1
|
Zhang X, Cheng Z, Zeng M, He Z. The efficacy of extracellular vesicles for acute lung injury in preclinical animal models: a meta-analysis. BMC Pulm Med 2024; 24:128. [PMID: 38481171 PMCID: PMC10935944 DOI: 10.1186/s12890-024-02910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND With the increasing research on extracellular vesicles (EVs), EVs have received widespread attention as biodiagnostic markers and therapeutic agents for a variety of diseases. Stem cell-derived EVs have also been recognized as a new viable therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). To assess their efficacy, we conducted a meta-analysis of existing preclinical experimental animal models of EVs for ALI treatment. METHODS The database was systematically interrogated for pertinent data encompassing the period from January 2010 to April 2022 concerning interventions involving extracellular vesicles (EVs) in animal models of acute lung injury (ALI). The lung injury score was selected as the primary outcome measure for statistical analysis. Meta-analyses were executed utilizing RevMan 5.3 and State15.1 software tools. RESULTS The meta-analyses comprised 31 studies, exclusively involving animal models of acute lung injury (ALI), categorized into two cohorts based on the presence or absence of extracellular vesicle (EV) intervention. The statistical outcomes from these two study groups revealed a significant reduction in lung injury scores with the administration of stem and progenitor cell-derived EVs (SMD = -3.63, 95% CI [-4.97, -2.30], P < 0.05). Conversely, non-stem cell-derived EVs were associated with an elevation in lung injury scores (SMD = -4.34, 95% CI [3.04, 5.63], P < 0.05). EVs originating from stem and progenitor cells demonstrated mitigating effects on alveolar neutrophil infiltration, white blood cell counts, total cell counts in bronchoalveolar lavage fluid (BALF), lung wet-to-dry weight ratios (W/D), and total protein in BALF. Furthermore, pro-inflammatory mediators exhibited down-regulation, while anti-inflammatory mediators demonstrated up-regulation. Conversely, non-stem cell-derived EVs exacerbated lung injury. CONCLUSION In preclinical animal models of acute lung injury (ALI), the administration of extracellular vesicles (EVs) originating from stem and progenitor cells demonstrably enhances pulmonary function. This ameliorative effect is attributed to the mitigation of pulmonary vascular permeability and the modulation of immune homeostasis, collectively impeding the progression of inflammation. In stark contrast, the utilization of EVs derived from non-stem progenitor cells exacerbates the extent of lung injury. These findings substantiate the potential utility of EVs as a novel therapeutic avenue for addressing acute lung injury.
Collapse
Affiliation(s)
- Xuefeng Zhang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongyong Cheng
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Menghao Zeng
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- 138 Tongzibo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Wang DR, Pan J. Extracellular vesicles: Emerged as a promising strategy for regenerative medicine. World J Stem Cells 2023; 15:165-181. [PMID: 37181006 PMCID: PMC10173817 DOI: 10.4252/wjsc.v15.i4.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.
Collapse
Affiliation(s)
- Dian-Ri Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
3
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
4
|
Wang D, Lyu Y, Yang Y, Zhang S, Chen G, Pan J, Tian W. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater 2022; 140:610-624. [PMID: 34852303 DOI: 10.1016/j.actbio.2021.11.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
The dental pulp is critical for physiological vitality of the tooth, and dental pulp regeneration has great potential for rebuilding live pulp tissue after pulp disease. Schwann cells (SCs) play a critical role in the support, maintenance, and regeneration of nerve fibers in dental pulp. Extracellular vesicles (EVs), which possess cell homing and tissue repair potential, derived from SCs (SC-EVs), can regulate dental mesenchymal stem cells (MSCs) proliferation, multipotency, and self-renewal. However, the role of SC-EVs in dental pulp tissue regeneration remains unclear. To address this question, we treated dental pulp stem cells (DPSCs) and bone marrow stem cells (BMSCs) with SC-EVs, and the results showed an obvious increase in the proliferation, migration, and osteogenic differentiation of both cell types. SC-EVs also promoted neurite outgrowth and neuron migration of rat dorsal root ganglia, as well as vessel formation in vitro. In an in vivo model of subcutaneous, SC-EVs enhanced the recruitment of endogenous vascular endothelioid-like cells and MSCs, and promoted the formation of a pulpo-dentinal complex-like structure. Finally, mass spectrometry analyses and western blot revealed that stromal cell-derived factor 1 (SDF-1, also known as CXCL12) plays a dominant role in SC-EVs. Together, these data suggest that SC-EVs successfully recruit endogenous stem cells to promote dental pulp regeneration. Our results provide a cell-free strategy for pulp regeneration that avoids the risks associated with stem cell transplantation. STATEMENT OF SIGNIFICANCE: Dental pulp is vulnerable to infections resulting from dental care, trauma, and multiple restorations, with such infections resulting in pulpitis and pulp necrosis. The current endodontic treatment of irreversible pulp disease cannot restore the function of dental pulp and tissue engineering strategies using cell-based approaches are limited by several disadvantages, including immune rejection and limited cell sources. In this study, we found that schwann cells-derived EVs facilitated dental pulp regeneration through endogenous stem cells recruitment via SDF-1/CXCR4 axis without exogenous cell transplantation. We believe that our study makes a significant contribution to describe a cell-free strategy to promote dental pulp regeneration.
Collapse
|
5
|
Storti G, Favi E, Albanesi F, Kim BS, Cervelli V. Adipose-Derived Stem/Stromal Cells in Kidney Transplantation: Status Quo and Future Perspectives. Int J Mol Sci 2021; 22:11188. [PMID: 34681848 PMCID: PMC8538841 DOI: 10.3390/ijms222011188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Francesca Albanesi
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (G.S.); (V.C.)
| |
Collapse
|
6
|
Pinson MR, Chung DD, Adams AM, Scopice C, Payne EA, Sivakumar M, Miranda RC. Extracellular Vesicles in Premature Aging and Diseases in Adulthood Due to Developmental Exposures. Aging Dis 2021; 12:1516-1535. [PMID: 34527425 PMCID: PMC8407878 DOI: 10.14336/ad.2021.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The developmental origins of health and disease (DOHaD) is a paradigm that links prenatal and early life exposures that occur during crucial periods of development to health outcome and risk of disease later in life. Maternal exposures to stress, some psychoactive drugs and alcohol, and environmental chemicals, among others, may result in functional changes in developing fetal tissues, creating a predisposition for disease in the individual as they age. Extracellular vesicles (EVs) may be mediators of both the immediate effects of exposure during development and early childhood as well as the long-term consequences of exposure that lead to increased risk and disease severity later in life. Given the prevalence of diseases with developmental origins, such as cardiovascular disease, neurodegenerative disorders, osteoporosis, metabolic dysfunction, and cancer, it is important to identify persistent mediators of disease risk. In this review, we take this approach, viewing diseases typically associated with aging in light of early life exposures and discuss the potential role of EVs as mediators of lasting consequences.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Amy M Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Chiara Scopice
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Elizabeth A Payne
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Monisha Sivakumar
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
7
|
Oh S, Kwon SH. Extracellular Vesicles in Acute Kidney Injury and Clinical Applications. Int J Mol Sci 2021; 22:8913. [PMID: 34445618 PMCID: PMC8396174 DOI: 10.3390/ijms22168913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI)--the sudden loss of kidney function due to tissue damage and subsequent progression to chronic kidney disease--has high morbidity and mortality rates and is a serious worldwide clinical problem. Current AKI diagnosis, which relies on measuring serum creatinine levels and urine output, cannot sensitively and promptly report on the state of damage. To address the shortcomings of these traditional diagnosis tools, several molecular biomarkers have been developed to facilitate the identification and ensuing monitoring of AKI. Nanosized membrane-bound extracellular vesicles (EVs) in body fluids have emerged as excellent sources for discovering such biomarkers. Besides this diagnostic purpose, EVs are also being extensively exploited to deliver therapeutic macromolecules to damaged kidney cells to ameliorate AKI. Consequently, many successful AKI biomarker findings and therapeutic applications based on EVs have been made. Here, we review our understanding of how EVs can help with the early identification and accurate monitoring of AKI and be used therapeutically. We will further discuss where current EV-based AKI diagnosis and therapeutic applications fall short and where future innovations could lead us.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Corrêa RR, Juncosa EM, Masereeuw R, Lindoso RS. Extracellular Vesicles as a Therapeutic Tool for Kidney Disease: Current Advances and Perspectives. Int J Mol Sci 2021; 22:ijms22115787. [PMID: 34071399 PMCID: PMC8198688 DOI: 10.3390/ijms22115787] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been described as important mediators of cell communication, regulating several physiological processes, including tissue recovery and regeneration. In the kidneys, EVs derived from stem cells have been shown to support tissue recovery in diverse disease models and have been considered an interesting alternative to cell therapy. For this purpose, however, several challenges remain to be overcome, such as the requirement of a high number of EVs for human therapy and the need for optimization of techniques for their isolation and characterization. Moreover, the kidney’s complexity and the pathological process to be treated require that EVs present a heterogeneous group of molecules to be delivered. In this review, we discuss the recent advances in the use of EVs as a therapeutic tool for kidney diseases. Moreover, we give an overview of the new technologies applied to improve EVs’ efficacy, such as novel methods of EV production and isolation by means of bioreactors and microfluidics, bioengineering the EV content and the use of alternative cell sources, including kidney organoids, to support their transfer to clinical applications.
Collapse
Affiliation(s)
- Raphael Rodrigues Corrêa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Estela Mancheño Juncosa
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Correspondence: (R.M.); (R.S.L.); Tel.: +31-30-253-3529 (R.M.); Tel.: +55-21-3938-6520 (R.S.L.)
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (R.M.); (R.S.L.); Tel.: +31-30-253-3529 (R.M.); Tel.: +55-21-3938-6520 (R.S.L.)
| |
Collapse
|
9
|
Lindoso RS, Lopes JA, Binato R, Abdelhay E, Takiya CM, Miranda KRD, Lara LS, Viola A, Bussolati B, Vieyra A, Collino F. Adipose Mesenchymal Cells-Derived EVs Alleviate DOCA-Salt-Induced Hypertension by Promoting Cardio-Renal Protection. Mol Ther Methods Clin Dev 2020; 16:63-77. [PMID: 31871958 PMCID: PMC6909095 DOI: 10.1016/j.omtm.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
Hypertension is a long-term condition that can increase organ susceptibility to insults and lead to severe complications such as chronic kidney disease (CKD). Extracellular vesicles (EVs) are cell-derived membrane structures that participate in cell-cell communication by exporting encapsulated molecules to target cells, regulating physiological and pathological processes. We here demonstrate that multiple administration of EVs from adipose-derived mesenchymal stromal cells (ASC-EVs) in deoxycorticosterone acetate (DOCA)-salt hypertensive model can protect renal tissue by maintaining its filtration capacity. Indeed, ASC-EVs downregulated the pro-inflammatory molecules monocyte chemoattracting protein-1 (MCP-1) and plasminogen activating inhibitor-1 (PAI1) and reduced recruitment of macrophages in the kidney. Moreover, ASC-EVs prevented cardiac tissue fibrosis and maintained blood pressure within normal levels, thus demonstrating their multiple favorable effects in different organs. By applying microRNA (miRNA) microarray profile of the kidney of DOCA-salt rats, we identified a selective miRNA signature associated with epithelial-mesenchymal transition (EMT). One of the key pathways found was the axis miR-200-TGF-β, that was significantly altered by EV administration, thereby affecting the EMT signaling and preventing renal inflammatory response and fibrosis development. Our results indicate that EVs can be a potent therapeutic tool for the treatment of hypertension-induced CKD in cardio-renal syndrome.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jarlene Alécia Lopes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Renata Binato
- Brazilian National Institute of Cancer, 20230-130 Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Brazilian National Institute of Cancer, 20230-130 Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Kildare Rocha de Miranda
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Lucienne Silva Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Antonella Viola
- Department of Biomedical Sciences and Pediatric Research Institute “Citta della Speranza,” University of Padova, 35131 Padua, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Adalberto Vieyra
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Graduate Program of Translational Biomedicine/BIOTRANS, Grande Rio University, 25071-202 Duque de Caxias, Brazil
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Department of Biomedical Sciences and Pediatric Research Institute “Citta della Speranza,” University of Padova, 35131 Padua, Italy
| |
Collapse
|
10
|
Potential Applications of Extracellular Vesicles in Solid Organ Transplantation. Cells 2020; 9:cells9020369. [PMID: 32033489 PMCID: PMC7072603 DOI: 10.3390/cells9020369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in cell-to-cell communication by delivering coding and non-coding RNA species and proteins to target cells. Recently, the therapeutic potential of EVs has been shown to extend to the field of solid organ transplantations. Mesenchymal stromal cell-derived EVs (MSC-EVs) in particular have been proposed as a new tool to improve graft survival, thanks to the modulation of tolerance toward the graft, and to their anti-fibrotic and pro-angiogenic effects. Moreover, MSC-EVs may reduce ischemia reperfusion injury, improving the recovery from acute damage. In addition, EVs currently considered helpful tools for preserving donor organs when administered before transplant in the context of hypothermic or normothermic perfusion machines. The addition of EVs to the perfusion solution, recently proposed for kidney, lung, and liver grafts, resulted in the amelioration of donor organ viability and functionality. EVs may therefore be of therapeutic interest in different aspects of the transplantation process for increasing the number of available organs and improving their long-term survival.
Collapse
|
11
|
Grange C, Papadimitriou E, Dimuccio V, Pastorino C, Molina J, O'Kelly R, Niedernhofer LJ, Robbins PD, Camussi G, Bussolati B. Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model. Mol Ther 2020; 28:490-502. [PMID: 31818691 PMCID: PMC7000999 DOI: 10.1016/j.ymthe.2019.11.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury, defined by a rapid deterioration of renal function, is a common complication in hospitalized patients. Among the recent therapeutic options, the use of extracellular vesicles (EVs) is considered a promising strategy. Here we propose a possible therapeutic use of renal-derived EVs isolated from normal urine (urine-derived EVs [uEVs]) in a murine model of acute injury generated by glycerol injection. uEVs accelerated renal recovery, stimulating tubular cell proliferation, reducing the expression of inflammatory and injury markers, and restoring endogenous Klotho loss. When intravenously injected, labeled uEVs localized within injured kidneys and transferred their microRNA cargo. Moreover, uEVs contained the reno-protective Klotho molecule. Murine uEVs derived from Klotho null mice lost the reno-protective effect observed using murine EVs from wild-type mice. This was regained when Klotho-negative murine uEVs were reconstituted with recombinant Klotho. Similarly, ineffective fibroblast EVs acquired reno-protection when engineered with human recombinant Klotho. Our results reveal a novel potential use of uEVs as a new therapeutic strategy for acute kidney injury, highlighting the presence and role of the reno-protective factor Klotho.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Veronica Dimuccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Cecilia Pastorino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Jordi Molina
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ryan O'Kelly
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
12
|
Ramirez-Bajo MJ, Rovira J, Lazo-Rodriguez M, Banon-Maneus E, Tubita V, Moya-Rull D, Hierro-Garcia N, Ventura-Aguiar P, Oppenheimer F, Campistol JM, Diekmann F. Impact of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Rat Model of Kidney Rejection. Front Cell Dev Biol 2020; 8:10. [PMID: 32064259 PMCID: PMC7000363 DOI: 10.3389/fcell.2020.00010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) from different sources possess great therapeutic potential due to their immunomodulatory properties associated with allograft tolerance. However, a crucial role in this activity resides in extracellular vesicles (EVs) and signaling molecules secreted by cells. This study aimed to evaluate the immunomodulatory properties of donor and recipient MSCs isolated from adipose tissue (AD) or bone marrow (BM) and their EVs on kidney outcome in a rat kidney transplant model. Methods The heterotopic-kidney-transplant Fisher-to-Lewis rat model (F-L) was performed to study mixed cellular and humoral rejection. After kidney transplantation, Lewis recipients were assigned to 10 groups; two control groups; four groups received autologous MSCs (either AD- or BM- MSC) or EVs (derived from both cell types); and four groups received donor-derived MSCs or EVs. AD and BM-EVs were purified by ultracentrifugation. Autologous cell therapies were administered three times intravenously; immediately after kidney transplantation, 4 and 8 weeks, whereas donor-derived cell therapies were administered once intravenously immediately after transplantation. Survival and renal function were monitored. Twelve weeks after kidney transplantation grafts were harvested, infiltrating lymphocytes were analyzed by flow cytometry and histological lesions were characterized. Results Autologous AD- and BM-MSCs, but not their EVs, prolonged graft and recipient survival in a rat model of kidney rejection. Autologous AD- and BM-MSCs significantly improved renal function during the first 4 weeks after transplantation. The amelioration of graft function could be associated with an improvement in tubular damage, as well as in T, and NK cell infiltration. On the other side, the application of donor-derived AD-MSC was harmful, and all rats died before the end of the protocol. AD-EVs did not accelerate the rejection. Contrary to autologous MSCs results, the single dose of donor-derived BM-MSCs is not enough to ameliorate kidney graft damage. Conclusion EVs treatments did not exert any benefit in our experimental settings. In the autologous setting, BM-MSCs prompted as a potentially promising therapy to improve kidney graft outcomes in rats with chronic mixed rejection. In the donor-derived setting, AD-MSC accelerated progression to end-stage kidney disease. Further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- Maria Jose Ramirez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Valeria Tubita
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Moya-Rull
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Natalia Hierro-Garcia
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Federico Oppenheimer
- Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Departament de Nefrologia i Trasplantament Renal, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, Youn J, Cho BS. Advances in Analysis of Biodistribution of Exosomes by Molecular Imaging. Int J Mol Sci 2020; 21:E665. [PMID: 31963931 PMCID: PMC7014306 DOI: 10.3390/ijms21020665] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
Exosomes are nano-sized membranous vesicles produced by nearly all types of cells. Since exosome-like vesicles are produced in an evolutionarily conserved manner for information and function transfer from the originating cells to recipient cells, an increasing number of studies have focused on their application as therapeutic agents, drug delivery vehicles, and diagnostic targets. Analysis of the in vivo distribution of exosomes is a prerequisite for the development of exosome-based therapeutics and drug delivery vehicles with accurate prediction of therapeutic dose and potential side effects. Various attempts to evaluate the biodistribution of exosomes obtained from different sources have been reported. In this review, we examined the current trends and the advantages and disadvantages of the methods used to determine the biodistribution of exosomes by molecular imaging. We also reviewed 29 publications to compare the methods employed to isolate, analyze, and label exosomes as well as to determine the biodistribution of labeled exosomes.
Collapse
Affiliation(s)
- Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (S.-Y.K.); (C.-G.P.)
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; (S.-Y.K.); (C.-G.P.)
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Sang Rae Park
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Jinkwon Youn
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (Y.W.Y.); (J.H.L.); (D.H.H.); (S.R.P.); (J.Y.)
| |
Collapse
|
14
|
Liu C, Wang J, Hu J, Fu B, Mao Z, Zhang H, Cai G, Chen X, Sun X. Extracellular vesicles for acute kidney injury in preclinical rodent models: a meta-analysis. Stem Cell Res Ther 2020; 11:11. [PMID: 31900218 PMCID: PMC6942291 DOI: 10.1186/s13287-019-1530-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Extracellular vesicles (EVs), especially stem cell-derived EVs, have emerged as a potential novel therapy for acute kidney injury (AKI). However, their effects remain incompletely understood. Therefore, we performed this meta-analysis to systematically review the efficacy of EVs on AKI in preclinical rodent models. Methods We searched PubMed, EMBASE, and the Web of Science up to March 2019 to identify studies that reported the treatment effects of EVs in a rodent AKI model. The primary outcome was serum creatinine (Scr) levels. The secondary outcomes were the blood urea nitrogen (BUN) levels, renal injury score, percentage of apoptotic cells, and interleukin (IL)-10 and tumour necrosis factor (TNF)-α levels. Two authors independently screened articles based on the inclusion and exclusion criteria. The meta-analysis was conducted using RevMan 5.3 and R software. Results Thirty-one studies (n = 552) satisfied the inclusion criteria. Pooled analyses demonstrated that the levels of Scr (SMD = − 3.71; 95% CI = − 4.32, − 3.10; P < 0.01), BUN (SMD = − 3.68; 95% CI = − 4.42, − 2.94; P < 0.01), and TNF-α (SMD = − 2.65; 95% CI = − 4.98, − 0.32; P < 0.01); the percentage of apoptotic cells (SMD = − 6.25; 95% CI = − 8.10, − 4.39; P < 0.01); and the injury score (SMD = − 3.90; 95% CI = − 5.26, − 2.53; P < 0.01) were significantly decreased in the EV group, and the level of IL-10 (SMD = 2.10; 95% CI = 1.18, 3.02; P < 0.01) was significantly increased. Meanwhile, no significant difference was found between stem cell-derived EVs and stem cells. Conclusion The present meta-analysis confirmed that EV therapy could improve renal function and the inflammatory response status and reduce cell apoptosis in a preclinical rodent AKI model. This provides important clues for human clinical trials on EVs.
Collapse
Affiliation(s)
- Chao Liu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Jin Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Jie Hu
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China.,Master Program of Medical Science in Clinical Investigation, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Zhi Mao
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Hengda Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, China.
| |
Collapse
|
15
|
Imberti B, Cerullo D, Corna D, Rota C, Locatelli M, Pezzotta A, Introna M, Capelli C, Carminati CE, Rabelink TJ, Leuning DG, Zoja C, Morigi M, Remuzzi G, Benigni A, Luyckx V. Protective Effects of Human Nonrenal and Renal Stromal Cells and Their Conditioned Media in a Rat Model of Chronic Kidney Disease. Cell Transplant 2020; 29:963689720965467. [PMID: 33663249 PMCID: PMC8718166 DOI: 10.1177/0963689720965467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic option for limiting chronic kidney disease progression. Conditioned medium (CM) containing bioactive compounds could convey similar benefits, avoiding the potential risks of cell therapy. This study compared the efficacy of nonrenal and renal cell-based therapy with the corresponding CM in rats with renal mass reduction (RMR). Infusions of human kidney stromal cells (kPSCs) and CM-kPSCs, but not umbilical cord (uc) MSCs or CM-ucMSCs, reduced proteinuria and preserved podocyte number and nephrin expression in RMR rats. Glomerular fibrosis, microvascular rarefaction, and apoptosis were reduced by all treatments, while the peritubular microvascular loss was reduced by kPSCs and CM-kPSCs treatment only. Importantly, kPSCs and CM-kPSCs reduced NG2-positive pericytes, and all therapies reduced α-smooth muscle actin expression, indicating reduced myofibroblast expansion. Treatment with kPSCs also significantly inhibited the accumulation of ED1-positive macrophages in the renal interstitium of RMR rats. These findings demonstrate that the CM of ucMSCs and kPSCs confers similar renoprotection as the cells. kPSCs and CM-kPSCs may be superior in attenuating chronic renal injury as a cell source.
Collapse
Affiliation(s)
- Barbara Imberti
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Both the authors are co-first author
| | - Domenico Cerullo
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Both the authors are co-first author
| | - Daniela Corna
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Cinzia Rota
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Locatelli
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Martino Introna
- Laboratory of Cell Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Capelli
- Laboratory of Cell Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Claudia Elisa Carminati
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, Holland
| | - Danielle G Leuning
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, Holland
| | - Carlamaria Zoja
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Morigi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,"L. Sacco" Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Valerie Luyckx
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
17
|
Islam MN, Griffin TP, Sander E, Rocks S, Qazi J, Cabral J, McCaul J, McMorrow T, Griffin MD. Human mesenchymal stromal cells broadly modulate high glucose-induced inflammatory responses of renal proximal tubular cell monolayers. Stem Cell Res Ther 2019; 10:329. [PMID: 31744554 PMCID: PMC6862760 DOI: 10.1186/s13287-019-1424-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/08/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Renal proximal tubular epithelial cells (RPTEC) are dysfunctional in diabetic kidney disease (DKD). Mesenchymal stromal cells (MSC) may modulate DKD pathogenesis through anti-inflammatory mediators. This study aimed to investigate the pro-inflammatory effect of extended exposure to high glucose (HG) concentration on stable RPTEC monolayers and the influence of MSC on this response. METHODS Morphologically stable human RPTEC/TERT1 cell monolayers were exposed to 5 mM and 30 mM (HG) D-glucose or to 5 mM D-glucose + 25 mM D-mannitol (MAN) for 5 days with sequential immunoassays of supernatants and end-point transcriptomic analysis by RNA sequencing. Under the same conditions, MSC-conditioned media (MSC-CM) or MSC-containing transwells were added for days 4-5. Effects of CM from HG- and MAN-exposed RPTEC/MSC co-cultures on cytokine secretion by monocyte-derived macrophages were determined. RESULTS After 72-80 h, HG resulted in increased RPTEC/TERT1 release of interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and neutrophil gelatinase-associated lipocalin (NGAL). The HG pro-inflammatory effect was attenuated by concentrated (10×) MSC-CM and, to a greater extent, by MSC transwell co-culture. Bioinformatics analysis of RNA sequencing data confirmed a predominant effect of HG on inflammation-related mediators and biological processes/KEGG pathways in RPTEC/TERT1 stable monolayers as well as the non-contact-dependent anti-inflammatory effect of MSC. Finally, CM from HG-exposed RPTEC/MSC transwell co-cultures was associated with attenuated secretion of inflammatory mediators by macrophages compared to CM from HG-stimulated RPTEC alone. CONCLUSIONS Stable RPTEC monolayers demonstrate delayed pro-inflammatory response to HG that is attenuated by close proximity to human MSC. In DKD, this MSC effect has potential to modulate hyperglycemia-associated RPTEC/macrophage cross-talk.
Collapse
Affiliation(s)
- Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Tomás P Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.,Centre for Endocrinology, Diabetes and Metabolism, Galway University Hospitals, Galway, Ireland
| | - Elizabeth Sander
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Stephanie Rocks
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Junaid Qazi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland
| | - Jasmin McCaul
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Tara McMorrow
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.
| |
Collapse
|
18
|
Stem Cell-Derived Extracellular Vesicles and Kidney Regeneration. Cells 2019; 8:cells8101240. [PMID: 31614642 PMCID: PMC6830104 DOI: 10.3390/cells8101240] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicles containing active proteins, lipids, and different types of genetic material such as miRNAs, mRNAs, and DNAs related to the characteristics of the originating cell. They possess a distinctive capacity to communicate over long distances. EVs have been involved in the modulation of several pathophysiological conditions and, more importantly, stem cell-derived EVs appear as a new promising therapeutic option. In fact, several reports provide convincing evidence of the regenerative potential of EVs released by stem cells and, in particular, mesenchymal stromal cells (MSCs) in different kidney injury models. Described mechanisms involve the reprogramming of injured cells, cell proliferation and angiogenesis, and inhibition of cell apoptosis and inflammation. Besides, the therapeutic use of MSC-EVs in clinical trials is under investigation. This review will focus on MSC-EV applications in preclinical models of acute and chronic renal damage including recent data on their use in kidney transplant conditioning. Moreover, ongoing clinical trials are described. Finally, new strategies to broaden and enhance EV therapeutic efficacy by engineering are discussed.
Collapse
|
19
|
Barnett LMA, Cummings BS. Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective. Toxicol Sci 2019; 164:379-390. [PMID: 29939355 DOI: 10.1093/toxsci/kfy159] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney consists of numerous cell types organized into the nephron, which is the basic functional unit of the kidney. Any stimuli that induce loss of these cells can induce kidney damage and renal failure. The cause of renal failure can be intrinsic or extrinsic. Extrinsic causes include cardiovascular disease, obesity, diabetes, sepsis, and lung and liver failure. Intrinsic causes include glomerular nephritis, polycystic kidney disease, renal fibrosis, tubular cell death, and stones. The kidney plays a prominent role in mediating the toxicity of numerous drugs, environmental pollutants and natural substances. Drugs known to be nephrotoxic include several cancer therapeutics, drugs of abuse, antibiotics, and radiocontrast agents. Environmental pollutants known to target the kidney include cadmium, mercury, arsenic, lead, trichloroethylene, bromate, brominated-flame retardants, diglycolic acid, and ethylene glycol. Natural nephrotoxicants include aristolochic acids and mycotoxins such as ochratoxin, fumonisin B1, and citrinin. There are several common characteristics between mechanisms of renal failure induced by nephrotoxicants and extrinsic causes. This common ground exists primarily due to similarities in the molecular mechanisms mediating renal cell death. This review summarizes the current state of the field of nephrotoxicity. It emphasizes integrating our understanding of nephrotoxicity with pathological-induced renal failure. Such approaches are needed to address major questions in the field, which include the diagnosis, prognosis and treatment of both acute and chronic renal failure, and the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
| | - Brian S Cummings
- Interdisciplinary Toxicology Program.,Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
20
|
Rota C, Morigi M, Imberti B. Stem Cell Therapies in Kidney Diseases: Progress and Challenges. Int J Mol Sci 2019; 20:ijms20112790. [PMID: 31181604 PMCID: PMC6600599 DOI: 10.3390/ijms20112790] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of renal diseases is emerging as a public health problem. Despite major progress in supportive therapy, mortality rates among patients remain high. In an attempt to find innovative treatments to stimulate kidney regeneration, stem cell-based technology has been proposed as a potentially promising strategy. Here, we summarise the renoprotective potential of pluripotent and adult stem cell therapy in experimental models of acute and chronic kidney injury and we explore the different mechanisms at the basis of stem cell-induced kidney regeneration. Specifically, cell engraftment, incorporation into renal structures, or paracrine activities of embryonic or induced pluripotent stem cells as well as mesenchymal stem cells and renal precursors are analysed. We also discuss the relevance of stem cell secretome-derived bioproducts, including soluble factors and extracellular vesicles, and the option of using them as cell-free therapy to induce reparative processes. The translation of the experimental results into clinical trials is also addressed, highlighting the safety and feasibility of stem cell treatments in patients with kidney injury.
Collapse
Affiliation(s)
- Cinzia Rota
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy.
| |
Collapse
|
21
|
Cell Therapy: Past, Present, and Future. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Tapparo M, Bruno S, Collino F, Togliatto G, Deregibus MC, Provero P, Wen S, Quesenberry PJ, Camussi G. Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. Int J Mol Sci 2019; 20:ijms20102381. [PMID: 31091699 PMCID: PMC6567878 DOI: 10.3390/ijms20102381] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 106) to obtain the renal regenerative effect.
Collapse
Affiliation(s)
- Marta Tapparo
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - Federica Collino
- Department of Biomedical Sciences and Paediatric Research Institute "Citta della Speranza", University of Padova, 35129 Padova, Italy.
| | - Gabriele Togliatto
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - Maria Chiara Deregibus
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Torino, 10126 Torino, Italy.
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| | - Sicheng Wen
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, RI 02912, USA.
| | - Peter J Quesenberry
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, RI 02912, USA.
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
23
|
Tseng AM, Chung DD, Pinson MR, Salem NA, Eaves SE, Miranda RC. Ethanol Exposure Increases miR-140 in Extracellular Vesicles: Implications for Fetal Neural Stem Cell Proliferation and Maturation. Alcohol Clin Exp Res 2019; 43:1414-1426. [PMID: 31009095 DOI: 10.1111/acer.14066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/12/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neural stem cells (NSCs) generate most of the neurons of the adult brain in humans, during the mid-first through second-trimester period. This critical neurogenic window is particularly vulnerable to prenatal alcohol exposure, which can result in diminished brain growth. Previous studies showed that ethanol (EtOH) exposure does not kill NSCs, but, rather, results in their depletion by influencing cell cycle kinetics and promoting aberrant maturation, in part, by altering NSC expression of key neurogenic miRNAs. NSCs reside in a complex microenvironment rich in extracellular vesicles, shown to traffic miRNA cargo between cells. METHODS We profiled the miRNA content of extracellular vesicles from control and EtOH-exposed ex vivo neurosphere cultures of fetal NSCs. We subsequently examined the effects of one EtOH-sensitive miRNA, miR-140-3p, on NSC growth, survival, and maturation. RESULTS EtOH exposure significantly elevates levels of a subset of miRNAs in secreted extracellular vesicles. Overexpression of one of these elevated miRNAs, miR-140-3p, and its passenger strand relative, miR-140-5p, significantly increased the proportion of S-phase cells while decreasing the proportion of G0 /G1 cells compared to controls. In contrast, while miR-140-3p knockdown had minimal effects on the proportion of cells in each phase of the cell cycle, knockdown of miR-140-5p significantly decreased the proportion of cells in G2 /M phase. Furthermore, miR-140-3p overexpression, during mitogen-withdrawal-induced NSC differentiation, favors astroglial maturation at the expense of neural and oligodendrocyte differentiation. CONCLUSIONS Collectively, the dysregulated miRNA content of extracellular vesicles following EtOH exposure may result in aberrant neural progenitor cell growth and maturation, explaining brain growth deficits associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Dae D Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Sarah E Eaves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
24
|
Potential and Therapeutic Efficacy of Cell-based Therapy Using Mesenchymal Stem Cells for Acute/chronic Kidney Disease. Int J Mol Sci 2019; 20:ijms20071619. [PMID: 30939749 PMCID: PMC6479813 DOI: 10.3390/ijms20071619] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney disease can be either acute kidney injury (AKI) or chronic kidney disease (CKD) and it can lead to the development of functional organ failure. Mesenchymal stem cells (MSCs) are derived from a diverse range of human tissues. They are multipotent and have immunomodulatory effects to assist in the recovery from tissue injury and the inhibition of inflammation. Numerous studies have investigated the feasibility, safety, and efficacy of MSC-based therapies for kidney disease. Although the exact mechanism of MSC-based therapy remains uncertain, their therapeutic value in the treatment of a diverse range of kidney diseases has been studied in clinical trials. The use of MSCs is a promising therapeutic strategy for both acute and chronic kidney disease. The mechanism underlying the effects of MSCs on survival rate after transplantation and functional repair of damaged tissue is still ambiguous. The paracrine effects of MSCs on renal recovery, optimization of the microenvironment for cell survival, and control of inflammatory responses are thought to be related to their interaction with the damaged kidney environment. This review discusses recent experimental and clinical findings related to kidney disease, with a focus on the role of MSCs in kidney disease recovery, differentiation, and microenvironment. The therapeutic efficacy and current applications of MSC-based kidney disease therapies are also discussed.
Collapse
|
25
|
Tang TT, Lv LL, Lan HY, Liu BC. Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Front Physiol 2019; 10:226. [PMID: 30941051 PMCID: PMC6433711 DOI: 10.3389/fphys.2019.00226] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-based membrane-bound particles secreted by virtually all types of cells under both physiological and pathological conditions. Given their unique biological and pharmacological properties, EVs have spurred a renewed interest in their utility for therapeutics. Herein, efforts are made to give a comprehensive overview on the recent advances of EV-based therapy in renal diseases. The fact that EVs are implicated in various renal diseases provides us with new therapeutic modalities by eliminating these pathogenic entities. Strategies that target EVs to inhibit their production, release, and uptake will be discussed. Further, EVs-derived predominantly from stem cells can stimulate tissue repair and ameliorate renal injury via transferring proteins and nucleic acids to injured cells. Such EVs can be exploited as agents in renal regenerative medicine. Finally, we will focus on the specific application of EVs as a novel drug delivery system and highlight the challenges of EVs-based therapies for renal diseases.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
26
|
Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, Brizzi MF. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 2019; 9:4468. [PMID: 30872726 PMCID: PMC6418239 DOI: 10.1038/s41598-019-41100-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) that are derived from mesenchymal stromal cells (MSCs) have been shown to reprogram injured cells by activating regenerative processes. We herein investigate the potential therapeutic effect of EVs, shed by human bone marrow MSCs and by human liver stem-like cells (HLSCs), on the progression and reversion of fibrosis in a mouse model of diabetic nephropathy, as induced by streptozotocin. After the development of nephropathy, stem cell-derived EVs were administered weekly to diabetic mice for four weeks. The stem cell-derived EV treatment, but not the fibroblast EV treatment that was used as a control, significantly ameliorated functional parameters, such as albumin/creatinine excretion, plasma creatinine and blood urea nitrogen, which are altered in diabetic mice. Moreover, the renal fibrosis that develops during diabetic nephropathy progression was significantly inhibited in stem cell EV-treated animals. A correlation was found between the down regulation of several pro-fibrotic genes in renal tissues and the anti-fibrotic effect of HLSC and MSC EVs. A comparative analysis of HLSC and MSC EV miRNA content highlighted some common and some specific patterns of miRNAs that target predicted pro-fibrotic genes. In conclusion, stem cell-derived EVs inhibit fibrosis and prevent its progression in a model of diabetes-induced chronic kidney injury.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Stefania Tritta
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Molecular Biotechnology Centre, University of Turin, Turin, Italy. .,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy.
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Molecular Biotechnology Centre, University of Turin, Turin, Italy. .,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy.
| |
Collapse
|
27
|
Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:693-709. [PMID: 31399991 DOI: 10.1007/978-981-13-8871-2_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are small lipid-based membrane-bound vesicles secreted by most cells under both physiological and pathological conditions. A key function of EVs is to mediate cell-cell communication via transferring mRNAs, miRNAs and proteins from parent cells to recipient cells. These unique features of EVs have spurred a renewed interest in their utility for therapeutics. Given the growing evidence for EV-mediated renal diseases, strategies that could block the release or uptake of pathogenic EVs will be discussed in this review. Then, the therapeutic potential of EVs predominantly from stem cells in renal diseases will be outlined. Finally, we will focus on the specific application of EVs as a novel drug delivery system and highlight the challenges of EVs-based therapies for renal diseases.
Collapse
|
28
|
Marcheque J, Bussolati B, Csete M, Perin L. Concise Reviews: Stem Cells and Kidney Regeneration: An Update. Stem Cells Transl Med 2018; 8:82-92. [PMID: 30302937 PMCID: PMC6312445 DOI: 10.1002/sctm.18-0115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Significant progress has been made to advance stem cell products as potential therapies for kidney diseases: various kinds of stem cells can restore renal function in preclinical models of acute and chronic kidney injury. Nonetheless this literature contains contradictory results, and for this reason, we focus this review on reasons for apparent discrepancies in the literature, because they contribute to difficulty in translating renal regenerative therapies. Differences in methodologies used to derive and culture stem cells, even those from the same source, in addition to the lack of standardized renal disease animal models (both acute and chronic), are important considerations underlying contradictory results in the literature. We propose that harmonized rigorous protocols for characterization, handling, and delivery of stem cells in vivo could significantly advance the field, and present details of some suggested approaches to foster translation in the field of renal regeneration. Our goal is to encourage coordination of methodologies (standardization) and long‐lasting collaborations to improve protocols and models to lead to reproducible, interpretable, high‐quality preclinical data. This approach will certainly increase our chance to 1 day offer stem cell therapeutic options for patients with all‐too‐common renal diseases. Stem Cells Translational Medicine2019;8:82–92
Collapse
Affiliation(s)
- Julia Marcheque
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Marie Csete
- Medical Engineering, California Institute of Technology, Los Angeles, California.,Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
29
|
Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Res Ther 2018; 9:220. [PMID: 30107860 PMCID: PMC6092807 DOI: 10.1186/s13287-018-0960-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC)-based therapy is a promising strategy for preventing the progression of chronic kidney disease (CKD), with the potential to induce tissue regeneration. In search of the best cellular source we compared, in the rat model of adriamycin (ADR) nephropathy, the regenerative potential of human stromal cells of non-renal origin, such as bone marrow (bm) MSCs and umbilical cord (uc) MSCs, with that of newly discovered stromal cells of renal origin, the kidney perivascular cells (kPSCs) known to exhibit tissue-specific properties. Methods The therapeutic effect of repeated infusions of human bmMSCs, ucMSCs, kPSCs (1.5 × 106 cells/rats) or conditioned medium from ucMSCs was studied in athymic rats with ADR-induced nephropathy (7.9 mg/kg). The ability of the three stromal cell populations to engraft the damaged kidney was evaluated by detecting the presence of human nuclear antigenpos cells. Glomerular podocyte loss and endothelial damage, sclerotic lesions and inflammation were assessed at 14 and 28 days. In-vitro experiments with a transwell system were performed to investigate the effects of different stromal cell populations on parietal epithelial cells (PECs) activated or not with albumin or angiotensin II for 24 h. Results Infusions of non-renal and renal stromal cells resulted in a comparable engraftment into the kidney, in the peritubular areas and around the glomerular structures. All three cell populations limited podocyte loss and glomerular endothelial cell injury, and attenuated the formation of podocyte and PEC bridges. This translated into a reduction of glomerulosclerosis and fibrosis. Human ucMSCs had an anti-inflammatory effect superior to that of the other stromal cells, reducing macrophage infiltration and inducing polarisation towards the M2 macrophage phenotype. Conditioned medium from ucMSCs shared the same renoprotective effects of the cells. Consistent with in-vivo data, bmMSCs and kPSCs, but even more so ucMSCs, limited proliferation, migratory potential and extracellular matrix production of activated PECs, when cultured in a transwell system. Conclusions Our data indicate that either non-renal or renal stromal cells induce renal tissue repair, highlighting ucMSCs and their conditioned medium as the most reliable clinical therapeutic tool for CKD patients. Electronic supplementary material The online version of this article (10.1186/s13287-018-0960-8) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Alberti D, Grange C, Porta S, Aime S, Tei L, Geninatti Crich S. Efficient Route to Label Mesenchymal Stromal Cell-Derived Extracellular Vesicles. ACS OMEGA 2018; 3:8097-8103. [PMID: 30087935 PMCID: PMC6072237 DOI: 10.1021/acsomega.8b00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/06/2018] [Indexed: 05/23/2023]
Abstract
Recent research results report that extracellular vesicles (EVs) have a central role in both physiological and pathological processes involving intercellular communication. Herein, a simple EVs labeling procedure based on the metabolic labeling of secreting cells (mesenchymal stroma cells, MSCs) with a fluorescein-containing bio-orthogonal dye is described. This procedure was carried out by incubating cells for 72 h with tetraacetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz), a modified sugar containing an azido group that, upon incorporation on the external surface of the cytoplasmatic cell membrane, is specifically conjugated with cyclooctyne-modified fluorescein isothiocyanate (ADIBO-FITC). MSCs released fluorescent EVs did not need any further purification. Finally, cellular uptake and tracking of the fluorescein-labeled EVs were successfully assessed by targeting experiments with MSCs. The method appears of general applicability and it may be very useful opening new horizon on diagnostic and therapeutic protocols exploiting EVs.
Collapse
Affiliation(s)
- Diego Alberti
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Cristina Grange
- Department
of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
| | - Stefano Porta
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Lorenzo Tei
- Department
of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Simonetta Geninatti Crich
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
31
|
Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Brizzi MF, Tetta C, Camussi G. Human Liver Stem Cell-Derived Extracellular Vesicles Prevent Aristolochic Acid-Induced Kidney Fibrosis. Front Immunol 2018; 9:1639. [PMID: 30072992 PMCID: PMC6060249 DOI: 10.3389/fimmu.2018.01639] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 11/29/2022] Open
Abstract
With limited therapeutic intervention in preventing the progression to end-stage renal disease, chronic kidney disease (CKD) remains a global health-care burden. Aristolochic acid (AA) induced nephropathy is a model of CKD characterised by inflammation, tubular injury, and interstitial fibrosis. Human liver stem cell-derived extracellular vesicles (HLSC-EVs) have been reported to exhibit therapeutic properties in various disease models including acute kidney injury. In the present study, we aimed to investigate the effects of HLSC-EVs on tubular regeneration and interstitial fibrosis in an AA-induced mouse model of CKD. NSG mice were injected with HLSC-EVs 3 days after administering AA on a weekly basis for 4 weeks. Mice injected with AA significantly lost weight over the 4-week period. Deterioration in kidney function was also observed. Histology was performed to evaluate tubular necrosis, interstitial fibrosis, as well as infiltration of inflammatory cells/fibroblasts. Kidneys were also subjected to gene array analyses to evaluate regulation of microRNAs (miRNAs) and pro-fibrotic genes. The effect of HLSC-EVs was also tested in vitro to assess pro-fibrotic gene regulation in fibroblasts cocultured with AA pretreated tubular epithelial cells. Histological analyses showed that treatment with HLSC-EVs significantly reduced tubular necrosis, interstitial fibrosis, infiltration of CD45 cells and fibroblasts, which were all elevated during AA induced injury. At a molecular level, HLSC-EVs significantly inhibited the upregulation of the pro-fibrotic genes α-Sma, Tgfb1, and Col1a1 in vivo and in vitro. Fibrosis gene array analyses revealed an upregulation of 35 pro-fibrotic genes in AA injured mice. Treatment with HLSC-EVs downregulated 14 pro-fibrotic genes in total, out of which, 5 were upregulated in mice injured with AA. Analyses of the total mouse miRnome identified several miRNAs involved in the regulation of fibrotic pathways, which were found to be modulated post-treatment with HLSC-EVs. These results indicate that HLSC-EVs play a regenerative role in CKD possibly through the regulation of genes and miRNAs that are activated during the progression of the disease.
Collapse
Affiliation(s)
- Sharad Kholia
- Department of Medical Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, Torino, Italy.,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Torino, Torino, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Centre, University of Torino, Torino, Italy.,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Torino, Torino, Italy
| | - Elli Papadimitriou
- Molecular Biotechnology Centre, University of Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Maria Chiara Deregibus
- Molecular Biotechnology Centre, University of Torino, Torino, Italy.,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Torino, Torino, Italy
| | | | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
32
|
Vigneau C, Guebre-Egziabher F. [The future of kidney failure treatments]. SOINS; LA REVUE DE RÉFÉRENCE INFIRMIÈRE 2018; 63:49-51. [PMID: 29958584 DOI: 10.1016/j.soin.2018.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The future of nephrology lies in the miniaturisation of renal replacement techniques, the development of the use of stem cells and xenotransplants. Moreover, medicine must be personalised, from screening and throughout the care pathway of the patient with chronic kidney failure. Thereby, the risk of morbidity can be reduced and the quality of life improved, with the help of connected tools. The role of the patients themselves and all healthcare professionals is essential.
Collapse
Affiliation(s)
- Cécile Vigneau
- Service de néphrologie, CHU Pontchaillou, 2, rue Henri-Le Guilloux, 35033 Rennes, France.
| | | |
Collapse
|