1
|
Chrissian AA, Abbas H, Chaddha U, Debiane LG, DeBiasi E, Filsoof D, Hashmi MD, Morton C, Naselsky WC, Pannu J, Ronaghi R, Salguero BD, Salmon C, Stewart SJ, Channick CL. American Association of Bronchology and Interventional Pulmonology Essential Knowledge in Interventional Pulmonology Series: Selected Topics in Malignant Pleural Disease. J Bronchology Interv Pulmonol 2025; 32:e0999. [PMID: 39704161 DOI: 10.1097/lbr.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
The goal of the American Association of Bronchology and Interventional Pulmonology Essential Knowledge in Interventional Pulmonology Series is to provide clinicians with concise, up-to-date reviews of important topics in the field of interventional pulmonology. This 3-year alternating rotation of primary topics will start with a focus on selected topics in malignant pleural disease. In this article, we update the reader on malignant pleural effusion in 3 parts: part 1-diagnosis, focusing on imaging and fluid biomarkers; part 2-management, with review of multimodal approaches, cost considerations, and evolving targeted therapies; and part 3-pleural mesothelioma. These reviews complement the Essential Knowledge in Interventional Pulmonology Lecture Series presented at the 2023 AABIP Annual Conference, available for viewing on the AABIP website (https://aabip.memberclicks.net/essential-knowledge-in-interventional-pulmonology-series).
Collapse
Affiliation(s)
- Ara A Chrissian
- Division of Pulmonary, Critical Care, Hyperbaric, and Sleep Medicine, Loma Linda University Health, Loma Linda, CA
| | - Hatoon Abbas
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Udit Chaddha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai Beth Israel Morningside and West Hospitals, New York, NY
| | - Labib G Debiane
- Division of Pulmonary and Critical Care Medicine, Henry Ford Health, Detroit, MI
| | - Erin DeBiasi
- Department of Internal Medicine Section of Pulmonary Critical Care and Sleep Medicine, Yale University, New Haven, CT
| | - Darius Filsoof
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, AZ
| | | | - Christopher Morton
- Department of Internal Medicine Section of Pulmonary Critical Care and Sleep Medicine, Yale University, New Haven, CT
| | - Warren C Naselsky
- Division of Cardiothoracic Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Jasleen Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine Ohio State University Wexner Medical Center, Columbus, OH
| | - Reza Ronaghi
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Bertin D Salguero
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai Beth Israel Morningside and West Hospitals, New York, NY
| | - Cristina Salmon
- Department of Medicine, Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Shelby J Stewart
- Division of Thoracic Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Colleen L Channick
- Division of Pulmonary, Critical Care, Sleep Medicine, Clinical Immunology and Allergy, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
2
|
Yi FS, Qiao X, Dong SF, Chen QY, Wei RQ, Shao MM, Shi HZ. Complement C1q is a key player in tumor-associated macrophage-mediated CD8 + T cell and NK cell dysfunction in malignant pleural effusion. Int J Biol Sci 2024; 20:5979-5998. [PMID: 39664577 PMCID: PMC11628339 DOI: 10.7150/ijbs.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Macrophages play a crucial role in malignant pleural effusion (MPE), a frequent complication of advanced cancer. While C1q+ macrophages have been identified as a pro-tumoral cluster, direct evidence supporting the role of C1q-mediated macrophages remains to be elucidated. This study employed global and macrophage-specific knockout mice to investigate the role of C1q in MPE. The data demonstrated that C1q deficiency in macrophages suppressed MPE and prolonged mouse survival. scRNA-seq analysis of the C1qa-/- mouse MPE model revealed that C1q deficiency significantly decreased the proportion of M2 macrophages in MPE. In vitro experiments suggested that C1q expression was gradually upregulated during M2 polarization, which was C1q-dependent, as was antigen presentation. Deficiency of C1q in macrophages rescued the exhausted status of CD8+ T cells and enhanced the immune activity of CD8+ T cells and NK cells in both MPE and pleural tumors. Cell-to-cell interaction analysis demonstrated that C1q deficiency attenuated the immunoinhibitory effects of macrophages on NK cells by downregulating the CCR2-CCL2 signaling axis. Metabolomic analysis revealed significantly elevated hippuric acid levels in C1q-deficient mouse MPE. Treatment with either hippuric acid or a CCR2 antagonist inhibited MPE and tumor growth, with an even more pronounced effect observed when both treatments were combined.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Qiao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Qing-Yu Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Rui-Qi Wei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
3
|
Sampaio-Ribeiro G, Ruivo A, Silva A, Santos AL, Oliveira RC, Gama J, Cipriano MA, Tralhão JG, Paiva A. Innate Immune Cells in the Tumor Microenvironment of Liver Metastasis from Colorectal Cancer: Contribution to a Comprehensive Therapy. Cancers (Basel) 2023; 15:3222. [PMID: 37370832 DOI: 10.3390/cancers15123222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent type of cancer, and liver metastasis is the most common site of metastatic development. In the tumor microenvironment (TME), various innate immune cells are known to influence cancer progression and metastasis occurrence. CD274 (PD-L1) and CD206 (MRC1) are proteins that have been associated with poor prognosis and disease progression. We conducted a study on tumoral and non-tumoral biopsies from 47 patients with CRC liver metastasis, using flow cytometry to phenotypically characterize innate immune cells. Our findings showed an increase in the expression of CD274 on classical, intermediate, and non-classical monocytes when comparing tumor with non-tumor samples. Furthermore, tumor samples with a desmoplastic growth pattern exhibited a significantly decreased percentage of CD274- and CD206-positive cells in all monocyte populations compared to non-desmoplastic samples. We found a correlation between a lower expression of CD206 or CD274 on classical, intermediate, and non-classical monocytes and increased disease-free survival, which points to a better prognosis for these patients. In conclusion, our study has identified potential new targets and biomarkers that could be incorporated into a personalized medicine approach to enhance the outcome for colorectal cancer patients.
Collapse
Affiliation(s)
- Gabriela Sampaio-Ribeiro
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ruivo
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Ana Lúcia Santos
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, 3000-377 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Augusta Cipriano
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Center of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra EPE, 3000-075 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|
4
|
Shao MM, Pei XB, Chen QY, Wang F, Wang Z, Zhai K. Macrophage-derived exosome promotes regulatory T cell differentiation in malignant pleural effusion. Front Immunol 2023; 14:1161375. [PMID: 37143656 PMCID: PMC10151820 DOI: 10.3389/fimmu.2023.1161375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Tumor-associated macrophages are one of the key components of the tumor microenvironment. The immunomodulatory activity and function of macrophages in malignant pleural effusion (MPE), a special tumor metastasis microenvironment, have not been clearly defined. Methods MPE-based single-cell RNA sequencing data was used to characterize macrophages. Subsequently, the regulatory effect of macrophages and their secreted exosomes on T cells was verified by experiments. Next, miRNA microarray was used to analyze differentially expressed miRNAs in MPE and benign pleural effusion, and data from The Cancer Genome Atlas (TCGA) was used to evaluate the correlation between miRNAs and patient survival. Results Single-cell RNA sequencing data showed macrophages were mainly M2 polarized in MPE and had higher exosome secretion function compared with those in blood. We found that exosomes released from macrophages could promote the differentiation of naïve T cells into Treg cells in MPE. We detected differential expression miRNAs in macrophage-derived exosomes between MPE and benign pleural effusion by miRNA microarray and found that miR-4443 was significantly overexpressed in MPE exosomes. Gene functional enrichment analysis showed that the target genes of miR-4443 were involved in the regulation of protein kinase B signaling and lipid biosynthetic process. Conclusions Taken together, these results reveal that exosomes mediate the intercellular communication between macrophages and T cells, yielding an immunosuppressive environment for MPE. miR-4443 expressed by macrophages, but not total miR-4443, might serve as a prognostic marker in patients with metastatic lung cancer.
Collapse
|
5
|
Schukfeh N, Liu B, DeLuca DS, Tumpara S, Nikolin C, Immenschuh S, Ure BM, Kuebler JF, Welte T, Viemann D, Janciauskiene SM, Vieten G. Pleural CD14 + monocytes/macrophages of healthy adolescents show a high expression of metallothionein family genes. Eur J Immunol 2023; 53:e2250019. [PMID: 36321537 DOI: 10.1002/eji.202250019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Nowadays laparoscopic interventions enable the collection of resident macrophage populations out of the human cavities. We employed this technique to isolate pleural monocytes/macrophages from healthy young adults who underwent a correction of pectus excavatum. High quality CD14+ monocytes/macrophages (plMo/Mφ) were used for RNA-sequencing (RNA-seq) in comparison with human monocyte-derived macrophages (MDM) natural (MDM-0) or IL-4-polarized (MDM-IL4). Transcriptome analysis revealed 7166 and 7076 differentially expressed genes (DEGs) in plMo/Mφ relative to natural MDM-0 and polarized MDM-IL4, respectively. The gene set enrichment analysis, which was used to compare RNA-seq data from plMo/Mφ with single-cell (scRNA-seq) data online from human bronchial lavage macrophages, showed that plMo/Mφs are characterized by a high expression of genes belonging to the metallothionein (MT) family, and that the expression of these genes is significantly higher in plMo/Mφ than in MDM-0 or MDM-IL4. Our results provide additional insights on high MTs-expressing macrophage subsets, which seem to be present not only in bronchial lavage of healthy adults or in pleural exudates of lung cancer patients but also in pleural fluid of healthy young adults. Macrophage subsets expressing high MTs may have specific roles in lung defense, repair, and homeostasis, and require further investigations.
Collapse
Affiliation(s)
- Nagoud Schukfeh
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Bin Liu
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Srinu Tumpara
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Benno M Ure
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim F Kuebler
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Sabina M Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Gertrud Vieten
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Zheng WQ, Hu ZD. Pleural fluid biochemical analysis: the past, present and future. Clin Chem Lab Med 2022; 61:921-934. [PMID: 36383033 DOI: 10.1515/cclm-2022-0844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Abstract
Identifying the cause of pleural effusion is challenging for pulmonologists. Imaging, biopsy, microbiology and biochemical analyses are routinely used for diagnosing pleural effusion. Among these diagnostic tools, biochemical analyses are promising because they have the advantages of low cost, minimal invasiveness, observer independence and short turn-around time. Here, we reviewed the past, present and future of pleural fluid biochemical analysis. We reviewed the history of Light’s criteria and its modifications and the current status of biomarkers for heart failure, malignant pleural effusion, tuberculosis pleural effusion and parapneumonic pleural effusion. In addition, we anticipate the future of pleural fluid biochemical analysis, including the utility of machine learning, molecular diagnosis and high-throughput technologies. Clinical Chemistry and Laboratory Medicine (CCLM) should address the topic of pleural fluid biochemical analysis in the future to promote specific knowledge in the laboratory professional community.
Collapse
Affiliation(s)
- Wen-Qi Zheng
- Department of Laboratory Medicine , The Affiliated Hospital of Inner Mongolia Medical University , Hohhot , P.R. China
| | - Zhi-De Hu
- Department of Laboratory Medicine , The Affiliated Hospital of Inner Mongolia Medical University , Hohhot , P.R. China
| |
Collapse
|
7
|
Zhao J, Liu B, Liu N, Zhang B, He X, Ma Q, Wang Y. The role of angiogenesis in malignant pleural effusion: from basic research to clinical application. Am J Cancer Res 2022; 12:4879-4891. [PMID: 36504886 PMCID: PMC9729901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural effusion (MPE) is associated with advanced stages of various malignant diseases, especially lung cancer, and is a poor prognostic indicator in these patients. However, the management of MPE remains palliative. A better understanding of the pathogenesis of MPE may lead to the development of new and more effective therapeutic options. Here, we shed light on recent advances in the mechanisms of MPE formation and provide an overview of current targeted therapies for the vascular endothelial growth factor pathway. We also retrospectively enrolled 19 patients with lung adenocarcinoma from the West China Hospital to analyze the efficacy of bevacizumab for MPE using different routes of administration.
Collapse
Affiliation(s)
- Jian Zhao
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of ChinaPeople’s South Road, Section 4, Number 55, Chengdu 610041, Sichuan, China
| | - Ning Liu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Benxia Zhang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Xia He
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Qizhi Ma
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Yongsheng Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China,Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| |
Collapse
|
8
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Li X, Feng J. Recruitment of IL-1β-producing intermediate monocytes enhanced by C5a contributes to the development of malignant pleural effusion. Thorac Cancer 2022; 13:811-823. [PMID: 35137541 PMCID: PMC8930456 DOI: 10.1111/1759-7714.14324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Monocytes are involved in tumor growth and metastasis, but the distribution of monocyte phenotypes and their role in the development of malignant pleural effusion (MPE) remains unknown. Methods A total of 94 MPE patients (76 diagnosed with adenocarcinoma lung cancer and 18 with squamous cell lung cancer) and 102 volunteers for health examination in Xiangya Hospital from December 2016 to December 2019 were included in the study. Results The distribution of monocyte subtypes identified by the expression of CD14 and CD16 were analyzed by flow cytometry. The proportion of CD14++CD16+ intermediate monocytes were significantly increased in pleural effusion of MPE patients. The complement system components were assayed by immunohistochemistry and ELISA, and higher expression of the classical and alternative pathways were detected in malignant pleural tissue. Transwell assay further revealed that C5a enhanced the infiltration of intermediate monocytes into the pleural cavity by promoting CCL2 production in pleural mesothelial cells (PMCs). In addition, C5a promoted the secretion of IL‐1β by intermediate monocytes. Furthermore, C5a activated in intermediate monocytes and IL‐1β released after C5a stimulation by monocytes promoted the proliferation, migration, adhesion, and epithelial‐to‐mesenchymal transition (EMT) of tumor cells, and attenuated tumor cell apoptosis. Conclusions C5a, activated by the classical and alternative pathways of the complement system, not only mediated the infiltration of intermediate monocytes by enhancing CCL2 production in PMCs but also induced IL‐1β release from the recruited monocytes in MPE. The consequence of C5a activation and the subsequent IL‐1β overexpression in intermediate monocytes contributed to MPE progression.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Huang ZY, Shao MM, Zhang JC, Yi FS, Du J, Zhou Q, Wu FY, Li S, Li W, Huang XZ, Zhai K, Shi HZ. Single-cell analysis of diverse immune phenotypes in malignant pleural effusion. Nat Commun 2021; 12:6690. [PMID: 34795282 PMCID: PMC8602344 DOI: 10.1038/s41467-021-27026-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
The complex interactions among different immune cells have important functions in the development of malignant pleural effusion (MPE). Here we perform single-cell RNA sequencing on 62,382 cells from MPE patients induced by non-small cell lung cancer to describe the composition, lineage, and functional states of infiltrating immune cells in MPE. Immune cells in MPE display a number of transcriptional signatures enriched for regulatory T cells, B cells, macrophages, and dendritic cells compared to corresponding counterparts in blood. Helper T, cytotoxic T, regulatory T, and T follicular helper cells express multiple immune checkpoints or costimulatory molecules. Cell-cell interaction analysis identifies regulatory B cells with more interactions with CD4+ T cells compared to CD8+ T cells. Macrophages are transcriptionally heterogeneous and conform to M2 polarization characteristics. In addition, immune cells in MPE show the general up-regulation of glycolytic pathways associated with the hypoxic microenvironment. These findings show a detailed atlas of immune cells in human MPE and enhance the understanding of potential diagnostic and therapeutic targets in advanced non-small cell lung cancer.
Collapse
Affiliation(s)
- Zhong-Yin Huang
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020 Beijing, China
| | - Ming-Ming Shao
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020 Beijing, China
| | - Jian-Chu Zhang
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Feng-Shuang Yi
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020 Beijing, China
| | - Juan Du
- grid.24696.3f0000 0004 0369 153XDepartment of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020 Beijing, China
| | - Qiong Zhou
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Feng-Yao Wu
- Department of Tuberculosis, Nanning Fourth People’s Hospital, 530022 Nanning, China
| | - Sha Li
- Department of Tuberculosis, Nanning Fourth People’s Hospital, 530022 Nanning, China
| | - Wei Li
- Department of Tuberculosis, Nanning Fourth People’s Hospital, 530022 Nanning, China
| | - Xian-Zhen Huang
- Department of Tuberculosis, Nanning Fourth People’s Hospital, 530022 Nanning, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China.
| |
Collapse
|
10
|
Zhao L, Giannou AD, Xu Y, Shiri AM, Liebold I, Steglich B, Bedke T, Zhang T, Lücke J, Scognamiglio P, Kempski J, Woestemeier A, Chen J, Agalioti T, Zazara DE, Lindner D, Janning M, Hennigs JK, Jagirdar RM, Kotsiou OS, Zarogiannis SG, Kobayashi Y, Izbicki JR, Ghosh S, Rothlin CV, Bosurgi L, Huber S, Gagliani N. Efferocytosis fuels malignant pleural effusion through TIMP1. SCIENCE ADVANCES 2021; 7:7/33/eabd6734. [PMID: 34389533 PMCID: PMC8363144 DOI: 10.1126/sciadv.abd6734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/24/2021] [Indexed: 06/03/2023]
Abstract
Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.
Collapse
Affiliation(s)
- Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, 350003 Fuzhou, People's Republic of China
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Liebold
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jing Chen
- Department of Pharmacy, Dong Fang Hospital (900 Hospital of the Joint Logistics Team), School of Medicine, Xiamen University, 350025 Fuzhou, People's Republic of China
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 33 280, 69120 Heidelberg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim and Medical Faculty Mannheim, University of Heidelberg Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jan K Hennigs
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lidia Bosurgi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
11
|
Stavenhagen K, Laan LC, Gao C, Mehta AY, Heimburg-Molinaro J, Glickman JN, van Die I, Cummings RD. Tumor cells express pauci- and oligomannosidic N-glycans in glycoproteins recognized by the mannose receptor (CD206). Cell Mol Life Sci 2021; 78:5569-5585. [PMID: 34089345 PMCID: PMC11072813 DOI: 10.1007/s00018-021-03863-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 01/21/2023]
Abstract
The macrophage mannose receptor (CD206, MR) is an endocytic lectin receptor which plays an important role in homeostasis and innate immunity, however, the endogenous glycan and glycoprotein ligands recognized by its C-type lectin domains (CTLD) have not been well studied. Here we used the murine MR CTLD4-7 coupled to the Fc-portion of human IgG (MR-Fc) to investigate the MR glycan and glycoprotein recognition. We probed 16 different cancer and control tissues using the MR-Fc, and observed cell- and tissue-specific binding with varying intensity. All cancer tissues and several control tissues exhibited MR-Fc ligands, intracellular and/or surface-located. We further confirmed the presence of ligands on the surface of cancer cells by flow cytometry. To characterize the fine specificity of the MR for glycans, we screened a panel of glycan microarrays. Remarkably, the results indicate that the CTLD4-7 of the MR is highly selective for specific types of pauci- and oligomannose N-glycans among hundreds of glycans tested. As lung cancer tissue and the lung cancer cell line A549 showed intense MR-Fc binding, we further investigated the MR glycoprotein ligands in those cells by immunoprecipitation and glycoproteomic analysis. All enriched glycoproteins, of which 42 were identified, contained pauci- or oligomannose N-glycans, confirming the microarray results. Our study demonstrates that the MR CTLD4-7 is highly selective for pauci- and oligomannosidic N-glycans, structures that are often elevated in tumor cells, and suggest a potential role for the MR in tumor biology.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC (VU Medical Center), Amsterdam, The Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Positron Emission Tomography Imaging of Macrophages in Cancer. Cancers (Basel) 2021; 13:cancers13081921. [PMID: 33923410 PMCID: PMC8072570 DOI: 10.3390/cancers13081921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are large phagocytic cells that can be classified as a type of white blood cell and may be either mobile or stationary in tissues. The presence of macrophages in essentially every major disease makes them attractive candidates to serve as therapeutic targets and diagnostic biomarkers. Macrophages that are found in the microenvironment of solid tumors are referred to as tumor-associated macrophages (TAMs) and have been shown to influence chemoresistance, immune regulation, tumor initiation and tumor growth. The imaging of TAMs through Positron Emission Tomography (PET) has the potential to provide valuable information on cancer biology, tumor progression, and response to therapy. This review will highlight the versatility of macrophage imaging in cancer through the use of PET.
Collapse
|
13
|
Zhang M, Yan L, Lippi G, Hu ZD. Pleural biomarkers in diagnostics of malignant pleural effusion: a narrative review. Transl Lung Cancer Res 2021; 10:1557-1570. [PMID: 33889529 PMCID: PMC8044497 DOI: 10.21037/tlcr-20-1111] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although cytology and pleural biopsy of pleural effusion (PE) are the gold standards for diagnosing malignant pleural effusion (MPE), these tools’ diagnostic accuracy is plagued by some limitations such as low sensitivity, considerable inter-observer variation and invasiveness. The assessment of PE biomarkers may hence be seen as an objective and non-invasive diagnostic alternative in MPE diagnostics. In this review, we summarize the characteristics and diagnostic accuracy of available PE biomarkers, including carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), carbohydrate antigens 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3), a fragment of cytokeratin 19 (CYFRA 21-1), chitinase-like proteins (CLPs), vascular endothelial growth factor (VEGF) and its soluble receptor, endostatin, calprotectin, cancer ratio, homocysteine, apolipoprotein E (Apo-E), B7 family members, matrix metalloproteinase (MMPs) and tissue-specific inhibitors of metalloproteinases (TIMPs), reactive oxygen species modulator 1 (Romo1), tumor-associated macrophages (TAMs) and monocytes, epigenetic markers (e.g., cell-free microRNA and mRNA). We summarized the evidence from systematic review and meta-analysis for traditional tumor markers’ diagnostic accuracy. According to the currently available evidence, we conclude that the traditional tumor markers have high specificity (around 0.90) but low sensitivity (around 0.50). The diagnostic accuracy of novel tumor markers needs to be validated by further studies. None of these tumor biomarkers would have sufficient diagnostic accuracy to confirm or exclude MPE when used alone. A multi-biomarker strategy, also encompassing the use of artificial intelligence algorithms, may be a valuable perspective for improving the diagnostic accuracy of MPE.
Collapse
Affiliation(s)
- Man Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|