1
|
Witte Castro A, Sanchez-Holgado M, Saenz de Pipaon M. Bioactive compounds in human milk. Curr Opin Clin Nutr Metab Care 2025; 28:243-249. [PMID: 39964743 DOI: 10.1097/mco.0000000000001114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Human milk is the optimal food choice for infants. Reviewing the latest advances in research about human milk compounds and their effect on health helps understand the benefits of breastfeeding and improves knowledge of key bioactive nutrients that can be used to improve feeding during infancy, with short and long-time effects on health. RECENT FINDINGS In the last years, it has been described how bioactive compounds such as Human milk oligosaccharides, hormones, lipids, cellular components and microbes play an important role in the infants' health, reducing the risk of infectious, metabolic and autoimmune diseases. The mechanisms of transmission from the mother to the infant of these bioactive compounds are not always well described, but there are several lines of research to understand the biological mechanisms of these beneficial effects. SUMMARY These findings may help improve research in maternal and infant interventions, the modifiable factors that are able to modulate human milk composition. They may help to improve the development of infant formulas and enhance nutritional plans. Also, human milk bioactive compounds identification and isolation may describe new ways of supplementation.
Collapse
Affiliation(s)
- Ariadna Witte Castro
- Department of Neonatology. La Paz University Hospital. Hospital La Paz. Institute for Health Research-IdIPAZ. Madrid, Spain
| | | | | |
Collapse
|
2
|
Johnson KE, Heisel T, Allert M, Fürst A, Yerabandi N, Knights D, Jacobs KM, Lock EF, Bode L, Fields DA, Rudolph MC, Gale CA, Albert FW, Demerath EW, Blekhman R. Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome. CELL GENOMICS 2024; 4:100638. [PMID: 39265573 PMCID: PMC11602576 DOI: 10.1016/j.xgen.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Human milk is a complex mix of nutritional and bioactive components that provide complete nourishment for the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how milk variation influences infant health. Here, we characterize relationships between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in up to 310 exclusively breastfeeding mother-infant pairs. We identified 482 genetic loci associated with milk gene expression unique to the lactating mammary gland and link these loci to breast cancer risk and human milk oligosaccharide concentration. Integrative analyses uncovered connections between milk gene expression and infant gut microbiome, including an association between the expression of inflammation-related genes with milk interleukin-6 (IL-6) concentration and the abundance of Bifidobacterium and Escherichia in the infant gut. Our results show how an improved understanding of the genetics and genomics of human milk connects lactation biology with maternal and infant health.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy Heisel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mattea Allert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Annalee Fürst
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nikhila Yerabandi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics & Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Human Milk Institute (HMI) and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - David A Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Physiology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Wang K, Zhao X, Yang S, Qi X, Li A, Yu W. New insights into dairy management and the prevention and treatment of osteoporosis: The shift from single nutrient to dairy matrix effects-A review. Compr Rev Food Sci Food Saf 2024; 23:e13374. [PMID: 38847750 DOI: 10.1111/1541-4337.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Dairy is recognized as a good source of calcium, which is important for preventing osteoporosis. However, the relationship between milk and bone health is more complex than just calcium supplementation. It is unwise to focus solely on observing the effects of a single nutrient. Lactose, proteins, and vitamins in milk, as well as fatty acids, oligosaccharides, and exosomes, all work together with calcium to enhance its bioavailability and utilization efficiency through various mechanisms. We evaluate the roles of dairy nutrients and active ingredients in maintaining bone homeostasis from the perspective of the dairy matrix effects. Special attention is given to threshold effects, synergistic effects, and associations with the gut-bone axis. We also summarize the associations between probiotic/prebiotic milk, low-fat/high-fat milk, lactose-free milk, and fortified milk with a reduced risk of osteoporosis and discuss the potential benefits and controversies of these dairy products. Moreover, we examine the role of dairy products in increasing peak bone mass during adolescence and reducing bone loss in old age. It provides a theoretical reference for the use of dairy products in the accurate prevention and management of osteoporosis and related chronic diseases and offers personalized dietary recommendations for bone health in different populations.
Collapse
Affiliation(s)
- Kaili Wang
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xu Zhao
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Sijia Yang
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoxi Qi
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Aili Li
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Dairy Processing Technology Research Centre, Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Wei Yu
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Maheshwari A, Mantry H, Bagga N, Frydrysiak-Brzozowska A, Badarch J, Rahman MM. Milk Fat Globules: 2024 Updates. NEWBORN (CLARKSVILLE, MD.) 2024; 3:19-37. [PMID: 39474586 PMCID: PMC11521418 DOI: 10.5005/jp-journals-11002-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Milk fat globules (MFGs) are a remarkable example of nature's ingenuity. Human milk (HM) carries contains 3-5% fat, 0.8-0.9% protein, 6.9-7.2% carbohydrate calculated as lactose, and 0.2% mineral constituents. Most of these nutrients are carried in these MFGs, which are composed of an energy-rich triacylglycerol (TAG) core surrounded by a triple membrane structure. The membrane contains polar lipids, specialized proteins, glycoproteins, and cholesterol. Each of these bioactive components serves important nutritional, immunological, neurological, and digestive functions. These MFGs are designed to release energy rapidly in the upper gastrointestinal tract and then persist for some time in the gut lumen so that the protective bioactive molecules are conveyed to the colon. These properties may shape the microbial colonization and innate immune properties of the developing gastrointestinal tract. Milk fat globules in milk from humans and ruminants may resemble in structure but there are considerable differences in size, profile, composition, and specific constituents. There are possibilities to not only enhance the nutritional composition in a goal-oriented fashion to correct specific deficiencies in the infant but also to use these fat globules as a nutraceutical in infants who require specific treatments. To mention a few, there might be possibilities in enhancing neurodevelopment, in defense against gastrointestinal and respiratory tract infections, improving insulin sensitivity, treating chronic inflammation, and altering plasma lipids. This review provides an overview of the composition, structure, and biological activities of the various components of the MFGs. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
- Global Newborn Society, Clarksville Maryland, United States of America
| | - Harshvardhan Mantry
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Nitasha Bagga
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Rainbow Children’s Hospital and Birthright, Hyderabad, Telangana, India
| | - Adrianna Frydrysiak-Brzozowska
- Global Newborn Society, Clarksville Maryland, United States of America
- The Mazovian University in Płock, Collegium Medicum, Faculty of Health Sciences, Płock, Poland
| | - Jargalsaikhan Badarch
- Global Newborn Society, Clarksville Maryland, United States of America
- Department of Obstetrics, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Md Mozibur Rahman
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| |
Collapse
|
5
|
Nyangahu DD, Happel AU, Wendoh J, Kiravu A, Wang Y, Feng C, Plumlee C, Cohen S, Brown BP, Djukovic D, Ganief T, Gasper M, Raftery D, Blackburn JM, Allbritton NL, Gray CM, Paik J, Urdahl KB, Jaspan HB. Bifidobacterium infantis associates with T cell immunity in human infants and is sufficient to enhance antigen-specific T cells in mice. SCIENCE ADVANCES 2023; 9:eade1370. [PMID: 38064556 PMCID: PMC10708209 DOI: 10.1126/sciadv.ade1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Bacille Calmette-Guerin (BCG) vaccine can elicit good TH1 responses in neonates. We hypothesized that the pioneer gut microbiota affects vaccine T cell responses. Infants who are HIV exposed but uninfected (iHEU) display an altered immunity to vaccination. BCG-specific immune responses were analyzed at 7 weeks of age in iHEU, and responses were categorized as high or low. Bifidobacterium longum subsp. infantis was enriched in the stools of high responders, while Bacteroides thetaiotaomicron was enriched in low responders at time of BCG vaccination. Neonatal germ-free or SPF mice orally gavaged with live B. infantis exhibited significantly higher BCG-specific T cells compared with pups gavaged with B. thetaiotaomicron. B. infantis and B. thetaiotaomicron differentially affected stool metabolome and colonic transcriptome. Human colonic epithelial cells stimulated with B. infantis induced a unique gene expression profile versus B. thetaiotaomicron. We thus identified a causal role of B. infantis in early-life antigen-specific immunity.
Collapse
Affiliation(s)
- Donald D. Nyangahu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Anna-Ursula Happel
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jerome Wendoh
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Agano Kiravu
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Colin Feng
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Courtney Plumlee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Sara Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Bryan P. Brown
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Tariq Ganief
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Melanie Gasper
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Jonathan M. Blackburn
- Institute of Infectious Diseases and Molecular Medicine, Department of Integrative Biomedical Sciences, Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | | | - Clive M. Gray
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
- Biomedical Research Institute, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle WA, USA
| | - Heather B. Jaspan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, Cape Town, South Africa
- Department of Pediatrics, School of Medicine, University of Washington, Seattle WA, USA
| |
Collapse
|