1
|
Zhu J, Jia Y, Yu G, Wang Q, He N, Chen Z, He H, Zhu X, Li P, Zhang F, Liu X, Goulding K, Fowler D, Vitousek P. Changing patterns of global nitrogen deposition driven by socio-economic development. Nat Commun 2025; 16:46. [PMID: 39747129 PMCID: PMC11695605 DOI: 10.1038/s41467-024-55606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Advances in manufacturing and trade have reshaped global nitrogen deposition patterns, yet their dynamics and drivers remain unclear. Here, we compile a comprehensive global nitrogen deposition database spanning 1977-2021, aggregating 52,671 site-years of data from observation networks and published articles. This database show that global nitrogen deposition to land is 92.7 Tg N in 2020. Total nitrogen deposition increases initially, stabilizing after peaking in 2015. Developing countries at low and middle latitudes emerge as new hotspots. The gross domestic product per capita is found to be highly and non-linearly correlated with global nitrogen deposition dynamic evolution, and reduced nitrogen deposition peaks higher and earlier than oxidized nitrogen deposition. Our findings underscore the need for policies that align agricultural and industrial progress to facilitate the peak shift or reduction of nitrogen deposition in developing countries and to strengthen measures to address NH3 emission hotspots in developed countries.
Collapse
Affiliation(s)
- Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yanlong Jia
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- Institute of Carbon Neutrality, Northeast Forestry University, Harbin, China
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xianjin Zhu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Pan Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Keith Goulding
- Sustainable Agricultural Sciences Department, Rothamsted Research, Harpenden, UK
| | | | - Peter Vitousek
- Department of Biology, Stanford University, Stanford, USA
| |
Collapse
|
2
|
Li X, Li Y, Shen H, Li S, Zhao Z, Xiao J, Zhang R, Shi H, Zuo H, Danjia T, Chen G, Zhou X, Dong S. Different responses of individuals, functional groups and plant communities in CSR strategies to nitrogen deposition in high-altitude grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176051. [PMID: 39241877 DOI: 10.1016/j.scitotenv.2024.176051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The Competitor, Stress Tolerator, and Ruderal (CSR) theory delineates the ecological strategies of plant species. Nevertheless, how these ecological strategies shift at the levels of individuals, functional groups and plant communities to cope with increasing nitrogen deposition remains unclear. In this study, simulated nitrogen deposition experiments were performed in high-altitude grasslands of alpine meadows and alpine steppe on the Qinghai-Tibetan Plateau (QTP) by employing the strategy and functional type framework (StrateFy) methodology to evaluate plant CSR strategies. Our results indicated that the dominant ecological strategy of the high-altitude grassland on the QTP were predominantly aligned with the R-strategy. In both alpine meadow and alpine steppe grasslands, the community-weighted mean (CWM) of C scores were increased with nitrogen addition, while CWM of R and S scores were not significantly correlated with nitrogen addition. Remarkably, the increase in C scores due to nitrogen enrichment was observed solely in non-legumes, suggesting an enhanced competitive capability of non-legumes in anticipation of future nitrogen deposition. Leymus secalinus was dominated in both alpine meadow and alpine steppe grasslands across all levels of nitrogen deposition, with increasing C scores along the nitrogen gradients. Furthermore, the sensitivity of C scores of individual plant, functional group and plant community to nitrogen deposition rates was more pronounced in alpine steppe grassland than in alpine meadow grassland. These findings furnish novel insights into the alterations of ecological strategies in high-altitude alpine grasslands on the QTP and similar regions worldwide in cope with escalating nitrogen deposition.
Collapse
Affiliation(s)
- Xueqi Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Ying Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030031, China
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiannan Xiao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ran Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Hang Shi
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Hui Zuo
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Tu Danjia
- Grassland Improvement Experimental Station of Qinghai Province, Gonghe 813099, China
| | - Guoming Chen
- Grassland Improvement Experimental Station of Qinghai Province, Gonghe 813099, China
| | - Xueli Zhou
- Grassland Improvement Experimental Station of Qinghai Province, Gonghe 813099, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Tang J, Li W, Wei T, Huang R, Zeng Z. Patterns and Mechanisms of Legume Responses to Nitrogen Enrichment: A Global Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3244. [PMID: 39599453 PMCID: PMC11598177 DOI: 10.3390/plants13223244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Nitrogen (N), while the most abundant element in the atmosphere, is an essential soil nutrient that limits plant growth. Leguminous plants naturally possess the ability to fix atmospheric nitrogen through symbiotic relationships with rhizobia in their root nodules. However, the widespread use of synthetic N fertilizers in modern agriculture has led to N enrichment in soils, causing complex and profound effects on legumes. Amid ongoing debates about how leguminous plants respond to N enrichment, the present study compiles 2174 data points from 162 peer-reviewed articles to analyze the impacts and underlying mechanisms of N enrichment on legumes. The findings reveal that N enrichment significantly increases total legume biomass by 30.9% and N content in plant tissues by 13.2% globally. However, N enrichment also leads to notable reductions, including a 5.8% decrease in root-to-shoot ratio, a 21.2% decline in nodule number, a 29.3% reduction in nodule weight, and a 27.1% decrease in the percentage of plant N derived from N2 fixation (%Ndfa). Legume growth traits and N2-fixing capability in response to N enrichment are primarily regulated by climatic factors, such as mean annual temperature (MAT) and mean annual precipitation (MAP), as well as the aridity index (AI) and N fertilizer application rates. Correlation analyses show that plant biomass is positively correlated with MAT, and tissue N content also exhibits a positive correlation with MAT. In contrast, nodule numbers and tissue N content are negatively correlated with N fertilizer application rates, whereas %Ndfa shows a positive correlation with AI and MAP. Under low N addition, the increase in total biomass in response to N enrichment is twice as large as that observed under high N addition. Furthermore, regions at lower elevations with abundant hydrothermal resources are especially favorable for total biomass accumulation, indicating that the responses of legumes to N enrichment are habitat-specific. These results provide scientific evidence for the mechanisms underlying legume responses to N enrichment and offer valuable insights and theoretical references for the conservation and management of legumes in the context of global climate change.
Collapse
Affiliation(s)
| | - Wei Li
- School of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; (J.T.); (T.W.); (R.H.); (Z.Z.)
| | | | | | | |
Collapse
|
4
|
Mao R, Xing L, Wu Q, Song J, Li Q, Long Y, Shi Y, Huang P, Zhang Q. Evaluating net primary productivity dynamics and their response to land-use change in the loess plateau after the 'Grain for Green' program. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121112. [PMID: 38733847 DOI: 10.1016/j.jenvman.2024.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Assessing net primary productivity (NPP) dynamics and the contribution of land-use change (LUC) to NPP can help guide scientific policy to better restore and control the ecological environment. Since 1999, the "Green for Grain" Program (GGP) has strongly affected the spatial and temporal pattern of NPP on the Loess Plateau (LP); however, the multifaceted impact of phased vegetation engineering measures on NPP dynamics remains unclear. In this study, the Carnegie-Ames-Stanford Approach (CASA) model was used to simulate NPP dynamics and quantify the relative contributions of LUC and climate change (CC) to NPP under two different scenarios. The results showed that the average NPP on the LP increased from 240.7 gC·m-2 to 422.5 gC·m-2 from 2001 to 2020, with 67.43% of the areas showing a significant increasing trend. LUC was the main contributor to NPP increases during the study period, and precipitation was the most important climatic factor affecting NPP dynamics. The cumulative amount of NPP change caused by LUC (ΔNPPLUC) showed a fluctuating growth trend (from 46.23 gC·m-2 to 127.25 gC·m-2), with a higher growth rate in period ΙΙ (2010-2020) than in period Ι (2001-2010), which may be related to the accumulation of vegetation biomass and the delayed effect of the GGP on NPP. The contribution rate of LUC to increased NPP in periods Ι and ΙΙ was 101.2% and 51.2%, respectively. Regarding the transformation mode, the transformation of grassland to forest had the greatest influence on ΔNPPLUC. Regarding land-use type, the increased efficiency of NPP was improved in cropland, grassland, and forest. This study provides a scientific basis for the scientific management and development of vegetation engineering measures and regional sustainable development.
Collapse
Affiliation(s)
- Ruichen Mao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Lutong Xing
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiong Wu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Institute of Qinling Mountains, Northwest University, Xi'an, 710127, China.
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yongqing Long
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yuna Shi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Peng Huang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qifang Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| |
Collapse
|
5
|
An N, Lu N, Wang M, Chen Y, Wu F, Fu B. Plant size traits are key contributors in the spatial variation of net primary productivity across terrestrial biomes in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171412. [PMID: 38447733 DOI: 10.1016/j.scitotenv.2024.171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Understanding the spatial variability of ecosystem functions is an important step forward in predicting changes in ecosystems under global transformations. Plant functional traits are important drivers of ecosystem functions such as net primary productivity (NPP). Although trait-based approaches have advanced rapidly, the extent to which specific plant functional traits are linked to the spatial diversity of NPP at a regional scale remains uncertain. Here, we used structural equation models (SEMs) to disentangle the relative effects of abiotic variables (i.e., climate, soil, nitrogen deposition, and human footprint) and biotic variables (i.e., plant functional traits and community structure) on the spatial variation of NPP across China and its eight biomes. Additionally, we investigated the indirect influence of climate and soil on the spatial variation of NPP by directly affecting plant functional traits. Abiotic and biotic variables collectively explained 62.6 % of the spatial differences of NPP within China, and 28.0 %-69.4 % across the eight distinct biomes. The most important abiotic factors, temperature and precipitation, had positive effects for NPP spatial variation. Interestingly, plant functional traits associated with the size of plant organs (i.e., plant height, leaf area, seed mass, and wood density) were the primary biotic drivers, and their positive effects were independent of biome type. Incorporating plant functional traits improved predictions of NPP by 6.7 %-50.2 %, except for the alpine tundra on the Qinghai-Tibet Plateau. Our study identifies the principal factors regulating NPP spatial variation and highlights the importance of plant size traits in predictions of NPP variation at a large scale. These results provide new insights for involving plant size traits in carbon process models.
Collapse
Affiliation(s)
- Nannan An
- Key Laboratory for Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Mengyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Library, Henan University of Science and Technology, Luoyang 471000, China
| | - Yongzhe Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Geography, The University of Hong Kong, Hongkong 999077, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
Zhang C, Xiang X, Yang T, Liu X, Ma Y, Zhang K, Liu X, Chu H. Nitrogen fertilization reduces plant diversity by changing the diversity and stability of arbuscular mycorrhizal fungal community in a temperate steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170775. [PMID: 38331277 DOI: 10.1016/j.scitotenv.2024.170775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nitrogen (N) deposition resulting from anthropogenic activities poses threats to ecosystem stability by reducing plant and microbial diversity. However, the role of soil microbes, particularly arbuscular mycorrhizal fungi (AMF), as mediators of N-induced shifts in plant diversity remains unclear. In this study, we conducted 6 and 11 years of N addition field experiments in a temperate steppe to investigate AMF richness and network stability and their associations with plant species richness in response to N deposition. The N fertilization, especially in the 11 years of N addition, profoundly decreased the AMF richness and plant species richness. Furthermore, N fertilization significantly decreased the AMF network complexity and stability, with these effects becoming more enhanced with the increase in N addition duration. AMF richness and network stability showed positive associations with plant diversity, and these associations were stronger after 11 than 6 years of N addition. Our findings suggest that N deposition may lead to plant diversity loss via a reduction of AMF richness and network stability, with these effects strengthened over time. This study provides a better understanding of plant-AMF interactions and their response to the prevailing global N deposition.
Collapse
Affiliation(s)
- Cunzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaoping Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Yu J, Hou G, Shi P, Zong N, Peng J. Nitrogen rather than phosphorous addition alters the asymmetric responses of primary productivity to precipitation variability across a precipitation gradient on the northern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167856. [PMID: 37866615 DOI: 10.1016/j.scitotenv.2023.167856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Understanding the response of alpine grassland productivity to precipitation fluctuations is essential for assessing the future changes of ecosystem services. However, the underlying mechanism by which grassland productivity responds to wet and dry years after nitrogen (N) or/and phosphorus (P) nutrient addition remains unclear. In this study, we investigated the dynamics of plant communities based on eight-year N or/and P addition gradient experiments in four grassland types across a precipitation gradient on the north Tibetan Plateau. The asymmetry index (AI) was used to evaluate the responses of aboveground net primary productivity (ANPP) to precipitation fluctuations where AI > 0 indicates a greater increase of ANPP in wet years compared to the decline in dry years, and AI < 0 indicates a greater decline of ANPP in dry years compared to the increase in wet years. Our results showed that the AI values at community level in four natural grasslands were non-significant trend across the precipitation gradient, and showed slightly negative asymmetry, suggesting that the increase of ANPP in wet years was less than the decrease in dry years. N addition resulted in a significant decrease in community-level AI values with increasing mean annual precipitation (MAP), indicating that improved nutrient availability may favor the recovery of productivity in drier grasslands in wet years. At the functional group level, nutrient addition resulted in a significant decrease in the AI values of grasses and legumes and an increase in the AI values of forbs as MAP increased. Furthermore, the coupling of nutrients with precipitation can influence the productivity responses to precipitation changes by affecting soil nutrient availability and species richness. This research provides new insights into better predicting vegetation activity on N deposition rates and precipitation changes exacerbated in the context of climate change.
Collapse
Affiliation(s)
- Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Hou
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ning Zong
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Niu G, Wang R, Zhou H, Yang J, Lu X, Han X, Huang J. Nitrogen addition and mowing had only weak interactive effects on macronutrients in plant-soil systems of a typical steppe in Inner Mongolia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119121. [PMID: 37778064 DOI: 10.1016/j.jenvman.2023.119121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Effective management of macronutrients is pivotal in the optimization and provisioning of ecosystem services in grassland areas, particularly in degraded grasslands. In such instances where mowing and nitrogen (N) fertilization have emerged as predominant management strategies, nutrient management is especially important. However, the precise effects of these concurrent practices on the distribution of macronutrients in plant-soil systems remain unclear. Here we evaluated the effects of 12 years of N addition (2, 10, and 50 g N m-2 year-1) and mowing on the concentrations and pools of six macronutrients (i.e., N; phosphorus P; sulfur S, calcium Ca, magnesium Mg, and potassium K) in three plant components (aboveground plants, litter, and belowground roots) at the community level and in the soil in a typical steppe in Inner Mongolia. Our results revealed that N addition generally raised the N concentration in the entire plant-soil system, regardless of whether plots were mowed. Higher N addition (10 and 50 g N m-2 year-1) also led to higher concentrations of P (+22%, averaging two N addition rates), S (+16%), K (+22%), Ca (+22%), and Mg (+24%) in plants but lower concentrations of these nutrients in the litter. Similar decreases in K (-9%), Ca (-46%), and Mg (-8%) were observed in the roots. In light of the observed increases in vegetation biomass and the lack of pronounced changes in soil bulk density, we found that the ecosystem N enrichment resulted in increased pools of all measured macronutrients in plants, litter, and roots (with the exception of Ca in the roots) while concurrently decreased the pools of P (-20%, averaging two higher N addition rates), S (-12%), K (-10%), Ca (-37%), and Mg (-19%) in the soil, with no obvious effect of the mowing practice. Overall, mowing exhibited a very limited capacity to alleviate the effects of long-term N addition on macronutrients in the plant-soil system. These findings highlight the importance of considering the distribution of macronutrients across distinct plant organs and the dynamic nutrient interplay between plants and soil, particularly in the context of long-term fertilization and mowing practices, when formulating effective grassland management strategies.
Collapse
Affiliation(s)
- Guoxiang Niu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China; Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Ruzhen Wang
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Hao Zhou
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, SE22362, Sweden
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
9
|
Siebert J, Sünnemann M, Hautier Y, Risch AC, Bakker JD, Biederman L, Blumenthal DM, Borer ET, Bugalho MN, Broadbent AAD, Caldeira MC, Cleland E, Davies KF, Eskelinen A, Hagenah N, Knops JMH, MacDougall AS, McCulley RL, Moore JL, Power SA, Price JN, Seabloom EW, Standish R, Stevens CJ, Zimmermann S, Eisenhauer N. Drivers of soil microbial and detritivore activity across global grasslands. Commun Biol 2023; 6:1220. [PMID: 38040868 PMCID: PMC10692199 DOI: 10.1038/s42003-023-05607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.
Collapse
Affiliation(s)
- Julia Siebert
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Marie Sünnemann
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Lori Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50010, USA
| | - Dana M Blumenthal
- USDA-ARS Rangeland Resources & Systems Research Unit, Fort Collins, CO, 80526, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior; University of Minnesota, St. Paul, MN, 55108, USA
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves", School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Arthur A D Broadbent
- Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Elsa Cleland
- Ecology, Behavior and Evolution Section, University of California San Diego, 9500 Gilman Dr. #0116, La Jolla, California, 92093-0116, USA
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Anu Eskelinen
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
- Ecology and Genetics Unit, University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Oulu, Finland
- Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Johannes M H Knops
- Health & Environmental Sciences Department, Xi'an Jiatong-Liverpool University, Suzhou, China
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Joslin L Moore
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jodi N Price
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, NSW, 2640, Australia
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior; University of Minnesota, St. Paul, MN, 55108, USA
| | - Rachel Standish
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Stephan Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Soils and Biogeochemistry, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| |
Collapse
|
10
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Fang Z, Yu H, Li C, Wang B, Jiao F, Huang J. Long-term phosphorus addition alters plant community composition but not ecosystem stability of a nitrogen-enriched desert steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163033. [PMID: 36966843 DOI: 10.1016/j.scitotenv.2023.163033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Under ongoing global change, whether grassland ecosystems can maintain their functions and services depends largely on their stability. However, how ecosystem stability responds to increasing phosphorus (P) inputs under nitrogen (N) loading remains unclear. We conducted a 7-year field experiment to examine the influence of elevated P inputs (ranging from 0 to 16 g P m-2 yr-1) on the temporal stability of aboveground net primary productivity (ANPP) under N addition of 5 g N·m-2·yr-1 in a desert steppe. We found that under N loading, P addition altered plant community composition but did not significantly affect ecosystem stability. Specifically, with the increase in the P addition rate, declines in the relative ANPP of legume could be compensated for by an increase in the relative ANPP of grass and forb species, yet community ANPP and diversity remained unchanged. Notably, the stability and asynchrony of dominant species tended to decrease with increasing P addition, and a significant decrease in legume stability was observed at high P rates (>8 g P m-2 yr-1). Moreover, P addition indirectly affected ecosystem stability by multiple pathways (e.g., species diversity, species asynchrony, dominant species asynchrony, and dominant species stability), as revealed by structural equation modeling results. Our results suggest that multiple mechanisms work concurrently in stabilizing the ecosystem stability of desert steppes and that increasing P inputs may not alter desert steppe ecosystem stability under future N-enriched scenarios. Our results will help improve the accuracy of vegetation dynamics assessments in arid ecosystems under future global change.
Collapse
Affiliation(s)
- Zhao Fang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in northwestern China, Yinchuan 750021, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Yinchuan 750021, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hailong Yu
- School of Geography and Planning, Ningxia University, Yinchuan 750021, China
| | - Chunhuan Li
- School of Geography and Planning, Ningxia University, Yinchuan 750021, China
| | - Bin Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China
| | - Feng Jiao
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Juying Huang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in northwestern China, Yinchuan 750021, China; Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, Yinchuan 750021, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Zhang Y, Ren Z, Lu H, Chen X, Liu R, Zhang Y. Autumn nitrogen enrichment destabilizes ecosystem biomass production in a semiarid grassland. FUNDAMENTAL RESEARCH 2023; 3:170-178. [PMID: 38932923 PMCID: PMC11197746 DOI: 10.1016/j.fmre.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Nitrogen (N) deposition decreases the temporal stability of ecosystem aboveground biomass production (ecosystem stability). However, little is known about how the responses of ecosystem stability differ based on seasonal N enrichment. By adding N in autumn, winter, or growing season, from October 2014 to May 2020, in a temperate grassland in northern China, we found that only N addition in autumn resulted in a significantly positive correlation between ecosystem mean aboveground net primary productivity (ANPP) and its standard deviation and significantly reduced ecosystem stability. Autumn N-induced reduction in ecosystem stability was associated with the vanished negative effect of community-wide species asynchrony (asynchronous dynamics among populations to environmental perturbations) on the standard deviation of ecosystem ANPP in combination with the emerged positive effect of dominance (Simpson's dominance index that indicates the relative weight of dominant species in a community). Our findings indicate that autumn N addition might overestimate the negative effect of annual atmospheric N deposition on ecosystem stability, suggesting that to better evaluate the influence of N deposition in temperate grasslands, both field experiments and global modeling should consider not only the annual N load but also its seasonal dynamics. Moreover, further studies should pay more attention to the alteration in the ecosystem temporal deviations, which might be more sensitive to human-induced environmental changes.
Collapse
Affiliation(s)
- Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Liu C, Groff T, Anderson E, Brown C, Cahill Jr JF, Paulow L, Bennett JA. Effects of the invasive leafy spurge (Euphorbia esula L.) on plant community structure are altered by management history. NEOBIOTA 2023. [DOI: 10.3897/neobiota.81.89450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Invasive species threaten biodiversity and ecosystem functioning, often causing changes in plant community composition and, thus, the functional traits of that community. Quantifying changes in traits can help us understand invasive species impacts on communities; however, both the invader and the plant community may be responding to the same environmental drivers. In North America, leafy spurge (Euphorbia esula L.) is a problematic invader that reduces plant diversity and forage production for livestock. Its documented effects on plant communities differ amongst studies, however, potentially due to differences in productivity or land management. To identify the potential effects of leafy spurge on plant communities, we quantified leafy spurge abundance, plant species richness, forage production, functional group composition and community weighted mean traits, intensively at a single site and extensively across ten sites differing in management. We then tested how leafy spurge abundance related to these variables as a function of site management activities. Leafy spurge abundance was consistently associated with fewer plant species, reduced forage production and more invasive grass. Community-weighted specific root length also consistently increased with leafy spurge abundance, suggesting that belowground competition may be important in determining co-existence with leafy spurge. Other changes were dependent on management. Native forbs were excluded as leafy spurge became more abundant, but only in grazed sites as these species were already absent from ungrazed sites. Taller plants better persisted in dense leafy spurge patches, but only in grazed sites, consistent with either facilitation of taller species via associational defences or competitive exclusion of shorter species in ungrazed sites and dense leafy spurge patches. These results show that, despite some emergent properties of invasion, management context can alter invasion impacts by causing changes in the plant community and its interactions with the invader.
Collapse
|
14
|
Zhang J, Zuo X, Lv P. Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:960. [PMID: 36673715 PMCID: PMC9859310 DOI: 10.3390/ijerph20020960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Grassland use patterns, water and nutrients are the main determinants of ecosystem structure and function in semiarid grasslands. However, few studies have reported how the interactive effects of rainfall changes and nitrogen deposition influence the recovery of semiarid grasslands degraded by grazing. In this study, a simulated grazing, increasing and decreasing rainfall, nitrogen deposition test platform was constructed, and the regulation mechanism of vegetation characteristics and productivity were studied. We found that grazing decreased plant community height (CWMheight) and litter and increased plant density. Increasing rainfall by 60% from May to August (+60%) increased CWMheight; decreasing rainfall by 60% from May to August (-60%) and by 100% from May to June (-60 d) decreased CWMheight and coverage; -60 d, +60% and increasing rainfall by 100% from May to June (+60 d) increased plant density; -60% increased the Simpson dominance index (D index) but decreased the Shannon-Wiener diversity index (H index); -60 d decreased the aboveground biomass (ABG), and -60% increased the underground biomass (BGB) in the 10-60 cm layer. Nitrogen addition decreased species richness and the D index and increased the H index and AGB. Rainfall and soil nitrogen directly affect AGB; grazing and rainfall can also indirectly affect AGB by inducing changes in CWMheight; grazing indirectly affects BGB by affecting plant density and soil nitrogen. The results of this study showed that in the semiarid grassland of Inner Mongolia, grazing in the nongrowing season and grazing prohibition in the growing season can promote grassland recovery, continuous drought in the early growing season will have dramatic impacts on productivity, nitrogen addition has a certain impact on the species composition of vegetation, and the impact on productivity will not appear in the short term.
Collapse
Affiliation(s)
| | - Xiaoan Zuo
- Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | |
Collapse
|
15
|
Wu H, Yang J, Fu W, Rillig MC, Cao Z, Zhao A, Hao Z, Zhang X, Chen B, Han X. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. THE NEW PHYTOLOGIST 2023; 237:279-294. [PMID: 36177721 DOI: 10.1111/nph.18516] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) enrichment poses threats to biodiversity and ecosystem stability, while arbuscular mycorrhizal (AM) fungi play important roles in ecosystem stability and functioning. However, the ecological impacts, especially thresholds of N enrichment potentially causing AM fungal community shifts have not been adequately characterized. Based on a long-term field experiment with nine N addition levels ranging from 0 to 50 g N m-2 yr-1 in a temperate grassland, we characterized the community response patterns of AM fungi to N enrichment. Arbuscular mycorrhizal fungal biomass continuously decreased with increasing N addition levels. However, AM fungal diversity did not significantly change below 20 g N m-2 yr-1 , but dramatically decreased at higher N levels, which drove the AM fungal community to a potentially unstable state. Structural equation modeling showed that the decline in AM fungal biomass could be well explained by soil acidification, whereas key driving factors for AM fungal diversity shifted from soil nitrogen : phosphorus (N : P) ratio to soil pH with increasing N levels. Different aspects of AM fungal communities (biomass, diversity and community composition) respond differently to increasing N addition levels. Thresholds for substantial community shifts in response to N enrichment in this grassland ecosystem are identified.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Zhenjiao Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
16
|
Chen D, Hou H, Zhou S, Zhang S, Liu D, Pang Z, Hu J, Xue K, Du J, Cui X, Wang Y, Che R. Soil diazotrophic abundance, diversity, and community assembly mechanisms significantly differ between glacier riparian wetlands and their adjacent alpine meadows. Front Microbiol 2022; 13:1063027. [PMID: 36569049 PMCID: PMC9772447 DOI: 10.3389/fmicb.2022.1063027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Global warming can trigger dramatic glacier area shrinkage and change the flux of glacial runoff, leading to the expansion and subsequent retreat of riparian wetlands. This elicits the interconversion of riparian wetlands and their adjacent ecosystems (e.g., alpine meadows), probably significantly impacting ecosystem nitrogen input by changing soil diazotrophic communities. However, the soil diazotrophic community differences between glacial riparian wetlands and their adjacent ecosystems remain largely unexplored. Here, soils were collected from riparian wetlands and their adjacent alpine meadows at six locations from glacier foreland to lake mouth along a typical Tibetan glacial river in the Namtso watershed. The abundance and diversity of soil diazotrophs were determined by real-time PCR and amplicon sequencing based on nifH gene. The soil diazotrophic community assembly mechanisms were analyzed via iCAMP, a recently developed null model-based method. The results showed that compared with the riparian wetlands, the abundance and diversity of the diazotrophs in the alpine meadow soils significantly decreased. The soil diazotrophic community profiles also significantly differed between the riparian wetlands and alpine meadows. For example, compared with the alpine meadows, the relative abundance of chemoheterotrophic and sulfate-respiration diazotrophs was significantly higher in the riparian wetland soils. In contrast, the diazotrophs related to ureolysis, photoautotrophy, and denitrification were significantly enriched in the alpine meadow soils. The iCAMP analysis showed that the assembly of soil diazotrophic community was mainly controlled by drift and dispersal limitation. Compared with the riparian wetlands, the assembly of the alpine meadow soil diazotrophic community was more affected by dispersal limitation and homogeneous selection. These findings suggest that the conversion of riparian wetlands and alpine meadows can significantly alter soil diazotrophic community and probably the ecosystem nitrogen input mechanisms, highlighting the enormous effects of climate change on alpine ecosystems.
Collapse
Affiliation(s)
- Danhong Chen
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Haiyan Hou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Shutong Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Dong Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhe Pang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Kai Xue
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianqing Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanfen Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| |
Collapse
|
17
|
Niu G, Wang Y, Dai G, Xie S, Jin Y, Yang J, Huang J. Effects of 12-Year Nitrogen Addition and Mowing on Plant-Soil Micronutrients in a Typical Steppe. PLANTS (BASEL, SWITZERLAND) 2022; 11:3042. [PMID: 36432772 PMCID: PMC9697658 DOI: 10.3390/plants11223042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Changes in soil micronutrient availability may have adverse consequences on grassland productivity, yet it’s still largely unclear how concurrent human practices, such as fertilization and mowing, affect micronutrient cycling in the plant-soil systems. Here, we measured six essential micronutrient (Fe, Mn, Cu, Zn, Co and Mo) contents in both plant pool (separated as aboveground plant parts, litter, and belowground roots) at the community level and soil pool (0−10 cm depth) after 12-year consecutive nitrogen (N) addition (0, 2, 10, and 50 g N m−2 year−1) and mowing in a typical steppe of the Mongolian Plateau. The results show that (i) medium-N (10 g m−2 year−1) and high-N (50 g m−2 year−1) addition rates significantly increased contents of soil-available Fe (+310.0%, averaging across the two N addition rates), Mn (+149.2%), Co (+123.6%) and Mo (+73.9%) irrespective of mowing treatment, whereas these addition treatments usually decreased contents of soil total Fe (−8.9%), Mn (−21.6%), Cu (−15.9%), Zn (−19.5%), Co (−16.4%) and Mo (−34.7%). (ii) Contents of Fe in aboveground plant parts, litter, and roots significantly decreased, whereas plant Mn increased with N addition. Contents of above ground plant Cu, Zn, Co, and Mo significantly decreased at high-N addition rate, whereas contents of micronutrients in roots and litters, except for Fe, generally increased with N addition. Moreover, the total amount of micronutrients in the plant pool (contents × biomass) significantly increased at the medium-N addition rate but decreased at the high-N addition rate. All N addition rates significantly enlarged the pool of litter micronutrients, and roots could hold more micronutrients under N addition, especially combined with mowing treatment. Importantly, although mowing could regulate the effects of N addition on variables (i) and (ii), the effects were weaker overall than those of N addition. (iii) Changes in root micronutrients, except for Mn, could explain corresponding changes in plant micronutrients (R2: 0.19−0.56, all p < 0.01), and significant linear correlations were also observed between soil-available Fe and Fe in plant and roots. Aboveground plant Mn was significantly correlated with soil-available Mn, while Co and Mo in roots were also significantly correlated with soil-available Co and Mo. These results indicate that soil micronutrient supply capacity may decrease due to a decrease in total micronutrient contents after long-term N addition and mowing. They also suggest that different magnitude responses of soil micronutrients in plants (i.e., litters, roots) and soil should be considered when comprehensively examining nutrient cycling in grassland ecosystems.
Collapse
Affiliation(s)
- Guoxiang Niu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yinliu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Guangyi Dai
- South China National Botanical Garden, Guangzhou 510650, China
- Opening public laboratory, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Siwei Xie
- College of Sciences, University of Strathclyde, Glasgow G4 0LZ, UK
| | - Yiqian Jin
- International department, High School Affiliated to South China Normal University, Guangzhou 510650, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| |
Collapse
|
18
|
Grazing and light modify Silene latifolia responses to nutrients and future climate. PLoS One 2022; 17:e0276789. [DOI: 10.1371/journal.pone.0276789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Altered climate, nutrient enrichment and changes in grazing patterns are important environmental and biotic changes in temperate grassland systems. Singly and in concert these factors can influence plant performance and traits, with consequences for species competitive ability, and thus for species coexistence, community composition and diversity. However, we lack experimental tests of the mechanisms, such as competition for light, driving plant performance and traits under nutrient enrichment, grazer exclusion and future climate. We used transplants of Silene latifolia, a widespread grassland forb in Europe, to study plant responses to interactions among climate, nutrients, grazing and light. We recorded transplant biomass, height, specific leaf area (SLA) and foliar carbon to nitrogen ratio (C:N) in full-factorial combinations of future climate treatment, fertilization, grazer exclusion and light addition via LED-lamps. Future climate and fertilization together increased transplant height but only in unlighted plots. Light addition increased SLA in ambient climate, and decreased C:N in unfertilized plots. Further, transplants had higher biomass in future climatic conditions when protected from grazers. In general, grazing had a strong negative effect on all measured variables regardless of added nutrients and light. Our results show that competition for light may lead to taller individuals and interacts with climate and nutrients to affect traits related to resource-use. Furthermore, our study suggests grazing may counteract the benefits of future climate on the biomass of species such as Silene latifolia. Consequently, grazers and light may be important modulators of individual plant performance and traits under nutrient enrichment and future climatic conditions.
Collapse
|
19
|
Waterton J, Hammond M, Lau JA. Evolutionary effects of nitrogen are not easily predicted from ecological responses. AMERICAN JOURNAL OF BOTANY 2022; 109:1741-1756. [PMID: 36371717 PMCID: PMC10099611 DOI: 10.1002/ajb2.16095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Anthropogenic nitrogen (N) addition alters the abiotic and biotic environment, potentially leading to changes in patterns of natural selection (i.e., trait-fitness relationships) and the opportunity for selection (i.e., variance in relative fitness). Because N addition favors species with light acquisition strategies (e.g., tall species), we predicted that N would strengthen selection favoring those same traits. We also predicted that N could alter the opportunity for selection via its effects on mean fitness and/or competitive asymmetries. METHODS We quantified the strength of selection and the opportunity for selection in replicated populations of the annual grass Setaria faberi (giant foxtail) growing in a long-term N addition experiment. We also correlated these population-level parameters with community-level metrics to identify the proximate causes of N-mediated evolutionary effects. RESULTS N addition increased aboveground productivity, light asymmetry, and reduced species diversity. Contrary to expectations, N addition did not strengthen selection for trait values associated with higher light acquisition such as greater height and specific leaf area (SLA); rather, it strengthened selection favoring lower SLA. Light asymmetry and species diversity were associated with selection for height and SLA, suggesting a role for these factors in driving N-mediated selection. The opportunity for selection was not influenced by N addition but was negatively associated with species diversity. CONCLUSIONS Our results indicate that anthropogenic N enrichment can affect evolutionary processes, but that evolutionary changes in plant traits within populations are unlikely to parallel the shifts in plant traits observed at the community level.
Collapse
Affiliation(s)
- Joseph Waterton
- Department of BiologyIndiana University1001 E. 3rd St.BloomingtonIN47405USA
| | - Mark Hammond
- Kellogg Biological StationMichigan State UniversityHickory CornersMI49060USA
| | - Jennifer A. Lau
- Department of Biology and the Environmental Resilience InstituteIndiana University1001 E. 3rd St.BloomingtonIN47405USA
| |
Collapse
|
20
|
Song W, Ochoa-Hueso R, Li F, Cui H, Zhong S, Yang X, Zhao T, Sun W. Mowing enhances the positive effects of nitrogen addition on ecosystem carbon fluxes and water use efficiency in a semi-arid meadow steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115889. [PMID: 35932732 DOI: 10.1016/j.jenvman.2022.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Grasslands are now facing a continuously increasing supply of nitrogen (N) fertilizers, resulting in alterations in ecosystem functioning, including changes in carbon (C) and water cycling. Mowing, one of the most widely used grassland management techniques, has been shown to mitigate the negative impacts of increased N availability on species richness. However, knowledge of how N addition and mowing, alone and/or in combination, affect ecosystem-level C fluxes and water use efficiency (WN) is still limited. We experimentally manipulated N fertilization (0 and 10 g N m-2 yr-1) and mowing (once per year at the end of the growing season) following a randomized block design in a meadow steppe characterized by salinization and alkalinization in northeastern China. We found that, compared to the control plots, N addition, mowing, and their interaction increased net ecosystem CO2 exchange by 65.1%, 14.7%, and 133%, and WN by 40.7%, 18.5%, and 96.1%, respectively. Nitrogen enrichment also decreased soil pH, which resulted in greater aboveground biomass (AGB). Moreover, N addition indirectly increased AGB by inducing changes in species richness. Our results indicate that mowing enhances the positive effects of N addition on ecosystem C fluxes and WN. Therefore, appropriate grassland management practices are essential to improve ecosystem C sequestration, WN, and mitigate future species diversity declines due to ecosystem eutrophication.
Collapse
Affiliation(s)
- Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China; Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus Del Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus Del Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700, AB, Wageningen, the Netherlands.
| | - Fei Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Haiying Cui
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Shangzhi Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China; Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Tianhang Zhao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
21
|
Peng J, Ma F, Quan Q, Chen X, Wang J, Yan Y, Zhou Q, Niu S. Nitrogen enrichment alters climate sensitivity of biodiversity and productivity differentially and reverses the relationship between them in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155418. [PMID: 35472341 DOI: 10.1016/j.scitotenv.2022.155418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Biodiversity and productivity that highly determine ecosystem services are varying largely under global change. However, the climate sensitivity of them and their relationship are not well understood, especially in the context of increasing nitrogen (N) deposition. Here, based on a six-year N manipulation experiment in an alpine meadow, we quantified interannual climate sensitivity of species richness (SR) and above-ground net primary productivity (ANPP) as well as SR-ANPP relationship as affected by six N addition rate (Nrate) gradients. We found that interannual variations in ANPP and SR were mainly driven by temperature instead of precipitation. In the plots without N addition, higher temperature substantially increased ANPP but reduced SR across years, thus resulting in a negative SR-ANPP relationship. However, the negative and positive responses of SR and ANPP to temperature increased and declined significantly with increasing Nrate, respectively, leading to a shift of the negative relationship between SR and ANPP into a positive one under high Nrate. Moreover, the adverse influence of drought on SR and ANPP would be aggravated by N fertilization, as indicated by the increased positive effect of precipitation on them under N enrichment. Our findings indicate that climate sensitivity of productivity and biodiversity may be misestimated if the impact of N deposition is not considered, and the importance of biodiversity to maintain productivity would enhance as N deposition increases. This study provides a new insight to explain variation of biodiversity-productivity relationship along with environmental changes.
Collapse
Affiliation(s)
- Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinli Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingjie Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Wilcots ME, Schroeder KM, DeLancey LC, Kjaer SJ, Hobbie SE, Seabloom EW, Borer ET. Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. GLOBAL CHANGE BIOLOGY 2022; 28:4819-4831. [PMID: 35593000 PMCID: PMC9545222 DOI: 10.1111/gcb.16272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Changes in the biosphere carbon (C) sink are of utmost importance given rising atmospheric CO2 levels. Concurrent global changes, such as increasing nitrogen (N) deposition, are affecting how much C can be stored in terrestrial ecosystems. Understanding the extent of these impacts will help in predicting the fate of the biosphere C sink. However, most N addition experiments add N in rates that greatly exceed ambient rates of N deposition, making inference from current knowledge difficult. Here, we leveraged data from a 13-year N addition gradient experiment with addition rates spanning realistic rates of N deposition (0, 1, 5, and 10 g N m-2 year-1 ) to assess the rates of N addition at which C uptake and storage were stimulated in a temperate grassland. Very low rates of N addition stimulated gross primary productivity and plant biomass, but also stimulated ecosystem respiration such that there was no net change in C uptake or storage. Furthermore, we found consistent, nonlinear relationships between N addition rate and plant responses such that intermediate rates of N addition induced the greatest ecosystem responses. Soil pH and microbial biomass and respiration all declined with increasing N addition indicating that negative consequences of N addition have direct effects on belowground processes, which could then affect whole ecosystem C uptake and storage. Our work demonstrates that experiments that add large amounts of N may be underestimating the effect of low to intermediate rates of N deposition on grassland C cycling. Furthermore, we show that plant biomass does not reliably indicate rates of C uptake or soil C storage, and that measuring rates of C loss (i.e., ecosystem and soil respiration) in conjunction with rates of C uptake and C pools are crucial for accurately understanding grassland C storage.
Collapse
Affiliation(s)
- Megan E. Wilcots
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Katie M. Schroeder
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Lang C. DeLancey
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Savannah J. Kjaer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Sarah E. Hobbie
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
23
|
Zhang X, Nian L, Liu X, Li X, Adingo S, Liu X, Wang Q, Yang Y, Zhang M, Hui C, Yu W, Zhang X, Ma W, Zhang Y. Spatial-Temporal Correlations between Soil pH and NPP of Grassland Ecosystems in the Yellow River Source Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148852. [PMID: 35886703 PMCID: PMC9323939 DOI: 10.3390/ijerph19148852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
In recent years, ecological concerns such as vegetation destruction, permafrost deterioration, and river drying have been paid much more attention to on the Yellow River Basin in China. Soil pH is regarded to be the fundamental variable among soil properties for vegetation growth, while net primary productivity (NPP) is also an essential indicator to reflect the healthy growth of vegetation. Due to the limitation of on-site samples, the spatial−temporal variations in soil pH and NPP, as well as their intrinsic mechanisms, remain unknown, especially in the Yellow River source area, China. Therefore, it is imperative to investigate the coupling relationship between soil pH and NPP of the area. The study coupled MODIS reflectance data (MOD09A1) with on-site soil pH to estimate spatial−temporal variations in soil pH, explore the response of NPP to soil pH, and assess the extent to which they contribute to grassland ecosystems, thus helping to fill knowledge gaps. Results indicated that the surface spectral reflectance for seven bands could express the geographic pattern of soil pH by applying a multiple linear regression equation; NPP exhibited an increasing trend while soil pH was the contrary in summer from 2000 to 2021. In summer, NPP was negatively correlated with soil pH and there was a lag effect in the response of NPP to soil pH, revealing a correlation between temperate steppes > montane meadows > alpine meadows > swamps in different grassland ecosystems. In addition, contribution indices for temperate steppes and montane meadows were positive whereas they were negative for swamps and alpine meadows, which are apparent findings. The contribution index of montane and alpine meadows was greater than that of temperate steppes and swamps. The approach of the study can enable managers to easily identify and rehabilitate alkaline soil and provides an important reference and practical value for ecological restoration and sustainable development of grassland ecosystems in alpine regions.
Collapse
Affiliation(s)
- Xiaoning Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Xingyu Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Xiaodan Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Management, Gansu Agricultural University, Lanzhou 730070, China;
| | - Samuel Adingo
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
| | - Xuelu Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
- Correspondence:
| | - Quanxi Wang
- College of Humanities and Law, Northeastern University, Shenyang 110169, China;
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Miaomiao Zhang
- College of Management, Gansu Agricultural University, Lanzhou 730070, China;
| | - Caihong Hui
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Wenting Yu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Xinyu Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Wenjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| | - Yaoquan Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (L.N.); (X.L.); (X.L.); (S.A.); (W.M.); (Y.Z.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (C.H.); (W.Y.); (X.Z.)
| |
Collapse
|
24
|
Borer ET, Stevens CJ. Nitrogen deposition and climate: an integrated synthesis. Trends Ecol Evol 2022; 37:541-552. [PMID: 35428538 DOI: 10.1016/j.tree.2022.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Human activities have more than doubled reactive nitrogen (N) deposited in ecosystems, perturbing the N cycle and considerably impacting plant, animal, and microbial communities. However, biotic responses to N deposition can vary widely depending on factors including local climate and soils, limiting our ability to predict ecosystem responses. Here, we synthesize reported impacts of elevated N on grasslands and draw upon evidence from the globally distributed Nutrient Network experiment (NutNet) to provide insight into causes of variation and their relative importance across scales. This synthesis highlights that climate and elevated N frequently interact, modifying biotic responses to N. It also demonstrates the importance of edaphic context and widespread interactions with other limiting nutrients in controlling biotic responses to N deposition.
Collapse
Affiliation(s)
- Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA.
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
25
|
Grazing by wild red deer can mitigate nutrient enrichment in protected semi-natural open habitats. Oecologia 2022; 199:471-485. [PMID: 35545720 PMCID: PMC9225971 DOI: 10.1007/s00442-022-05182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/01/2022] [Indexed: 11/13/2022]
Abstract
Eutrophication through atmospheric nutrient deposition is threatening the biodiversity of semi-natural habitats characterized by low nutrient availability. Accordingly, local management measures aiming at open habitat conservation need to maintain habitat-specific nutrient conditions despite atmospheric inputs. Grazing by wild herbivores, such as red deer (Cervus elaphus), has been proposed as an alternative to mechanical or livestock-based measures for preserving open habitats. The role of red deer for nutrient dynamics in protected open habitat types, however, is yet unclear. Therefore, we collected data on vegetation productivity, forage removal, quantity of red deer dung and nutrient concentrations in vegetation and dung from permanent plots in heathlands and grasslands (eight plots à 225 m2 per habitat type) on a military training area inhabited by a large population of free-ranging red deer over one year. The annual nutrient export of nitrogen (N) and phosphorus (P) by red deer grazing was higher than the nutrient import through red deer excreta, resulting in an average net nutrient removal of 14 and 30 kg N ha−1 a−1 and 1.1 and 3.3 kg P ha−1 a−1 in heathlands and grasslands, respectively. Even when considering approximate local atmospheric deposition values, net nutrient depletion due to red deer grazing seemed very likely, notably in grasslands. Demonstrating that grazing by wild red deer can mitigate the effects of atmospheric nutrient deposition in semi-natural open habitats similarly to extensive livestock grazing, our results support the idea that red deer are suitable grazing animals for open habitat conservation.
Collapse
|
26
|
Liu Z, Liu K, Zhang J, Yan C, Lock TR, Kallenbach RL, Yuan Z. Fractional coverage rather than green chromatic coordinate is a robust indicator to track grassland phenology using smartphone photography. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Verma P, Sagar R. Soil respiration response to nitrogen fertilization experiment in tropical grassland. Ecol Res 2022. [DOI: 10.1111/1440-1703.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Preeti Verma
- Department of Botany Banaras Hindu University Varanasi India
- Department of Botany Government Degree College Basti India
| | - R. Sagar
- Department of Botany Banaras Hindu University Varanasi India
| |
Collapse
|
28
|
Shen H, Dong S, DiTommaso A, Xiao J, Lu W, Zhi Y. Nitrogen Deposition Shifts Grassland Communities Through Directly Increasing Dominance of Graminoids: A 3-Year Case Study From the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:811970. [PMID: 35317015 PMCID: PMC8934429 DOI: 10.3389/fpls.2022.811970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) deposition has been increasing for decades and has profoundly influenced the structure and function of grassland ecosystems in many regions of the world. However, the impact of N deposition on alpine grasslands is less well documented. We conducted a 3-year field experiment to determine the effects of N deposition on plant species richness, composition, and community productivity in an alpine meadow of the Qinghai-Tibetan Plateau of China. We found that 3 years of N deposition had a profound effect on these plant community parameters. Increasing N rates increased the dominance of graminoids and reduced the presence of non-graminoids. Species richness was inversely associated with aboveground biomass. The shift in plant species and functional group composition was largely responsible for the increase in productivity associated with N deposition. Climatic factors also interacted with N addition to influence productivity. Our findings suggest that short-term N deposition could increase the productivity of alpine meadows through shifts in composition toward a graminoid-dominated community. Longer-term studies are needed to determine if shifts in composition and increased productivity will be maintained. Future work must also evaluate whether decreasing plant diversity will impair the long-term stability and function of sensitive alpine grasslands.
Collapse
Affiliation(s)
- Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
- Department of Natural Resources, Cornell University, Ithaca, NY, United States
| | - Antonio DiTommaso
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Jiannan Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Wen Lu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, College of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yangliu Zhi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
29
|
Choi RT, Reed SC, Tucker CL. Multiple resource limitation of dryland soil microbial carbon cycling on the Colorado Plateau. Ecology 2022; 103:e3671. [PMID: 35233760 DOI: 10.1002/ecy.3671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Understanding interactions among biogeochemical cycles is increasingly important as anthropogenic alterations of global climate and of carbon (C), nitrogen (N), and phosphorus (P) cycles interactively affect the Earth system. Ecosystem processes in the dryland biome, which makes up over 40% of Earth's terrestrial surface, are often distinctively sensitive to small changes in resource availability, likely because levels of many resources are low. However, data also suggest that simultaneous changes in the availability of multiple resources may be necessary to affect a response in these low-resource systems, offering an opportunity to test patterns and controls of co-limitation, serial limitation, and individual limitation in soil environments. While drylands may play a governing role in key aspects of Earth's C cycle, and while an improved understanding of resource limitation could substantially improve our forecasts of dryland responses to change, our understanding of interacting controls on soil C cycle processes remains notably poor in these dry systems. Here, we address multiple fundamental hypotheses of resource controls over ecosystem function to test how water, C, N, and P regulate soil C cycling individually and interactively in a dryland ecosystem on the Colorado Plateau. Using a series of laboratory incubations, we found that while water, C, and N limited C cycling through serial limitation, water alone resulted in an extremely small respiratory response from target organisms, whereas water + C resulted in a dramatic increase in soil C cycling, suggesting a degree of functional co-limitation. Nitrogen additions alone resulted in no changes to soil C cycling, but when N was added in concert with water and C, N greatly increased soil C cycling rates relative to additions of water and C without N. Phosphorus additions had no effect on the C cycle either alone or synergistically. These patterns were consistent with the stoichiometry of the system, and interactions among resources were surprising in ways that inform our understanding of critical theories in ecology, such as the Transient Maxima Hypothesis, supporting the suggestion that multiple resource limitation explains pulse-dynamic C cycling in drylands better than water limitation alone.
Collapse
Affiliation(s)
- Ryan T Choi
- Department of Wildland Resources, Utah State University and the Ecology Center, Logan, UT, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Colin L Tucker
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA.,U.S.D.A Forest Service, Northern Research Station, Houghton, MI, USA
| |
Collapse
|
30
|
Oliveira ACC, Forti VA, Viani RAG. Fertility responses of a native grass: technology supporting native plant production for restoration in Brazil. Restor Ecol 2022. [DOI: 10.1111/rec.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ana C. C. Oliveira
- Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo Piracicaba Brazil
| | - Victor A. Forti
- Centro de Ciências Agrárias Universidade Federal de São Carlos São Carlos Brazil
| | - Ricardo A. G. Viani
- Centro de Ciências Agrárias Universidade Federal de São Carlos São Carlos Brazil
| |
Collapse
|
31
|
Li C, Li Y, Li X, Ma L, Xiao Y, Zhang C. Differential Responses of Plant Primary Productivity to Nutrient Addition in Natural and Restored Alpine Grasslands in the Qinghai Lake Basin. FRONTIERS IN PLANT SCIENCE 2021; 12:792123. [PMID: 34987537 PMCID: PMC8721223 DOI: 10.3389/fpls.2021.792123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Climate, land-use changes, and nitrogen (N) deposition strongly impact plant primary productivity, particularly in alpine grassland ecosystems. In this study, the differential responses of plant community primary productivity to N and phosphorus (P) nutrient application were investigated in the natural (NG) and "Grain for Green" restored (RG) alpine grasslands by a continuous 3-year experiment in the Qinghai Lake Basin. N addition only significantly promoted plant aboveground biomass (AGB) by 42% and had no significant effect on belowground biomass (BGB) and total biomass (TB) in NG. In comparison with NG, N addition elevated AGB and BGB concurrently in RG by 138% and 24%, respectively, which further significantly increased TB by 41% in RG. Meanwhile, N addition significantly decreased BGB and the AGB ratio (R/S) both in NG and RG. Compared with N addition, P addition did not perform an evident effect on plant biomass parameters. Additionally, AGB was merely negatively influenced by growing season temperatures (GST) under the N addition treatment in NG. AGB was negatively associated with GST but positively related to growing season precipitation (GSP) in RG. By contrast, changes in the R/S ratio in RG were positively correlated with GST and negatively related to GSP. In sum, the results revealed that plant community biomass exhibited convergent (AGB and R/S) and divergent (BGB and TB) responses to N addition between NG and RG. In addition, the outcomes suggested that climate warming would enhance plant biomass allocation to belowground under ongoing N deposition, and indicated the significance of precipitation for plant growth and AGB accumulation in this restored alpine grassland ecosystem.
Collapse
Affiliation(s)
- Chunli Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yonghui Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xinwei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Li Ma
- Key Laboratory of Cold Regions Restoration Ecology, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Yuanming Xiao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Chunhui Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
32
|
Zhang Y, Ren Z, Zhang Y. Winter nitrogen enrichment does not alter the sensitivity of plant communities to precipitation in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148264. [PMID: 34380248 DOI: 10.1016/j.scitotenv.2021.148264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition often promotes aboveground net primary productivity (ANPP), but has adverse effects on terrestrial ecosystem biodiversity. It is unclear, however, whether biomass production and biodiversity are equally altered by seasonal N enrichment, as there is a temporal pattern to atmospheric N deposition. By adding N in autumn, winter, or growing season from October 2014 to May 2019 in a temperate grassland in China, we found that N addition promoted peak plant community ANPP, but tended to decrease plant richness. Regardless of seasonal N additions, precipitation was positively correlated with plant community ANPP, confirming that precipitation is the primary limiting factor in this semiarid grassland. Unexpectedly, N addition in autumn or growing season, but not in winter, increased the sensitivity of plant communities to precipitation (i.e., the slope of the positive relationship between community ANPP and precipitation), indicating that precipitation determines the influence of seasonal N enrichment on plant community biomass production. These findings suggest that previous studies in which N was added in a single season, e.g., the growing season, have likely overestimated the effects of N deposition on ecosystem primary productivity, especially during wet years. This study illustrates that multi-season N addition in agreement with predicted seasonal patterns of N deposition needs to be evaluated to precisely assess ecosystem responses.
Collapse
Affiliation(s)
- Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| |
Collapse
|
33
|
Radujković D, Verbruggen E, Seabloom EW, Bahn M, Biederman LA, Borer ET, Boughton EH, Catford JA, Campioli M, Donohue I, Ebeling A, Eskelinen A, Fay PA, Hansart A, Knops JMH, MacDougall AS, Ohlert T, Olde Venterink H, Raynaud X, Risch AC, Roscher C, Schütz M, Silveira ML, Stevens CJ, Van Sundert K, Virtanen R, Wardle GM, Wragg PD, Vicca S. Soil properties as key predictors of global grassland production: Have we overlooked micronutrients? Ecol Lett 2021; 24:2713-2725. [PMID: 34617374 DOI: 10.1111/ele.13894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023]
Abstract
Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.
Collapse
Affiliation(s)
- Dajana Radujković
- Department of Biology, Plants and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Erik Verbruggen
- Department of Biology, Plants and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Eric W Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Lori A Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Elizabeth H Boughton
- Archbold Biological Station, Buck Island Ranch Agroecology Program, Lake Placid, Florida, USA
| | - Jane A Catford
- Department of Geography, King's College London, London, UK
| | - Matteo Campioli
- Department of Biology, Plants and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anne Ebeling
- Institute of Ecology and Evolution, University Jena, Jena, Germany
| | - Anu Eskelinen
- Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Leipzig, Germany.,Ecology & Genetics, University of Oulu, Oulu, Finland
| | - Philip A Fay
- USDA-ARS Grassland Soil and Water Research Laboratory, Temple, Texas, USA
| | - Amandine Hansart
- Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, PSL University, Saint-Pierre-lès-Nemours, France
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xián Jiaotong-Liverpool University, Suzhou, China
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Timothy Ohlert
- Department of Biology, 1 University of New Mexico, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Xavier Raynaud
- UPEC, Institute of Ecology and Environmental Sciences-Paris, Sorbonne Université, CNRS, IRD, INRAE, Université de Paris, Paris, France
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Christiane Roscher
- Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Leipzig, Germany
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Maria Lucia Silveira
- Range Cattle Research and Education Center, University of Florida, Ona, Florida, USA
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Kevin Van Sundert
- Department of Biology, Plants and Ecosystems, University of Antwerp, Wilrijk, Belgium
| | | | - Glenda M Wardle
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Peter D Wragg
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Sara Vicca
- Department of Biology, Plants and Ecosystems, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
34
|
Kazanski CE, Cowles J, Dymond S, Clark AT, David AS, Jungers JM, Kendig AE, Riggs CE, Trost J, Wei X. Water availability modifies productivity response to biodiversity and nitrogen in long-term grassland experiments. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02363. [PMID: 33899307 DOI: 10.1002/eap.2363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Diversity and nitrogen addition have positive relationships with plant productivity, yet climate-induced changes in water availability threaten to upend these established relationships. Using long-term data from three experiments in a mesic grassland (ranging from 17 to 34 yr of data), we tested how the effects of species richness and nitrogen addition on community-level plant productivity changed as a function of annual fluctuations in water availability using growing season precipitation and the Standardized Precipitation-Evapotranspiration Index (SPEI). While results varied across experiments, our findings demonstrate that water availability can magnify the positive effects of both biodiversity and nitrogen addition on productivity. These results suggest that productivity responses to anthropogenic species diversity loss and increasing nitrogen deposition could depend on precipitation regimes, highlighting the importance of testing interactions between multiple global change drivers.
Collapse
Affiliation(s)
- Clare E Kazanski
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
- The Nature Conservancy, 1101 West River Parkway, Minneapolis, Minnesota, 55415, USA
| | - Jane Cowles
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| | - Salli Dymond
- Departments of Forestry Resources, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Duluth, 1114 Kirby Drive, Duluth, Minnesota, 55812, USA
| | - Adam T Clark
- Institute for Biology, Karl-Franzens University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Aaron S David
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| | - Jacob M Jungers
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St. Paul, Minnesota, 55108, USA
| | - Amy E Kendig
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| | - Charlotte E Riggs
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| | - Jared Trost
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
- Departments of Forestry Resources, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Xiaojing Wei
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
35
|
Ren H, Han G, Li MH, Gao C, Jiang L. Ethylene-regulated leaf lifespan explains divergent responses of plant productivity to warming among three hydrologically different growing seasons. GLOBAL CHANGE BIOLOGY 2021; 27:4169-4180. [PMID: 34022095 DOI: 10.1111/gcb.15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Leaf senescence is known to be regulated by the plant hormone ethylene, but how leaf lifespan responds to global environmental change and links to ecosystem-level responses remains largely unexplored. Here we investigated the effects of climate warming and nitrogen addition on plant functional traits, plant hormone ethylene and net primary production in a 13-year field experiment in a desert steppe. Across the last 3 years of the experiment (2016-2018), plant productivity increased under warming only in 2016, when there was above normal precipitation, but consistently increased with nitrogen addition. Warming enhanced net photosynthesis, leaf nitrogen and ethylene production and reduced leaf lifespan in 2016 (a wet year), but not in 2017 (a drought year); the effect of warming in 2018 (a year with normal precipitation) was opposite to 2016, likely due to the below-normal precipitation in the mid-growing season in 2018. Nitrogen addition led to increases in leaf nitrogen, ethylene production and net photosynthesis, and declines in leaf lifespan in 2016 and 2018, but not in 2017. The ethylene-regulated lifespan was further evidenced by the addition of CoCl2 (an ethylene biosynthesis inhibitor) that reduced ethylene production and prolonged lifespan. Structural equation modeling showed that leaf lifespan had a negative effect on plant productivity, both directly and indirectly via its negative effect on net photosynthesis, across all 3 years. Our results demonstrate the divergent responses of leaf lifespan and, in turn, plant productivity to warming under inter-annual and intra-annual precipitation variation, thus linking plant hormone production, functional traits and ecosystem functioning in the face of global environmental change.
Collapse
Affiliation(s)
- Haiyan Ren
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Mai-He Li
- Forest dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains of the Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Cuiping Gao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
36
|
Brown A, Heckman RW. Light alters the impacts of nitrogen and foliar pathogens on the performance of early successional tree seedlings. PeerJ 2021; 9:e11587. [PMID: 34285829 PMCID: PMC8272923 DOI: 10.7717/peerj.11587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Light limitation is a major driver of succession and an important determinant of the performance of shade-intolerant tree seedlings. Shade intolerance may result from a resource allocation strategy characterized by rapid growth and high metabolic costs, which may make shade-intolerant species particularly sensitive to nutrient limitation and pathogen pressure. In this study, we evaluated the degree to which nitrogen availability and fungal pathogen pressure interact to influence plant performance across different light environments. To test this, we manipulated nitrogen availability (high, low) and access by foliar fungal pathogens (sprayed with fungicide, unsprayed) to seedlings of the shade-intolerant tree, Liquidambar styraciflua, growing at low and high light availability, from forest understory to adjacent old field. Foliar fungal damage varied with light and nitrogen availability; in low light, increasing nitrogen availability tripled foliar damage, suggesting that increased nutrient availability in low light makes plants more susceptible to disease. Despite higher foliar damage under low light, spraying fungicide to exclude pathogens promoted 14% greater plant height only under high light conditions. Thus, although nitrogen availability and pathogen pressure each influenced aspects of plant performance, these effects were context dependent and overwhelmed by light limitation. This suggests that failure of shade-intolerant species to invade closed-canopy forest can be explained by light limitation alone.
Collapse
Affiliation(s)
- Alexander Brown
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.,Curriculum for the Environment and Ecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert W Heckman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
37
|
He K, Huang Y, Qi Y, Sheng Z, Chen H. Effects of nitrogen addition on vegetation and soil and its linkages to plant diversity and productivity in a semi-arid steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146299. [PMID: 34030349 DOI: 10.1016/j.scitotenv.2021.146299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) deposition and fertilization, which represent key sources of N input in many terrestrial ecosystems, influence all levels of the ecosystem and involve complex mechanisms. Quantitative and modelling approaches can be used to understand this complexity. In this study, we carried out in situ N addition experiments in a Stipa krylovii steppe in northern China. We evaluated the effects of N addition on plant diversity and productivity under two scenarios (fertilization and simulated increased N deposition) using a structural equation model (SEM). N addition had direct effects on community weighted means (CWM) of plant functional traits and soil properties but had indirect effects on community structure. The changes in community structure and soil properties caused by N addition decreased plant diversity, whereas productivity remained relatively stable and was mainly controlled by changes in community structure. The changes in soil properties and plant diversity caused by N addition had little effect on productivity or soil pH. We conclude that the changes in plant diversity and productivity with increased N input in the S. krylovii steppe were mainly due to differences in growth responses of different species to increased N and the resulting community responses, such as changes in community structure. The results of the present study provide a theoretical basis for grassland management and conservation in the wake of global environmental change.
Collapse
Affiliation(s)
- Kejian He
- School of Earth Sciences, Yunnan Institute of Geography, Yunnan University, Kunming 560091, China
| | - Yongmei Huang
- State Key Laboratory of Earth Surface and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China.
| | - Yu Qi
- Inner Mongolia Research Academy of Environmental Sciences, Hohhot 010011, China
| | - Zhilu Sheng
- State Key Laboratory of Earth Surface and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China.
| | - Huiying Chen
- State Key Laboratory of Earth Surface and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
38
|
Kaspari M, de Beurs KM, Welti EAR. How and why plant ionomes vary across North American grasslands and its implications for herbivore abundance. Ecology 2021; 102:e03459. [PMID: 34171182 DOI: 10.1002/ecy.3459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Plant elemental content can vary up to 1,000-fold across grasslands, with implications for the herbivores the plants feed. We contrast the regulation, in grasses and forbs, of 12 elements essential to plants and animals (henceforth plant-essential), 7 essential to animals but not plants (animal-essential) and 6 with no known metabolic function (nonessential). Four hypotheses accounted for up to two thirds of the variation in grass and forb ionomes across 54 North American grasslands. Consistent with the supply-side hypothesis, the plant-essential ionome of both forbs and grasses tracked soil availability. Grass ionomes were more likely to harvest even nonessential elements like Cd and Sr. Consistent with the grazing hypothesis, cattle-grazed grasslands also accumulated a handful of metals like Cu and Cr. Consistent with the NP-catalysis hypothesis, increases in the macronutrients N and P in grasses were associated with higher densities of cofactors like Zn and Cu. The plant-essential elements of forbs, in contrast, consistently varied as per the nutrient-dilution hypothesis-there was a decrease in elemental parts per million with increasing local carbohydrate production. Combined, these data fit a working hypothesis that grasses maintain lower elemental densities and survive on nutrient-poor patches by opportunistically harvesting soil nutrients. In contrast, nutrient-rich forbs use episodes of high precipitation and temperature to build new carbohydrate biomass, raising leaves higher to compete for light, but diluting the nutrient content in every bite of tissue. Herbivores of forbs may thus be particularly prone to increases in pCO2 via nutrient dilution.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Kirsten M de Beurs
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Ellen A R Welti
- Geographical Ecology Group, Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.,Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
| |
Collapse
|
39
|
Ambient urban N deposition drives increased biomass and total plant N in two native prairie grass species in the U.S. Southern Great Plains. PLoS One 2021; 16:e0251089. [PMID: 33956866 PMCID: PMC8101712 DOI: 10.1371/journal.pone.0251089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Remnants of native tallgrass prairie experience elevated atmospheric nitrogen (N) deposition in urban areas, with potential effects on species traits that are important for N cycling and species composition. We quantified bulk (primarily wet) inorganic N (NH4+-N + NO3--N) deposition at six sites along an urban development gradient (6–64% urban) in the Dallas-Fort Worth metropolitan area from April 2014 to October 2015. In addition, we conducted a phytometer experiment with two common native prairie bunchgrass species––one well studied (Schizachyrium scoparium) and one little studied (Nasella leucotricha)––to investigate ambient N deposition effects on plant biomass and tissue quality. Bulk inorganic N deposition ranged from 6.1–9.9 kg ha-1 yr-1, peaked in spring, and did not vary consistently with proportion of urban land within 10 km of the sites. Total (wet + dry) inorganic N deposition estimated using bulk deposition measured in this study and modeled dry deposition was 12.9–18.2 kg ha-1 yr-1. Although the two plant species studied differ in photosynthetic pathway, biomass, and tissue N, they exhibited a maximum 2-3-fold and 2-4-fold increase in total biomass and total plant N, respectively, with 1.6-fold higher bulk N deposition. In addition, our findings indicate that while native prairie grasses may exhibit a positive biomass response to increased N deposition up to ~18 kg ha-1 yr-1, total inorganic N deposition is well above the estimated critical load for herbaceous plant species richness in the tallgrass prairie of the Great Plains ecoregion and thus may negatively affect these plant communities.
Collapse
|
40
|
Qu S, Yu J, Li F, Wei D, Borjigidai A. Nitrogen deposition accelerates greenhouse gas emissions at an alpine steppe site on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144277. [PMID: 33418330 DOI: 10.1016/j.scitotenv.2020.144277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The increase in atmospheric N deposition can alter the exchange of greenhouse gas (GHG) between the biosphere and atmosphere. The effect of N deposition on GHG is poorly understood in alpine steppe. Therefore, we conducted a 4-year experiment with multilevel N addition of 0, 10, 20, 40, 80, 160 kg N ha-1 using the static chamber and gas chromatography method to quantify responses of GHG fluxes and characterize the relationship between GHG fluxes and N addition rate in Namco located in the alpine steppe in the central Tibetan Plateau (TP). The mean CO2 efflux, CH4 uptake, N2O emission during growing seasons across four years were 33.59 ± 16.41 mg C m-2 h-1, -56.42 ± 29.20 μg C m-2 h-1, 0.67 ± 4.40 μg N m-2 h-1 respectively. CO2 efflux increased 1.55-22.6%, CH4 uptake decreased 5.96-20.1%, N2O emission increased 37.3-133.5% with N addition. We also observed a critical threshold of 40 kg N ha-1 a-1 of N addition above which the increase rate of N2O emission would diminish. Our current results implied that under the background of future N deposition, N induced C sequestration might be offset by GHG balance causing a heating effect to the climate.
Collapse
Affiliation(s)
- Songbo Qu
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China; Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaoneng Yu
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China; Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengzi Li
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; The School of Ecology and Environment of Inner Mongolian University, Huhhot 010021, China
| | - Da Wei
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine, Ministry of Education, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
41
|
Yang X, Mariotte P, Guo J, Hautier Y, Zhang T. Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143137. [PMID: 33121784 DOI: 10.1016/j.scitotenv.2020.143137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Global change alters how terrestrial ecosystems function and makes them less stable over time. Global change can also suppress the development and effectiveness of arbuscular mycorrhizal fungi (AMF). This is concerning, as AMF have been shown to alleviate the negative influence of global changes on plant growth and maintain species coexistence. However, how AMF and global change interact and influence community temporal stability remains poorly understood. Here, we conducted a 4-year field experiment and used structural equation modeling (SEM) to explore the influence of elevated temperature, nitrogen (N) addition and AMF suppression on community temporal stability (quantified as the ratio of the mean community productivity to its standard deviation) in a temperate meadow in northern China. We found that elevated temperature and AMF suppression independently decreased the community temporal stability but that N addition had no impact. Community temporal stability was mainly driven by elevated temperature, N addition and AMF suppression that modulated the dominant species stability; to a lesser extent by the elevated temperature and AMF suppression that modulated AMF richness associated with community asynchrony; and finally by the N addition and AMF suppression that modulated mycorrhizal colonization. In addition, although N addition, AMF suppression and elevated temperature plus AMF suppression reduced plant species richness, there was no evidence that changes in community temporal stability were linked to changes in plant richness. SEM further showed that elevated temperature, N addition and AMF suppression regulated community temporal stability by influencing both the temporal mean and variation in community productivity. Our results suggest that global environmental changes may have appreciable consequences for the stability of temperate meadows while also highlighting the role of belowground AMF status in the responses of plant community temporal stability to global change.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Pierre Mariotte
- Grazing Systems, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Jixun Guo
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| | - Tao Zhang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
42
|
Xu C, Xu X, Ju C, Chen HYH, Wilsey BJ, Luo Y, Fan W. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. GLOBAL CHANGE BIOLOGY 2021; 27:1170-1180. [PMID: 33336457 DOI: 10.1111/gcb.15489] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Soil organic carbon (SOC) is the largest carbon sink in terrestrial ecosystems and plays a critical role in mitigating climate change. Increasing reactive nitrogen (N) in ecosystems caused by anthropogenic N input substantially affects SOC dynamics. However, uncertainties remain concerning the effects of N addition on SOC in both organic and mineral soil layers over time at the global scale. Here, we analysed a large empirical data set spanning 60 years across 369 sites worldwide to explore the temporal dynamics of SOC to N addition. We found that N addition significantly increased SOC across the globe by 4.2% (2.7%-5.8%). SOC increases were amplified from short- to long-term N addition durations in both organic and mineral soil layers. The positive effects of N addition on SOC were independent of ecosystem types, mean annual temperature and precipitation. Our findings suggest that SOC increases largely resulted from the enhanced plant C input to soils coupled with reduced C loss from decomposition and amplification was associated with reduced microbial biomass and respiration under long-term N addition. Our study suggests that N addition will enhance SOC sequestration over time and contribute to future climate change mitigation.
Collapse
Affiliation(s)
- Chonghua Xu
- Department of Ecology, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xia Xu
- Department of Ecology, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chenghui Ju
- Department of Zoology, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Brian J Wilsey
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Wei Fan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Anhui, Hefei, China
| |
Collapse
|
43
|
Seabloom EW, Adler PB, Alberti J, Biederman L, Buckley YM, Cadotte MW, Collins SL, Dee L, Fay PA, Firn J, Hagenah N, Harpole WS, Hautier Y, Hector A, Hobbie SE, Isbell F, Knops JMH, Komatsu KJ, Laungani R, MacDougall A, McCulley RL, Moore JL, Morgan JW, Ohlert T, Prober SM, Risch AC, Schuetz M, Stevens CJ, Borer ET. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology 2021; 102:e03218. [PMID: 33058176 DOI: 10.1002/ecy.3218] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022]
Abstract
Human activities are enriching many of Earth's ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5-11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, Utah, 84322, USA
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, FCEyN, CC1260, 7600, Mar del Plata, Argentina
| | - Lori Biederman
- Ecology, Evolution, & Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, Iowa, 50011, USA
| | - Yvonne M Buckley
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Laura Dee
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80302, USA
| | - Philip A Fay
- USDA-ARS Grassland, Soil, and Water Laboratory, 808 East Blackland Road, Temple, Texas, 76502, USA
| | - Jennifer Firn
- Science and Engineering Faculty, School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, 4001, Australia
| | - Nicole Hagenah
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - W Stanley Harpole
- Department of Physiological Diversity, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, Leipzig, 04318, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, 04103, Germany.,Martin Luther University Halle-Wittenberg, am Kirchtor 1, Halle (Saale), 06108, Germany
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Andy Hector
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Johannes M H Knops
- Health & Environmental Sciences Department, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kimberly J Komatsu
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Ramesh Laungani
- Department of Biology, Doane University, 1014 Boswell Avenue, Crete, Nebraska, 68333, USA
| | - Andrew MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky, 40536-0312, USA
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - John W Morgan
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Timothy Ohlert
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Suzanne M Prober
- CSIRO Land and Water, Private Bag 5, Wembley, Western Australia, 6913, Australia
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Martin Schuetz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
44
|
Abstract
Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk. It is unclear whether terrestrial herbivores are able to consume the extra plant biomass produced under nutrient enrichment. Here the authors test this in grasslands using a globally distributed network of coordinated field experiments, finding that wild herbivore control on grassland production declines under eutrophication.
Collapse
|
45
|
Kimmel K, Furey GN, Hobbie SE, Isbell F, Tilman D, Reich PB. Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity. GLOBAL CHANGE BIOLOGY 2020; 26:6594-6603. [PMID: 32871613 DOI: 10.1111/gcb.15329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/05/2020] [Indexed: 05/06/2023]
Abstract
In most plant communities, the net effect of nitrogen enrichment is an increase in plant productivity. However, nitrogen enrichment also has been shown to decrease species richness and to acidify soils, each of which may diminish the long-term impact of nutrient enrichment on productivity. Here we use a long-term (20 year) grassland plant diversity by nitrogen enrichment experiment in Minnesota, United States (a subexperiment within the BioCON experiment) to quantify the net impacts of nitrogen enrichment on productivity, including its potential indirect effects on productivity via changes in species richness and soil pH over an experimental diversity gradient. Overall, we found that nitrogen enrichment led to an immediate positive increment in productivity, but that this effect became nonsignificant over later years of the experiment, with the difference in productivity between fertilized and unfertilized plots decreasing in proportion to nitrogen addition-dependent declines in soil pH and losses of plant diversity. The net effect of nitrogen enrichment on productivity could have been 14.5% more on average over 20 years in monocultures if not for nitrogen-induced decreases in pH and about 28.5% more on average over 20 years in 16 species communities if not for nitrogen-induced species richness losses. Together, these results suggest that the positive effects of nutrient enrichment on biomass production can diminish in their magnitude over time, especially because of soil acidification in low diversity communities and especially because of plant diversity loss in initially high diversity communities.
Collapse
Affiliation(s)
- Kaitlin Kimmel
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - George N Furey
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - David Tilman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
- Bren School of Environmental Management, UC Santa Barbara, Santa Barbara, CA, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, Minneapolis, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, NSW, Australia
| |
Collapse
|
46
|
Welsh ME, Cronin JP, Mitchell CE. Trait-based variation in host contribution to pathogen transmission across species and resource supplies. Ecology 2020; 101:e03164. [PMID: 33460129 DOI: 10.1002/ecy.3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023]
Abstract
Two key knowledge gaps currently limit the development of more predictive and general models of pathogen transmission: (1) the physiological basis of heterogeneity in host contribution to pathogen transmission (reservoir potential) remains poorly understood and (2) a general means of integrating the ecological dynamics of host communities has yet to emerge. If the traits responsible for differences in reservoir potential also modulate host community dynamics, these traits could be used to predict pathogen transmission as host communities change. In two greenhouse experiments, across 23 host species and two levels of resource supply, the reservoir potential of plant hosts increased significantly along the Leaf Economics Spectrum, a global axis of plant physiological trait covariation that features prominently in models of plant community ecology. This indicates that the traits of the Leaf Economics Spectrum underlie broad differences in reservoir potential across host species and resource supplies. Therefore, host traits could be used to integrate epidemiological models of pathogen transmission with ecological models of host community change.
Collapse
Affiliation(s)
- Miranda E Welsh
- Thompson Writing Program, Duke University, Durham, North Carolina, 27708, USA.,Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - James Patrick Cronin
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, Louisiana, 70506, USA
| | - Charles E Mitchell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
47
|
Common Species Stability and Species Asynchrony Rather than Richness Determine Ecosystem Stability Under Nitrogen Enrichment. Ecosystems 2020. [DOI: 10.1007/s10021-020-00543-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Zhou M, Yang Q, Zhang H, Yao X, Zeng W, Wang W. Plant community temporal stability in response to nitrogen addition among different degraded grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138886. [PMID: 32361447 DOI: 10.1016/j.scitotenv.2020.138886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric nitrogen (N) deposition is generally believed to decrease plant community temporal stability. However, it remains unclear whether the responses of community temporal stability to N deposition vary with disturbance regimes, such as among different grasslands with degrees of degradation. We established a 4-year field experiment with six N addition levels on four grassland sites in northern China with varying degradation statuses (non-degraded, moderately, severely and extremely degraded grasslands). We examined the response of community temporal stability (quantified as the ratio of the mean of community biomass to its standard deviation) to N addition and important regulating factors. Asynchrony was calculated as the difference between one and synchrony (quantified as the ratio of the variance of community biomass to the square of the sum of the standard deviation of species biomass). The most interesting result we found was that community temporal stability of the moderately and severely degraded grasslands was relatively higher among the four grasslands without N addition. This was attributed to shifts in dominant species composition rather than species diversity. Community temporal stability of nearly all sites were not significantly affected by N addition except the moderately degraded grassland. Community temporal stability of the moderately degraded grassland responded to N addition non-linearly, being promoted by low N addition levels (10 and 20 g N m-2 yr-1) and decreased by high N addition levels (30-50 g N m-2 yr-1). Furthermore, community temporal stability of the non-degraded and moderately degraded grasslands was mainly driven by species asynchrony. Whereas, in the severely and extremely degraded grasslands, community temporal stability was mainly regulated by species richness and dominant species stability, respectively. These findings highlight the importance of grassland degradation in the response of community temporal stability to N deposition and provide scientific support for the management and restoration of degraded grasslands.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Qian Yang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Peking University Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Hongjin Zhang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaodong Yao
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Peking University Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Wenjing Zeng
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
49
|
Deng L, Huang C, Kim DG, Shangguan Z, Wang K, Song X, Peng C. Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N 2 O flux and greater stimulation of the calculated C pools. GLOBAL CHANGE BIOLOGY 2020; 26:2613-2629. [PMID: 31863618 DOI: 10.1111/gcb.14970] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 05/18/2023]
Abstract
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2 , CH4 and N2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103-1117). There was also greater stimulation of soil C pools (15.70 kg C ha-1 year-1 per kg N ha-1 year-1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2 /year. It also increased net soil GHG emissions by 10.20 Pg CO2 -Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Chunbo Huang
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
| | - Dong-Gill Kim
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Shashemene, Ethiopia
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Kaibo Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Changhui Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
| |
Collapse
|
50
|
Verma P, Sagar R. Responses of diversity, productivity, and stability to the nitrogen input in a tropical grassland. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02037. [PMID: 31710402 DOI: 10.1002/eap.2037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric nitrogen (N) deposition is a matter of serious concern for the structure and functioning of global ecosystems, but the effect of N application of species diversity (D), primary productivity (P), and stability (S) of tropical grassland ecosystems is not known. The present study reports the effects of different levels of N application on species composition, and the D, P, S, and their relationships in a tropical grassland. Within the experimental grassland, 72 1 × 1 m plots with 6 N-input levels and with 12 replicates, were established in 2013. For 3 yr, different doses of urea as a source of N were applied to the plots. Data on individuals and biomass of each species were recorded and statistically analyzed. The study revealed that the N applied caused variations in species composition, D, P, and S. Below the 90 kg N dose, D was positively related to P and S while, above this level, the relations were negative due to N-induced responses of species and functional group composition as well as biomass distribution among them. The optimum applied N levels for maximum D (50-60 kg N), P (120 kg N), and a positive relationship of S with D (up to 90 kg N treatment) suggested that the 90-kg N dose could be the maximum dose of N that the grassland can tolerate. Hence, N application should not exceed the 90-kg level for sustainability of the structure and functioning of tropical grassland ecosystems.
Collapse
Affiliation(s)
- Preeti Verma
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - R Sagar
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|