics are not clear in arid desert forests. Probing the intrinsic relations among soil fungi, soil environmental factors (pH, water content, salinity, and nutrition), and seedling density will improve our understanding of forest development and provide a theoretical basis for forest management and protection. Materials and Methods: Four experimental plot types, depending on the distance to adult conspecifics, were set in an arid desert forest. Soil environmental factors, the diversity and composition of the soil fungal community, and the seedlings’ density and height were measured in the four experimental plot types, and their mutual relations were analyzed. Results: Seedling density as well as the diversity and composition of the soil fungal community varied significantly among the four plot types (p < 0.05). Soil environmental factors, especially soil salinity, pH, and soil water content, had significant influences on the seedling density and diversity and composition of the soil fungal community. The contribution of soil fungi (72.61%) to the variation in seedling density was much higher than the soil environmental factors (27.39%). The contribution of detrimental fungi to the variation in seedling density was higher than the beneficial fungi. Conclusions: Soil fungi mostly affected the distribution of seedling density in the vicinity of adult conspecifics in an arid desert forest. The distribution of seedling density in the vicinity of adults was mainly influenced by the detrimental fungi, while the adults in the periphery area was mainly influenced by the beneficial fungi.
Collapse
|
33
|
Jiang F, Lutz JA, Guo Q, Hao Z, Wang X, Gilbert GS, Mao Z, Orwig DA, Parker GG, Sang W, Liu Y, Tian S, Cadotte MW, Jin G. Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology 2020; 102:e03259. [PMID: 33226634 DOI: 10.1002/ecy.3259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that the mycorrhizal type associated with tree species is an important trait influencing ecological processes such as response to environmental conditions and conspecific negative density dependence (CNDD). However, we lack a general understanding of how tree mycorrhizal type influences CNDD strength and the resulting patterns of species abundance and richness at larger spatial scales. We assessed 305 species across 15 large, stem-mapped, temperate forest dynamics plots in Northeastern China and North America to explore the relationships between tree mycorrhizal type and CNDD, species abundance, and species richness at a regional scale. Tree species associated with arbuscular mycorrhizal (AM) fungi showed a stronger CNDD and a more positive relationship with species abundance than did tree species associated with ectomycorrhizal (ECM) fungi. For each plot, both basal area and stem abundance of AM tree species was lower than that of ECM tree species, suggesting that AM tree species were rarer than ECM tree species. Finally, ECM tree dominance showed a negative effect on plant richness across plots. These results provide evidence that tree mycorrhizal type plays an important role in influencing CNDD and species richness, highlighting this trait as an important factor in structuring plant communities in temperate forests.
Collapse
Affiliation(s)
- Feng Jiang
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - James A Lutz
- Wildland Resources Department, Utah State University, Logan, Utah, UT 84322, USA
| | - Qingxi Guo
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhanqing Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Gregory S Gilbert
- Environmental Studies Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David A Orwig
- Harvard Forest, Harvard University, Petersham, Massachusetts, MA 01366, USA
| | - Geoffrey G Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, Maryland, MD 21037, USA
| | - Weiguo Sang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yankun Liu
- Heilongjiang Forestry Engineering and Environment Institute, Harbin, 150040, China.,Key Laboratory of Forest Ecology and Forestry Ecological Engineering of Heilongjiang Province, Harbin, Heilongjiang, 150040, China
| | - Songyan Tian
- Heilongjiang Forestry Engineering and Environment Institute, Harbin, 150040, China.,National Positioning observation Station of Mudanjiang Forest Ecosystem in Heilongjiang Province, Mudanjiang, Muling, 157500, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada.,Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
34
|
Bachelot B, Alonso-Rodríguez AM, Aldrich-Wolfe L, Cavaleri MA, Reed SC, Wood TE. Altered climate leads to positive density-dependent feedbacks in a tropical wet forest. GLOBAL CHANGE BIOLOGY 2020; 26:3417-3428. [PMID: 32196863 DOI: 10.1111/gcb.15087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/02/2020] [Indexed: 05/12/2023]
Abstract
Climate change is predicted to result in warmer and drier Neotropical forests relative to current conditions. Negative density-dependent feedbacks, mediated by natural enemies, are key to maintaining the high diversity of tree species found in the tropics, yet we have little understanding of how projected changes in climate are likely to affect these critical controls. Over 3 years, we evaluated the effects of a natural drought and in situ experimental warming on density-dependent feedbacks on seedling demography in a wet tropical forest in Puerto Rico. In the +4°C warming treatment, we found that seedling survival increased with increasing density of the same species (conspecific). These positive density-dependent feedbacks were not associated with a decrease in aboveground natural enemy pressure. If positive density-dependent feedbacks are not transient, the diversity of tropical wet forests, which may rely on negative density dependence to drive diversity, could decline in a future warmer, drier world.
Collapse
Affiliation(s)
| | - Aura M Alonso-Rodríguez
- USDA Forest Service International Institute of Tropical Forestry, Jardín Botánico Sur, Río Piedras, Puerto Rico
| | - Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Molly A Cavaleri
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Sasha C Reed
- Southwest Biological Science Center, US Geological Survey, Moab, UT, USA
| | - Tana E Wood
- USDA Forest Service International Institute of Tropical Forestry, Jardín Botánico Sur, Río Piedras, Puerto Rico
| |
Collapse
|
35
|
McHaffie MB, Maherali H. Variation in mycorrhizal growth response influences competitive interactions and mechanisms of plant species coexistence. Oecologia 2020; 192:755-765. [PMID: 31982952 DOI: 10.1007/s00442-020-04609-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
Abstract
Plant species vary in their growth response to arbuscular mycorrhizal (AM) fungi, with responses ranging from negative to positive. Differences in response to AM fungi may affect competition between plant species, influencing their ability to coexist. We hypothesized that positively responding species, whose growth is stimulated by AM fungi, will experience stronger intraspecific competition and weaker interspecific competition in soil containing AM fungi, while neutrally or negatively responding species should experience weaker intraspecific and stronger interspecific competition. We grew Plantago lanceolata, which responds positively to AM fungi, and Bromus inermis, which responds negatively to AM fungi, in an additive response surface competition experiment that varied the total density and relative frequency of each species. Plants were grown in sterilized background soil that had been inoculated with whole soil biota, which includes AM fungi, or a microbial wash, that contained other soil microbes but no AM fungi, or in sterilized soil that contained no biota. The positively responding P. lanceolata was more strongly limited by intraspecific than interspecific competition when AM fungi were present. By contrast, the presence of AM fungi decreased the strength of intraspecific competition experienced by the negatively responding B. inermis. Because AM fungi are almost always present in soil, strong intraspecific competition in positively responding species would prevent them from outcompeting species that respond neutrally or negatively to AM fungi. The potential for increased intraspecific competition to offset growth benefits of AM fungi could, therefore, be a stabilizing mechanism that promotes coexistence among plant species.
Collapse
Affiliation(s)
- Mara B McHaffie
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
36
|
He W, Detheridge A, Liu Y, Wang L, Wei H, Griffith GW, Scullion J, Wei Y. Variation in Soil Fungal Composition Associated with the Invasion of Stellera chamaejasme L. in Qinghai-Tibet Plateau Grassland. Microorganisms 2019; 7:microorganisms7120587. [PMID: 31756979 PMCID: PMC6955776 DOI: 10.3390/microorganisms7120587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
Stellera chamaejasme L. is the most problematic weed in China’s grasslands. Its root exudates affect co-occurring plants and thus may also affect soil fungi. Soils (0–20 cm depth) on two adjacent sites, one invaded the other uninvaded, were compared for a range of physiochemical parameters and by DNA sequencing of fungal communities. At the invaded site, relationships between S. chamaejasme abundance, soil physiochemical factors, and fungal communities were further investigated to determine whether these relationships corroborated conclusions on the basis of site differences that could be translated into functional variation. Results showed that the invaded soils had lower N, P, organic matter, fungal alpha diversity, and relative abundance of arbuscular mycorrhizal fungi (AMF), but greater abundance of pathogenic fungi. Organic matter and P were the edaphic factors most strongly linked to site differences in total fungal communities. Within the invaded site, organic matter rather than S. chamaejasme cover was closely linked to total fungal composition. However, on this site, a number of fungal species that had various ecological functions and that differentiated the two sites were related to S. chamaejasme cover. This study indicates that lower fertility soils may be more susceptible to invasion by S. chamaejasme. Although the influence of S. chamaejasme on total fungal community composition was limited, there was evidence of effects on particular fungal species. Further research is needed to determine whether these effects influence S. chamaejasme invasiveness.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China;
- School of Chemical Engineering, Northwest University, Xian 710069, China
- Correspondence: (W.H.); (J.S.); Tel.: +86-2988302199 (W.H.); +44-1970622304 (J.S.)
| | - Andrew Detheridge
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FL, UK; (A.D.); (G.W.G.)
| | - Yongmei Liu
- College of Urban and Environmental Science, Northwest University, Xi’an 710069, China; (Y.L.); (L.W.)
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi’an 710069, China; (Y.L.); (L.W.)
| | - Haochen Wei
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Gareth W. Griffith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FL, UK; (A.D.); (G.W.G.)
| | - John Scullion
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FL, UK; (A.D.); (G.W.G.)
- Correspondence: (W.H.); (J.S.); Tel.: +86-2988302199 (W.H.); +44-1970622304 (J.S.)
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China;
| |
Collapse
|
37
|
Shen Y, Gilbert GS, Li W, Fang M, Lu H, Yu S. Linking Aboveground Traits to Root Traits and Local Environment: Implications of the Plant Economics Spectrum. FRONTIERS IN PLANT SCIENCE 2019; 10:1412. [PMID: 31737024 PMCID: PMC6831723 DOI: 10.3389/fpls.2019.01412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/11/2019] [Indexed: 06/02/2023]
Abstract
The plant economics spectrum proposes that ecological traits are functionally coordinated and adapt along environmental gradients. However, empirical evidence is mixed about whether aboveground and root traits are consistently linked and which environmental factors drive functional responses. Here we measure the strength of relationships between aboveground and root traits, and examine whether community-weighted mean trait values are adapted along gradients of light and soil fertility, based on the seedling censuses of 57 species in a subtropical forest. We found that aboveground traits were good predictors of root traits; specific leaf area, dry matter, nitrogen and phosphorus content were strongly correlated with root tissue density and specific root length. Traits showed patterns of adaptation along the gradients of soil fertility and light; species with fast resource-acquisitive strategies were more strongly associated with high soil phosphorus, potassium, openness, and with low nitrogen, organic matter conditions. This demonstrates the potential to estimate belowground traits from known aboveground traits in seedling communities, and suggests that soil fertility is one of the main factors driving functional responses. Our results extend our understanding of how ecological strategies shape potential responses of plant communities to environmental change.
Collapse
Affiliation(s)
- Yong Shen
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Gregory S. Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Wenbin Li
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Miao Fang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Huanping Lu
- Guangdong Ecological Meteorology Center, Guangzhou, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Bennett JA, Koch AM, Forsythe J, Johnson NC, Tilman D, Klironomos J. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecol Lett 2019; 23:119-128. [PMID: 31650676 DOI: 10.1111/ele.13408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/27/2023]
Abstract
Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long-term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant-feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity.
Collapse
Affiliation(s)
- Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Alexander M Koch
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC, V1V 1V7, Canada
| | - Jennifer Forsythe
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC, V1V 1V7, Canada
| | - Nancy C Johnson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011-5694, USA
| | - David Tilman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - John Klironomos
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
39
|
The Invasion Criterion: A Common Currency for Ecological Research. Trends Ecol Evol 2019; 34:925-935. [DOI: 10.1016/j.tree.2019.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022]
|
40
|
Pizano C, Kitajima K, Graham JH, Mangan SA. Negative plant-soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes. Ecology 2019; 100:e02850. [PMID: 31351010 DOI: 10.1002/ecy.2850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 11/07/2022]
Abstract
There is now strong evidence suggesting that interactions between plants and their species-specific antagonistic microbes can maintain native plant community diversity. In contrast, the decay in diversity in plant communities invaded by nonnative plant species might be caused by weakening negative feedback strengths, perhaps because of the increased relative importance of plant mutualists such as arbuscular mycorrhizal fungi (AMF). Although the vast majority of studies examining plant-soil feedbacks have been conducted in a single habitat type, there are fewer studies that have tested how the strength and direction of these feedbacks change across habitats with differing dominating plants. In a fragmented montane agricultural system in Colombia, we experimentally teased apart the relative importance of AMF and non-AMF microbes (a microbial filtrate) to the strength and direction of feedbacks in both native and nonnative plant species. We hypothesized that native tree species of forest fragments would exhibit stronger negative feedbacks with a microbial filtrate that likely contained pathogens than with AMF alone, whereas nonnative plant species, especially a highly invasive dominant grass, would exhibit overall weaker negative feedbacks or even positive feedbacks regardless of the microbial type. We reciprocally inoculated each of 10 plant species separately with either the AMF community or the microbial filtrate originating from their own conspecifics, or with the AMF or microbial filtrate originating from each of the other nine heterospecific plant species. Overall, we found that the strength of negative feedback mediated by the filtrate was much stronger than feedbacks mediated by AMF. Surprisingly, we found that the two nonnative species, Urochloa brizantha and Coffea arabica, experienced stronger negative feedbacks with microbial filtrate than did the native forest tree species, suggesting that species-specific antagonistic microbes accumulate when a single host species dominates, as is the case in agricultural habitats. However, negative feedback between forest trees and agricultural species suggests that soil community dynamics may contribute to the re-establishment of native species into abandoned agricultural lands. Furthermore, our finding of no negative feedbacks among trees in forest fragments may be due to a loss in diversity of those microbes that drive diversity-maintaining processes in intact tropical forests.
Collapse
Affiliation(s)
- Camila Pizano
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.,Biología de la Conservación, Cenicafé, Km4 vía antigua, Chinchiná-Manizales, Colombia
| | - Kaoru Kitajima
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA.,Smithsonian Tropical Research Institute, Balboa, Panama
| | - James H Graham
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850, USA
| | - Scott A Mangan
- Smithsonian Tropical Research Institute, Balboa, Panama.,Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
41
|
Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. THE NEW PHYTOLOGIST 2019; 223:462-474. [PMID: 30861145 DOI: 10.1111/nph.15786] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/04/2019] [Indexed: 05/04/2023]
Abstract
Soil plant-pathogenic (PF) and mycorrhizal fungi (MF) are both important in maintaining plant diversity, for example via host-specialized effects. However, empirical knowledge on the degree of host specificity and possible factors affecting the fungal assemblages is lacking. We identified PF and MF in fine roots of 519 individuals across 45 subtropical tree species in southern China in order to quantify the importance of host phylogeny (including via its effects on functional traits), habitat and space in determining fungal communities. We also compared host specificity in PF and MF at different host-phylogenetic scales. In both PF and MF, host phylogeny independently accounted for > 19% of the variation in fungal richness and composition, whereas environmental and spatial factors each explained no more than 4% of the variation. Over 77% of the variation explained by phylogeny was attributable to covariation in plant functional traits. Host specificity was phylogenetically scale-dependent, being stronger in PF than in MF at low host-phylogenetic scales (e.g. within genus) but similar at larger scales. Our study suggests that host-phylogenetic effects dominate the assembly of both PF and MF communities, resulting from phylogenetically clustered plant traits. The scale-dependent host specificity implies that PF were specialized at lower-level and MF at higher-level host taxa.
Collapse
Affiliation(s)
- Zihui Wang
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510271, China
| | - Yuan Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510271, China
| | - David C Deane
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Fangliang He
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
42
|
Duhamel M, Wan J, Bogar LM, Segnitz RM, Duncritts NC, Peay KG. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1367] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marie Duhamel
- Department of Biology Stanford University Stanford California 94305 USA
| | - Joe Wan
- Department of Biology Stanford University Stanford California 94305 USA
| | - Laura M. Bogar
- Department of Biology Stanford University Stanford California 94305 USA
| | - R. Max Segnitz
- Department of Biology Stanford University Stanford California 94305 USA
| | - Nora C. Duncritts
- Department of Botany University of Wisconsin Madison Wisconsin 53706 USA
| | - Kabir G. Peay
- Department of Biology Stanford University Stanford California 94305 USA
| |
Collapse
|
43
|
Yang Q, Ding J, Siemann E. Biogeographic variation of distance‐dependent effects in an invasive tree species. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- State Key Laboratory of Grassland Agro‐ecosystems, School of Life Sciences Lanzhou University Lanzhou China
| | - Jianqing Ding
- School of Life Sciences Henan University Kaifeng China
| | - Evan Siemann
- Department of Biosciences Rice University Houston Texas
| |
Collapse
|
44
|
Mack KML, Eppinga MB, Bever JD. Plant-soil feedbacks promote coexistence and resilience in multi-species communities. PLoS One 2019; 14:e0211572. [PMID: 30742633 PMCID: PMC6370276 DOI: 10.1371/journal.pone.0211572] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Both ecological theory and empirical evidence suggest that negative frequency dependent feedbacks structure plant communities, but integration of these findings has been limited. Here we develop a generic model of frequency dependent feedback to analyze coexistence and invasibility in random theoretical and real communities for which frequency dependence through plant-soil feedbacks (PSFs) was determined empirically. We investigated community stability and invasibility by means of mechanistic analysis of invasion conditions and numerical simulations. We found that communities fall along a spectrum of coexistence types ranging from strict pair-wise negative feedback to strict intransitive networks. Intermediate community structures characterized by partial intransitivity may feature "keystone competitors" which disproportionately influence community stability. Real communities were characterized by stronger negative feedback and higher robustness to species loss than randomly assembled communities. Partial intransitivity became increasingly likely in more diverse communities. The results presented here theoretically explain why more diverse communities are characterized by stronger negative frequency dependent feedbacks, a pattern previously encountered in observational studies. Natural communities are more likely to be maintained by strict negative plant-soil feedback than expected by chance, but our results also show that community stability often depends on partial intransitivity. These results suggest that plant-soil feedbacks can facilitate coexistence in multi-species communities, but that these feedbacks may also initiate cascading effects on community diversity following from single-species loss.
Collapse
Affiliation(s)
- Keenan M. L. Mack
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Maarten B. Eppinga
- Department of Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - James D. Bever
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
45
|
Zeng H, Zhong W, Tan F, Shu Y, Feng Y, Wang J. The Influence of Bt Maize Cultivation on Communities of Arbuscular Mycorrhizal Fungi Revealed by MiSeq Sequencing. Front Microbiol 2019; 9:3275. [PMID: 30687266 PMCID: PMC6334669 DOI: 10.3389/fmicb.2018.03275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
The cultivation of transgenic Bacillus thuringiensis (Bt) has received worldwide attention since Bt crops were first released. Its ecological risks on arbuscular mycorrhizal fungi (AMF) have been widely studied. In this study, after cultivation for five seasons, the AMF diversity and community composition of two Bt maize varieties, 5422Bt1 (event Bt11) and 5422CBCL (event MO10), which both express Cry1Ab protein, and their isoline non-Bt maize 5422, as well as Bt straw after cultivation had been returned to subsequent conventional maize variety, were analyzed using Illumina MiSeq sequencing. A total of 263 OTUs (operational taxonomic units) from 511,847 sequenced affiliated with the AMF which belonged to Mucoromycota phylum Glomeromycotina subphylum were obtained. No significant difference was detected in the AMF diversity and richness (Shannon, Simpson, ACE, and Chao 1 indices) and community composition in rhizosphere soils and roots between Bt and non-Bt treatment revealed by NMDS (non-metric multidimensional scaling) and NPMANOVA (non-parametric multivariate analysis). Moreover, Glomus was the most dominant genus in all samples. Although there was no significant difference in the AMF community in roots and rhizosphere soils between the Bt and non-Bt maize treatments, total phosphorus (TP), total nitrogen (TN), organic carbon (OC), and pH were driving factors affecting the AMF community, and their composition varied between rhizosphere soils and roots during the maturity period of the fifth season. Compared to our previous study, the results were identical. In conclusion, no significant difference was observed between the Bt and non-Bt treatments, and the Illumina MiSeq method had higher throughput and higher quality read cover, which gave us comprehensive insight into AMF communities in agro-ecosystems.
Collapse
Affiliation(s)
- Huilan Zeng
- Department of Horticulture, College of Life Science and Environmental Resources, Yichun University, Yichun, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Wang Zhong
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Fengxiao Tan
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yinghua Shu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yuanjiao Feng
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jianwu Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Schroeder JW, Martin JT, Angulo DF, Barbosa JM, Perea R, Arias-Del Razo I, Sebastián-González E, Dirzo R. Community composition and diversity of Neotropical root-associated fungi in common and rare trees. Biotropica 2018. [DOI: 10.1111/btp.12553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- John W. Schroeder
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
| | - Jessica T. Martin
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
| | - Diego F. Angulo
- Red de Biología Evolutiva; Instituto de Ecología AC; Carretera antigua a Coatepec 351 91070 Xalapa Veracruz Mexico
- Departamento de Ecología Tropical; Campus de Ciencias Biológicas y Agropecuarias; Universidad Autónoma de Yucatán; Apartado Postal 4-116, Itzimná 97000 Mérida Yucatán México
| | - Jomar M. Barbosa
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
- Department of Applied Biology; Universidad Miguel Hernández; Avda Universidad s/n Elche Alicante Spain
| | - Ramón Perea
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
- Departmento de Sistemas y Recursos Naturales; Universidad Politécnica de Madrid; Ciudad Universitaria s/n Madrid Spain
| | - Itzel Arias-Del Razo
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
- Centro Tlaxcala de Biología de la Conducta; Universidad Autónoma de Tlaxcala; Carretera Tlaxcala -Puebla Km 1.5 s/n, CP 90062 Tlaxcala Tlaxcala México
| | - Esther Sebastián-González
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
- Department of Applied Biology; Universidad Miguel Hernández; Avda Universidad s/n Elche Alicante Spain
| | - Rodolfo Dirzo
- Department of Biology; Stanford University; 385 Serra Mall Stanford CA 94305 USA
| |
Collapse
|
47
|
Liu X, Burslem DFRP, Taylor JD, Taylor AFS, Khoo E, Majalap-Lee N, Helgason T, Johnson D. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol Lett 2018. [DOI: 10.1111/ele.12939] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xubing Liu
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
- Department of Ecology; School of Life Sciences; Sun Yat-sen University; Guangzhou 510275 China
| | - David F. R. P. Burslem
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
| | - Joe D. Taylor
- Department of Biology; University of York; Heslington York YO10 5DD UK
- School of Environment and Life Sciences; University of Salford; The Crescent Salford M5 4WT UK
| | - Andy F. S. Taylor
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
- The James Hutton Institute; Craigiebuckler, Aberdeen AB15 8QH UK
| | - Eyen Khoo
- Forest Research Centre; Sabah Forestry Department; Sandakan 90715 Malaysia
| | - Noreen Majalap-Lee
- Forest Research Centre; Sabah Forestry Department; Sandakan 90715 Malaysia
| | - Thorunn Helgason
- Department of Biology; University of York; Heslington York YO10 5DD UK
| | - David Johnson
- School of Earth and Environmental Sciences; The University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
48
|
Bennett JA, Klironomos J. Climate, but not trait, effects on plant-soil feedback depend on mycorrhizal type in temperate forests. Ecosphere 2018. [DOI: 10.1002/ecs2.2132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jonathan A. Bennett
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| | - John Klironomos
- Department of Biology; University of British Columbia - Okanagan Campus; Kelowna British Columbia V1V 1V7 Canada
| |
Collapse
|
49
|
Bachelot B, Uriarte M, Muscarella R, Forero-Montaña J, Thompson J, McGuire K, Zimmerman J, Swenson NG, Clark JS. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. Ecology 2018; 99:607-620. [PMID: 29281752 DOI: 10.1002/ecy.2122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi in the soil may influence tropical tree dynamics and forest succession. The mechanisms are poorly understood, because the functional characteristics and abundances of tree species and AM fungi are likely to be codependent. We used generalized joint attribute modeling to evaluate if AM fungi are associated with three forest community metrics for a sub-tropical montane forest in Puerto Rico. The metrics chosen to reflect changes during forest succession are the abundance of seedlings of different successional status, the amount of foliar damage on seedlings of different successional status, and community-weighted mean functional trait values (adult specific leaf area [SLA], adult wood density, and seed mass). We used high-throughput DNA sequencing to identify fungal operational taxonomic units (OTUs) in the soil. Model predictions showed that seedlings of mid- and late-successional species had less leaf damage when the 12 most common AM fungi were abundant compared to when these fungi were absent. We also found that seedlings of mid-successional species were predicted to be more abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. In contrast, early-successional tree seedlings were predicted to be less abundant when the 12 most common AM fungi were abundant compared to when these fungi were absent. Finally, we showed that, among the 12 most common AM fungi, different AM fungi were correlated with functional trait characteristics of early- or late-successional species. Together, these results suggest that early-successional species might not rely as much as mid- and late-successional species on AM fungi, and AM fungi might accelerate forest succession.
Collapse
Affiliation(s)
| | - María Uriarte
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Robert Muscarella
- Section for Ecoinformatics & Biodiversity, Department of Bisocience, Aarhus University, Aarhus, 8000, Denmark
| | - Jimena Forero-Montaña
- Department of Environmental Science, University of Puerto Rico-Rıo Piedras, San Juan, Puerto Rico, 00931, USA
| | - Jill Thompson
- Department of Environmental Science, University of Puerto Rico-Rıo Piedras, San Juan, Puerto Rico, 00931, USA.,Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, United Kingdom
| | - Krista McGuire
- Department of Biology, University of Oregon, Eugene, Oregon, 97403, USA
| | - Jess Zimmerman
- Department of Environmental Science, University of Puerto Rico-Rıo Piedras, San Juan, Puerto Rico, 00931, USA
| | - Nathan G Swenson
- Department of Biology, The University of Maryland, College Park, Maryland, 20742, USA
| | - James S Clark
- Nicholas School of the Environment and Department of Statistical Science, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
50
|
Deniau M, Jung V, Le Lann C, Kellner H, Béchade B, Morra T, Prinzing A. Janzen–Connell patterns can be induced by fungal‐driven decomposition and offset by ectomycorrhizal fungi accumulated under a closely related canopy. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Maud Deniau
- Université de Rennes 1Centre National de la Recherche ScientifiqueResearch Unit UMR 6553 “Ecosystems, Biodiversity, Evolution” Rennes Cedex France
| | - Vincent Jung
- Université de Rennes 1Centre National de la Recherche ScientifiqueResearch Unit UMR 6553 “Ecosystems, Biodiversity, Evolution” Rennes Cedex France
| | - Cécile Le Lann
- Université de Rennes 1Centre National de la Recherche ScientifiqueResearch Unit UMR 6553 “Ecosystems, Biodiversity, Evolution” Rennes Cedex France
| | - Harald Kellner
- Technische Universität DresdenInternationales Hochschulinstitut (IHI) Zittau Lehrstuhl Umweltbiotechnologie Zittau Germany
| | - Benoît Béchade
- Université de Rennes 1Centre National de la Recherche ScientifiqueResearch Unit UMR 6553 “Ecosystems, Biodiversity, Evolution” Rennes Cedex France
| | - Thibault Morra
- Université de Rennes 1Centre National de la Recherche ScientifiqueResearch Unit UMR 6553 “Ecosystems, Biodiversity, Evolution” Rennes Cedex France
| | - Andreas Prinzing
- Université de Rennes 1Centre National de la Recherche ScientifiqueResearch Unit UMR 6553 “Ecosystems, Biodiversity, Evolution” Rennes Cedex France
| |
Collapse
|