1
|
Horgan D, Spanic T, Apostolidis K, Curigliano G, Chorostowska-Wynimko J, Dauben HP, Lal JA, Dziadziuszko R, Mayer-Nicolai C, Kozaric M, Jönsson B, Gutierrez-Ibarluzea I, Fandel MH, Lopert R. Towards Better Pharmaceutical Provision in Europe-Who Decides the Future? Healthcare (Basel) 2022; 10:1594. [PMID: 36011250 PMCID: PMC9408332 DOI: 10.3390/healthcare10081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Significant progress has been achieved in human health in the European Union in recent years. New medicines, vaccines, and treatments have been developed to tackle some of the leading causes of disease and life-threatening illnesses. It is clear that investment in research and development (R&D) for innovative medicines and treatments is essential for making progress in preventing and treating diseases. Ahead of the legislative process, which should begin by the end of 2022, discussions focus on how Europe can best promote the huge potential benefits of new science and technology within the regulatory framework. The challenges in European healthcare were spelled out by the panellists at the roundtable organised by European Alliance for Personalised Medicine (EAPM). Outcomes from panellists' discussions have been summarized and re-arranged in this paper under five headings: innovation, unmet medical need, access, security of supply, adapting to progress, and efficiency. Some of the conclusions that emerged from the panel are a call for a better overall holistic vision of the future of pharmaceuticals and health in Europe and a collaborative effort among all stakeholders, seeing the delivery of medicines as part of a broader picture of healthcare.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Tanja Spanic
- Europa Donna, The European Breast Cancer Coalition, 20149 Milan, Italy
| | | | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- European Institute of Oncology, IRCCS, 20139 Milan, Italy
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka Str., 01-138 Warsaw, Poland
| | | | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, GROW School of Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6211 LK Maastricht, The Netherlands
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy of the Medical University of Gdansk, 80-214 Gdansk, Poland
| | | | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Bengt Jönsson
- Department of Economics, Stockholm School of Economics (SSE), P.O. Box 6501, 113 83 Stockholm, Sweden
| | - Iñaki Gutierrez-Ibarluzea
- Department of Knowledge Management and Evaluation of the Basque Foundation for Health Innovation and Research (BIOEF), 48902 Barakaldo, Spain
| | | | - Ruth Lopert
- Organisation for Economic Co-Operation and Development, OECD, 75775 Paris, France
| |
Collapse
|
2
|
Mazzaschi G, Milanese G, Pagano P, Madeddu D, Gnetti L, Trentini F, Falco A, Frati C, Lorusso B, Lagrasta C, Minari R, Ampollini L, Silva M, Sverzellati N, Quaini F, Roti G, Tiseo M. Integrated CT imaging and tissue immune features disclose a radio-immune signature with high prognostic impact on surgically resected NSCLC. Lung Cancer 2020; 144:30-39. [PMID: 32361033 DOI: 10.1016/j.lungcan.2020.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Qualitative and quantitative CT imaging features might intercept the multifaceted tumor immune microenvironment (TIME), providing a non-invasive approach to design new prognostic models in NSCLC patients. MATERIALS AND METHODS Our study population consisted of 100 surgically resected NSCLC patients among which 31 served as a validation cohort for quantitative image analysis. TIME was classified according to PD-L1 expression and the magnitude of Tumor Infiltrating Lymphocytes (TILs) and further defined as hot or cold by the tissue analysis of effector (CD8-to-CD3high/PD-1-to-CD8low) or inert (CD8-to-CD3low/PD-1-to-CD8high) phenotypes. CT datasets acted as source for qualitative (semantic, CT-SFs) and quantitative (radiomic, CT-RFs) features which were correlated with clinico-pathological and TIME profiles to determine their impact on survival outcome. RESULTS Specific CT-SFs (texture [TXT], effect [EFC] and margins [MRG]) strongly correlated to PD-L1 and TILs status and showed significant impact on survival outcome (TXT, HR:3.39, 95 % CI 1.12-10-27, P < 0.05; EFC, HR:0.41, 95 % CI 0.18-0.93, P < 0.05; MRG, HR:1.93, 95 % CI 0.88-4.25, P = 0.09). Seven CT derived radiomic features were able to sharply discriminate cases with hot (inflamed) vs cold (desert) TIME, which also exhibited opposite OS (long vs short, HR:0.09, 95 % CI 0.04-0.23, P < 0.001) and DFS (long vs short, HR:0.31, 95 % CI 0.16-0.58, P < 0.001). Moreover, we identified 6 prognostic radiomic features among which ClusterProminence displayed the highest statistical significance (HR:0.13, 95 % CI 0.06-0.31, P < 0.001). These findings were independently validated in an additional cohort of NSCLC (HR:0.11, 95 % CI 0.03-0.40, P = 0.001). Finally, in our training cohort we developed a multiparametric prognostic model, interlacing TIME and clinico-pathological characteristics with CT-SFs (ROC curve AUC:0.83, 95 % CI 0.71-0.92, P < 0.001) or CT-RFs (AUC: 0.91, 95 % CI 0.83-0.99, P < 0.001), which appeared to outperform pTNM staging (AUC: 0.66, 95 % CI 0.51-0.80, P < 0.05) in the risk assessment of NSCLC. CONCLUSION Higher order CT extracted features associated with specific TIME profiles may reveal a radio-immune signature with prognostic impact on resected NSCLC.
Collapse
Affiliation(s)
- Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Gianluca Milanese
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Paolo Pagano
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Letizia Gnetti
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Francesca Trentini
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Costanza Lagrasta
- Department of Medicine and Surgery, University of Parma, Pathology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Roberta Minari
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Luca Ampollini
- Department of Medicine and Surgery, University of Parma, Thoracic Surgery, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Nicola Sverzellati
- Department of Medicine and Surgery, University of Parma, Institute of Radiologic Science, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Giovanni Roti
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
3
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Yan L, Hu ZD. Diagnostic accuracy of human epididymis secretory protein 4 for lung cancer: a systematic review and meta-analysis. J Thorac Dis 2019; 11:2737-2744. [PMID: 31463101 DOI: 10.21037/jtd.2019.06.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Several studies have assessed the diagnostic accuracy of serum human epididymis secretory protein 4 (HE4) for lung cancer, but their results were heterogeneous. The aim of this study was to systematically review the available studies and pool their results using meta-analysis. Methods PubMed, EMBASE and Web of Science databases were searched up to January 1, 2019 to identify studies investigating the diagnostic accuracy of HE4 for lung cancer. We assessed the quality of eligible studies with the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The overall diagnostic sensitivity, specificity, positive and negative likelihood ratios were pooled using a bivariate model. Deeks's test was applied to detect the degree of publication bias. Results A total of 16 studies with 18 cohorts (1,756 lung cancers and 1,446 controls) were included. HE4 had a pooled sensitivity of 0.65 (95% CI: 0.54-0.75), specificity of 0.88 (95% CI: 0.82-0.92), positive likelihood ration of 5.3 (95% CI: 3.7-7.6) and negative likelihood ratio of 0.40 (95% CI: 0.30-0.52). Patient selection bias and partial verification bias were the major design weaknesses of available studies. No publication bias was observed. Conclusions HE4 has moderate diagnostic accuracy for lung cancer. Its result should be interpreted in parallel with clinical findings and the results of other conventional tests. Further studies are still needed to rigorously evaluate the diagnostic accuracy of HE4 for lung cancer.
Collapse
Affiliation(s)
- Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|