1
|
Hamilton JL, Gianotti S, Fischer J, Fara GD, Impergre A, De Vecchi F, AbuAlia M, Fischer A, Markovics A, Wimmer MA. Electrophoretic Deposition of Gentamicin Into Titania Nanotubes Prevents Evidence of Infection in a Mouse Model of Periprosthetic Joint Infection. J Orthop Res 2025; 43:671-681. [PMID: 39741387 PMCID: PMC11970704 DOI: 10.1002/jor.26029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
Periprosthetic joint infection (PJI) is a leading cause and major complication of joint replacement failure. As opposed to standard-of-care systemic antibiotic prophylaxis for PJI, we developed and tested titanium femoral intramedullary implants with titania nanotubes (TNTs) coated with the antibiotic gentamicin and slow-release agent chitosan through electrophoretic deposition (EPD) in a mouse model of PJI. We hypothesized that these implants would enable local gentamicin delivery to the implant surface and surgical site, effectively preventing bacterial colonization. In the mouse PJI model, C57BL/6 mice received implants with TNTs coated with chitosan (chitosan group; control group) or with TNTs coated with chitosan and gentamicin (chitosan + gentamicin group; experimental group). Following implant placement, the surgical site was inoculated with 1 × 103 CFUs of Xen36 bioluminescent Staphylococcus aureus. All the mice in the chitosan group and none in the chitosan + gentamicin group had evidence of infection based on CFU analysis and bioluminescence imaging through the 14-day assessment postsurgery. Correspondingly, scanning electron microscopy analysis at the implant surface demonstrated bacterial biofilm only in the chitosan group. Furthermore, periosteal reaction and peri-implant bone loss at the femur were significantly reduced in the chitosan + gentamicin group. The chitosan + gentamicin group had reduced pain behavior, improved weight-bearing, and increased weight compared to the chitosan-control group. This study provides preclinical evidence supporting the efficacy of implants with TNTs coated with chitosan and gentamicin through EPD for preventing bacterial colonization and biofilm formation in a mouse model of PJI.
Collapse
Affiliation(s)
- John L. Hamilton
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sofia Gianotti
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Julia Fischer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Greta Della Fara
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Amandine Impergre
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Francesca De Vecchi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Mohammed AbuAlia
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Alfons Fischer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institute for Sustainable Materials, Duesseldorf, Germany
| | - Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Markus A. Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Cardoso GC, Correa DRN, Fosca M, Pometun EV, Antoniac IV, Grandini CR, Rau JV. Current Strategies in Developing Antibacterial Surfaces for Joint Arthroplasty Implant Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:173. [PMID: 39795818 PMCID: PMC11722469 DOI: 10.3390/ma18010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Prosthetic joint infections (PJIs) remain a significant challenge, occurring in 1% to 2% of joint arthroplasties and potentially leading to a 20% to 30% mortality rate within 5 years. The primary pathogens responsible for PJIs include Staphylococcus aureus, coagulase-negative staphylococci, and Gram-negative bacteria, typically treated with intravenous antibiotic drugs. However, this conventional approach fails to effectively eradicate biofilms or the microbial burden in affected tissues. As a result, innovative strategies are being explored to enhance the efficacy of infection prevention through the development of antibacterial-coated implants. These coatings are required to demonstrate broad-spectrum antimicrobial activity, minimal local and systemic toxicity, favorable cost-effectiveness, and support for bone healing. In the present review, the analysis of various methodologies for developing antibacterial coatings was performed, emphasizing studies that conducted in vivo tests to advance potential clinical applications. A diversity of techniques employed for the development of coatings incorporating antimicrobial agents highlights promising avenues for reducing infection-related surgical failures.
Collapse
Affiliation(s)
- Giovana Collombaro Cardoso
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17.033-360, SP, Brazil; (D.R.N.C.); (C.R.G.)
| | - Diego Rafael Nespeque Correa
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17.033-360, SP, Brazil; (D.R.N.C.); (C.R.G.)
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Evgenii V. Pometun
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, Moscow 119048, Russia;
| | - Iulian V. Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Carlos Roberto Grandini
- Laboratório de Anelasticidade e Biomateriais, UNESP—Universidade Estadual Paulista, Bauru 17.033-360, SP, Brazil; (D.R.N.C.); (C.R.G.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, Moscow 119048, Russia;
| |
Collapse
|
3
|
Kazemzadeh-Narbat M, Memic A, McGowan KB, Memic A, Tamayol A. Advances in antimicrobial orthopaedic devices and FDA regulatory challenges. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032002. [PMID: 39655841 DOI: 10.1088/2516-1091/ad5cb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 12/18/2024]
Abstract
Implant-associated infections, caused by the formation of biofilms especially antibiotic resistant organisms, are among the leading causes of orthopaedic implant failure. Current strategies to combat infection and biofilm focus on either inhibiting bacterial growth or preventing bacterial adherence that could lead to biofilm creation. Despite research on developing numerous antimicrobial orthopaedic devices, to date, no robust solution has been translated to the clinic. One of the key bottlenecks is the disconnect between researchers and regulatory agencies. In this review, we outline recent strategies for minimizing orthopaedic implant-associated infections. In addition, we discuss the relevant Food and Drug Administration regulatory perspectives, challenges. We also highlight emerging technologies and the directions the field that is expected to expand. We discuss in depth challenges that include identifying strategies that render implants antibacterial permanently or for a long period of time without the use of antimicrobial compounds that could generate resistance in pathogens and negatively impact osseointegration.
Collapse
Affiliation(s)
| | - Asija Memic
- College of Nursing, Wayne State University, Detroit, MI 48202, United States of America
| | - Kevin B McGowan
- MCRA LLC, 803 7th Street NW, Washington, DC 20001, United States of America
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| |
Collapse
|
4
|
Hart CM, Kelley BV, Mamouei Z, Turkmani A, Ralston M, Arnold M, Bernthal NM, Sassoon AA. Antibiotic calcium sulphate beads lower the bacterial burden and prevent infection in a mouse model of periprosthetic joint infection. Bone Joint J 2024; 106-B:632-638. [PMID: 38821510 DOI: 10.1302/0301-620x.106b6.bjj-2023-1175.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Aims Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. Methods A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Staphylococcus aureus. The bacterial burden was monitored using bioluminescence in vivo. All mice were killed on POD 21. Implants and soft-tissue were harvested and sonicated for analysis of the CFUs. Results The mean in vivo bioluminescence in the VB group was significantly lower on POD 8 and POD 10 compared with the other groups. There was a significant 1.3-log10 (95%) and 1.5-log10 (97%) reduction in mean soft-tissue CFUs in the VB group compared with the VP and IC groups (3.6 × 103 vs 7.0 × 104; p = 0.022; 3.6 × 103 vs 1.0 × 105; p = 0.007, respectively) at POD 21. There was a significant 1.6-log10 (98%) reduction in mean implant CFUs in the VB group compared with the IC group (1.3 × 100 vs 4.7 × 101, respectively; p = 0.038). Combined soft-tissue and implant infection was prevented in 10 of 19 mice (53%) in the VB group as opposed to 5 of 21 (24%) in the VP group, 3 of 15 (20%) in the IC group, and 0% in the SV group. Conclusion In our in vivo mouse model, antibiotic-releasing calcium sulphate beads appeared to outperform vancomycin powder alone in lowering the bacterial burden and preventing soft-tissue and implant infections.
Collapse
Affiliation(s)
- Christopher M Hart
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Benjamin V Kelley
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Amr Turkmani
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Micah Ralston
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michael Arnold
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Adam A Sassoon
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Kaspiris A, Vasiliadis E, Pantazaka E, Lianou I, Melissaridou D, Savvidis M, Panagopoulos F, Tsalimas G, Vavourakis M, Kolovos I, Savvidou OD, Pneumaticos SG. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep 2024; 16:298-316. [PMID: 38667751 PMCID: PMC11050497 DOI: 10.3390/idr16020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Ioanna Lianou
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Matthaios Savvidis
- Second Orthopedic Department, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Fotios Panagopoulos
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
6
|
Bredikhin M, Sawant S, Gross C, Antonio ELS, Borodinov N, Luzinov I, Vertegel A. Highly Adhesive Antimicrobial Coatings for External Fixation Devices. Gels 2023; 9:639. [PMID: 37623093 PMCID: PMC10453896 DOI: 10.3390/gels9080639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation.
Collapse
Affiliation(s)
- Mikhail Bredikhin
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Christopher Gross
- Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Erik L. S. Antonio
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Nikolay Borodinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Igor Luzinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| |
Collapse
|
7
|
Hoellwarth JS, Tetsworth K, Akhtar MA, Al Muderis M. Transcutaneous Osseointegration for Amputees: What Is It, How Did It Evolve, and What May Develop? CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023. [DOI: 10.1007/s40141-023-00376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Choi S, Lee H, Hong R, Jo B, Jo S. Application of Multi-Layered Temperature-Responsive Polymer Brushes Coating on Titanium Surface to Inhibit Biofilm Associated Infection in Orthopedic Surgery. Polymers (Basel) 2022; 15:polym15010163. [PMID: 36616511 PMCID: PMC9823637 DOI: 10.3390/polym15010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infection associated with biomedical implants remains the main cause of failure, leading to reoperation after orthopedic surgery. Orthopedic infections are characterized by microbial biofilm formation on the implant surface, which makes it challenging to diagnose and treat. One potential method to prevent and treat such complications is to deliver a sufficient dose of antibiotics at the onset of infection. This strategy can be realized by coating the implant with thermoregulatory polymers and triggering the release of antibiotics during the acute phase of infection. We developed a multi-layered temperature-responsive polymer brush (MLTRPB) coating that can release antibiotics once the temperature reaches a lower critical solution temperature (LCST). The coating system was developed using copolymers composed of diethylene glycol methyl ether methacrylate and 2-hydroxyethyl methacrylate by alternatively fabricating monomers layer by layer on the titanium surface. LCST was set to the temperature of 38-40 °C, a local temperature that can be reached during infection. The antibiotic elution characteristics were investigated, and the antimicrobial efficacy was tested against S. aureus species (Xen29 ATCC 29 213) using one to four layers of MLTRPB. Both in vitro and in vivo assessments demonstrated preventive effects when more than four layers of the coating were applied, ensuring promising antibacterial effects of the MLTRPB coating.
Collapse
Affiliation(s)
- Sookyung Choi
- School of Medicine, Chosun University Medical School, Gwangju 61452, Republic of Korea
| | - Hyeonjoon Lee
- Department of Orthopedic Surgery, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Ran Hong
- School of Medicine, Chosun University Medical School, Gwangju 61452, Republic of Korea
- Department of Pathology, Chosun University Hospital, Gwangju 61453, Republic of Korea
| | - Byungwook Jo
- School of Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Suenghwan Jo
- School of Medicine, Chosun University Medical School, Gwangju 61452, Republic of Korea
- Department of Orthopedic Surgery, Chosun University Hospital, Gwangju 61453, Republic of Korea
- Correspondence: ; Tel.: +82-62-220-3147
| |
Collapse
|
9
|
Smart Bacteria-Responsive Drug Delivery Systems in Medical Implants. J Funct Biomater 2022; 13:jfb13040173. [PMID: 36278642 PMCID: PMC9589986 DOI: 10.3390/jfb13040173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of implantable biomaterials, the rising risk of bacterial infections has drawn widespread concern. Due to the high recurrence rate of bacterial infections and the issue of antibiotic resistance, the common treatments of peri-implant infections cannot meet the demand. In this context, stimuli-responsive biomaterials have attracted attention because of their great potential to spontaneously modulate the drug releasing rate. Numerous smart bacteria-responsive drug delivery systems (DDSs) have, therefore, been designed to temporally and spatially release antibacterial agents from the implants in an autonomous manner at the infected sites. In this review, we summarized recent advances in bacteria-responsive DDSs used for combating bacterial infections, mainly according to the different trigger modes, including physical stimuli-responsive, virulence-factor-responsive, host-immune-response responsive and their combinations. It is believed that the smart bacteria-responsive DDSs will become the next generation of mainstream antibacterial therapies.
Collapse
|
10
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
11
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|
12
|
Iobst C, Bafor A, Gehred A, Chimutengwende-Gordon M. Future directions in the prevention of pin-site infection: A scoping review. JOURNAL OF LIMB LENGTHENING & RECONSTRUCTION 2022. [DOI: 10.4103/jllr.jllr_2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
14
|
Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials 2021; 278:121127. [PMID: 34564034 DOI: 10.1016/j.biomaterials.2021.121127] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
The success of total joint replacements has led to consistent growth in the use of arthroplasty in progressively younger patients. However, more than 10 percent of patients require revision surgeries due to implant failure caused by osteolytic loosening. These failures are classified as either aseptic or septic and are associated with the presence of particulate wear debris generated by mechanical action between implant components. Aseptic loosening results from chronic inflammation caused by activation of resident immune cells in contact with implant wear debris. In contrast, septic loosening is defined by the presence of chronic infection at the implant site. However, recent findings suggest that subclinical biofilms may be overlooked when evaluating the cause of implant failure, leading to a misdiagnosis of aseptic loosening. Many of the inflammatory pathways contributing to periprosthetic joint infections are also involved in bone remodeling and resorption. In particular, wear debris is increasingly implicated in the inhibition of the innate and adaptive immune response to resolve an infection or prevent hematogenous spread. This review examines the interconnectivity of wear particle- and infection-associated mechanisms of implant loosening, as well as biomaterials-based strategies to combat infection-related osteolysis.
Collapse
Affiliation(s)
- Nicholas A Hodges
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, 48109, USA; Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA.
| | - Eric M Sussman
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA.
| | - Jan P Stegemann
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Xi W, Hegde V, Zoller SD, Park HY, Hart CM, Kondo T, Hamad CD, Hu Y, Loftin AH, Johansen DO, Burke Z, Clarkson S, Ishmael C, Hori K, Mamouei Z, Okawa H, Nishimura I, Bernthal NM, Segura T. Point-of-care antimicrobial coating protects orthopaedic implants from bacterial challenge. Nat Commun 2021; 12:5473. [PMID: 34531396 PMCID: PMC8445967 DOI: 10.1038/s41467-021-25383-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Implant related infections are the most common cause of joint arthroplasty failure, requiring revision surgeries and a new implant, resulting in a cost of $8.6 billion annually. To address this problem, we created a class of coating technology that is applied in the operating room, in a procedure that takes less than 10 min, and can incorporate any desired antibiotic. Our coating technology uses an in situ coupling reaction of branched poly(ethylene glycol) and poly(allyl mercaptan) (PEG-PAM) polymers to generate an amphiphilic polymeric coating. We show in vivo efficacy in preventing implant infection in both post-arthroplasty infection and post-spinal surgery infection mouse models. Our technology displays efficacy with or without systemic antibiotics, the standard of care. Our coating technology is applied in a clinically relevant time frame, does not require modification of implant manufacturing process, and does not change the implant shelf life.
Collapse
Affiliation(s)
- Weixian Xi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Vishal Hegde
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Stephen D Zoller
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Howard Y Park
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Christopher M Hart
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Takeru Kondo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA, United States
| | - Christopher D Hamad
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Yan Hu
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Amanda H Loftin
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Daniel O Johansen
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Zachary Burke
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Samuel Clarkson
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Chad Ishmael
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Kellyn Hori
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA, United States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, University of California Los Angeles School of Dentistry, Los Angeles, CA, United States
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States.
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States.
- Department of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, United States.
| |
Collapse
|
16
|
Active rheumatoid arthritis in a mouse model is not an independent risk factor for periprosthetic joint infection. PLoS One 2021; 16:e0250910. [PMID: 34398899 PMCID: PMC8366981 DOI: 10.1371/journal.pone.0250910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Periprosthetic joint infection (PJI) represents a devastating complication of total joint arthroplasty associated with significant morbidity and mortality. Literature suggests a possible higher incidence of periprosthetic joint infection (PJI) in patients with rheumatoid arthritis (RA). There is, however, no consensus on this purported risk nor a well-defined mechanism. This study investigates how collagen-induced arthritis (CIA), a validated animal model of RA, impacts infectious burden in a well-established model of PJI. METHODS Control mice were compared against CIA mice. Whole blood samples were collected to quantify systemic IgG levels via ELISA. Ex vivo respiratory burst function was measured via dihydrorhodamine assay. Ex vivo Staphylococcus aureus Xen36 burden was measured directly via colony forming unit (CFU) counts and crystal violet assay to assess biofilm formation. In vivo, surgical placement of a titanium implant through the knee joint and inoculation with S. aureus Xen36 was performed. Bacterial burden was then quantified by longitudinal bioluminescent imaging. RESULTS Mice with CIA demonstrated significantly higher levels of systemic IgG compared with control mice (p = 0.003). Ex vivo, there was no significant difference in respiratory burst function (p = 0.89) or S. aureus bacterial burden as measured by CFU counts (p = 0.91) and crystal violet assay (p = 0.96). In vivo, no significant difference in bacterial bioluminescence between groups was found at all postoperative time points. CFU counts of both the implant and the peri-implant tissue were not significantly different between groups (p = 0.82 and 0.80, respectively). CONCLUSION This study demonstrated no significant difference in S. aureus infectious burden between mice with CIA and control mice. These results suggest that untreated, active RA may not represent a significant intrinsic risk factor for PJI, however further mechanistic translational and clinical studies are warranted.
Collapse
|
17
|
Greig D, Trikha R, Sekimura T, Cevallos N, Kelley BV, Mamouei Z, Yeaman MR, Bernthal NM. Platelet Deficiency Represents a Modifiable Risk Factor for Periprosthetic Joint Infection in a Preclinical Mouse Model. J Bone Joint Surg Am 2021; 103:1016-1025. [PMID: 33877055 PMCID: PMC10364842 DOI: 10.2106/jbjs.20.01428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Well known for their hemostatic function, platelets are increasingly becoming recognized as important immunomodulators. The purpose of the present study was to assess the impact of platelet depletion on antimicrobial host defense in a mouse model of periprosthetic joint infection (PJI). METHODS Thrombocytopenia (TCP) was induced in C57BL/6 mice with use of a selective antibody against platelet CD41 (anti-CD41). Whole blood from pre-treated mice was incubated with Staphylococcus aureus to assess antimicrobial efficacy with use of bioluminescent imaging, quantitative histological staining, and colony forming unit (CFU) quantification. In parallel, untreated heterologous platelets were added to TCP blood to assess potential rescue of antimicrobial efficacy. In vivo, TCP and control mice underwent placement of a titanium implant in the femur inoculated with bioluminescent Xen36 S. aureus. Longitudinal bioluminescent imaging was performed postoperatively to quantify the evolution of bacterial burden, which was confirmed via assessment of S. aureus CFUs on the implant and in peri-implant tissue on postoperative day (POD) 28. RESULTS Anti-CD41 treatment resulted in significant dose-dependent reductions in platelet count. Ex vivo, platelet-depleted whole blood demonstrated significantly less bacterial reduction than control blood. These outcomes were reversed with the addition of untreated rescue platelets. In vivo, infection burden was significantly higher in TCP mice and was inversely correlated with preoperative platelet count (r2 = 0.63, p = 0.037). Likewise, CFU quantification on POD28 was associated with increased bacterial proliferation and severity of periprosthetic infection in TCP mice compared with controls. CONCLUSIONS Thrombocytopenia resulted in an increased bacterial burden both ex vivo and in vivo in a mouse model of PJI. CLINICAL RELEVANCE In orthopaedic patients, deficiencies in platelet quantity or function represent an easily modifiable risk factor for PJI.
Collapse
Affiliation(s)
- Danielle Greig
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Rishi Trikha
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Troy Sekimura
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Benjamin V Kelley
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Zeinab Mamouei
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| | - Michael R Yeaman
- Divisions of Molecular Medicine and Infectious Diseases, Department of Medicine, and The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, University of California Los Angeles, Santa Monica, California
| |
Collapse
|
18
|
Pellegrini A, Legnani C. High rate of infection eradication following cementless one-stage revision hip arthroplasty with an antibacterial hydrogel coating. Int J Artif Organs 2021; 45:113-117. [PMID: 33594902 DOI: 10.1177/0391398821995507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE We conducted a retrospective study to evaluate the outcomes of one-stage revision total hip arthroplasty (THA) following periprosthetic joint infection (PJI) in terms of eradication of the infection, improvement of pain and joint function. We hypothesized that this treatment strategy could lead to satisfying results in selected patients after preoperative microorganism isolation. METHODS Ten patients underwent cementless one-stage revision hip arthroplasty with antibacterial hydrogel coating for the treatment of an infected THA. Inclusion criteria were: the presence of a known organism with known sensitivity, patients non-immunocompromised with healthy soft tissues with minimal or moderate bone loss. Mean age at surgery was 69.4 years. Assessment included objective examination, Harris hip score, visual analog scale pain score, standard X-rays. RESULTS At a mean follow-up of 3.1 years (range, 2-5 years), none of the patients had clinical or radiographic signs suggesting recurrent infection. Follow-up examination showed significant improvement of all variables compared to pre-operative values (p < 0.05). Radiographs did not show progressive radiolucent lines or change in the position of the implant. CONCLUSIONS One-stage revision THA with antibacterial hydrogel coated implants represents a safe and effective procedure providing infection eradication and satisfying subjective functional outcomes in selected patients.
Collapse
Affiliation(s)
- Antonio Pellegrini
- IRCCS Istituto Ortopedico Galeazzi, Reconstructive Surgery and Septic Complications Surgery Center, Milan, Italy
| | - Claudio Legnani
- IRCCS Istituto Ortopedico Galeazzi, Sport Traumatology and Minimally-Invasive Articular Surgery Center, Milan, Italy
| |
Collapse
|
19
|
Sheppard WL, Mosich GM, Smith RA, Hamad CD, Park HY, Zoller SD, Trikha R, McCoy TK, Borthwell R, Hoang J, Truong N, Cevallos N, Clarkson S, Hori KR, van Dijl JM, Francis KP, Petrigliano FA, Bernthal NM. Novel in vivo mouse model of shoulder implant infection. J Shoulder Elbow Surg 2020; 29:1412-1424. [PMID: 32014357 PMCID: PMC11037115 DOI: 10.1016/j.jse.2019.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Animal models are used to guide management of periprosthetic implant infections. No adequate model exists for periprosthetic shoulder infections, and clinicians thus have no preclinical tools to assess potential therapeutics. We hypothesize that it is possible to establish a mouse model of shoulder implant infection (SII) that allows noninvasive, longitudinal tracking of biofilm and host response through in vivo optical imaging. The model may then be employed to validate a targeting probe (1D9-680) with clinical translation potential for diagnosing infection and image-guided débridement. METHODS A surgical implant was press-fit into the proximal humerus of c57BL/6J mice and inoculated with 2 μL of 1 × 103 (e3), or 1 × 104 (e4), colony-forming units (CFUs) of bioluminescent Staphylococcus aureus Xen-36. The control group received 2 μL sterile saline. Bacterial activity was monitored in vivo over 42 days, directly (bioluminescence) and indirectly (targeting probe). Weekly radiographs assessed implant loosening. CFU harvests, confocal microscopy, and histology were performed. RESULTS Both inoculated groups established chronic infections. CFUs on postoperative day (POD) 42 were increased in the infected groups compared with the sterile group (P < .001). By POD 14, osteolysis was visualized in both infected groups. The e4 group developed catastrophic bone destruction by POD 42. The e3 group maintained a congruent shoulder joint. Targeting probes helped to visualize low-grade infections via fluorescence. DISCUSSION Given bone destruction in the e4 group, a longitudinal, noninvasive mouse model of SII and chronic osteolysis was produced using e3 of S aureus Xen-36, mimicking clinical presentations of chronic SII. CONCLUSION The development of this model provides a foundation to study new therapeutics, interventions, and host modifications.
Collapse
Affiliation(s)
- William L Sheppard
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Gina M Mosich
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Ryan A Smith
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher D Hamad
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Stephen D Zoller
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Rishi Trikha
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Tatiana K McCoy
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Borthwell
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Hoang
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicole Truong
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicolas Cevallos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samuel Clarkson
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kellyn R Hori
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kevin P Francis
- Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA; PerkinElmer, Hopkinton, MA, USA
| | - Frank A Petrigliano
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA
| | - Nicholas M Bernthal
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Orthopedic Surgery, University of California, Los Angeles, Santa Monica, CA, USA.
| |
Collapse
|
20
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
21
|
A multifaceted biomimetic interface to improve the longevity of orthopedic implants. Acta Biomater 2020; 110:266-279. [PMID: 32344174 DOI: 10.1016/j.actbio.2020.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 01/22/2023]
Abstract
The rise of additive manufacturing has provided a paradigm shift in the fabrication of precise, patient-specific implants that replicate the physical properties of native bone. However, eliciting an optimal biological response from such materials for rapid bone integration remains a challenge. Here we propose for the first time a one-step ion-assisted plasma polymerization process to create bio-functional 3D printed titanium (Ti) implants that offer rapid bone integration. Using selective laser melting, porous Ti implants with enhanced bone-mimicking mechanical properties were fabricated. The implants were functionalized uniformly with a highly reactive, radical-rich polymeric coating generated using a unique combination of plasma polymerization and plasma immersion ion implantation. We demonstrated the performance of such activated Ti implants with a focus on the coating's homogeneity, stability, and biological functionality. It was shown that the optimized coating was highly robust and possessed superb physico-chemical stability in a corrosive physiological solution. The plasma activated coating was cytocompatible and non-immunogenic; and through its high reactivity, it allowed for easy, one-step covalent immobilization of functional biomolecules in the absence of solvents or chemicals. The activated Ti implants bio-functionalized with bone morphogenetic protein 2 (BMP-2) showed a reduced protein desorption and a more sustained osteoblast response both in vitro and in vivo compared to implants modified through conventional physisorption of BMP-2. The versatile new approach presented here will enable the development of bio-functionalized additively manufactured implants that are patient-specific and offer improved integration with host tissue. STATEMENT OF SIGNIFICANCE: Additive manufacturing has revolutionized the fabrication of patient-specific orthopedic implants. Although such 3D printed implants can show desirable mechanical and mass transport properties, they often require surface bio-functionalities to enable control over the biological response. Surface covalent immobilization of bioactive molecules is a viable approach to achieve this. Here we report the development of additively manufactured titanium implants that precisely replicate the physical properties of native bone and are bio-functionalized in a simple, reagent-free step. Our results show that covalent attachment of bone-related growth factors through ion-assisted plasma polymerized interlayers circumvents their desorption in physiological solution and significantly improves the bone induction by the implants both in vitro and in vivo.
Collapse
|
22
|
Alt V, Chen AF. Antimicrobial coatings for orthopaedic implants - Ready for use? J Bone Jt Infect 2020; 5:125-127. [PMID: 32566450 PMCID: PMC7295647 DOI: 10.7150/jbji.46508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Antonia F. Chen
- Department of Orthopaedic Surgery at Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
23
|
Abstract
STUDY DESIGN A controlled, interventional animal study. OBJECTIVE Spinal implant infection (SII) is a devastating complication. The objective of this study was to evaluate the efficacy of a novel implant coating that has both a passive antibiotic elution and an active-release mechanism triggered in the presence of bacteria, using an in vivo mouse model of SII. SUMMARY OF BACKGROUND DATA Current methods to minimize the frequency of SII include local antibiotic therapy (vancomycin powder), betadine irrigation, silver nanoparticles, and passive release from antibiotic-loaded poly(methyl methacrylate) cement beads, all of which have notable weaknesses. A novel implant coating has been developed to address some of these limitations but has not been tested in the environment of a SII. METHODS A biodegradable coating using branched poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) polymer was designed to deliver antibiotics. The in vivo performance of this coating was tested in the delivery of either vancomycin or tigecycline in a previously established mouse model of SII. Noninvasive bioluminescence imaging was used to quantify the bacterial burden, and implant sonication was used to determine bacterial colony-forming units (CFUs) from the implant and surrounding bone and soft tissue. RESULTS The PEG-PPS-vancomycin coating significantly lowered the infection burden from postoperative day 3 onwards (P < 0.05), whereas PEG-PPS-tigecycline only decreased the infection on postoperative day 5 to 10 (P < 0.05). CFUs were lower on PEG-PPS-vancomycin pins than PEG-PPS-tigecycline and PEG-PPS pins alone on both the implants (2.4 × 10, 8.5 × 10, and 1.0 × 10 CFUs, respectively) and surrounding bone and soft tissue (1.3 × 10, 4.8 × 10, and 5.4 × 10 CFUs, respectively) (P < 0.05). CONCLUSION The biodegradable PEG-PPS coating demonstrates promise in decreasing bacterial burden and preventing SII. The vancomycin coating outperformed the tigecycline coating in this model compared to prior work in arthroplasty models, highlighting the uniqueness of the paraspinal infection microenvironment. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Archer NK, Wang Y, Ortines RV, Liu H, Nolan SJ, Liu Q, Alphonse MP, Dikeman DA, Mazhar M, Miller RJ, Anderson LS, Francis KP, Simon SI, Miller LS. Preclinical Models and Methodologies for Monitoring Staphylococcus aureus Infections Using Noninvasive Optical Imaging. Methods Mol Biol 2020; 2069:197-228. [PMID: 31523776 PMCID: PMC7745539 DOI: 10.1007/978-1-4939-9849-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.
Collapse
Affiliation(s)
- Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabrina J Nolan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leif S Anderson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | | | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
25
|
Controlled Release of Vancomycin and Tigecycline from an Orthopaedic Implant Coating Prevents Staphylococcus aureus Infection in an Open Fracture Animal Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1638508. [PMID: 31915682 PMCID: PMC6930786 DOI: 10.1155/2019/1638508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 01/20/2023]
Abstract
Introduction Treatment of open fractures routinely involves multiple surgeries and delayed definitive fracture fixation because of concern for infection. If implants were made less susceptible to infection, a one-stage procedure with intramedullary nailing would be more feasible, which would reduce morbidity and improve outcomes. Methods In this study, a novel open fracture mouse model was developed using Staphylococcus aureus (S. aureus) and single-stage intramedullary fixation. The model was used to evaluate whether implants coated with a novel “smart” polymer coating containing vancomycin or tigecycline would be colonized by bacteria in an open fracture model infected with S. aureus. In vivo bioluminescence, ex vivo CFUs, and X-ray images were evaluated over a 42-day postoperative period. Results We found evidence of a markedly decreased bacterial burden with the local release of vancomycin and tigecycline from the PEG-PPS polymer compared to polymer alone. Vancomycin was released in a controlled fashion and maintained local drug concentrations above the minimum inhibition concentration for S. aureus for greater than 7 days postoperatively. Bacteria were reduced 139-fold from implants containing vancomycin and undetected from the bone and soft tissue. Tigecycline coatings led to a 5991-fold reduction in bacteria isolated from bone and soft tissue and 15-fold reduction on the implants compared to polymer alone. Antibiotic coatings also prevented osteomyelitis and implant loosening as observed on X-ray. Conclusion Vancomycin and tigecycline can be encapsulated in a polymer coating and released over time to maintain therapeutic levels during the perioperative period. Our results suggest that antibiotic coatings can be used to prevent implant infection and osteomyelitis in the setting of open fracture. This novel open fracture mouse model can be used as a powerful in vivo preclinical tool to evaluate and optimize the treatment of open fractures before further studies in humans.
Collapse
|
26
|
Thompson JM, Miller LS. Preclinical Optical Imaging to Study Pathogenesis, Novel Therapeutics and Diagnostics Against Orthopaedic Infection. J Orthop Res 2019; 37:2269-2277. [PMID: 31342546 DOI: 10.1002/jor.24428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Preclinical in vivo optical imaging includes bioluminescence imaging (BLI) and fluorescence imaging (FLI), which provide noninvasive and longitudinal monitoring of biological processes in an in vivo context. In vivo BLI involves the detection of photons of light from bioluminescent bacteria engineered to naturally emit light in preclinical animal models of infection. Meanwhile, in vivo FLI involves the detection of photons of a longer emission wavelength of light after exposure of a fluorophore to a shorter excitation wavelength of light. In vivo FLI has been used in preclinical animal models to detect fluorescent-labeled host proteins or cells (often in engineered fluorescent reporter mice) to understand host-related processes, or to detect injectable near-infrared fluorescent probes as a novel approach for diagnosing infection. This review describes the use of in vivo optical imaging in preclinical models of orthopaedic implant-associated infection (OIAI), including (i) pathogenesis of the infectious course, (ii) monitoring efficacy of antimicrobial prophylaxis and therapy and (iii) evaluating novel near-infrared fluorescent probes for diagnosing infection. Finally, we describe optoacoustic imaging and fluorescence image-guided surgery, which are recent technologies that have the potential to translate to diagnosing and treating OIAI in humans. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2269-2277, 2019.
Collapse
Affiliation(s)
- John M Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
| | - Lloyd S Miller
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| |
Collapse
|
27
|
Tschon M, Sartori M, Contartese D, Giavaresi G, Aldini NN, Fini M. Use of Antibiotic Loaded Biomaterials for the Management of Bone Prosthesis Infections: Rationale and Limits. Curr Med Chem 2019; 26:3150-3174. [PMID: 29189125 DOI: 10.2174/0929867325666171129220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Periprosthetic joint infection still represents a challenging issue for the orthopedic community. In the United States approximately a million joint arthroplasties are performed each year, with infection rates ranging from 1 to 2%: revisions has significant implications on health care costs and appropriate resource management. The use of locally applied antibiotics as a prophylaxis measure or as a component of the therapeutic approach in primary or revision surgery is finalized at eliminating any microorganism and strengthening the effectiveness of systemic therapy. OBJECTIVE The present review of clinical and preclinical in vivo studies tried to identify advantages and limitations of the materials used in the clinical orthopedic practice and discuss developed biomaterials, innovative therapeutic approaches or strategies to release antibiotics in the infected environment. METHODS A systematic search was carried out by two independent observers in two databases (www.pubmed.com and www.scopus.com) in order to identify pre-clinical and clinical reports in the last 10 years. RESULTS 71 papers were recognized eligible: 15 articles were clinical studies and 56 in vivo studies. CONCLUSION Polymethylmethacrylate was the pioneer biomaterial used to manage infections after total joint replacement. Despite its widespread use, several issues still remain debated: the methods to combine materials and antibiotics, the choice of antibiotics, releasing kinetics and antibiotics efficacy. In the last years, the interest was directed towards the selection of different antibiotics, loaded in association with more than only one class and biomaterials with special focus on delivery systems as implant surface coatings, hydrogels, ceramics, micro-carriers, microspheres or nanoparticles.
Collapse
Affiliation(s)
- M Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Istituto Ortopedico Rizzoli - RIT Department, via di Barbiano 1/10, 40136, Bologna, Italy
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
28
|
Deng W, Shao H, Li H, Zhou Y. Is surface modification effective to prevent periprosthetic joint infection? A systematic review of preclinical and clinical studies. Orthop Traumatol Surg Res 2019; 105:967-974. [PMID: 31227461 DOI: 10.1016/j.otsr.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND With increasing recognition of the importance of biofilm formation in the pathogenesis of periprosthetic joint infection (PJI), a push towards finding solutions to prevent PJI via surface modification of prostheses is occurring. Unlike the promising in vitro antimicrobial effects of these surface modifications, the preclinical and clinical prophylactic effects vary and are debated. Therefore, we performed this systematic review to answer: (1) what kinds of methods of surface modification are used in preclinical and clinical studies to prevent PJI, (2) whether these modifications are effective to prevent PJI. METHODS Electronic searches were performed using PubMed, Embase and the Cochrane library databases up to and including December 2017 with predetermined criteria: (1) in vivo studies with (2) surface modification for prophylactic effects against infection. Both animal studies and clinical trials were included. Data were extracted and presented systematically. RESULTS Overall, 21 studies were included. Among these, fourteen were carried out in animal models and seven were clinical studies. In the animal studies, six used antibiotics and six silver modifications, while copper and Cationic Steroidal Antimicrobial-13 were each used for one study. In the seven clinical studies targeting patients with high infection risk, five of them focused on silver-coated prostheses and the remaining two studied iodine-coated implants. In all of the animal studies, when compared with the control group, the surface modified groups had a lower infection risk (RR ranging from 0 to 0.71). Clinical studies using silver-coated prostheses also demonstrated a lower infection risk (RR ranging from 0.24 to 0.70), while iodine-coated implants showed a 0% and 5% incidence of PJI in the two case series included. DISCUSSION The results from the publications included in this review indicate that surface modification, especially antibiotic and silver modifications, are helpful preventing PJI in both preclinical animal models and in clinical trials. LEVEL OF EVIDENCE III, systematic review of level III retrospective comparative studies and level IV case series and animal experiments.
Collapse
Affiliation(s)
- Wang Deng
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Hongyi Shao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Hua Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Yixin Zhou
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China.
| |
Collapse
|
29
|
Abstract
Implants and their technological advances have been a critical component of musculoskeletal care for almost a century. Modern implants are designed to enhance bone ingrowth, promote soft-tissue healing, and prevent infection. Porous metals and short-stem fixation devices have rendered previously unreconstructable bony deficits reconstructable. Stem cells, growth factors, and novel biocompatible compounds have been designed to promote and enhance soft tissue attachment to implants. Antimicrobial modifications have been engineered onto implants to deter bacterial attachment, and innovative surface modifications and eluting technologies may be in our near future. Yet, given the enormous economic pressures in orthopaedics, marketing claims of innovation often exceed scientific accomplishment. Vigilance is thus required in distinguishing transformational discovery from unsubstantiated claims.
Collapse
|
30
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
31
|
Miller RJ, Thompson JM, Zheng J, Marchitto MC, Archer NK, Pinsker BL, Ortines RV, Jiang X, Martin RA, Brown ID, Wang Y, Sterling RS, Mao HQ, Miller LS. In Vivo Bioluminescence Imaging in a Rabbit Model of Orthopaedic Implant-Associated Infection to Monitor Efficacy of an Antibiotic-Releasing Coating. J Bone Joint Surg Am 2019; 101:e12. [PMID: 30801375 PMCID: PMC6738548 DOI: 10.2106/jbjs.18.00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In vivo bioluminescence imaging (BLI) provides noninvasive monitoring of bacterial burden in animal models of orthopaedic implant-associated infection (OIAI). However, technical limitations have limited its use to mouse and rat models of OIAI. The goal of this study was to develop a larger, rabbit model of OIAI using in vivo BLI to evaluate the efficacy of an antibiotic-releasing implant coating. METHODS A nanofiber coating loaded with or without linezolid-rifampin was electrospun onto a surgical-grade locking peg. To model OIAI in rabbits, a medial parapatellar arthrotomy was performed to ream the femoral canal, and a bright bioluminescent methicillin-resistant Staphylococcus aureus (MRSA) strain was inoculated into the canal, followed by retrograde insertion of the coated implant flush with the articular surface. In vivo BLI signals were confirmed by ex vivo colony-forming units (CFUs) from tissue, bone, and implant specimens. RESULTS In this rabbit model of OIAI (n = 6 rabbits per group), implants coated without antibiotics were associated with significantly increased knee width and in vivo BLI signals compared with implants coated with linezolid-rifampin (p < 0.001 and p < 0.05, respectively). On day 7, the implants without antibiotics were associated with significantly increased CFUs from tissue (mean [and standard error of the mean], 1.4 × 10 ± 2.1 × 10 CFUs; p < 0.001), bone (6.9 × 10 ± 3.1 × 10 CFUs; p < 0.05), and implant (5.1 × 10 ± 2.2 × 10 CFUs; p < 0.05) specimens compared with implants with linezolid-rifampin, which demonstrated no detectable CFUs from any source. CONCLUSIONS By combining a bright bioluminescent MRSA strain with modified techniques, in vivo BLI in a rabbit model of OIAI demonstrated the efficacy of an antibiotic-releasing coating. CLINICAL RELEVANCE The new capability of in vivo BLI for noninvasive monitoring of bacterial burden in larger-animal models of OIAI may have important preclinical relevance.
Collapse
Affiliation(s)
- Robert J. Miller
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M. Thompson
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesse Zheng
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Mark C. Marchitto
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathan K. Archer
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bret L. Pinsker
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger V. Ortines
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xuesong Jiang
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Russell A. Martin
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Isabelle D. Brown
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yu Wang
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert S. Sterling
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hai-Quan Mao
- Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| | - Lloyd S. Miller
- Departments of Dermatology (R.J.M., M.C.M., N.K.A., B.L.P., R.V.O., I.D.B., Y.W., and L.S.M.) and Orthopaedic Surgery (J.M.T., R.S.S., and L.S.M.) and Division of Infectious Diseases, Department of Medicine (L.S.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland,Departments of Biomedical Engineering (J.Z.) and Materials Science and Engineering (X.J., R.A.M., H.-Q.M., and L.S.M.), Translational Tissue Engineering Center (X.J., R.A.M., H.-Q.M., and L.S.M.), Institute for NanoBioTechnology (X.J., R.A.M., and H.-Q.M.), and Whitaker Biomedical Engineering Institute (H.-Q.M.), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
32
|
Bargon R, Bruenke J, Carli A, Fabritius M, Goel R, Goswami K, Graf P, Groff H, Grupp T, Malchau H, Mohaddes M, Novaes de Santana C, Phillips KS, Rohde H, Rolfson O, Rondon A, Schaer T, Sculco P, Svensson K. General Assembly, Research Caveats: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S245-S253.e1. [PMID: 30348560 DOI: 10.1016/j.arth.2018.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
33
|
Thompson JM, Miller RJ, Ashbaugh AG, Dillen CA, Pickett JE, Wang Y, Ortines RV, Sterling RS, Francis KP, Bernthal NM, Cohen TS, Tkaczyk C, Yu L, Stover CK, DiGiandomenico A, Sellman BR, Thorek DL, Miller LS. Mouse model of Gram-negative prosthetic joint infection reveals therapeutic targets. JCI Insight 2018; 3:121737. [PMID: 30185667 DOI: 10.1172/jci.insight.121737] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022] Open
Abstract
Bacterial biofilm infections of implantable medical devices decrease the effectiveness of antibiotics, creating difficult-to-treat chronic infections. Prosthetic joint infections (PJI) are particularly problematic because they require prolonged antibiotic courses and reoperations to remove and replace the infected prostheses. Current models to study PJI focus on Gram-positive bacteria, but Gram-negative PJI (GN-PJI) are increasingly common and are often more difficult to treat, with worse clinical outcomes. Herein, we sought to develop a mouse model of GN-PJI to investigate the pathogenesis of these infections and identify potential therapeutic targets. An orthopedic-grade titanium implant was surgically placed in the femurs of mice, followed by infection of the knee joint with Pseudomonas aeruginosa or Escherichia coli. We found that in vitro biofilm-producing activity was associated with the development of an in vivo orthopedic implant infection characterized by bacterial infection of the bone/joint tissue, biofilm formation on the implants, reactive bone changes, and inflammatory immune cell infiltrates. In addition, a bispecific antibody targeting P. aeruginosa virulence factors (PcrV and Psl exopolysaccharide) reduced the bacterial burden in vivo. Taken together, our findings provide a preclinical model of GN-PJI and suggest the therapeutic potential of targeting biofilm-associated antigens.
Collapse
Affiliation(s)
| | | | | | | | - Julie E Pickett
- Department of Radiology and Radiological Sciences, Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Wang
- Department of Dermatology, and
| | | | | | - Kevin P Francis
- PerkinElmer, Hopkinton, Massachusetts, USA.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | | | | | - Li Yu
- Statistical Sciences, MedImmune, Gaithersburg, Maryland, USA
| | | | | | | | - Daniel Lj Thorek
- Department of Radiology and Radiological Sciences, Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cancer Molecular and Functional Imaging Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| | - Lloyd S Miller
- Department of Orthopaedic Surgery.,Department of Dermatology, and.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Abstract
Limb salvage is widely practiced as standard of care in most cases of extremity bone sarcoma. Allograft and endoprosthesis reconstructions are the most widely utilized modalities for the reconstruction of large segment defects, however complication rates remain high. Aseptic loosening and infection remain the most common modes of failure. Implant integration, soft-tissue function, and infection prevention are crucial for implant longevity and function. Macro and micro alterations in implant design are reviewed in this manuscript. Tissue engineering principles using nanoparticles, cell-based, and biological augments have been utilized to develop implant coatings that improve osseointegration and decrease infection. Similar techniques have been used to improve the interaction between soft tissues and implants. Tissue engineered constructs (TEC) used in combination with, or in place of, traditional reconstructive techniques may represent the next major advancement in orthopaedic oncology reconstructive science, although preclinical results have yet to achieve durable translation to the bedside.
Collapse
|
35
|
Mi G, Shi D, Wang M, Webster TJ. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv Healthc Mater 2018; 7:e1800103. [PMID: 29790304 DOI: 10.1002/adhm.201800103] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Indexed: 02/02/2023]
Abstract
With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic-resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles, have been increasingly exploited as both efficient antimicrobials themselves or as delivery platforms to enhance the effectiveness of existing antibiotics. In addition to the emergence of widespread antibiotic resistance, of equal concern are implantable device-associated infections, which result from bacterial adhesion and subsequent biofilm formation at the site of implantation. The ineffectiveness of conventional antibiotics against these biofilms often leads to revision surgery, which is both debilitating to the patient and expensive. Toward this end, micro- and nanotopographies, especially those that resemble natural surfaces, and nonfouling chemistries represent a promising combination for long-term antibacterial activity. Collectively, the use of nanoparticles and nanostructured surfaces to combat bacterial growth and infections is a promising solution to the growing problem of antibiotic resistance and biofilm-related device infections.
Collapse
Affiliation(s)
- Gujie Mi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Di Shi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Mian Wang
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Thomas J. Webster
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| |
Collapse
|
36
|
Jackson R, Patrick PS, Page K, Powell MJ, Lythgoe MF, Miodownik MA, Parkin IP, Carmalt CJ, Kalber TL, Bear JC. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation. ACS OMEGA 2018; 3:4342-4351. [PMID: 29732454 PMCID: PMC5928486 DOI: 10.1021/acsomega.8b00219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.
Collapse
Affiliation(s)
- Richard
J. Jackson
- UCL
Healthcare Biomagnetics Laboratory, The
Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, U.K.
| | - P. Stephen Patrick
- Centre
for Advanced Biomedical Imaging (CABI), Department of Medicine and
Institute of Child Health, University College
London, London WC1E 6DD, U.K.
| | - Kristopher Page
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Michael J. Powell
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Mark F. Lythgoe
- Centre
for Advanced Biomedical Imaging (CABI), Department of Medicine and
Institute of Child Health, University College
London, London WC1E 6DD, U.K.
| | - Mark A. Miodownik
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Ivan P. Parkin
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Claire J. Carmalt
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Tammy L. Kalber
- Centre
for Advanced Biomedical Imaging (CABI), Department of Medicine and
Institute of Child Health, University College
London, London WC1E 6DD, U.K.
| | - Joseph C. Bear
- School
of Life Science, Pharmacy & Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, U.K.
| |
Collapse
|
37
|
Chen AF, Nana AD, Nelson SB, McLaren A. What's New in Musculoskeletal Infection: Update Across Orthopaedic Subspecialties. J Bone Joint Surg Am 2017; 99:1232-1243. [PMID: 28719563 DOI: 10.2106/jbjs.17.00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Antonia F Chen
- 1Rothman Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 2John Peter Smith Hospital, Fort Worth, Texas 3Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 4University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona
| | | | | | | |
Collapse
|