1
|
Timilsina S, Amara AR, Abu R, Spring BQ. Identification of potential cell surface targets in patient-derived cultures toward photoimmunotherapy of high-grade serous ovarian cancer. Photochem Photobiol 2025. [PMID: 40205302 DOI: 10.1111/php.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
Tumor-targeted, activatable photoimmunotherapy (taPIT) has shown promise in preclinical models to selectively eliminate drug-resistant micrometastases that evade standard treatments. Moreover, taPIT has the potential to resensitize chemo-resistant tumor cells to chemotherapy, making it a complementary modality for treating recurrent high-grade serous ovarian cancer (HGSOC). However, the established implementation of taPIT relies on the overexpression of EGFR in tumor cells, which is not universally observed in HGSOCs. Motivated by the need to expand taPIT applications beyond EGFR, we conducted mRNA-sequencing and proteomics to identify alternative cell surface targets for taPIT in patient-derived HGSOC cell cultures with weak EGFR expression and lacking expression of other cell surface proteins commonly reported in the literature as overexpressed in ovarian cancers, such as FOLR1 and EpCAM. Our findings highlight TFRC and LRP1 as promising alternative targets. Notably, TFRC was overexpressed in 100% (N = 5) of the patient-derived HGSOC models tested, whereas only 60% of models had high EpCAM expression, suggesting that future larger cohort studies should include TFRC. While this study focuses on target identification, future work will expand the approaches developed here to larger HGSOC biopsy repositories and will also develop and evaluate antibody-photosensitizer conjugates targeting these proteins for taPIT applications.
Collapse
Affiliation(s)
- Sudip Timilsina
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Translational Biophotonics Cluster, Northeastern University, Boston, Massachusetts, USA
| | - Anish Raju Amara
- Translational Biophotonics Cluster, Northeastern University, Boston, Massachusetts, USA
- Department of Bioinformatics, Northeastern University, Boston, Massachusetts, USA
| | - Rafay Abu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
- Mass Spectrometry Core, Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Bryan Q Spring
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Translational Biophotonics Cluster, Northeastern University, Boston, Massachusetts, USA
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Özdemir İ, Aktaş AŞ, Tuncer MC. Investigation of the effect of thymoquinone and doxorubicin on the EGFR/FOXP3 signaling pathway in OVCAR3 human ovarian adenocarcinoma cells. Acta Cir Bras 2025; 40:e401725. [PMID: 40172364 PMCID: PMC11960576 DOI: 10.1590/acb401725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 04/04/2025] Open
Abstract
PURPOSE To investigate the cytotoxic and apoptotic effects of the combination of doxorubicin (Dox) and thymoquinone (TQ) on ovarian adenocarcinoma cells (OVCAR3) via the EGFR/FOXP3 signaling pathway. METHODS We used human OVCAR3 and human skin keratinocyte cells (HaCaT). Different concentrations of TQ and Dox were applied to the cells for 24, 48, and 72 hours, and the cytotoxicity level was determined via the MTT method. Expression levels of EGFR/FOXP3 for cell proliferation and apoptosis were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. The colony counting was performed after DAPI staining, and the effect on cell proliferation was determined. RESULTS Cytotoxicity was found to be highest with TQ and Dox treatments, and cell migration was prevented, especially in the group that received combined TQ and Dox treatment. Moreover, using RT-qPCR analysis, activity in the EGFR and FOXP3 pathway was found to be downregulated the most with TQ, and the amount of protein decreased with TQ and Dox. CONCLUSIONS The findings showed that the greatest cytotoxic effect and the most apoptosis occurred during TQ treatment. Additionally, it was determined that a significant decrease in EGFR and FOXP3 levels occurred with the application of TQ and Dox.
Collapse
Affiliation(s)
- İlhan Özdemir
- Atatürk University – Faculty of Medicine – Department of Gynecology and Obstetrics – Erzurum – Turkey
| | - Ayfer Şanli Aktaş
- Dicle University – Faculty of Medicine – Department of Histology and Embryology – Diyarbakir – Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Faculty of Medicine – Department of Anatomy – Diyarbakir – Turkey
| |
Collapse
|
3
|
Rejaibi R, Guille A, Manai M, Adelaide J, Agavnian E, Jelassi A, Doghri R, Charafe-Jauffret E, Bertucci F, Manai M, Mrad K, Charfi L, Sabatier R. Decoding the pathological and genomic profile of epithelial ovarian cancer. Sci Rep 2024; 14:28573. [PMID: 39562613 PMCID: PMC11577113 DOI: 10.1038/s41598-024-80030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
Ovarian cancer (OC) is one of the most common cancers in women, with a high mortality rate. Most of published studies have been focused on Caucasian populations, with the need to explore biological features and clinical outcomes of patients from other ethnicities. We described clinical outcome (progression-free survival and overall survival) and biomarkers associated with survival in a cohort of patients with OC from Tunisia. Using immunohistochemistry, we assessed the expression of 14 proteins known to be altered in OC in a cohort of 198 patients. We explored the correlation between protein expression and copy number alteration (CNA) profiles. FIGO stage, menopausal status and mismatch repair deficiency were associated with survival. ERBB2 amplification was correlated with high ERBB2 expression (OR = 69.32, p = 4.03 E-09), and high PDL1 expression was associated to CD274 amplification (OR = 4.97, p = 5.79 E-2). We identified a correlation between survival and exposure to two CNA signatures (MAPK pathway and BRCA-related homologous recombination deficiency). Moreover, Gama-H2AX protein expression was correlated with exposure to a genomic signature associated with homologous recombination deficiency. We observed that OC clinical and pathological characteristics of these patients from Tunisia were similar to those of Caucasian patients. We identified frequent CNA in this population that need to be confirmed in other sets from Africa.
Collapse
Affiliation(s)
- Rim Rejaibi
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Biology Department, Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
- Centre de Recherche en Cancérologie de Marseille, ICEP Platform, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Marseille, France
| | - Arnaud Guille
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
| | - Maroua Manai
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
- Laboratory of Transmission, Control, and Immunobiology of Infections, LR11IPT02 (LTCII), Tunis-Belvédère, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jose Adelaide
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
| | - Emilie Agavnian
- Centre de Recherche en Cancérologie de Marseille, ICEP Platform, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Marseille, France
| | - Aida Jelassi
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Biology Department, Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Raoudha Doghri
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Laboratory of Precision medicine personalized medicine and oncology investigation, Salah Azaiez Institute, Tunis, Tunisia
| | - Emmanuelle Charafe-Jauffret
- Centre de Recherche en Cancérologie de Marseille, ICEP Platform, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Marseille, France
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Mohamed Manai
- Biology Department, Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Karima Mrad
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Laboratory of Precision medicine personalized medicine and oncology investigation, Salah Azaiez Institute, Tunis, Tunisia
| | - Lamia Charfi
- Pathology Department, Salah Azaiez Institute, Tunis, 1006, Tunisia
- Laboratory of Precision medicine personalized medicine and oncology investigation, Salah Azaiez Institute, Tunis, Tunisia
| | - Renaud Sabatier
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille Université U105, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
4
|
Mandal J, Jones TN, Liberto JM, Gaillard S, Wang TL, Shih IM. Dual Inhibition of SYK and EGFR Overcomes Chemoresistance by Inhibiting CDC6 and Blocking DNA Replication. Cancer Res 2024; 84:3881-3893. [PMID: 39120597 DOI: 10.1158/0008-5472.can-24-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Targeting multiple signaling pathways has been proposed as a strategy to overcome resistance to single-pathway inhibition in cancer therapy. A previous study in epithelial ovarian cancers identified hyperactivity of spleen tyrosine kinase (SYK) and EGFR, which mutually phosphorylate and activate each other. Given the potential for pharmacologic inhibition of both kinases with clinically available agents, this study aimed to assess the antitumor efficacy of both pharmacologic and genetic SYK and EGFR coinhibition using a multifaceted approach. We assessed the coinactivation effects in chemoresistant ovarian cancer cell lines, patient-derived organoids, and xenograft models. Dual inhibition of SYK and EGFR in chemoresistant ovarian cancer cells elicited a synergistic antitumor effect. Notably, the combined inhibition activated the DNA damage response, induced G1 cell-cycle arrest, and promoted apoptosis. The phosphoproteomic analysis revealed that perturbation of SYK and EGFR signaling induced a significant reduction in both phosphorylated and total protein levels of cell division cycle 6, a crucial initiator of DNA replication. Together, this study provides preclinical evidence supporting dual inhibition of SYK and EGFR as a promising treatment for chemoresistant ovarian cancer by disrupting DNA synthesis and impairing formation of the prereplication complex. These findings warrant further clinical investigation to explore the potential of this combination therapy in overcoming drug resistance and improving patient outcomes. Significance: SYK and EGFR coinhibition exerts synergistic anticancer effects in chemoresistant ovarian cancer, providing a strategy to treat chemotherapy-resistant ovarian cancers using clinically available agents by targeting critical signaling pathways involved in DNA replication.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tiffany Nicole Jones
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juliane Marie Liberto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie Gaillard
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Zahednezhad F, Allahyari S, Sarfraz M, Zakeri-Milani P, Feyzizadeh M, Valizadeh H. Liposomal drug delivery systems for organ-specific cancer targeting: early promises, subsequent problems, and recent breakthroughs. Expert Opin Drug Deliv 2024; 21:1363-1384. [PMID: 39282895 DOI: 10.1080/17425247.2024.2394611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/16/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting. AREAS COVERED Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site. The application of antibodies and aptamers against the prevalent cell surface receptors is a potent and ever-growing field. Moreover, immuno-liposomes and cancer vaccines as adjuvant chemotherapy are also amenable to favorable immune modulation. Combinational and multi-functional systems are also attractive in this regard. However, potentially active targeted liposomal drug delivery systems have a long path to clinical acceptance, chiefly due to cross-interference and biocompatibility affairs of the functionalized moieties. EXPERT OPINION Engineered liposomal formulations have to be designed based on tissue properties, including surface chemistry, charge, and microvasculature. In this paper, we aimed to investigate the updated targeted liposomal systems for common cancer therapy worldwide.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
6
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
7
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
8
|
Talbot T, Lu H, Aboagye EO. Amplified therapeutic targets in high-grade serous ovarian carcinoma - a review of the literature with quantitative appraisal. Cancer Gene Ther 2023; 30:955-963. [PMID: 36804485 PMCID: PMC9940086 DOI: 10.1038/s41417-023-00589-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
High-grade serous ovarian carcinoma is a unique cancer characterised by universal TP53 mutations and widespread copy number alterations. These copy number alterations include deletion of tumour suppressors and amplification of driver oncogenes. Given their key oncogenic roles, amplified driver genes are often proposed as therapeutic targets. For example, development of anti-HER2 agents has been clinically successful in treatment of ERBB2-amplified tumours. A wide scope of preclinical work has since investigated numerous amplified genes as potential therapeutic targets in high-grade serous ovarian carcinoma. However, variable experimental procedures (e.g., choice of cell lines), ambiguous phenotypes or lack of validation hinders further clinical translation of many targets. In this review, we collate the genes proposed to be amplified therapeutic targets in high-grade serous ovarian carcinoma, and quantitatively appraise the evidence in support of each candidate gene. Forty-four genes are found to have evidence as amplified therapeutic targets; the five highest scoring genes are CCNE1, PAX8, URI1, PRKCI and FAL1. This review generates an up-to-date list of amplified therapeutic target candidates for further development and proposes comprehensive criteria to assist amplified therapeutic target discovery in the future.
Collapse
Affiliation(s)
- Thomas Talbot
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Haonan Lu
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK.
| |
Collapse
|
9
|
Skorda A, Bay ML, Hautaniemi S, Lahtinen A, Kallunki T. Kinase Inhibitors in the Treatment of Ovarian Cancer: Current State and Future Promises. Cancers (Basel) 2022; 14:6257. [PMID: 36551745 PMCID: PMC9777107 DOI: 10.3390/cancers14246257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer, the high-grade serous ovarian carcinoma (HGSC) being its most common and most aggressive form. Despite the latest therapeutical advancements following the introduction of vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors and poly-ADP-ribose-polymerase (PARP) inhibitors to supplement the standard platinum- and taxane-based chemotherapy, the expected overall survival of HGSC patients has not improved significantly from the five-year rate of 42%. This calls for the development and testing of more efficient treatment options. Many oncogenic kinase-signaling pathways are dysregulated in HGSC. Since small-molecule kinase inhibitors have revolutionized the treatment of many solid cancers due to the generality of the increased activation of protein kinases in carcinomas, it is reasonable to evaluate their potential against HGSC. Here, we present the latest concluded and on-going clinical trials on kinase inhibitors in HGSC, as well as the recent work concerning ovarian cancer patient organoids and xenograft models. We discuss the potential of kinase inhibitors as personalized treatments, which would require comprehensive assessment of the biological mechanisms underlying tumor spread and chemoresistance in individual patients, and their connection to tumor genome and transcriptome to establish identifiable subgroups of patients who are most likely to benefit from a given therapy.
Collapse
Affiliation(s)
- Aikaterini Skorda
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Marie Lund Bay
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Lahtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tuula Kallunki
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Yeo MK, Kim S, Yoo HJ, Suh KS, Kim KH. HER2 Expression in Peritoneal Dissemination of High-Grade Serous Ovarian Carcinoma: A Comparative Study of Immunohistochemical Reactivity Using Four HER2 Antibodies. J Clin Med 2022; 11:6963. [PMID: 36498537 PMCID: PMC9741327 DOI: 10.3390/jcm11236963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most high-grade serous ovarian carcinomas (HGSOCs) involving the peritoneum are aggressive. Epidermal growth factor receptor 2 (HER2) is aberrantly activated in a variety of solid cancers. The HER2 status of a tumor is based on cytoplasmic membrane staining of an intracellular domain (ICD)-specific HER2 antibody. We compared four anti-HER2 antibodies in an immunohistochemical study of HGSOC with peritoneal dissemination. HER2 expression was assessed in peritoneal disseminated HGSOC specimens from 38 patients by immunohistochemistry using four different anti-HER2 antibodies (an ICD antibody (clone A0485), an extracellular domain (ECD) antibody (clone SP3), and two antibodies recognizing HER2 phosphorylated at tyrosine 877 or 1248 (pHER2Y877 and pHER2Y1248)). HER2 gene amplification was accessed by chromogenic in situ hybridization (CISH). The antibodies showed HER2 positivity as follows: 31.6% of cases (12/38) with A0485, 26.3% (10/38) with SP3, 7.9% (3/38) with pHER2Y877, and 21.1% (8/38) with pHER2Y1248. Fifteen out of thirty-eight (39.5%) cases were positive for at least one of the four HER2 antibodies. HER2 gene amplification was detected in 3/19 cases. All four HER2 antibodies could be used for patient selection for anti-HER2 therapies. These findings raise the possibility of anti-HER2 therapeutic strategies for HGSOC with peritoneal dissemination.
Collapse
Affiliation(s)
- Min-Kyung Yeo
- Department of Pathology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Sup Kim
- Department of Radiation Oncology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Heon Jong Yoo
- Department of Obstetrics and Gynecology, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Obstetrics and Gynecology, Chungnam National University Sejong Hospital, Sejong-si 30099, Republic of Korea
| | - Kwang-Sun Suh
- Department of Pathology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Kyung-Hee Kim
- Department of Pathology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Department of Pathology, Chungnam National University Sejong Hospital, Sejong-si 30099, Republic of Korea
| |
Collapse
|
11
|
Circular RNAs in Epithelial Ovarian Cancer: From Biomarkers to Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14225711. [PMID: 36428803 PMCID: PMC9688053 DOI: 10.3390/cancers14225711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer, and more than 70% of patients are diagnosed at advanced stages. Despite the application of surgery and chemotherapy, the prognosis remains poor due to the high relapse rate. It is urgent to identify novel biomarkers and develop novel therapeutic strategies for EOC. Circular RNAs (circRNAs) are a class of noncoding RNAs generated from the "back-splicing" of precursor mRNA. CircRNAs exert their functions via several mechanisms, including acting as miRNA sponges, interacting with proteins, regulating transcription, and encoding functional proteins. Recent studies have identified many circRNAs that are dysregulated in EOC and may be used as diagnostic and prognostic markers. Increasing evidence has revealed that circRNAs play a critical role in ovarian cancer progression by regulating various cellular processes, including proliferation, apoptosis, metastasis, and chemosensitivity. The circRNA-based therapy may be a novel strategy that is worth exploring in the future. Here, we provide an overview of EOC and circRNA biogenesis and functions. We then discuss the dysregulations of circRNAs in EOC and the possibility of using them as diagnostic/prognostic markers. We also summarize the role of circRNAs in regulating ovarian cancer development and speculate their potential as therapeutic targets.
Collapse
|
12
|
Menon SR, Mitra A, Chakraborty A, Tawate M, Sahu S, Rakshit S, Gaikwad S, Dhotre G, Damle A, Banerjee S. Clinical Dose Preparation of [ 177Lu]Lu-DOTA-Pertuzumab Using Medium Specific Activity [ 177Lu]LuCl 3 for Radioimmunotherapy of Breast and Epithelial Ovarian Cancers, with HER2 Receptor Overexpression. Cancer Biother Radiopharm 2022; 37:384-402. [PMID: 35575711 DOI: 10.1089/cbr.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The overexpression of human epidermal growth factor receptor 2 (HER2) is commonly associated with metastatic breast cancer and epithelial ovarian cancer. The U.S. Food and Drug Administration (FDA) has approved Trastuzumab as an anti-HER2 agent for the metastatic breast and epithelial ovarian cancer. However, Trastuzumab has severe limitations in the treatment of metastatic breast cancer associated with ligand-dependent dimerization of HER2 receptor at the extracellular domain-II (ECD-II) region. The therapeutic approach in combination of pertuzumab and trastuzumab is found to be effective in preventing HER2 dimerization at the ECD-II region. The radioimmunotherapeutic approach, utilizing both these anti-HER2 agents (trastuzumab/pertuzumab), radiolabeled with [177Lu]Lu3+, has proved to be clinically efficacious with promising potential. Toward this, the formulation for clinical doses of [177Lu]Lu-DOTA-pertuzumab has been optimized using medium specific activity (0.81 GBq/μg) [177Lu]LuCl3. Materials and Methods: Preconcentrated pertuzumab was conjugated with p-NCS-benzyl-DOTA. Purified DOTA-benzyl-pertuzumab conjugate was radiolabeled with carrier-added [177Lu]LuCl3. Quality control parameters were evaluated for the [177Lu]Lu-DOTA-pertuzumab. In vivo biodistribution was carried out at different time points postadministration. Specific cell binding, immunoreactivity, and internalization were investigated by using SKOV3 and SKBR3 cells. Results: In this study, the authors reported a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-pertuzumab, with a radiochemical yield of 86.67% ± 1.03% and radiochemical purity (RCP) of 99.36% ± 0.36% (n = 10). Preclinical cell binding studies of [177Lu]Lu-DOTA-pertuzumab revealed specific binding with SKOV3 and SKBR3 cells up to 24.4% ± 1.4% and 23.2% ± 0.8%, respectively. The uptakes in SKOV3- and SKBR3-xenografted tumor in severe combined immunodeficiency mice were observed to be 25.9% ± 0.8% and 25.2% ± 1.2% ID/g at 48 and 120 h postinjection, respectively. Conclusions: A protocol was optimized for the preparation of ready-to-use clinical dose of [177Lu]Lu-DOTA-pertuzumab, in hospital radiopharmacy settings. The retention of RCP of the radiopharmaceutical, on storage in saline and serum, at -20°C, up to 120 h postradiolabeling, confirmed its in vitro stability.
Collapse
Affiliation(s)
- Sreeja Raj Menon
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Arpit Mitra
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sujay Gaikwad
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Geetanjali Dhotre
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Archana Damle
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.,Radiological Research Unit, Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
13
|
Adnan Y, Ali SMA, Awan MS, Idress R, Awan MO, Farooqui HA, Kayani HA. Hormone receptors AR, ER, PR and growth factor receptor Her-2 expression in oral squamous cell carcinoma: Correlation with overall survival, disease-free survival and 10-year survival in a high-risk population. PLoS One 2022; 17:e0267300. [PMID: 35544472 PMCID: PMC9094515 DOI: 10.1371/journal.pone.0267300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) comprises most of head and neck neoplasms and is one of the highest-ranking and lethal cancers in Pakistan due to prevailing mouth habits. Several types of receptors act as prognostic markers and targets for therapy in some cancers, but their application in OSCC is largely unexplored. This study aimed to evaluate the expression of hormonal receptors and Her-2 in OSCC patients and correlate it with 10-year, overall and disease-free survival. To achieve this objective, immunohistochemistry for Her-2, AR, ER and PR was performed on 100 formalin-fixed paraffin-embedded primary OSCC specimens. Receptor expression was correlated with mouth habits and clinicopathological features and patient survival was analyzed using Kaplan-Meier method and Cox regression univariate analysis. We observed that in 100 patients, there were 57 males and 43 females. Immunopositive Her-2 expression was observed in 21% of patients, AR in 13%, ER in 3% and 0% for PR. Patients with betel quid/areca nut mouth habits had significantly absent Her-2 expression (P = 0.035). Also, Her-2 negative patients were also negative for AR expression (P = 0.002). Her-2 positive patients had poor 10-year survival (P = 0.041). A trend of low survival and high recurrence rate was observed in AR positive patients, but this was not significant (P = 0.072). No statistically relevant correlations were seen in the case of ER and PR. In conclusion, Her-2 may be a valuable marker for predicting long-term prognosis of OSCC patients.
Collapse
Affiliation(s)
- Yumna Adnan
- Office of Academia and Research in Surgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Syed Muhammad Adnan Ali
- Office of Academia and Research in Surgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Sohail Awan
- Section of Otolaryngology–Head and Neck Surgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Romana Idress
- Section of Histopathology, Department of Pathology and Laboratory Medicines, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Hasnain Ahmed Farooqui
- Office of Academia and Research in Surgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hammad Afzal Kayani
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| |
Collapse
|
14
|
Reyes-Alcaraz A, Lucero Garcia-Rojas EY, Merlinsky EA, Seong JY, Bond RA, McConnell BK. A NanoBiT assay to monitor membrane proteins trafficking for drug discovery and drug development. Commun Biol 2022; 5:212. [PMID: 35260793 PMCID: PMC8904512 DOI: 10.1038/s42003-022-03163-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Internalization of membrane proteins plays a key role in many physiological functions; however, highly sensitive and versatile technologies are lacking to study such processes in real-time living systems. Here we describe an assay based on bioluminescence able to quantify membrane receptor trafficking for a wide variety of internalization mechanisms such as GPCR internalization/recycling, antibody-mediated internalization, and SARS-CoV2 viral infection. This study represents an alternative drug discovery tool to accelerate the drug development for a wide range of physiological processes, such as cancer, neurological, cardiopulmonary, metabolic, and infectious diseases including COVID-19. Membrane protein trafficking is monitored using split nanoluciferase. Receptor internalization leads to complementation on the early endosome and a bioluminescent response, and is applied to receptor internalization/recycling, antibody-mediated internalization and SARS-CoV2 entry.
Collapse
Affiliation(s)
- Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Elizabeth A Merlinsky
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Jae Young Seong
- Korea University, College of Medicine, Anam-dong, Seongbuk-gu, Seol, 136-701, Republic of Korea
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| |
Collapse
|
15
|
Nikas IP, Lee C, Song MJ, Kim B, Ryu HS. Biomarkers expression among paired serous ovarian cancer primary lesions and their peritoneal cavity metastases in treatment-naïve patients: A single-center study. Cancer Med 2022; 11:2193-2203. [PMID: 35212471 PMCID: PMC9160817 DOI: 10.1002/cam4.4600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Background High‐grade serous ovarian carcinoma (HGSOC), the most common histologic subtype of ovarian epithelial cancer, is associated with treatment resistance, enhanced recurrence rates, and poor prognosis. HGSOCs often metastasize to the peritoneal cavity, while fluid cytology examination could identify such metastases. This retrospective study aimed to identify potential biomarker discrepancies between paired HGSOC primary tissues and metastatic peritoneal fluid cytology samples, processed as cell blocks (CBs). Methods Twenty‐four pairs of formalin‐fixed, paraffin‐embedded primary tissues and metastatic CBs from an equal number of treatment‐naïve patients were used, and immunohistochemistry (IHC) for epidermal growth factor receptor (EGFR), human epidermal growth factor receptor, programmed cell death‐1 ligand 1 (PD‐L1), and CD147 was applied. Results 13/24 pairs showed discordant EGFR IHC results; in all these 13 patients, EGFR was positive (≥1+ membranous staining intensity found in at least 10% of the cancer cells) in the peritoneal, yet negative in the primary tissue samples. Notably, EGFR IHC was positive in 15/24 of the metastatic, whereas in just 2/24 of the primary HGSOC samples (p < 0.001). Although most PD‐L1 results were concordant, 5/24 and 6/24 pairs exhibited discordant results when stained with the E1L3N and 22C3 clones, respectively. Lastly, CD147 overexpression was found more often in the metastatic rather than the matched primary HGSOCs stained with CD147, though the difference was not significant. Conclusions Cytology from effusions could be considered for biomarker testing when present, even when tissue from the primary cancer is also available and adequately cellular, as it could provide additional information of potential clinical significance.
Collapse
Affiliation(s)
- Ilias P. Nikas
- School of Medicine, European University CyprusNicosiaCyprus
| | - Cheol Lee
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
| | - Min Ji Song
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
| | - Bohyun Kim
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University HospitalSeoulRepublic of Korea
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
- Department of Pathology, Seoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
16
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
17
|
Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022; 11:cells11040650. [PMID: 35203301 PMCID: PMC8870715 DOI: 10.3390/cells11040650] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients’ overall survival and quality of life.
Collapse
|
18
|
Abstract
Background: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. Methods: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. Results: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Conclusion: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.
Collapse
|
19
|
Graphene-Based Biosensors with High Sensitivity for Detection of Ovarian Cancer Cells. Molecules 2021; 26:molecules26237265. [PMID: 34885851 PMCID: PMC8658839 DOI: 10.3390/molecules26237265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022] Open
Abstract
Ovarian cancer has the highest mortality rate in the world. Therefore, it is urgent but still challenging to develop an efficient circulating tumor cell (CTC) detection method to sensitively detect ovarian cancer. To address such issues, herein, for the first time, we present a novel CTC detection method for ovarian cancer cells by designing sensitive and rapid graphene-based biosensors. This graphene-based sensor, consisting of a cell pool and two electrodes, can be prepared by a conventional chip fabrication process. It demonstrates high-sensitivity detection even for several ovarian cancer cells by comparing the electrical signal before and after adding cell solution. Moreover, the graphene-based biosensors can perform rapid detection with good repeatability. This suggests that this novel method is possible to use for the early detection of ovarian cancer with very low CTC cell concentration. This work provides a novel and quick strategy to detect ovarian cancer and further judge or predict the risk of the transfer of ovarian cancer.
Collapse
|
20
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
21
|
Jain S, Annett SL, Morgan MP, Robson T. The Cancer Stem Cell Niche in Ovarian Cancer and Its Impact on Immune Surveillance. Int J Mol Sci 2021; 22:4091. [PMID: 33920983 PMCID: PMC8071330 DOI: 10.3390/ijms22084091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is an aggressive gynaecological cancer with extremely poor prognosis, due to late diagnosis as well as the development of chemoresistance after first-line therapy. Research advances have found stem-like cells present in ovarian tumours, which exist in a dynamic niche and persist through therapy. The stem cell niche interacts extensively with the immune and non-immune components of the tumour microenvironment. Significant pathways associated with the cancer stem cell niche have been identified which interfere with the immune component of the tumour microenvironment, leading to immune surveillance evasion, dysfunction and suppression. This review aims to summarise current evidence-based knowledge on the cancer stem cell niche within the ovarian cancer tumour microenvironment and its effect on immune surveillance. Furthermore, the review seeks to understand the clinical consequences of this dynamic interaction by highlighting current therapies which target these processes.
Collapse
Affiliation(s)
| | | | | | - Tracy Robson
- School of Pharmacy and Biomolecular Science, RCSI University of Medicine and Health Sciences, 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (S.J.); (S.L.A.); (M.P.M.)
| |
Collapse
|
22
|
Nabi PN, Vahidfar N, Tohidkia MR, Hamidi AA, Omidi Y, Aghanejad A. Mucin-1 conjugated polyamidoamine-based nanoparticles for image-guided delivery of gefitinib to breast cancer. Int J Biol Macromol 2021; 174:185-197. [PMID: 33516855 DOI: 10.1016/j.ijbiomac.2021.01.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
PAMAM dendrimers (PAMs) are a group of polymeric macromolecules with distinctive physicochemical features, which can make them multifunctional theranostic nanoparticles (NPs). This study was designed to examine the impact of mucin-1 aptamer-conjugated NPs which were engineered using PAM for image-guided delivery of gefitinib (GEF) in the breast cancer cells/tumor. For this, PAMAM was conjugated with diethylenetriaminepentaacetic acid (DTPA) and modified with PEG2000 to prepare a multi-functionalized NPs. Subsequently, GEF was loaded onto the DTPA-PAM-PEG NPs, which were then armed with MUC-1 aptamer to form the DTPA-PAM-PEG/GEF@MUC-1 nanosystem. Finally, aptamer-conjugated NPs were radiolabeled by gallium-67 as an imaging agent to construct image-guided nanoplatforms. The prepared NPs were characterized by different techniques. The kinetic release models of gefitinib from radiolabeled NPs offer the sustained-release mechanism of the encapsulated drug for over 7 days. In vitro evaluation showed higher cytotoxicity and enhanced uptake of the mucin-grafted NPs in MCF-7 cells. Nuclear medicine imaging and in vivo investigations revealed significant accumulation of 67Ga-DTPA-PAM-PEG/GEF@MUC-1 in the tumor site of the animal models. These data suggest that the engineered NPs are a promising image-guided nanosystem for mucin-expressing breast cells/tumors with the assistance of nuclear medicine.
Collapse
Affiliation(s)
- Poorya Najjari Nabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Asghar Hamidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, FL, USA
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. J Clin Med 2020; 9:E2967. [PMID: 32937961 PMCID: PMC7564553 DOI: 10.3390/jcm9092967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the understanding of immune function and the interactions with tumour cells have led to the development of various cancer immunotherapies and strategies for specific cancer types. However, despite some stunning successes with some malignancies such as melanomas and lung cancer, most patients receive little or no benefit from immunotherapy, which has been attributed to the tumour microenvironment and immune evasion. Although the US Food and Drug Administration have approved immunotherapies for some cancers, to date, only the anti-angiogenic antibody bevacizumab is approved for the treatment of epithelial ovarian cancer. Immunotherapeutic strategies for ovarian cancer are still under development and being tested in numerous clinical trials. A detailed understanding of the interactions between cancer and the immune system is vital for optimisation of immunotherapies either alone or when combined with chemotherapy and other therapies. This article, in two main parts, provides an overview of: (1) components of the normal immune system and current knowledge regarding tumour immunology, biology and their interactions; (2) strategies, and targets, together with challenges and potential innovative approaches for cancer immunotherapy, with attention given to epithelial ovarian cancer.
Collapse
Affiliation(s)
- Anne M. Macpherson
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Simon C. Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia;
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
| | - Martin K. Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5000, Australia; (A.M.M.); (C.R.)
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia
| |
Collapse
|
24
|
Liu Y, Lian T, Yao Y. A systematic review and meta-analysis of higher expression of folate receptor alpha (FOLR1) predicts poor cancer prognosis. Biomarkers 2020; 25:367-374. [PMID: 32421366 DOI: 10.1080/1354750x.2020.1771420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Folate receptor alpha (FOLR1), a glycosylphosphatidylinositol-linked protein, is a well characterized folate transporter. However, the prognostic power of FOLR1 in cancer remains controversial. We conducted a meta-analysis to assess the prognostic roles of FOLR1 on different cancers. Twelve studies involving 4471 patients were included in this meta-analysis. The pooled analysis indicated that high FOLR1 significantly predicted poor overall survival (OS) (pooled hazard ratio (HR) = 0.78, 95% confidence interval (CI) = 0.64-0.94, p = 0.009) and the disease-free survival (DFS) (HR = 1.25, 95% CI = 1.07-1.47, p = 0.005). Subgroup analyses based on tumour type found that high FOLR1 level was associated with poor OS in breast cancer (HR = 2.66, 95% CI = 1.54-4.59, p = 0.0005) and endometrial carcinoma (HR = 1.30, 95% CI = 1.05-1.61, p = 0.02). However, FOLR1 has relatively weakly correlation with gender, tumour size and chemotherapy. Additionally, overexpression of FOLR1 was correlated with grade, FIGO stage, vital status and nodule status. The present meta-analysis indicated that the high expression of FOLR1 is associated with the poor survival of cancer patients, which is helpful for the clinical decision-making process.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, China.,Department of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yang Yao
- Department of Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
25
|
Mirza S, Hadi N, Pervaiz S, Zeb Khan S, Mokeem SA, Abduljabbar T, Al-Hamoudi N, Vohra F. Expression of HER-2/neu in Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2020; 21:1465-1470. [PMID: 32458657 PMCID: PMC7541867 DOI: 10.31557/apjcp.2020.21.5.1465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND HER-2/neu is a member of the human epidermal growth factor (HER) family of transmembrane tyrosine kinases, which is significantly associated with the pathogenesis of various cancer types. The aim was to evaluate the expression of HER-2/neu in oral squamous cell carcinoma (OSCC) as a potential biomarker to target antigens for specific immunotherapy in OSCC. METHODS One hundred and forty histologically diagnosed OSCC cases were identified. Four to five-micrometer thick formalin-fixed, paraffin-embedded tumor sections were stained with Haematoxylin and Eosin (H and E). Histological grade was assessed according to WHO/Broders classification, while tumors were staged according to the American Joint Committee on Cancer (AJCC) TNM classification from stage I to IV. Immunohistochemistry was performed by using Rabbit monoclonal antibody against HER-2/neu (EP700Y, cell marquee and diluted 1:50). FISH was performed on positive cases using Vysis PathVysion HER-2 DNA probe (Abbott USA). Probes consist of LSI HER gene spectrum orange and control probe CEP 17 spectrum green. RESULTS In this study, males were mostly effected (64.3%) with buccal mucosa (49%) to be the commonly involved site for OSCC. Majority of cases were moderately differentiated (62.1%) and 50.7% tumors were Stage IV. HER-2/neu was found to be positive (2+) in one case of OSCC, however weak to moderate complete membrane staining was observed in >10% of the tumor cells. One hundred and thirty nine cases were HER-2/neu negative. FISH analysis of HER-2/neu positive cases also showed gene amplification (Her2-neu/ CEp 17 = 225/33 = 7.2). CONCLUSIONS The study showed disparity in the expression of HER-2/neu in OSCC, which is due to multiple reasons. Therefore therapy against HER-2/neu in OSCC is debatable.
Collapse
Affiliation(s)
- Sana Mirza
- Department of Oral Pathology, College of Dentistry, Ziauddin Medical University, Karachi, Pakistan
| | - Naila Hadi
- Research and Development, Islamabad Medical and Dental College, Shaheed Zulfiqar Ali Bhutto Medical University, Ilamabad, Pakistan
| | - Shahid Pervaiz
- Department of Histopathology and Microbiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Sultan Zeb Khan
- Department of Clinical Pathophysiology, Graduate School of Tokyo Dental College, 1-2-2 Masago, Mihama-Ku, Chiba 261-8502, Japan
| | - Sameer A Mokeem
- Department of Periodontics and Community Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Research Chair for Biological Research in Dental Health, Riyadh, Saudi Arabia
| | - Nawwaf Al-Hamoudi
- Department of Periodontics and Community Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Research Chair for Biological Research in Dental Health, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Cellular internalization of targeted and non-targeted delivery systems for contrast agents based on polyamidoamine dendrimers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2835-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|