1
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2025; 47:543-571. [PMID: 39392557 PMCID: PMC11872867 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Luo X, Wang Y, Zhu Z, Ping J, Hou B, Shan W, Feng Z, Lin Y, Zhang L, Zhang Y, Wang Y. Association between window ventilation frequency and depressive symptoms among older Chinese adults. J Affect Disord 2025; 368:607-614. [PMID: 39303883 DOI: 10.1016/j.jad.2024.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVES Indoor air pollution exposure is harmful to people's physical and mental health, especially in the elderly population. Depressive symptoms are the most common mental health issue among elderly individuals. However, evidence linking the frequency of indoor natural ventilation to depressive symptoms in the elderly population is limited. METHODS This study included 7887 individuals 65 years and older from 2017 to 2018 the China Longitudinal Healthy Longevity Survey (CLHLS). The frequency of indoor window ventilation was measured as the self-reported times of ventilation of indoor window per week in each season, and the four seasons' scores were added up to calculate the annual ventilation frequency. Depressive symptoms were measured by the 10-item Center for Epidemiologic Studies Short Depression Scale (CESD). Using three models adjusted for demographic, socio-economic, health status, and environmental factors successively, the correlation between indoor window ventilation frequency and depressive symptoms was verified through logistic regression. RESULTS Among the 7887 elderly people included in this study, 1952 (24.7 %) had depressive symptoms. In the fully adjusted model, compared with the lower indoor annual ventilation frequency group, high indoor annual ventilation frequency group was significantly associated with a 33 % (OR: 0.67, 95%CI: 0.51-0.88) lower probability of depressive symptoms. Subgroup analysis and sensitivity analysis yielded similar results. CONCLUSIONS High frequency of window ventilation is significantly associated with the lower risk of depressive symptoms in Chinese individuals aged 65 and older. This result provides strong evidence for health intervention and policy formulation.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Yuanlong Wang
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Zifan Zhu
- Anhui Mental Health Center, The Fourth People's Hospital, Hefei, China
| | - Junjiao Ping
- Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China
| | - Biao Hou
- Capital Medical University, Beijing, China
| | - Wei Shan
- South China University of Technology, Guangzhou, Guangdong, China
| | - Zisheng Feng
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Yanan Lin
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Liangying Zhang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Yingli Zhang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China.
| | - Yongjun Wang
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China; Department of Psychiatry, The Third People's Hospital of Zhongshan City, Zhongshan, China.
| |
Collapse
|
3
|
Jia W, Wang Q, Lung DC, Chan PT, Wang P, Dung ECH, Didik T, Choi GKY, Tse H, Wu Y, Miao T, Chen W, Qian H, Xue F, Li Y. Co-existence of airborne SARS-CoV-2 infection and non-infection in three connected zones of a restaurant. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136388. [PMID: 39509873 DOI: 10.1016/j.jhazmat.2024.136388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The lack of knowledge on quanta generation rates presents a major obstacle to specifying the minimum ventilation required to prevent airborne infections. The expected largest quanta generation rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by a super-spreader remains unknown. Here we investigated a SARS-CoV-2 outbreak during lunch in a restaurant using epidemiological, whole-genome sequencing and environmental analyses. Both tracer gas and fine particles were used in field experiments to quantify aerosol dispersion and removal across three interconnected zones: Zone A, Zone B and Zone C. All 21 secondary patron infections occurred in Zone B. This unique infection feature and measured dilution flow rates allowed us to estimate the largest reported quanta generation rates to date, ranging from 1724 to 1968 quanta/h. These rates were sufficiently high to cause a high attack rate in Zone B but did not cause infections in Zones A and C, likely due to sufficient dilution and insignificant contaminated airflow from Zone B, respectively. Our finding of the largest quanta generation rate so far suggests that avoiding secondary infection by dilution alone in the presence of a super-emitter might not be possible in typical air-conditioned buildings and other prevention strategies need to be developed.
Collapse
Affiliation(s)
- Wei Jia
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Qun Wang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - David Christopher Lung
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China; Department of Pathology, Hong Kong Children's Hospital, Hong Kong, China
| | - Pak-To Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Peihua Wang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Edwin Chung-Hin Dung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Tiffany Didik
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China; Department of Pathology, Hong Kong Children's Hospital, Hong Kong, China
| | | | - Herman Tse
- Department of Pathology, Hong Kong Children's Hospital, Hong Kong, China
| | - Yijie Wu
- Department of Real Estate and Construction, The University of Hong Kong, Hong Kong, China
| | - Te Miao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Wenzhao Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Fan Xue
- Department of Real Estate and Construction, The University of Hong Kong, Hong Kong, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; Faculty of Architecture, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Gupta N, Abd EL-Gawaad N, Mallasiy L. Hospital-borne hazardous air pollutants and air cleaning strategies amid the surge of SARS-CoV-2 new variants. Heliyon 2024; 10:e38874. [PMID: 39449698 PMCID: PMC11497388 DOI: 10.1016/j.heliyon.2024.e38874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Indoor air pollutants and airborne contamination removal have been challenging in healthcare facilities. The airborne transmission control and HVAC system may collapse in hospitals due to the highly infectious respiratory disease-associated patient surge, like COVID-19. Common air filtration systems and HVAC systems enhance the patients' comfort and support indoor hygiene, hitherto insufficient to control highly infectious airborne pathogens and hospital-borne pollutants such as radon, PM2.5, patient droplets, VOC, high CO2, and anesthetic gases. This review summarized important air cleaning interventions to enhance HVAC efficiency and indoor safety. We discussed efficient air cleaning and ventilation strategies including air filtration, air ionization, passive removal materials (PRM), and UVGI to minimize cross-contamination in hospital wards.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research & Development, River Engineering Private Limited, Ecotec-3, Greater Noida, India
| | - N.S. Abd EL-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, 62529, Saudi Arabia
| | - L.O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil Asir, 61913, Saudi Arabia
| |
Collapse
|
5
|
Unki P, Kondekar S, Morkhade K, Rathi SP, Rathi PM. TB prevention and immunization in pediatrics. Indian J Tuberc 2024; 71:444-452. [PMID: 39278678 DOI: 10.1016/j.ijtb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 09/18/2024]
Abstract
Tuberculosis (TB) is one of the main contributors to global mortality and morbidity. Prevalence of TB is more in developing countries. It is one of the airborne diseases that has always been a major health problem. It is caused by organisms of the Mycobacterium tuberculosis (MTB) complex affecting different organ systems. The proverb prevention is better than cure best applies to TB and it has been practiced from ancient periods. However, modalities of prevention have varied much depending upon the advancement in research and technology. TB preventive practice reduces the load of TB significantly and it was used as the theme for world TB Day for the year 2013. Bacille Calmette-Guérin (BCG) vaccination is one of the modalities to prevent TB and it's been practiced for decades with a lot of modifications from synthesis, schedule and method of administration. BCG mainly prevents serious TB with a less known effect on TB prevention. Other uses of BCG vaccination are being studied. In the modern era, heterologous effects of BCG vaccination have brought BCG once again into the limelight. TB prevention strategies start from basic health education and vaccination. Newer vaccines are under trial to improve the efficacy of TB vaccination and yet to be used for general practice. Prevention and immunization against TB have been modified in immunocompromised children. The concept of drug resistance has to be kept in mind before using anti tubercular drugs without any bacteriological evidence for tuberculosis. National Tuberculosis Elimination Programme (NTEP) focuses on contact tracing and treatment of latent TB infection as a resort to prevent further spread of TB in India. This review article has been authored following an exhaustive examination of the existing literature, with the aim of enhancing comprehension regarding tuberculosis prevention and immunization.
Collapse
Affiliation(s)
- Praveen Unki
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | - Santosh Kondekar
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | - Kirti Morkhade
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | - Surbhi Pravin Rathi
- Department of Paediatrics, Topiwala National Medical College, Mumbai, 400008, India
| | | |
Collapse
|
6
|
Obi OA. Varicella in the 21st Century. Neoreviews 2024; 25:e274-e281. [PMID: 38688890 DOI: 10.1542/neo.25-5-e274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Varicella is a highly contagious disease caused by the varicella-zoster virus and has a wide range of clinical presentations. Varicella can cause mild disease in infants born to infected persons who are immunized as a result of previous vaccination or previous clinical or subclinical infection. However, varicella can also lead to severe life-threatening disease in infants, particularly for those born to nonimmunized persons. In this review, we will summarize the natural history of varicella-zoster infection in pregnant persons, infants with congenital varicella syndrome, and infants with postnatal varicella infection. We will also provide guidance about isolation recommendations and chemoprophylaxis for exposed hospitalized infants. Finally, we will describe risk factors for developing disseminated disease and review the approach to treatment of infected infants.
Collapse
Affiliation(s)
- Olugbemisola A Obi
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
7
|
Heinke TL, Joseph A, Carroll D. Safety in Health Care: The Impact of Operating Room Design. Anesthesiol Clin 2023; 41:789-801. [PMID: 37838384 DOI: 10.1016/j.anclin.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The science of operating room design has grown over the past 20 years due to the realization that the physical environment influences health care provider performance and patient outcomes. Medical errors occur when the normal workflow in an operating room is disrupted as providers must overcome sub-optimal conditions. All aspects of the physical environment can impact operating room flow. Studying the layout, contents, ergonomics, and environmental parameters of the operating can lead improved work conditions resulting improved patient and provider safety. At the forefront of operating room design science is the use of simulation and the evaluation of new technologies.
Collapse
Affiliation(s)
- Timothy L Heinke
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, 25 Courtenay Drive, Suite 4200, MSC 240, Charleston, SC 29425, USA.
| | - Anjali Joseph
- Center for Health Facilities Design and Testing, School of Architecture, 2-141 Lee Hall, Clemson University, Clemson, SC 29631, USA
| | - David Carroll
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, 25 Courtenay Drive, Suite 4200, MSC 240, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
G S J S, Ramakodi MP, T V B P S R. Review of bioaerosols from different sources and their health impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1321. [PMID: 37840110 DOI: 10.1007/s10661-023-11935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
The emission of bioaerosols in the ambient atmosphere from different sources is a cause of concern for human health and the environment. Bioaerosols are a combination of biotic matter like microbes and pollens. The present review emphasizes the understanding of various sources of bioaerosols (industries, municipal solid waste, and medical facilities), their components, and their impact on human health. The study of bioaerosols is of great importance as large numbers of people are estimated to be exposed on the global scale. Bioaerosols exposure in different work environments results in health issues such as infectious diseases, allergies, toxic effects, and respiratory problems. Hence, extensive research is urged to establish an effective assessment of bioaerosols exposure in the workplace, risks involved, distribution, and validation. The present review is intended to explore the relationship between bioaerosols exposure to the atmosphere and its impacts on human health. Some of the preliminary findings, based on our analysis of bioaerosols arising from municipal solid waste at a landfill site and a waste transfer station in Hyderabad, India, are also discussed herein.
Collapse
Affiliation(s)
- Shailaja G S J
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India.
| | - Meganathan P Ramakodi
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishna T V B P S
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
10
|
Wu D, Chen J, Fu X, Li Z, Tan F, Lin H. Study on the migration characteristics of bioaerosols and optimization of ventilation patterns in a negative pressure isolation ward considering different patient postures. PLoS One 2023; 18:e0290288. [PMID: 37590299 PMCID: PMC10434850 DOI: 10.1371/journal.pone.0290288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Due to the serious global harm caused by the outbreak of various viral infectious diseases, how to improve indoor air quality and contain the spread of infectious bioaerosols has become a popular research subject. Negative pressure isolation ward is a key place to prevent the spread of aerosol particles. However, there is still limited knowledge available regarding airflow patterns and bioaerosol diffusion behavior in the ward, which is not conducive to reducing the risk of cross-infection between health care workers (HCWs) and patients. In addition, ventilation layout and patient posture have important effects on aerosol distribution. In this study, the spatial and temporal characteristics as well as dispersion patterns of bioaerosols under different ventilation patterns in the ward were investigated using the computational fluid dynamics (CFD) technique. It is concluded that changes in the location of droplet release source due to different body positions of the patient have a significant effect on the bioaerosol distribution. After optimizing the layout arrangements of exhaust air, the aerosol concentration in the ward with the patient in both supine and sitting positions is significantly reduced with particle removal efficiencies exceeding 95%, that is, the ventilation performance is improved. Meanwhile, the proportion of aerosol deposition on all surfaces of the ward is decreased, especially the deposition on both the patient's body and the bed is less than 1%, implying that the risk of HCWs being infected through direct contact is reduced.
Collapse
Affiliation(s)
- Dieen Wu
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianji Chen
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xihua Fu
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zongkun Li
- School of Electric Power, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, China
| | - Futai Tan
- Guangzhou Huijin Energy Efficiency Technology Co. Ltd, Guangzhou, China
| | - Hai Lin
- Guangzhou Huijin Energy Efficiency Technology Co. Ltd, Guangzhou, China
| |
Collapse
|
11
|
Azzahra F, Pangestu M, Lestari SW, Pratama G. Impacts of COVID-19 Pandemic on Three IVF Clinics of Jakarta, Indonesia: A Retrospective Qualitative and Quantitative Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:254-258. [PMID: 37577908 PMCID: PMC10439993 DOI: 10.22074/ijfs.2023.562118.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/11/2023] [Accepted: 04/08/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Corona virus disease-19 (COVID-19) pandemic also led to a reduction or even the suspension of elective health services. These decisions affected in vitro fertilization (IVF) programs worldwide. Therefore, it is essential to map the readiness of IVF clinics in providing safety in this situation and in the future. MATERIALS AND METHODS This is a retrospective qualitative and quantitative research done in 2021 that involved three IVF clinics of Jakarta, Indonesia. Those three clinics were government-owned, private-owned, and educational and training center. The qualitative data of each clinic's readiness towards COVID-19 was obtained from interviews with the clinics staff. The quantitative data were collected from the clinics patients' number and demographic data from 2019-2021 as well as from COVID-19 databases. Both data sets were analysed descriptively and only for the quantitative analysis Stata version 16 was used. RESULTS There were changes in the domiciles and number of patients attending the three clinics. The ratio of patients from Jakarta increased while patients from outside Java Island decreased. There was a drop in annual patient numbers in 2020. However, from June 2020 to December 2021, the number of monthly IVF cycles increased significantly by 3.5 cycles per month (P=0.001). There was no association between IVF patients' attendance numbers and COVID-19 cases (P=0.785). One of the clinics had a negative pressure operating theatre, which made them more confident in treating patients with COVID-19 positive and made them even had higher IVF cycles started than the pre-pandemic period. CONCLUSION Those three clinics are prepared in facing COVID-19, as they complied with government regulations. As the COVID-19 pandemic progressed, the number of patients gradually returned to normal.
Collapse
Affiliation(s)
- Fira Azzahra
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Mulyoto Pangestu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | | | - Gita Pratama
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Truong CS, Muthukutty P, Jang HK, Kim YH, Lee DH, Yoo SY. Filter-Free, Harmless, and Single-Wavelength Far UV-C Germicidal Light for Reducing Airborne Pathogenic Viral Infection. Viruses 2023; 15:1463. [PMID: 37515151 PMCID: PMC10385069 DOI: 10.3390/v15071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Germicidal lamps that primarily emit 254 nm ultraviolet (UV) radiation have been effectively utilized for surface sterilization, but they cannot be used on human skin and eyes due to their harmful and genotoxic activity. Recent reports have shown that far UV-C light (207-222 nm) can efficiently kill pathogens with potentially no harm to exposed human tissues. However, these methods still require additional filtering and/or further protective equipment. In this study, we demonstrate a filter-free, harmless, and single-wavelength far UV-C 207 nm germicidal light source that can be used to inactivate different respiratory viruses. It can be exploited as a safe and effective disinfection tool for various airborne viruses. We successfully developed a single-wavelength far UV-C source that produces an exact wavelength of 207 nm. We examined its safety on human skin and corneal cell lines, as well as its effects on inactivating different airborne viruses, such as coronavirus, adenovirus, and vaccinia virus. We expect that our far UV-C lamps can be safely and conveniently used to reduce COVID-19 infections and protect both our living spaces and hospitals from the threat of contamination by possible new or mutant viruses.
Collapse
Affiliation(s)
- Cao-Sang Truong
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Palaniyandi Muthukutty
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ho Kyung Jang
- SUNJE HI TEK Co., Ltd., Busan 46047, Republic of Korea
| | - Young-Ho Kim
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Dong Hoon Lee
- SUNJE HI TEK Co., Ltd., Busan 46047, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Yang YF, Lin YJ, You SH, Lu TH, Chen CY, Wang WM, Liao CM. Control measure implications of COVID-19 infection in healthcare facilities reconsidered from human physiological and engineering aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36228-36243. [PMID: 36547825 PMCID: PMC9772602 DOI: 10.1007/s11356-022-24815-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The Wells-Riley model invokes human physiological and engineering parameters to successfully treat airborne transmission of infectious diseases. Applications of this model would have high potentiality on evaluating policy actions and interventions intended to improve public safety efforts on preventing the spread of COVID-19 in an enclosed space. Here, we constructed the interaction relationships among basic reproduction number (R0) - exposure time - indoor population number by using the Wells-Riley model to provide a robust means to assist in planning containment efforts. We quantified SARS-CoV-2 changes in a case study of two Wuhan (Fangcang and Renmin) hospitals. We conducted similar approach to develop control measures in various hospital functional units by taking all accountable factors. We showed that inhalation rates of individuals proved crucial for influencing the transmissibility of SARS-CoV-2, followed by air supply rate and exposure time. We suggest a minimum air change per hour (ACH) of 7 h-1 would be at least appropriate with current room volume requirements in healthcare buildings when indoor population number is < 10 and exposure time is < 1 h with one infector and low activity levels being considered. However, higher ACH (> 16 h-1) with optimal arranged-exposure time/people and high-efficiency air filters would be suggested if more infectors or higher activity levels are presented. Our models lay out a practical metric for evaluating the efficacy of control measures on COVID-19 infection in built environments. Our case studies further indicate that the Wells-Riley model provides a predictive and mechanistic basis for empirical COVID-19 impact reduction planning and gives a framework to treat highly transmissible but mechanically heterogeneous airborne SARS-CoV-2.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Jun Lin
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chia Tung University, Taipei, 11221, Taiwan
| | - Shu-Han You
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City, 20224, Taiwan
| | - Tien-Hsuan Lu
- Department of Environmental Engineering, Da-Yeh University, Changhua, 515006, Taiwan
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Shah ST, Shabadi N, Karkra R, Rao VV. Geospatial Mapping of Indoor Air Quality and Respiratory Illnesses in an Urban Slum. Cureus 2023; 15:e34890. [PMID: 36925977 PMCID: PMC10013255 DOI: 10.7759/cureus.34890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Air pollution is a well-recognized determinant of health. The general perception has focused primarily on outdoor pollution, and indoor pollution which may be due to smoking, biomass use, an extension of outdoor pollution, etc. has been neglected. It is therefore imperative to understand the levels of indoor pollution and find out if these are associated with high rates of illnesses, particularly, respiratory diseases. Material and methods This was a cross-sectional study involving 300 houses and 727 participants in an urban slum, selected through simple random sampling. Indoor air quality was assessed using the Prana C -Air Plus air quality monitor (Prana Air, New Delhi, India). The instrument detected formaldehyde, air quality index (AQI), temperature, humidity, PM2.5, PM10 particles, and total volatile organic (TVO) compounds. Socio-demographic details were noted, and geospatial mapping was done using Q-GIS software (www.qgis.org). A questionnaire was used to survey the residents of those houses. Ethical committee clearance was obtained before starting the project. Results The mean distribution of pollution parameters over the entire study area was AQI - 67.4±65.48, PM 2.5 - 37.6±35.82 μg/m3, formaldehyde - 0.09±0.37 mg/m3, PM 10 - 43.9±38.59 μg/m3, TVO compounds - 0.43±2.13 mg/m3, CO2 - 1128.9±323.86 ppm, temperature - 23.7±21.2 degree Celsius, and PM 1 - 24.3±20.5 μg/m3; 2.6% of the participants had respiratory diseases, and a significant association was found between the AQI, TVO compounds and ventilation, and respiratory diseases (p<0.05). Conclusion Indoor air pollution not unlike outdoor pollution can have dramatic health effects and needs to be addressed to lower the overall respiratory disease burden. The AQI, TVOC, and poor ventilation/cross-ventilation are associated with respiratory illnesses. Geospatial mapping shows a concentration of cases in areas of high pollution.
Collapse
Affiliation(s)
- Samyak T Shah
- Community Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, IND
| | - Nayanabai Shabadi
- Community Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, IND
| | - Rohan Karkra
- General Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, IND
| | - Vadaga V Rao
- Community Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, IND
| |
Collapse
|
15
|
Zhang Z, Li X, Lyu K, Zhao X, Zhang F, Liu D, Zhao Y, Gao F, Hu J, Xu D. Exploring the Transmission Path, Influencing Factors and Risk of Aerosol Transmission of SARS-CoV-2 at Xi'an Xianyang International Airport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:865. [PMID: 36613187 PMCID: PMC9820134 DOI: 10.3390/ijerph20010865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 genetic sequence results collected from native COVID-19 cases who waited or saw relatives off at Xi'an Xianyang International Airport were highly consistent with the imported cases. In order to explore the routes of transmission and influencing factors that may cause the transmission of SARS-CoV-2 at the airport, a field simulation experiment of aerosol diffusion was adopted based on epidemiological survey data and a detailed field investigation of airport structure and ventilation. The results showed that the inbound passengers waited for approximately 3 h in the rest area on the first level of the international arrival area (Zone E). During the period, masks were removed for eating and drinking, resulting in the viral aerosols rising from the first level to the second level with hot air. After deplaning, the inbound passengers handled the relevant procedures and passed through the corridor on the second floor. The local side wall of the corridor adopted fan coil air conditioning, combined with fresh air supply and personnel walking, resulting in airflow flowing to Zone E. After merging with diffused air containing virus aerosol from the first floor, it continued to spread upward to the connected third-layer area. There was a local suspended ceiling on the top of the third floor, but it was approximately 4 m high and connected to the corridor from Terminal 2 to Terminal 3. When the virus aerosol diffused above the Terminal 2-Terminal 3 corridor, where the temperature was low and the air diffused downward, it could cause an infection risk for people passing through the corridor. In addition, the investigation found that the exhaust pipes of the nucleic acid sampling rooms at the international arrival corridor were directly discharged outdoors without treatment. Only one exhaust pipe and poor ventilation in the bathroom in Zone E had a risk of viral aerosol diffusion. Therefore, the international arrival area should be set up alone or separated from the other areas by hard isolation to avoid the existence of communication between different areas that could cause viral aerosols to diffuse with airflow. The toilet ventilation should be increased to avoid the accumulation of viral aerosols at high concentrations. The exhaust pipes of the toilet and the nucleic acid sampling rooms should be equipped with disinfection and efficient filtration devices, and high-altitude emission should be adopted to reduce the risk of virus aerosol diffusion.
Collapse
Affiliation(s)
- Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xia Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Keyang Lyu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoning Zhao
- Division of Chemical Analysis, Biology and Medicine, Beijing Institute of Metrology, Beijing 100012, China
| | - Feng Zhang
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Dong Liu
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Yonggang Zhao
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Fan Gao
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Jian Hu
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
16
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
17
|
Correia G, Rodrigues L, Afonso M, Mota M, Oliveira J, Soares R, Tomás AL, Reichel A, Silva PM, Costa JJ, da Silva MG, Santos NC, Gonçalves T. SARS-CoV-2 air and surface contamination in residential settings. Sci Rep 2022; 12:18058. [PMID: 36302823 PMCID: PMC9610309 DOI: 10.1038/s41598-022-22679-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2 transmission occurs mainly indoors, through virus-laden airborne particles. Although the presence and infectivity of SARS-CoV-2 in aerosol are now acknowledged, the underlying circumstances for its occurrence are still under investigation. The contamination of domiciliary environments during the isolation of SARS-CoV-2-infected patients in their respective rooms in individual houses and in a nursing home was investigated by collecting surface and air samples in these environments. Surface contamination was detected in different contexts, both on high and low-touch surfaces. To determine the presence of virus particles in the air, two sampling methodologies were used: air and deposition sampling. Positive deposition samples were found in sampling locations above the patient's height, and SARS-CoV-2 RNA was detected in impactation air samples within a size fraction below 2.5 μm. Surface samples rendered the highest positivity rate and persistence for a longer period. The presence of aerosolized SARS-CoV-2 RNA occurred mainly in deposition samples and closer to symptom onset. To evaluate the infectivity of selected positive samples, SARS-CoV-2 viability assays were performed, but our study was not able to validate the virus viability. The presented results confirm the presence of aerosolized SARS-CoV-2 RNA in indoor compartments occupied by COVID-19 patients with mild symptoms, in the absence of aerosol-generating clinical procedures.
Collapse
Affiliation(s)
- Gil Correia
- FMUC, Faculty of Medicine, Univ Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.
- Medical Microbiology Research Group, CNC-Center for Neurosciences and Cell Biology, 3004-504, Coimbra, Portugal.
- ARS Centro, IP, Alameda Júlio Henriques, 3000-457, Coimbra, Portugal.
| | - Luís Rodrigues
- Universitary Clinic of Nephrology, Faculty of Medicine University of Coimbra Nephrology Service, Hospital and University Center of Coimbra, Coimbra, Portugal
| | - Mariana Afonso
- FMUC, Faculty of Medicine, Univ Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- Medical Microbiology Research Group, CNC-Center for Neurosciences and Cell Biology, 3004-504, Coimbra, Portugal
| | - Marta Mota
- FMUC, Faculty of Medicine, Univ Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- Medical Microbiology Research Group, CNC-Center for Neurosciences and Cell Biology, 3004-504, Coimbra, Portugal
| | - Joana Oliveira
- FMUC, Faculty of Medicine, Univ Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- Medical Microbiology Research Group, CNC-Center for Neurosciences and Cell Biology, 3004-504, Coimbra, Portugal
| | - Rui Soares
- FMUC, Faculty of Medicine, Univ Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- Medical Microbiology Research Group, CNC-Center for Neurosciences and Cell Biology, 3004-504, Coimbra, Portugal
- Department of Clinical Pathology, Instituto Português de Oncologia de Coimbra Francisco Gentil EPE, 3000-075, Coimbra, Portugal
| | - Ana Luísa Tomás
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Anna Reichel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - José J Costa
- ADAI, Department of Mechanical Engineering, Univ Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788, Coimbra, Portugal
| | - Manuel Gameiro da Silva
- ADAI, Department of Mechanical Engineering, Univ Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788, Coimbra, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Teresa Gonçalves
- FMUC, Faculty of Medicine, Univ Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.
- Medical Microbiology Research Group, CNC-Center for Neurosciences and Cell Biology, 3004-504, Coimbra, Portugal.
| |
Collapse
|
18
|
Sachs JD, Karim SSA, Aknin L, Allen J, Brosbøl K, Colombo F, Barron GC, Espinosa MF, Gaspar V, Gaviria A, Haines A, Hotez PJ, Koundouri P, Bascuñán FL, Lee JK, Pate MA, Ramos G, Reddy KS, Serageldin I, Thwaites J, Vike-Freiberga V, Wang C, Were MK, Xue L, Bahadur C, Bottazzi ME, Bullen C, Laryea-Adjei G, Ben Amor Y, Karadag O, Lafortune G, Torres E, Barredo L, Bartels JGE, Joshi N, Hellard M, Huynh UK, Khandelwal S, Lazarus JV, Michie S. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022; 400:1224-1280. [PMID: 36115368 PMCID: PMC9539542 DOI: 10.1016/s0140-6736(22)01585-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Jeffrey D Sachs
- Center for Sustainable Development, Columbia University, New York, NY, United States.
| | - Salim S Abdool Karim
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lara Aknin
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Joseph Allen
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, United States
| | | | - Francesca Colombo
- Health Division, Organisation for Economic Co-operation and Development, Paris, France
| | | | | | - Vitor Gaspar
- Fiscal Affairs Department, International Monetary Fund, Washington, DC, United States
| | | | - Andy Haines
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK; Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter J Hotez
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Phoebe Koundouri
- Department of International and European Economic Studies, Athens University of Economics and Business, Athens, Greece; Department of Technology, Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark; European Association of Environmental and Resource Economists, Athens, Greece
| | - Felipe Larraín Bascuñán
- Department of Economics and Administration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jong-Koo Lee
- National Academy of Medicine of Korea, Seoul, Republic of Korea
| | - Muhammad Ali Pate
- Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, United States
| | | | | | | | - John Thwaites
- Monash Sustainable Development Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Wang
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | | | - Lan Xue
- Schwarzman College, Tsinghua University, Beijing, China
| | - Chandrika Bahadur
- The Lancet COVID-19 Commission Regional Task Force: India, New Delhi, India
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | | | - Yanis Ben Amor
- Center for Sustainable Development, Columbia University, New York, NY, United States
| | - Ozge Karadag
- Center for Sustainable Development, Columbia University, New York, NY, United States
| | | | - Emma Torres
- United Nations Sustainable Development Solutions Network, New York, NY, United States
| | - Lauren Barredo
- United Nations Sustainable Development Solutions Network, New York, NY, United States
| | - Juliana G E Bartels
- Center for Sustainable Development, Columbia University, New York, NY, United States
| | - Neena Joshi
- United Nations Sustainable Development Solutions Network, New York, NY, United States
| | | | | | | | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Susan Michie
- Centre for Behaviour Change, University College London, London, UK
| |
Collapse
|
19
|
Nair AN, Anand P, George A, Mondal N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. ENVIRONMENTAL RESEARCH 2022; 213:113579. [PMID: 35714688 PMCID: PMC9192357 DOI: 10.1016/j.envres.2022.113579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Airborne transmission arises through the inhalation of aerosol droplets exhaled by an infected person and is now thought to be the primary transmission route of COVID-19. Thus, maintaining adequate indoor air quality levels is vital in mitigating the spread of the airborne virus. The cause-and-effect flow of various agents involved in airborne transmission of viruses has been investigated through a systematic literature review. It has been identified that the airborne virus can stay infectious in the air for hours, and pollutants such as particulate matter (PM10, PM2.5), Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon dioxide (CO2), and Total Volatile Organic Compounds (TVOCs) and other air pollutants can enhance the incidence, spread and mortality rates of viral disease. Also, environmental quality parameters such as humidity and temperature have shown considerable influence in virus transmission in indoor spaces. The measures adopted in different research studies that can curb airborne transmission of viruses for an improved Indoor Air Quality (IAQ) have been collated for their effectiveness and limitations. A diverse set of building strategies, components, and operation techniques from the recent literature pertaining to the ongoing spread of COVID-19 disease has been systematically presented to understand the current state of techniques and building systems that can minimize the viral spread in built spaces This comprehensive review will help architects, builders, realtors, and other organizations improve or design a resilient building system to deal with COVID-19 or any such pandemic in the future.
Collapse
Affiliation(s)
- Ajith N Nair
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| | - Prashant Anand
- Department of Architecture and Regional Planning, IIT, Kharagpur, India.
| | - Abraham George
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| | - Nilabhra Mondal
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| |
Collapse
|
20
|
Ferrari S, Blázquez T, Cardelli R, Puglisi G, Suárez R, Mazzarella L. Ventilation strategies to reduce airborne transmission of viruses in classrooms: A systematic review of scientific literature. BUILDING AND ENVIRONMENT 2022; 222:109366. [PMID: 35818484 PMCID: PMC9259197 DOI: 10.1016/j.buildenv.2022.109366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The recent pandemic due to SARS-CoV-2 has brought to light the need for strategies to mitigate contagion between human beings. Apart from hygiene measures and social distancing, air ventilation highly prevents airborne transmission within enclosed spaces. Among others, educational environments become critical in strategic planning to control the spread of pathogens and viruses amongst the population, mainly in cold conditions. In the event of a virus outbreak - such as COVID or influenza - many school classrooms still lack the means to guarantee secure and healthy environments. The present review examines school contexts that implement air ventilation strategies to reduce the risk of contagion between students. The analysed articles present past experiences that use either natural or mechanical systems assessed through mathematical models, numerical models, or full-scale experiments. For naturally ventilated classrooms, the studies highlight the importance of the architectural design of educational spaces and propose strategies for aeration control such as CO2-based control and risk-infection control. When it comes to implementing mechanical ventilation in classrooms, different systems with different airflow patterns are assessed based on their ability to remove airborne pathogens considering parameters like the age of air and the generation of airflow streamlines. Moreover, studies report that programmed mechanical ventilation systems can reduce risk-infection during pandemic events. In addition to providing a systematic picture of scientific studies in the field, the findings of this review can be a valuable reference for school administrators and policymakers to implement the best strategies in their classroom settings towards reducing infection risks.
Collapse
Affiliation(s)
- S Ferrari
- Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy
| | - T Blázquez
- Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy
| | - R Cardelli
- Dept. of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy
| | - G Puglisi
- Dept. of Energy Efficiency Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - R Suárez
- Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Sevilla, Spain
| | - L Mazzarella
- Dept. of Energy, Politecnico di Milano, Milano, Italy
| |
Collapse
|
21
|
Prevention of SARS-CoV-2 and respiratory viral infections in healthcare settings: current and emerging concepts. Curr Opin Infect Dis 2022; 35:353-362. [PMID: 35849526 DOI: 10.1097/qco.0000000000000839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW COVID-19 has catalyzed a wealth of new data on the science of respiratory pathogen transmission and revealed opportunities to enhance infection prevention practices in healthcare settings. RECENT FINDINGS New data refute the traditional division between droplet vs airborne transmission and clarify the central role of aerosols in spreading all respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), even in the absence of so-called 'aerosol-generating procedures' (AGPs). Indeed, most AGPs generate fewer aerosols than talking, labored breathing, or coughing. Risk factors for transmission include high viral loads, symptoms, proximity, prolonged exposure, lack of masking, and poor ventilation. Testing all patients on admission and thereafter can identify early occult infections and prevent hospital-based clusters. Additional prevention strategies include universal masking, encouraging universal vaccination, preferential use of N95 respirators when community rates are high, improving native ventilation, utilizing portable high-efficiency particulate air filters when ventilation is limited, and minimizing room sharing when possible. SUMMARY Multifaceted infection prevention programs that include universal testing, masking, vaccination, and enhanced ventilation can minimize nosocomial SARS-CoV-2 infections in patients and workplace infections in healthcare personnel. Extending these insights to other respiratory viruses may further increase the safety of healthcare and ready hospitals for novel respiratory viruses that may emerge in the future.
Collapse
|
22
|
van Beest MRRS, Arpino F, Hlinka O, Sauret E, van Beest NRTP, Humphries RS, Buonanno G, Morawska L, Governatori G, Motta N. Influence of indoor airflow on particle spread of a single breath and cough in enclosures: Does opening a window really 'help'? ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101473. [PMID: 35692900 PMCID: PMC9167821 DOI: 10.1016/j.apr.2022.101473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The spread of respiratory diseases via aerosol particles in indoor settings is of significant concern. The SARS-CoV-2 virus has been found to spread widely in confined enclosures like hotels, hospitals, cruise ships, prisons, and churches. Particles exhaled from a person indoors can remain suspended long enough for increasing the opportunity for particles to spread spatially. Careful consideration of the ventilation system is essential to minimise the spread of particles containing infectious pathogens. Previous studies have shown that indoor airflow induced by opened windows would minimise the spread of particles. However, how outdoor airflow through an open window influences the indoor airflow has not been considered. The aim of this study is to provide a clear understanding of the indoor particle spread across multiple rooms, in a situation similar to what is found in quarantine hotels and cruise ships, using a combination of HVAC (Heating, Ventilation and Air-Conditioning) ventilation and an opening window. Using a previously validated mathematical model, we used 3D CFD (computational fluid dynamics) simulations to investigate to what extent different indoor airflow scenarios contribute to the transport of a single injection of particles ( 1 . 3 μ m ) in a basic 3D multi-room indoor environment. Although this study is limited to short times, we demonstrate that in certain conditions approximately 80% of the particles move from one room to the corridor and over 60% move to the nearby room within 5 to 15 s. Our results provide additional information to help identifying relevant recommendations to limit particles from spreading in enclosures.
Collapse
Affiliation(s)
- M R R S van Beest
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - F Arpino
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - O Hlinka
- Information Management & Technology (IM&T), CSIRO, Pullenvale, Queensland, Australia
| | - E Sauret
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - N R T P van Beest
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - R S Humphries
- Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - L Morawska
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia
| | - G Governatori
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - N Motta
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Izadyar N, Miller W. Ventilation strategies and design impacts on indoor airborne transmission: A review. BUILDING AND ENVIRONMENT 2022; 218:109158. [PMID: 35573806 PMCID: PMC9075988 DOI: 10.1016/j.buildenv.2022.109158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 outbreak has brought the indoor airborne transmission issue to the forefront. Although ventilation systems provide clean air and dilute indoor contaminated air, there is strong evidence that airborne transmission is the main route for contamination spread. This review paper aims to critically investigate ventilation impacts on particle spread and identify efficient ventilation strategies in controlling aerosol distribution in clinical and non-clinical environments. This article also examines influential ventilation design features (i.e., exhaust location) affecting ventilation performance in preventing aerosols spread. This paper shortlisted published documents for a review based on identification (keywords), pre-processing, screening, and eligibility of these articles. The literature review emphasizes the importance of ventilation systems' design and demonstrates all strategies (i.e., mechanical ventilation) could efficiently remove particles if appropriately designed. The study highlights the need for occupant-based ventilation systems, such as personalized ventilation instead of central systems, to reduce cross-infections. The literature underlines critical impacts of design features like ventilation rates and the number and location of exhausts and suggests designing systems considering airborne transmission. This review underpins that a higher ventilation rate should not be regarded as a sole indicator for designing ventilation systems because it cannot guarantee reducing risks. Using filtration and decontamination devices based on building functionalities and particle sizes can also increase ventilation performance. This paper suggests future research on optimizing ventilation systems, particularly in high infection risk spaces such as multi-storey hotel quarantine facilities. This review contributes to adjusting ventilation facilities to control indoor aerosol transmission.
Collapse
Affiliation(s)
- Nima Izadyar
- School of Built Environment, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
| | - Wendy Miller
- School of Architecture & Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| |
Collapse
|
24
|
Chronic Rhinosinusitis and COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1423-1432. [PMID: 35307579 PMCID: PMC8926942 DOI: 10.1016/j.jaip.2022.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has raised awareness about olfactory dysfunction, although a loss of smell was present in the general population before COVID-19. Chronic rhinosinusitis (CRS) is a common upper airway chronic inflammatory disease that is also one of the most common causes of olfactory dysfunction. It can be classified into different phenotypes (ie, with and without nasal polyps) and endotypes (ie, type 2 and non-type 2 inflammation). However, scientific information regarding CRS within the context of COVID-19 is still scarce. This review focuses on (1) the potential effects of severe acute respiratory syndrome coronavirus 2 infection on CRS symptoms, including a loss of smell, and comorbidities; (2) the pathophysiologic mechanisms involved in the olfactory dysfunction; (3) CRS diagnosis in the context of COVID-19, including telemedicine; (4) the protective hypothesis of CRS in COVID-19; and (5) the efficacy and safety of therapeutic options for CRS within the context of COVID-19.
Collapse
|
25
|
Treneman-Evans G, Ali B, Denison-Day J, Clegg T, Yardley L, Denford S, Essery R. The Rapid Adaptation and Optimisation of a Digital Behaviour-Change Intervention to Reduce the Spread of COVID-19 in Schools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6731. [PMID: 35682312 PMCID: PMC9180389 DOI: 10.3390/ijerph19116731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023]
Abstract
The rapid transmission of COVID-19 in school communities has been a major concern. To ensure that mitigation systems were in place and support was available, a digital intervention to encourage and facilitate infection-control behaviours was rapidly adapted and optimised for implementation as a whole-school intervention. Using the person-based approach, 'Germ Defence' was iteratively adapted, guided by relevant literature, co-production with Patient and Public Involvement representatives, and think-aloud interviews with forty-five school students, staff, and parents. Suggested infection-control behaviours deemed feasible and acceptable by the majority of participants included handwashing/hand-sanitising and wearing a face covering in certain contexts, such as crowded public spaces. Promoting a sense of collective responsibility was reported to increase motivation for the adoption of these behaviours. However, acceptability and willingness to implement recommended behaviours seemed to be influenced by participants' perceptions of risk. Barriers to the implementation of recommended behaviours in school and at home primarily related to childcare needs and physical space. We conclude that it was possible to rapidly adapt Germ Defence to provide an acceptable resource to help mitigate against infection transmission within and from school settings. Adapted content was considered acceptable, persuasive, and accessible.
Collapse
Affiliation(s)
- Georgia Treneman-Evans
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
| | - Becky Ali
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
| | - James Denison-Day
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
- Primary Care Research Centre, University of Southampton, Southampton SO16 5ST, UK
| | - Tara Clegg
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
| | - Lucy Yardley
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
- Primary Care Research Centre, University of Southampton, Southampton SO16 5ST, UK
| | - Sarah Denford
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
| | - Rosie Essery
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; (J.D.-D.); (T.C.); (L.Y.); (S.D.); (R.E.)
- Primary Care Research Centre, University of Southampton, Southampton SO16 5ST, UK
| |
Collapse
|
26
|
Andalib E, Faghani M, Zia Ziabari SM, Shenagari M, Salehiniya H, Keivanlou MH, Rafat Z. The Effectiveness of the Anteroom (Vestibule) Area on Hospital Infection Control and Health Staff Safety: A Systematic Review. Front Public Health 2022; 10:828845. [PMID: 35558527 PMCID: PMC9086672 DOI: 10.3389/fpubh.2022.828845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/22/2022] [Indexed: 01/22/2023] Open
Abstract
The emergence of SARS-CoV2 in 2019 showed again that the world's healthcare system is not fully equipped and well-designed for preventing the transmission of nosocomial respiratory infections. One of the great tools for preventing the spread of infectious organisms in hospitals is the anteroom. Several articles have investigated the role of the anteroom in disease control but the lack of a comprehensive study in this field prompted us to provide more in-depth information to fill this gap. Also, this study aimed to assess the necessity to construct an anteroom area for hospital staff members at the entrance of each ward of the hospital, and specify the equipment and facilities which make the anteroom more efficient. Articles were identified through searches of Scopus, Web of Sciences, PubMed, and Embase for studies published in English until May 2020 reporting data on the effect of the anteroom (vestibule) area in controlling hospital infections. Data from eligible articles were extracted and presented according to PRISMA's evidence-based data evaluation search strategy. Also, details around the review aims and methods were registered with the PROSPERO. From the database, 209 articles were identified, of which 25 studies met the study criteria. Most studies demonstrated that an anteroom significantly enhances practical system efficiency. The results showed that the equipment such as ventilation system, high-efficiency particulate absorption filter, hand dispensers, alcohol-based disinfection, sink, mirror, transparent panel, UVC disinfection, and zone for PPE change, and parameters like temperature, door type, pressure, and size of the anteroom are factors that are effective on the safety of the hospital environment. Studies demonstrated that providing an anteroom for changing clothing and storing equipment may be useful in reducing the transmission of airborne infections in hospitals. Since the transmission route of SARS-CoV2 is common with other respiratory infectious agents, it can be concluded that a well-designed anteroom could potentially decrease the risk of SARS-CoV2 transmission during hospitalization as well.
Collapse
Affiliation(s)
- Elham Andalib
- Department of Design, Faculty of Fine Art, Music and Design, University of Bergen, Bergen, Norway.,Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoumeh Faghani
- Department of Anatomy, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyyed Mahdi Zia Ziabari
- Department of Emergency Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Zahra Rafat
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
27
|
Bahl P, Doolan C, de Silva C, Chughtai AA, Bourouiba L, MacIntyre CR. Airborne or Droplet Precautions for Health Workers Treating Coronavirus Disease 2019? J Infect Dis 2022. [PMID: 32301491 DOI: 10.1093/infdis/jiaa189/5820886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported in more than 200 countries. Thousands of health workers have been infected, and outbreaks have occurred in hospitals, aged care facilities, and prisons. The World Health Organization (WHO) has issued guidelines for contact and droplet precautions for healthcare workers caring for suspected COVID-19 patients, whereas the US Centers for Disease Control and Prevention (CDC) has initially recommended airborne precautions. The 1- to 2-meter (≈3-6 feet) rule of spatial separation is central to droplet precautions and assumes that large droplets do not travel further than 2 meters (≈6 feet). We aimed to review the evidence for horizontal distance traveled by droplets and the guidelines issued by the WHO, CDC, and European Centre for Disease Prevention and Control on respiratory protection for COVID-19. We found that the evidence base for current guidelines is sparse, and the available data do not support the 1- to 2-meter (≈3-6 feet) rule of spatial separation. Of 10 studies on horizontal droplet distance, 8 showed droplets travel more than 2 meters (≈6 feet), in some cases up to 8 meters (≈26 feet). Several studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) support aerosol transmission, and 1 study documented virus at a distance of 4 meters (≈13 feet) from the patient. Moreover, evidence suggests that infections cannot neatly be separated into the dichotomy of droplet versus airborne transmission routes. Available studies also show that SARS-CoV-2 can be detected in the air, and remain viable 3 hours after aerosolization. The weight of combined evidence supports airborne precautions for the occupational health and safety of health workers treating patients with COVID-19.
Collapse
Affiliation(s)
- Prateek Bahl
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, New South Wales, Australia
| | - Con Doolan
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, New South Wales, Australia
| | - Charitha de Silva
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, New South Wales, Australia
| | - Abrar Ahmad Chughtai
- School of Public Health and Community Medicine, UNSW Sydney, New South Wales, Australia
| | - Lydia Bourouiba
- The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - C Raina MacIntyre
- The Kirby Institute, UNSW Sydney, New South Wales, Australia
- College of Public Service & Community Solutions, and College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
28
|
Peters TM, Rabidoux D, Stanier CO, Anthony TR. Assessment of university classroom ventilation during the COVID-19 pandemic. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:295-301. [PMID: 35286244 PMCID: PMC10466473 DOI: 10.1080/15459624.2022.2053142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ventilation plays an important role in mitigating the risk of airborne virus transmission in university classrooms. During the early phase of the COVID-19 pandemic, methods to assess classrooms for ventilation adequacy were needed. The aim of this paper was to compare the adequacy of classroom ventilation determined through an easily accessible, simple, quantitative measure of air changes per hour (ACH) to that determined through qualitative "expert judgment" and recommendations from the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the American Conference of Governmental Industrial Hygienists (ACGIH)®. Two experts, ventilation engineers from facilities maintenance, qualitatively ranked buildings with classrooms on campus with regard to having "acceptable classroom ventilation." Twelve lecture classrooms were selected for further testing, including a mix of perceived adequate/inadequate ventilation. Total air change per hour (ACH) was measured to quantitatively assess ventilation through the decay of carbon dioxide in the front and rear of these classrooms. The outdoor ACH was calculated by multiplying the total ACH by the outdoor air fraction. The classrooms in a building designed to the highest ASHRAE standards (62.1 2004) did not meet ACGIH COVID-19 recommendations. Four of the classrooms met the ASHRAE criteria. However, a classroom that was anticipated to fail based on expert knowledge met the ASHRAE and ACGIH criteria. Only two classrooms passed stringent ACGIH recommendations (outdoor ACH > 6). None of the classrooms that passed ACGIH criteria were originally expected to pass. There was no significant difference in ACH measured in the front and back of classrooms, suggesting that all classrooms were well mixed with no dead zones. From these results, schools should assess classroom ventilation considering a combination of classroom design criteria, expert knowledge, and ACH measurements.
Collapse
Affiliation(s)
- Thomas M. Peters
- Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - David Rabidoux
- Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Charles O. Stanier
- Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa
| | - T. Renee Anthony
- Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
29
|
Persing AJ, Roberts B, Lotter JT, Russman E, Pierce J. Evaluation of ventilation, indoor air quality, and probability of viral infection in an outdoor dining enclosure. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:302-309. [PMID: 35286245 DOI: 10.1080/15459624.2022.2053692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In 2020, many cities closed indoor dining to curb rising COVID-19 cases. While restaurants in warmer climates were able to serve outdoors year-round, restaurants in colder climates adopted various solutions to continually operate throughout the colder months, such as the use of single-party outdoor dining enclosures to allow for the continuation of outdoor dining. This study evaluates indoor air quality and the air exchange rate using carbon dioxide as a tracer gas in a dining enclosure (12.03 m3) and models the probability of COVID-19 infection within such an enclosure. The air exchange rates were determined during two trials for the following scenarios: (1) door closed, (2) door opened, and (3) door opened intermittently every 15 min for 1 min per opening. The probability of COVID-19 infection was evaluated for each of these scenarios for 1 hr, with occupancy levels of two, four, and six patrons. The Wells-Riley equation was used to predict the probability of infection inside the dining enclosure. The air exchange rates were lowest in the closed-door scenarios (0.29-0.59 ACH), higher in the intermittent scenarios (2.36-2.49 ACH), and highest in the open-door scenarios (3.61 to 33.35 ACH). As the number of subjects inside the enclosure increased, the carbon dioxide accumulation increased in the closed-door and intermittent scenarios. There was no identifiable accumulation of carbon dioxide in the open-door scenario. The probability of infection (assuming one infected person without a mask) was inversely proportional to the airflow rate, and ranged from 0.0002-0.84 in the open-door scenario, 0.0034-0.94 for the intermittent scenarios, and 0.015-1.0 for the closed-door scenarios. The results from this study indicate that under typical use, the indoor air quality inside dining enclosures degrades during occupancy. The probability of patrons and workers inside dining enclosures being infected with COVID-19 is high when dining or serving a party with an infected person.
Collapse
|
30
|
Dacunto P, Ng A, Moser D, Tovkach A, Scanlon S, Benson M. Effects of location, classroom orientation, and air change rate on potential aerosol exposure: an experimental and computational study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:557-566. [PMID: 35244126 DOI: 10.1039/d1em00434d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study examined the dispersion of potentially infectious aerosols in classrooms by means of both a CO2 tracer gas, and multizone contaminant transport modeling. A total of 20 tests were conducted in three different university classrooms at multiple air change rates (4.4-9.7/h), each with two different room orientations: one with the tracer gas released from six student desks toward the air return, and one with the same tracer gas released away from it. Resulting tracer concentrations were measured by 19 different monitors arrayed throughout the room. Steady-state, mean tracer gas concentrations were calculated in six instructor zones (A-F) around the periphery of the room, with the results normalized by the concentration at the return, which was assumed to be representative of the well-mixed volume of the room. Across all classrooms, zones farthest from the return (C, D) had the lowest mean normalized concentrations (0.75), while those closest to the return (A, F) had the highest (0.95). This effect was consistent across room orientations (release both toward and away from the return), and air change rates. In addition, all zones around the periphery of the room had a significantly lower concentration than those adjacent to the sources. Increasing the ventilation rate reduced tracer gas concentrations significantly. Similar trends were observed via a novel approach to CONTAM modeling of the same rooms. These results indicate that informed selection of teaching location within the classroom could reduce instructor exposure.
Collapse
Affiliation(s)
- P Dacunto
- United States Military Academy, Department of Geography and Environmental Engineering, West Point, NY 10996, USA.
| | - A Ng
- United States Military Academy, Department of Geography and Environmental Engineering, West Point, NY 10996, USA.
| | - D Moser
- United States Military Academy, Department of Civil and Mechanical Engineering, West Point, NY 10996, USA
| | - A Tovkach
- United States Military Academy, Department of Geography and Environmental Engineering, West Point, NY 10996, USA.
| | - S Scanlon
- United States Military Academy, Department of Civil and Mechanical Engineering, West Point, NY 10996, USA
| | - M Benson
- United States Military Academy, Department of Civil and Mechanical Engineering, West Point, NY 10996, USA
| |
Collapse
|
31
|
Ghaddar N, Ghali K. Ten questions concerning the paradox of minimizing airborne transmission of infectious aerosols in densely occupied spaces via sustainable ventilation and other strategies in hot and humid climates. BUILDING AND ENVIRONMENT 2022; 214:108901. [PMID: 35197667 PMCID: PMC8853966 DOI: 10.1016/j.buildenv.2022.108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 05/14/2023]
Abstract
Airborne disease transmission in indoor spaces and resulting cross-contamination has been a topic of broad concern for years - especially recently with the outbreak of COVID-19. Global recommendations on this matter consist of increasing the outdoor air supply in the aim of diluting the indoor air. Nonetheless, a paradoxical relationship has risen between increasing amount of outdoor air and its impact on increased energy consumption - especially densely occupied spaces. The paradox is more critical in hot and humid climates, where large amounts of energy are required for the conditioning of the outdoor air. Therefore, many literature studies investigated new strategies for the mitigation of cross-contamination with little-to-no additional cost of energy. These strategies mainly consist of the dilution and/or the capture and removal of contaminants at the levels of macroenvironment room air and occupant-adjacent microenvironment. On the macroenvironment level, the dilution occurs by the supply of large amounts of outdoor air in a sustainable way using passive cooling systems, and the removal of contaminants happens via filtering. Similarly, the microenvironment of the occupant can be diluted using localized ventilation techniques, and contaminants can be captured and removed by direct exhaust near the source of contamination. Thus, this work answers ten questions that explore the most prevailing technologies from the above-mentioned fronts that are used to mitigate cross-contamination in densely occupied spaces located in hot and humid climates at minimal energy consumption. The paper establishes a basis for future work and insights for new research directives for macro and microenvironment approaches.
Collapse
Affiliation(s)
- Nesreen Ghaddar
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| | - Kamel Ghali
- Mechanical Engineering Department, American University of Beirut, P.O. Box 11-0236, Beirut, 1107-2020, Lebanon
| |
Collapse
|
32
|
Nagy A, Horváth A, Farkas Á, Füri P, Erdélyi T, Madas BG, Czitrovszky A, Merkely B, Szabó A, Ungvári Z, Müller V. Modeling of nursing care-associated airborne transmission of SARS-CoV-2 in a real-world hospital setting. GeroScience 2022; 44:585-595. [PMID: 34985588 PMCID: PMC8729098 DOI: 10.1007/s11357-021-00512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
Respiratory transmission of SARS-CoV-2 from one older patient to another by airborne mechanisms in hospital and nursing home settings represents an important health challenge during the COVID-19 pandemic. However, the factors that influence the concentration of respiratory droplets and aerosols that potentially contribute to hospital- and nursing care-associated transmission of SARS-CoV-2 are not well understood. To assess the effect of health care professional (HCP) and patient activity on size and concentration of airborne particles, an optical particle counter was placed (for 24 h) in the head position of an empty bed in the hospital room of a patient admitted from the nursing home with confirmed COVID-19. The type and duration of the activity, as well as the number of HCPs providing patient care, were recorded. Concentration changes associated with specific activities were determined, and airway deposition modeling was performed using these data. Thirty-one activities were recorded, and six representative ones were selected for deposition modeling, including patient's activities (coughing, movements, etc.), diagnostic and therapeutic interventions (e.g., diagnostic tests and drug administration), as well as nursing patient care (e.g., bedding and hygiene). The increase in particle concentration of all sizes was sensitive to the type of activity. Increases in supermicron particle concentration were associated with the number of HCPs (r = 0.66; p < 0.05) and the duration of activity (r = 0.82; p < 0.05), while submicron particles increased with all activities, mainly during the daytime. Based on simulations, the number of particles deposited in unit time was the highest in the acinar region, while deposition density rate (number/cm2/min) was the highest in the upper airways. In conclusion, even short periods of HCP-patient interaction and minimal patient activity in a hospital room or nursing home bedroom may significantly increase the concentration of submicron particles mainly depositing in the acinar regions, while mainly nursing activities increase the concentration of supermicron particles depositing in larger airways of the adjacent bed patient. Our data emphasize the need for effective interventions to limit hospital- and nursing care-associated transmission of SARS-CoV-2 and other respiratory pathogens (including viral pathogens, such as rhinoviruses, respiratory syncytial virus, influenza virus, parainfluenza virus and adenoviruses, and bacterial and fungal pathogens).
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós st. 29-33, Budapest, Hungary
| | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Tamás Erdélyi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, Wigner Research Centre for Physics, Konkoly-Thege Miklós st. 29-33, Budapest, Hungary
- Envi-Tech Ltd, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Attila Szabó
- 1st Department of Pediatrics Semmelweis University, Budapest, Hungary
- Clinical Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Giampieri A, Ma Z, Ling-Chin J, Roskilly AP, Smallbone AJ. An overview of solutions for airborne viral transmission reduction related to HVAC systems including liquid desiccant air-scrubbing. ENERGY (OXFORD, ENGLAND) 2022; 244:122709. [PMID: 34840405 PMCID: PMC8605622 DOI: 10.1016/j.energy.2021.122709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 05/31/2023]
Abstract
The spread of the coronavirus SARS-CoV-2 affects the health of people and the economy worldwide. As air transmits the virus, heating, ventilation and air-conditioning (HVAC) systems in buildings, enclosed spaces and public transport play a significant role in limiting the transmission of airborne pathogens at the expenses of increased energy consumption and possibly reduced thermal comfort. On the other hand, liquid desiccant technology could be adopted as an air scrubber to increase indoor air quality and inactivate pathogens through temperature and humidity control, making them less favourable to the growth, proliferation and infectivity of microorganisms. The objectives of this study are to review the role of HVAC in airborne viral transmission, estimate its energy penalty associated with the adoption of HVAC for transmission reduction and understand the potential of liquid desiccant technology. Factors affecting the inactivation of pathogens by liquid desiccant solutions and possible modifications to increase their heat and mass transfer and sanitising characteristics are also described, followed by an economic evaluation. It is concluded that the liquid desiccant technology could be beneficial in buildings (requiring humidity control or moisture removal in particular when viruses are likely to present) or in high-footfall enclosed spaces (during virus outbreaks).
Collapse
Key Words
- ASHRAE, American Society of Heating, Refrigerating and Air-Conditioning Engineers
- Airborne viral transmission
- CIBSE, Chartered Institution of Building Services Engineers
- COP, Coefficient of performance
- COVID-19
- COVID-19, Coronavirus disease 19
- CaCl2, Calcium chloride
- Economic analysis
- HCO2K, Potassium formate
- HEPA, High-efficiency particulate air filter
- HVAC energy consumption
- HVAC, Heating, ventilation and air-conditioning
- Humidity control
- IAQ, Indoor air quality
- IBV, Infectious bronchitis virus
- IL, Ionic liquid
- LiBr, Lithium bromide
- LiCl, Lithium chloride
- Liquid desiccant
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MERV, Minimum efficiency reporting value
- PRRSV, Porcine reproductive and respiratory syndrome virus
- REHVA, Federation of European Heating, Ventilation and Air Conditioning Associations
- SARS-CoV-1, Severe acute respiratory syndrome coronavirus 1
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- TEG, Triethylene glycol
- TGEV, Transmissible gastroenteritis virus
- UVA, Long-wave ultraviolet light
- UVB, Middle-wave ultraviolet light
- UVC, Short-wave ultraviolet light
- UVGI, Ultraviolet germicidal irradiation
- WHO, World Health Organization
Collapse
Affiliation(s)
- A Giampieri
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Z Ma
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - J Ling-Chin
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - A P Roskilly
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - A J Smallbone
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
34
|
Sheikhnejad Y, Aghamolaei R, Fallahpour M, Motamedi H, Moshfeghi M, Mirzaei PA, Bordbar H. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. SUSTAINABLE CITIES AND SOCIETY 2022; 79:103704. [PMID: 35070645 PMCID: PMC8767784 DOI: 10.1016/j.scs.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 05/03/2023]
Abstract
Pathogen droplets released from respiratory events are the primary means of dispersion and transmission of the recent pandemic of COVID-19. Computational fluid dynamics (CFD) has been widely employed as a fast, reliable, and inexpensive technique to support decision-making and to envisage mitigatory protocols. Nonetheless, the airborne pathogen droplet CFD modeling encounters limitations due to the oversimplification of involved physics and the intensive computational demand. Moreover, uncertainties in the collected clinical data required to simulate airborne and aerosol transport such as droplets' initial velocities, tempo-spatial profiles, release angle, and size distributions are broadly reported in the literature. There is a noticeable inconsistency around these collected data amongst many reported studies. This study aims to review the capabilities and limitations associated with CFD modeling. Setting the CFD models needs experimental data of respiratory flows such as velocity, particle size, and number distribution. Therefore, this paper briefly reviews the experimental techniques used to measure the characteristics of airborne pathogen droplet transmissions together with their limitations and reported uncertainties. The relevant clinical data related to pathogen transmission needed for postprocessing of CFD data and translating them to safety measures are also reviewed. Eventually, the uncertainty and inconsistency of the existing clinical data available for airborne pathogen CFD analysis are scurtinized to pave a pathway toward future studies ensuing these identified gaps and limitations.
Collapse
Affiliation(s)
- Yahya Sheikhnejad
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, Universidade de Aveiro, Aveiro 3810-193, Portugal
- PICadvanced SA, Creative Science Park, Via do Conhecimento, Ed. Central, Ílhavo 3830-352, Portugal
| | - Reihaneh Aghamolaei
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering and Computing, Dublin City University, Dublin 9, Whitehall, Ireland
| | - Marzieh Fallahpour
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering and Computing, Dublin City University, Dublin 9, Whitehall, Ireland
| | - Hamid Motamedi
- Department of Mechanical Engineering, Tarbiat Modares University, Iran
| | - Mohammad Moshfeghi
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Parham A Mirzaei
- Architecture & Built Environment Department, University of Nottingham, University Park, Nottingham, UK
| | - Hadi Bordbar
- School of Engineering, Aalto University, Finland
| |
Collapse
|
35
|
Baig TA, Zhang M, Smith BL, King MD. Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow. Viruses 2022; 14:616. [PMID: 35337023 PMCID: PMC8950092 DOI: 10.3390/v14030616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
To understand how SARS-CoV-2 spreads indoors, in this study bovine coronavirus was aerosolized as simulant into a plexiglass chamber with coupons of metal, wood and plastic surfaces. After aerosolization, chamber and coupon surfaces were swiped to quantify the virus concentrations using quantitative polymerase chain reaction (qPCR). Bio-layer interferometry showed stronger virus association on plastic and metal surfaces, however, higher dissociation from wood in 80% relative humidity. Virus aerosols were collected with the 100 L/min wetted wall cyclone and the 50 L/min MD8 air sampler and quantitated by qPCR. To monitor the effect of the ventilation on the virus movement, PRD1 bacteriophages as virus simulants were disseminated in a ¾ scale air-conditioned hospital test room with twelve PM2.5 samplers at 15 L/min. Higher virus concentrations were detected above the patient's head and near the foot of the bed with the air inlet on the ceiling above, exhaust bottom left on the wall. Based on room layout, air measurements and bioaerosol collections computational flow models were created to visualize the movement of the virus in the room airflow. The addition of air curtain at the door minimized virus concentration while having the inlet and exhaust on the ceiling decreased overall aerosol concentration. Controlled laboratory experiments were conducted in a plexiglass chamber to gain more insight into the fundamental behavior of aerosolized SARS-CoV-2 and understand its fate and transport in the ambient environment of the hospital room.
Collapse
Affiliation(s)
| | | | | | - Maria D. King
- Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA; (T.A.B.); (M.Z.); (B.L.S.)
| |
Collapse
|
36
|
Cheng P, Luo K, Xiao S, Yang H, Hang J, Ou C, Cowling BJ, Yen HL, Hui DS, Hu S, Li Y. Predominant airborne transmission and insignificant fomite transmission of SARS-CoV-2 in a two-bus COVID-19 outbreak originating from the same pre-symptomatic index case. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128051. [PMID: 34910996 PMCID: PMC8656245 DOI: 10.1016/j.jhazmat.2021.128051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 05/22/2023]
Abstract
The number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to increase worldwide, but despite extensive research, there remains significant uncertainty about the predominant routes of SARS-CoV-2 transmission. We conducted a mechanistic modeling and calculated the exposure dose and infection risk of each passenger in a two-bus COVID-19 outbreak in Hunan province, China. This outbreak originated from a single pre-symptomatic index case. Some human behavioral data related to exposure including boarding and alighting time of some passengers and seating position and mask wearing of all passengers were obtained from the available closed-circuit television images/clips and/or questionnaire survey. Least-squares fitting was performed to explore the effect of effective viral load on transmission risk, and the most likely quanta generation rate was also estimated. This study reveals the leading role of airborne SARS-CoV-2 transmission and negligible role of fomite transmission in a poorly ventilated indoor environment, highlighting the need for more targeted interventions in such environments. The quanta generation rate of the index case differed by a factor of 1.8 on the two buses and transmission occurred in the afternoon of the same day, indicating a time-varying effective viral load within a short period of five hours.
Collapse
Affiliation(s)
- Pan Cheng
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Shenglan Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Cuiyun Ou
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Hui-Ling Yen
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - David Sc Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; School of Public Health, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Wicaksana AL, Kusumawati ND, Wibowo EP, Nirwati H. Development of a COVID-19 University-Based Clinic in Indonesia: A Pilot Project of The Gadjah Mada Electronic Nose Center. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The clinic development of COVID-19 screening is essential during the pandemic.
AIM: This study aimed to explore and elaborate the development process of the Gadjah Mada Electronic Nose (GeNose) Center as a pilot project for a COVID-19 university-based clinic in Indonesia.
METHODS: A narrative and explorative study was conducted. Under the university platform, we initiated the GeNose center through training, simulation, and debriefing. Identification of team member recruitment, location, and apparatus development were described using the retrospective approach.
RESULTS: Fifty-one team members were recruited, including person in charge, verifiers, administrative staffs, hotline team, security staffs, and janitors. Standard operating procedures, service system, and safety measures were developed to maintain the quality. Services include the application of COVID-19 protocols, registration and confirmation, education for using the air bag, collecting the air sample, and analysis of samples using the GeNose machine.
CONCLUSION: The GeNose center, a model for screening test, provides services for the screening of COVID-19.
Collapse
|
38
|
Fierce L, Robey AJ, Hamilton C. High efficacy of layered controls for reducing exposure to airborne pathogens. INDOOR AIR 2022; 32:e12989. [PMID: 35225391 DOI: 10.1111/ina.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/19/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
To optimize strategies for curbing the transmission of airborne pathogens, the efficacy of three key controls-face masks, ventilation, and physical distancing-must be well understood. In this study, we used the Quadrature-based model of Respiratory Aerosol and Droplets to quantify the reduction in exposure to airborne pathogens from various combinations of controls. For each combination of controls, we simulated thousands of scenarios that represent the tremendous variability in factors governing airborne transmission and the efficacy of mitigation strategies. While the efficacy of any individual control was highly variable among scenarios, combining universal mask-wearing with distancing of 1 m or more reduced the median exposure by more than 99% relative to a close, unmasked conversation, with further reductions if ventilation is also enhanced. The large reductions in exposure to airborne pathogens translated to large reductions in the risk of initial infection in a new host. These findings suggest that layering controls is highly effective for reducing transmission of airborne pathogens and will be critical for curbing outbreaks of novel viruses in the future.
Collapse
Affiliation(s)
- Laura Fierce
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Alison J Robey
- Center for Environmental Studies, Williams College, Williamstown, Massachusetts, USA
| | - Cathrine Hamilton
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| |
Collapse
|
39
|
Dao HT, Kim KS. Behavior of cough droplets emitted from Covid-19 patient in hospital isolation room with different ventilation configurations. BUILDING AND ENVIRONMENT 2022; 209:108649. [PMID: 34898818 PMCID: PMC8651486 DOI: 10.1016/j.buildenv.2021.108649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 05/09/2023]
Abstract
The world is now facing the Covid-19 pandemic and the control of Covid-19 spread in health care facilities is a serious concern. The ventilation system in hospital isolation rooms with infectious patients plays a significant role in minimizing the spread of viruses and the risk of infection in hospital. In this study, computational fluid dynamics (CFD) simulation is applied to investigate the important factors on transport and evaporation of multi-component cough droplets in the isolation room with different ventilation configurations. We analyzed the effects of various air outlet positions on the removal efficiency of infectious droplets in isolation room and proposed the optimum location of exhaust vent in hospital isolation room to maximize the droplet removal efficiencies. We found that the evaporation rate of droplets is strongly dependent on the relative humidity (RH) and, at low RH, the large-sized droplets with Covid-19 virus can evaporate quickly and become small-sized aerosols to stay in air for a long time and the Covid-19 can propagate more easily through the respiratory organs during breathing. It also explains why the Covid-19 can propagate faster in winter with low humidity than in summer with high humidity.
Collapse
Affiliation(s)
- Huyen Thi Dao
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon-do, 200-701, South Korea
| | - Kyo-Seon Kim
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon-do, 200-701, South Korea
| |
Collapse
|
40
|
Zhang Z, Li X, Wang Q, Zhao X, Xu J, Jiang Q, Jiang S, Lyu J, Liu S, Ye L, Yuan J, Feng W, Xie J, Chen Q, Zou H, Xu D. Simulation Studies Provide Evidence of Aerosol Transmission of SARS-CoV-2 in a Multi-Story Building via Air Supply, Exhaust and Sanitary Pipelines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031532. [PMID: 35162557 PMCID: PMC8835679 DOI: 10.3390/ijerph19031532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
A cross-layer non-vertical transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in a quarantine hotel in Guangzhou, Guangdong Province, China in June 2021. To explore the cross-layer transmission path and influencing factors of viral aerosol, we set up different scenarios to carry out simulation experiments. The results showed that the air in the polluted room can enter the corridor by opening the door to take food and move out the garbage, then mix with the fresh air taken from the outside as part of the air supply of the central air conditioning system and re-enter into different rooms on the same floor leading to the same-layer transmission. In addition, flushing the toilet after defecation and urination will produce viral aerosol that pollutes rooms on different floors through the exhaust system and the vertical drainage pipe in the bathroom, resulting in cross-layer vertical transmission, also aggravating the transmission in different rooms on the same floor after mixing with the air of the room and entering the corridor to become part of the air supply, and meanwhile, continuing to increase the cross-layer transmission through the vertical drainage pipe. Therefore, the air conditioning and ventilation system of the quarantine hotel should be operated in full fresh air mode and close the return air; the exhaust volume of the bathroom should be greater than the fresh air volume. The exhaust pipe of the bathroom should be independently set and cannot be interconnected or connected in series. The riser of the sewage and drainage pipeline of the bathroom should maintain vertical to exhaust independently and cannot be arbitrarily changed to horizontal pipe assembly.
Collapse
Affiliation(s)
- Zhuona Zhang
- National Institute of Environmental Health, China Center for Disease Control and Prevention, Beijing 100021, China; (Z.Z.); (X.L.); (Q.W.)
| | - Xia Li
- National Institute of Environmental Health, China Center for Disease Control and Prevention, Beijing 100021, China; (Z.Z.); (X.L.); (Q.W.)
| | - Qin Wang
- National Institute of Environmental Health, China Center for Disease Control and Prevention, Beijing 100021, China; (Z.Z.); (X.L.); (Q.W.)
| | - Xiaoning Zhao
- Section of Ecological Environment & Energy Resources, Beijing Institute of Metrology, Beijing 100012, China;
| | - Jin Xu
- China National Center for Food Safety Risk Assessment, Beijing 100021, China;
| | - Qinqin Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; (Q.J.); (S.J.); (J.L.); (S.L.); (J.Y.); (W.F.)
| | - Sili Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; (Q.J.); (S.J.); (J.L.); (S.L.); (J.Y.); (W.F.)
| | - Jiayun Lyu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; (Q.J.); (S.J.); (J.L.); (S.L.); (J.Y.); (W.F.)
| | - Shiqiang Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; (Q.J.); (S.J.); (J.L.); (S.L.); (J.Y.); (W.F.)
| | - Ling Ye
- Guangdong Field Epidemiology Training Program, Guangzhou 511430, China; (L.Y.); (J.X.); (Q.C.); (H.Z.)
- Heyuan Municipal Center for Disease Control and Prevention, Heyuan 517000, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; (Q.J.); (S.J.); (J.L.); (S.L.); (J.Y.); (W.F.)
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; (Q.J.); (S.J.); (J.L.); (S.L.); (J.Y.); (W.F.)
| | - Jiamin Xie
- Guangdong Field Epidemiology Training Program, Guangzhou 511430, China; (L.Y.); (J.X.); (Q.C.); (H.Z.)
- Shunde District Center for Disease Control and Prevention, Foshan 528300, China
| | - Qiuling Chen
- Guangdong Field Epidemiology Training Program, Guangzhou 511430, China; (L.Y.); (J.X.); (Q.C.); (H.Z.)
- Yunfu Municipal Center for Disease Control and Prevention, Yunfu 527300, China
| | - Haoming Zou
- Guangdong Field Epidemiology Training Program, Guangzhou 511430, China; (L.Y.); (J.X.); (Q.C.); (H.Z.)
- Zhanjiang Municipal Center for Disease Control and Prevention, Zhanjiang 524037, China
| | - Dongqun Xu
- National Institute of Environmental Health, China Center for Disease Control and Prevention, Beijing 100021, China; (Z.Z.); (X.L.); (Q.W.)
- Correspondence:
| |
Collapse
|
41
|
Bueno de Mesquita PJ, Delp WW, Chan WR, Bahnfleth WP, Singer BC. Control of airborne infectious disease in buildings: Evidence and research priorities. INDOOR AIR 2022; 32:e12965. [PMID: 34816493 DOI: 10.1111/ina.12965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The evolution of SARS-CoV-2 virus has resulted in variants likely to be more readily transmitted through respiratory aerosols, underscoring the increased potential for indoor environmental controls to mitigate risk. Use of tight-fitting face masks to trap infectious aerosol in exhaled breath and reduce inhalation exposure to contaminated air is of critical importance for disease control. Administrative controls including the regulation of occupancy and interpersonal spacing are also important, while presenting social and economic challenges. Indoor engineering controls including ventilation, exhaust, air flow control, filtration, and disinfection by germicidal ultraviolet irradiation can reduce reliance on stringent occupancy restrictions. However, the effects of controls-individually and in combination-on reducing infectious aerosol transfer indoors remain to be clearly characterized to the extent needed to support widespread implementation by building operators. We review aerobiologic and epidemiologic evidence of indoor environmental controls against transmission and present a quantitative aerosol transfer scenario illustrating relative differences in exposure at close-interactive, room, and building scales. We identify an overarching need for investment to implement building controls and evaluate their effectiveness on infection in well-characterized and real-world settings, supported by specific, methodological advances. Improved understanding of engineering control effectiveness guides implementation at scale while considering occupant comfort, operational challenges, and energy costs.
Collapse
Affiliation(s)
| | - William W Delp
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Wanyu R Chan
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - William P Bahnfleth
- Department of Architectural Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Brett C Singer
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
42
|
Singer BC, Zhao H, Preble CV, Delp WW, Pantelic J, Sohn MD, Kirchstetter TW. Measured influence of overhead HVAC on exposure to airborne contaminants from simulated speaking in a meeting and a classroom. INDOOR AIR 2022; 32:e12917. [PMID: 34477251 DOI: 10.1111/ina.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Tracer gas experiments were conducted in a 158 m3 room with overhead supply diffusers to study dispersion of contaminants from simulated speaking in physically distanced meeting and classroom configurations. The room was contained within a 237 m3 cell with open plenum return to the HVAC system. Heated manikins at desks and a researcher operating the tracer release apparatus presented 8-9 thermal plumes. Experiments were conducted under conditions of no forced air and neutral, cooled, or heated air supplied at 980-1100 cmh, and with/out 20% outdoor air. CO2 was released at the head of one manikin in each experiment to simulate small (<5 µm diameter) respiratory aerosols. The metric of exposure relative to perfectly mixed (ERM) is introduced to quantify impacts, based on measurements at manikin heads and at three heights in the center and corners of the room. Chilled or neutral supply air provided good mixing with ERMs close to one. Thermal stratification during heating produced higher ERMs at most manikins: 25% were ≥2.5 and the highest were >5× perfectly mixed conditions. Operation of two within-zone air cleaners together moving ≥400 cmh vertically in the room provided enough mixing to mitigate elevated exposure variations.
Collapse
Affiliation(s)
- Brett C Singer
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Haoran Zhao
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Chelsea V Preble
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Civil & Environmental Engineering, University of California, Berkeley, California, USA
| | - William W Delp
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jovan Pantelic
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for the Built Environment, University of California, Berkeley, California, USA
| | - Michael D Sohn
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas W Kirchstetter
- Indoor Environment Group, Energy Analysis and Environmental Impacts Division, Building Technologies and Urban Systems Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Civil & Environmental Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
43
|
Coyle JP, Derk RC, Lindsley WG, Blachere FM, Boots T, Lemons AR, Martin SB, Mead KR, Fotta SA, Reynolds JS, McKinney WG, Sinsel EW, Beezhold DH, Noti JD. Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room. Viruses 2021; 13:2536. [PMID: 34960804 PMCID: PMC8707272 DOI: 10.3390/v13122536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.
Collapse
Affiliation(s)
- Jayme P. Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Raymond C. Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - William G. Lindsley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Francoise M. Blachere
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Stephen B. Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Kenneth R. Mead
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA;
| | - Steven A. Fotta
- Facilities Management Office, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Jeffrey S. Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Walter G. McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Erik W. Sinsel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Donald H. Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - John D. Noti
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| |
Collapse
|
44
|
Horve PF, Dietz LG, Fretz M, Constant DA, Wilkes A, Townes JM, Martindale RG, Messer WB, Van Den Wymelenberg KG. Identification of SARS-CoV-2 RNA in healthcare heating, ventilation, and air conditioning units. INDOOR AIR 2021; 31:1826-1832. [PMID: 34189769 DOI: 10.1101/2020.06.26.20141085v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
Evidence continues to grow supporting the aerosol transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the potential role of heating, ventilation, and air conditioning (HVAC) systems in airborne viral transmission, this study sought to determine the viral presence, if any, on air handling units in a healthcare setting where coronavirus disease 2019 (COVID-19) patients were being treated. The presence of SARS-CoV-2 RNA was detected in approximately 25% of samples taken from ten different locations in multiple air handlers. While samples were not evaluated for viral infectivity, the presence of viral RNA in air handlers raises the possibility that viral particles can enter and travel within the air handling system of a hospital, from room return air through high-efficiency MERV-15 filters and into supply air ducts. Although no known transmission events were determined to be associated with these specimens, the findings suggest the potential for HVAC systems to facilitate transfer of virions to locations remote from areas where infected persons reside. These results are important within and outside of healthcare settings and may present necessary guidance for building operators of facilities that are not equipped with high-efficiency filtration. Furthermore, the identification of SARS-CoV-2 in HVAC components indicates the potential utility as an indoor environmental surveillance location.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
| | - Leslie G Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
| | - Mark Fretz
- Institute for Health in the Built Environment, University of Oregon, Portland, OR, USA
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Andrew Wilkes
- Healthcare Facilities, Oregon Health and Science University, Portland, OR, USA
| | - John M Townes
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Robert G Martindale
- Division of Gastrointestinal and General Surgery, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Kevin G Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
- Institute for Health in the Built Environment, University of Oregon, Portland, OR, USA
| |
Collapse
|
45
|
Horve PF, Dietz LG, Fretz M, Constant DA, Wilkes A, Townes JM, Martindale RG, Messer WB, Van Den Wymelenberg KG. Identification of SARS-CoV-2 RNA in healthcare heating, ventilation, and air conditioning units. INDOOR AIR 2021; 31:1826-1832. [PMID: 34189769 PMCID: PMC8447041 DOI: 10.1111/ina.12898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 05/04/2023]
Abstract
Evidence continues to grow supporting the aerosol transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the potential role of heating, ventilation, and air conditioning (HVAC) systems in airborne viral transmission, this study sought to determine the viral presence, if any, on air handling units in a healthcare setting where coronavirus disease 2019 (COVID-19) patients were being treated. The presence of SARS-CoV-2 RNA was detected in approximately 25% of samples taken from ten different locations in multiple air handlers. While samples were not evaluated for viral infectivity, the presence of viral RNA in air handlers raises the possibility that viral particles can enter and travel within the air handling system of a hospital, from room return air through high-efficiency MERV-15 filters and into supply air ducts. Although no known transmission events were determined to be associated with these specimens, the findings suggest the potential for HVAC systems to facilitate transfer of virions to locations remote from areas where infected persons reside. These results are important within and outside of healthcare settings and may present necessary guidance for building operators of facilities that are not equipped with high-efficiency filtration. Furthermore, the identification of SARS-CoV-2 in HVAC components indicates the potential utility as an indoor environmental surveillance location.
Collapse
Affiliation(s)
- Patrick F. Horve
- Biology and the Built Environment CenterUniversity of OregonEugeneORUSA
| | - Leslie G. Dietz
- Biology and the Built Environment CenterUniversity of OregonEugeneORUSA
| | - Mark Fretz
- Institute for Health in the Built EnvironmentUniversity of OregonPortlandORUSA
| | - David A. Constant
- Department of Molecular Microbiology and ImmunologyOregon Health and Science UniversityPortlandORUSA
| | - Andrew Wilkes
- Healthcare FacilitiesOregon Health and Science UniversityPortlandORUSA
| | - John M. Townes
- Division of Infectious DiseasesDepartment of MedicineSchool of MedicineOregon Health and Science UniversityPortlandORUSA
| | - Robert G. Martindale
- Division of Gastrointestinal and General SurgerySchool of MedicineOregon Health and Science UniversityPortlandORUSA
| | - William B. Messer
- Department of Molecular Microbiology and ImmunologyOregon Health and Science UniversityPortlandORUSA
| | - Kevin G. Van Den Wymelenberg
- Biology and the Built Environment CenterUniversity of OregonEugeneORUSA
- Institute for Health in the Built EnvironmentUniversity of OregonPortlandORUSA
| |
Collapse
|
46
|
Vicerra PMM. Disparity between knowledge and practice regarding COVID-19 in Thailand: A cross-sectional study of older adults. PLoS One 2021; 16:e0259154. [PMID: 34699555 PMCID: PMC8547694 DOI: 10.1371/journal.pone.0259154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
The efficacy of the public health measures to mitigate COVID-19 is influenced by health literacy which includes the level of knowledge about the disease and the preventive behaviours adopted by individuals. Thailand, being a low- and middle-income country with an ageing society, has to consider both the challenges that its health system has in disseminating information and the disparities in health literacy among its older population. This study investigated the knowledge and behaviour of older adults in Thailand regarding COVID-19 using the Impact of COVID-19 on Older Persons in Thailand, a cross-sectional survey. The data was primarily collected online and included 1,230 adults aged at least 60 years from nine provinces of the five regions of the country. The associated factors with the health literacy outcomes were tested using bivariate logistic regression analyses. It was observed that 43% of the older adults in the sample had proper knowledge of the disease and 33% adopted preventive behaviours. Knowledge about the disease was not associated with preventive behaviour. The associated factors common between the increased levels of knowledge and adoption of behaviours were rural area residence and higher educational attainment levels. Obtaining information from the internet was observed to increase knowledge while having the television and radio as sources of information had negative relationship. Many older adults continued to be employed during the lockdown period and this was associated with decreased adoption of preventive behaviour. The context of vulnerable populations, particularly older adults, is different with regard to their access to information and concern about income. Health information has to be tailored for targeted populations. Their needs also have to be addressed as they have increased risks because of financial and health susceptibilities.
Collapse
|
47
|
Cortiços ND, Duarte CC. COVID-19: The impact in US high-rise office buildings energy efficiency. ENERGY AND BUILDINGS 2021; 249:111180. [PMID: 34149152 PMCID: PMC8205289 DOI: 10.1016/j.enbuild.2021.111180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic, through stay-at-home orders, forced rapid changes to social human behavior and interrelations, targeting the work environments to protect workers and users. Rapidly, global organizations, US associations, and professionals stepped in to mitigate the virus's spread in buildings' living and work environments. The institutions proposed new HVAC settings without efficiency concerns, as improved flow rates and filtering for irradiation, humidity, and temperature. Current literature consensually predicted an increase in energy consumption due to new measures to control the SARS-CoV-2 spread. The research team assumed the effort of validating the prior published outcomes, applied to US standardized high-rise office buildings, as defined and set by the key entities in the field, by resorting to a methodology based on software energy analysis. The study compares a standard high-rise office building energy consumption, CO2 emissions and operations costs in nine US climate zones - from 0 to 8, south to north latitudes, respectively -, assessed in the most populated cities, between the previous and post COVID-19 scenarios. The outcomes clarify the gathered knowledge, explaining that climate zones above mixed-humid type tend to increase relative energy use intensity by 21.72%, but below that threshold the zones decrease relative energy use intensity by 11.92%.
Collapse
Affiliation(s)
- Nuno D Cortiços
- Building Science, Technology and Sustainability Lab, Research Centre for Architecture, Urbanism and Design, Lisbon School of Architecture, University of Lisbon, Rua Sá Nogueira, Pólo Universitário, Alto da Ajuda, 1349-063 Lisboa, Portugal
| | - Carlos C Duarte
- Building Science, Technology and Sustainability Lab, Research Centre for Architecture, Urbanism and Design, Lisbon School of Architecture, University of Lisbon, Rua Sá Nogueira, Pólo Universitário, Alto da Ajuda, 1349-063 Lisboa, Portugal
| |
Collapse
|
48
|
Bu Y, Ooka R, Kikumoto H, Oh W. Recent research on expiratory particles in respiratory viral infection and control strategies: A review. SUSTAINABLE CITIES AND SOCIETY 2021; 73:103106. [PMID: 34306994 PMCID: PMC8272400 DOI: 10.1016/j.scs.2021.103106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 05/15/2023]
Abstract
The global spread of coronavirus disease 2019 poses a significant threat to human health. In this study, recent research on the characteristics of expiratory particles and flow is reviewed, with a special focus on different respiratory activities, to provide guidance for reducing the viral infection risk in the built environment. Furthermore, environmental influence on particle evaporation, dispersion, and virus viability after exhalation and the current methods for infection risk assessment are reviewed. Finally, we summarize promising control strategies against infectious expiratory particles. The results show that airborne transmission is a significant viral transmission route, both in short and long ranges, from infected individuals. Relative humidity affects the evaporation and trajectories of middle-sized droplets most, and temperature accelerates the inactivation of SARS-CoV-2 both on surfaces and in aerosols. Future research is needed to improve infection risk models to better predict the infection potential of different transmission routes. Moreover, further quantitative studies on the expiratory flow features after wearing a mask are needed. Systematic investigations and the design of advanced air distribution methods, portable air cleaners, and ultraviolet germicidal irradiation systems, which have shown high efficacy in removing contaminants, are required to better control indoor viral infection.
Collapse
Affiliation(s)
- Yunchen Bu
- Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryozo Ooka
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hideki Kikumoto
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wonseok Oh
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
49
|
Saw LH, Leo BF, Nor NSM, Yip CW, Ibrahim N, Hamid HHA, Latif MT, Lin CY, Nadzir MSM. Modeling aerosol transmission of SARS-CoV-2 from human-exhaled particles in a hospital ward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53478-53492. [PMID: 34036501 PMCID: PMC8148403 DOI: 10.1007/s11356-021-14519-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 06/04/2023]
Abstract
The COVID-19 pandemic has plunged the world into uncharted territory, leaving people feeling helpless in the face of an invisible threat of unknown duration that could adversely impact the national economic growths. According to the World Health Organization (WHO), the SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the mouth or nose when an infected person coughs or sneezes. However, the transmission of the SARS-CoV-2 through aerosols remains unclear. In this study, computational fluid dynamic (CFD) is used to complement the investigation of the SARS-CoV-2 transmission through aerosol. The Lagrangian particle tracking method was used to analyze the dispersion of the exhaled particles from a SARS-CoV-2-positive patient under different exhale activities and different flow rates of chilled (cooling) air supply. Air sampling of the SARS-CoV-2 patient ward was conducted for 48-h measurement intervals to collect the indoor air sample for particulate with diameter less than 2.5 μm. Then, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted to analyze the collected air sample. The simulation demonstrated that the aerosol transmission of the SARS-CoV-2 virus in an enclosed room (such as a hospital ward) is highly possible.
Collapse
Affiliation(s)
- Lip Huat Saw
- Lee Kong Chian, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Bey Fen Leo
- Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Norefrina Shafinaz Md Nor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chee Wai Yip
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Chin Yik Lin
- Department of Geology, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
50
|
Deng X, Gong G, He X, Shi X, Mo L. Control of exhaled SARS-CoV-2-laden aerosols in the interpersonal breathing microenvironment in a ventilated room with limited space air stability. J Environ Sci (China) 2021; 108:175-187. [PMID: 34465431 PMCID: PMC7835081 DOI: 10.1016/j.jes.2021.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 05/31/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) highlights the importance of understanding and controlling the spread of the coronavirus between persons. We experimentally and numerically investigated an advanced engineering and environmental method on controlling the transmission of airborne SARS-CoV-2-laden aerosols in the breathing microenvironment between two persons during interactive breathing process by combining the limited space air stability and a ventilation method. Experiments were carried out in a full-scale ventilated room with different limited space air stability conditions, i.e., stable condition, neutral condition and unstable condition. Two real humans were involved to conducted normal breathing process in the room and the exhaled carbon dioxide was used as the surrogate of infectious airborne SARS-CoV-2-laden aerosols from respiratory activities. A correspondent numerical model was established to visualize the temperature field and contaminated field in the test room. Results show that the performance of a ventilation system on removing infectious airborne SARS-CoV-2-laden aerosols from the interpersonal breathing microenvironment is dependent on the limited space air stability conditions. Appropriate ventilation method should be implemented based on an evaluation of the air condition. It is recommended that total volume ventilation methods are suitable for unstable and neutral conditions and local ventilation methods are preferable for stable conditions. This study provides an insight into the transmission of airborne SARS-CoV-2-laden aerosols between persons in ventilated rooms with different limited space air stability conditions. Useful guidance has been provided to cope with COVID-19 in limited spaces.
Collapse
Affiliation(s)
- Xiaorui Deng
- College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangcai Gong
- College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Xizhi He
- College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xing Shi
- College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lan Mo
- Yiyang Engineering Co., Ltd., Yiyang 413000, China
| |
Collapse
|