1
|
Hammad M, Oktarina A, Suhardi VJ, Thomson A, Li Q, Döring K, Augustin EJ, Ivashkiv LB, Carli AV, Bostrom MPG, Yang X. Effects of antiseptic irrigation solutions on osseointegration in a cementless tibial implantation mouse model. J Orthop Res 2024; 42:2852-2862. [PMID: 39017392 DOI: 10.1002/jor.25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Despite the success of standard antiseptic irrigation solutions in reducing periprosthetic joint infection (PJI) rates, there is still a need for more effective solutions. Synergistic use of povidone-iodine (PI) and hydrogen peroxide (H2O2) has shown promising results; however, the optimal solution concentration balancing bactericidal activity and osseointegration remains unknown. This study aims to evaluate the impact of these antiseptic irrigation solutions on osseointegration and the bone-implant interface strength in vivo. Forty C57BL/6 mice underwent bilateral tibial implantation surgery and were randomly allocated into three groups receiving 0.3% PI, 10% PI mixed with 3% H2O2, or saline as irrigation solutions intraoperatively. Assessments were performed on postoperative Days 1 and 28, including plain radiographs, microcomputed tomography (microCT) evaluation, histological analysis, immunohistochemistry, and biomechanical pull-out testing. No wound complications were observed. MicroCT scans revealed no differences in peri-implant trabecular bone parameters. Biomechanical pull-out testing showed no differences in the bone-implant interface strength across groups. Histological analysis indicated no differences in bone and bone marrow percentage areas among treatment groups. Immunohistochemical analysis demonstrated no differences among groups in peri-implant osteocalcin, osterix, or endomucin-positive cells. In conclusion, using either antiseptic irrigation solution showed no differences in osseointegration parameters compared to the control group, demonstrating safety and the absence of toxicity. CLINICAL RELEVANCE: Dilute 0.3% povidone-iodine and a 1:1 combination of 10% povidone-iodine mixed with 3% hydrogen peroxide can be safely used during primary and revision total joint arthroplasty without compromising osseointegration or causing wound complications.
Collapse
Affiliation(s)
- Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Vincentius J Suhardi
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, USA
| | - Kevin Döring
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Edouard J Augustin
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Alberto V Carli
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Mathias P G Bostrom
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
| |
Collapse
|
2
|
Suhardi V, Oktarina A, Niu Y, Sosa B, Retzky J, Greenblatt M, Ivashkiv L, Bostrom M, Yang X. A Murine Model of Non-Wear-Particle-Induced Aseptic Loosening. Biomimetics (Basel) 2024; 9:673. [PMID: 39590245 PMCID: PMC11592190 DOI: 10.3390/biomimetics9110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The current murine models of peri-implant osseointegration failure are associated with wear particles. However, the current clinical osseointegration failure is not associated with wear particles. Here, we develop a murine model of osseointegration failure not associated with wear particles and validate it by comparing the cellular composition of interfacial tissues with human samples collected during total joint arthroplasty revision for aseptic loosening. MATERIALS AND METHODS Thirty-two 16-week-old female C57BL/6 mice underwent implantation with a press-fitted roughened titanium implant (Control, n = 11) to induce normal osseointegration and a press-fitted smooth polymethylmethacrylate implant (PMMA, n = 11), a loosely fitted smooth titanium implant (Smooth-Ti, n = 5) or a loosely fitted roughened titanium implant (Overdrill, n = 5) to induce osseointegration failure. Pullout testing was used to determine the strength of the bone-implant interface (n = 6 of each for Control and PMMA groups) at 2 weeks after implantation. Histology (n = 2/group) and immunofluorescence (n = 3/group) were used to determine the cellular composition of bone-implant interfacial tissue, and this was compared with two human samples. RESULTS Osseointegration failure was confirmed with grossly loosening implants and the presence of fibrous tissue identified via histology. The maximum pullout load in the PMMA group was 87% lower than in the Control group (2.8 ± 0.6 N vs. 21 ± 1.5 N, p < 0.001). With immunofluorescence, abundant fibroblasts (PDGFRα+ TCF4+ and PDGFRα+ Pu1+) were observed in osseointegration failure groups and the human samples, but not in controls. Interestingly, CD146+PDGFRα+ and LepR+PDGFRα+ mesenchymal progenitors, osteoblasts (OPN+), vascular endothelium (EMCN+) cells were observed in all groups, indicating dynamic osteogenic activity. Macrophages, only M2, were observed in conditions producing fibrous tissue. CONCLUSIONS In this newly developed non-wear-particle-related murine osseointegration failure model, the cellular composition of human and murine interfacial tissue implicates specific populations of fibroblasts in fibrous tissue formation and implies that these cells may derive from mesenchymal stem cells.
Collapse
Affiliation(s)
- Vincentius Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Yingzhen Niu
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050052, China
| | - Branden Sosa
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Julia Retzky
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
| | - Matthew Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lionel Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
| | - Mathias Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY 10021, USA; (V.S.); (M.B.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY 10021, USA (A.O.); (L.I.)
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
3
|
Thomson AL, Suhardi VJ, Niu Y, Oktarina A, Döring K, Chao C, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. A translational murine model of aseptic loosening with osseointegration failure. J Orthop Res 2024; 42:2525-2534. [PMID: 38899517 PMCID: PMC11978088 DOI: 10.1002/jor.25915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
An in vivo animal model of a weight-bearing intra-articular implant is crucial to the study of implant osseointegration and aseptic loosening caused by osseointegration failure. Osseointegration, defined as a direct structural and functional attachment between living bone tissue and the surface of a load-carrying implant, is essential for implant stability and considered a prerequisite for the long-term clinical success of implants in total joint arthroplasty. Compared to large animal models, murine models offer extensive genetic tools for tracing cell differentiation and proliferation. The 18- to 22-week-old C57BL/6J background mice underwent either press-fitted or loose implantation of a titanium implant, achieving osseointegration or fibrous integration. A protocol was developed for both versions of the procedure, including a description of the relevant anatomy. Samples were subjected to microcomputed tomography and underwent biomechanical testing to access osseointegration. Lastly, samples were fixed and embedded for histological evaluation. The absence of mineralized tissue and weakened maximum pull-out force in loose implantation samples indicated that these implants were less mechanically stable compared to the control at 4 weeks postoperation. Histological analysis demonstrated extensive fibrotic tissue in the peri-implant area of loose implantation samples and excellent implant osseointegration in press-fitted samples at 4 weeks. Both mechanically stable and unstable hemiarthroplasty models with either osseous ingrowth or a robust periprosthetic fibrosis were achieved in mice. We hope that this model can help address current limitations for in vivo study of aseptic loosening and lead to necessary translational benefits.
Collapse
Affiliation(s)
- Andrew L. Thomson
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Vincentius J. Suhardi
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Kevin Döring
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Christina Chao
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Matthew B. Greenblatt
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lionel B. Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Mathias P. G. Bostrom
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
4
|
Suhardi VJ, Oktarina A, Hammad M, Niu Y, Li Q, Thomson A, Lopez J, McCormick J, Ayturk UM, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat Biomed Eng 2024; 8:1285-1307. [PMID: 39085645 PMCID: PMC12016487 DOI: 10.1038/s41551-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
Collapse
Affiliation(s)
- Vincentius Jeremy Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Juan Lopez
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Ugur M Ayturk
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mathias P G Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Karau MJ, Alarcon Perico D, Guarin Perez SF, Koscianski C, Abdel MP, Patel R, Bedard NA. Duration of cefazolin prophylaxis did not impact infection risk in a murine model of joint arthroplasty. J Orthop Res 2024; 42:2345-2352. [PMID: 38796743 DOI: 10.1002/jor.25903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
To minimize periprosthetic joint infection (PJI) risk, some clinicians prescribe extended antibiotic prophylaxis (EAP) following total joint arthroplasty (TJA). Given the limited evidence supporting EAP, we sought to evaluate impact of prophylactic antibiotic duration on PJI risk in a murine TJA model. A titanium prosthesis was implanted into the proximal tibia of 89 mice and inoculated with 102 colony forming units (cfu) of Staphylococcus aureus Xen36. Control mice (n = 20) did not receive antibiotics. Treated mice received either 24 h (n = 35) or 4 days (n = 34) of cefazolin prophylaxis. Cultures were obtained from the prostheses, tibia, femur, and knee tissues 3 weeks after surgery. All mice in the control group developed PJI. Both prophylaxis regimens reduced the rate of PJI relative to the control, with only 2/35 mice in the 24-h cohort (p < 0.0001) and 1/34 in 4-day cohort developing PJI (p < 0.0001). CFU counts from the prostheses, bone and knee tissues were reduced for the 24-h and 4-day prophylaxis cohorts relative to the control (p < 0.0001 for both). There was no difference in rates of PJI or CFU counts between the two prophylaxis cohorts (p = 0.58). Prophylactic cefazolin profoundly reduced rates of PJI in a murine model of TJA in which all control animals developed PJI. Extending cefazolin prophylaxis duration from 24 h to 4 days did not result in improved PJI rates or decreased bacterial loads in infected cases. While these results strongly support use of antibiotic prophylaxis for TJA, EAP did not appear to add benefit in the described mouse model.
Collapse
Affiliation(s)
- Melissa J Karau
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, Minnesota, USA
| | | | | | - Christina Koscianski
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, Minnesota, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Rochester, Minnesota, USA
- Department of Medicine, Division of Public Health, Infectious Diseases, and Occupational Medicine, Rochester, Minnesota, USA
| | - Nicholas A Bedard
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Antoinette AY, Ziemian SN, Brown AR, Hudson EB, Chlebek C, Wright TM, Goldring SR, Goldring MB, Otero M, van der Meulen MC. PTH treatment before cyclic joint loading improves cartilage health and attenuates load-induced osteoarthritis development in mice. SCIENCE ADVANCES 2024; 10:eadk8402. [PMID: 38640238 PMCID: PMC11029811 DOI: 10.1126/sciadv.adk8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
7
|
He L, Lv H, Wang Y, Jiang F, Liu Q, Zhang F, Wang H, Shen H, Otto M, Li M. Antibiotic treatment can exacerbate biofilm-associated infection by promoting quorum cheater development. NPJ Biofilms Microbiomes 2023; 9:26. [PMID: 37202425 DOI: 10.1038/s41522-023-00394-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
Quorum cheating, a socio-microbiological process that is based on mutations in cell density-sensing (quorum-sensing) systems, has emerged as an important contributor to biofilm-associated infection in the leading human pathogen Staphylococcus aureus. This is because inactivation of the staphylococcal Agr quorum-sensing system leads to pronounced biofilm formation, increasing resistance to antibiotics and immune defense mechanisms. Since biofilm infections in the clinic usually progress under antibiotic treatment, we here investigated whether such treatment promotes biofilm infection via the promotion of quorum cheating. Quorum cheater development was stimulated by several antibiotics used in the treatment of staphylococcal biofilm infections more strongly in biofilm than in the planktonic mode of growth. Sub-inhibitory concentrations of levofloxacin and vancomycin were investigated for their impact on biofilm-associated (subcutaneous catheter-associated and prosthetic joint-associated infection), where in contrast to a non-biofilm-associated subcutaneous skin infection model, a significant increase of the bacterial load and development of agr mutants was observed. Our results directly demonstrate the development of Agr dysfunctionality in animal biofilm-associated infection models and reveal that inappropriate antibiotic treatment can be counterproductive for such infections as it promotes quorum cheating and the associated development of biofilms.
Collapse
Affiliation(s)
- Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Huiying Lv
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Feiyang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD, 20814, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Visperas A, Santana D, Ju M, Milbrandt NB, Tsai YH, Wickramasinghe S, Klika AK, Piuzzi NS, Samia ACS, Higuera-Rueda CA. Standardized quantification of biofilm in a novel rabbit model of periprosthetic joint infection. J Bone Jt Infect 2022; 7:91-99. [PMID: 35505905 PMCID: PMC9051660 DOI: 10.5194/jbji-7-91-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Periprosthetic joint infection (PJI) is one of the most
devastating complications of total joint arthroplasty. The underlying
pathogenesis involves the formation of bacterial biofilm that protects the
pathogen from the host immune response and antibiotics, making eradication
difficult. The aim of this study was to develop a rabbit model of knee PJI
that would allow reliable biofilm quantification and permit the study of
treatments for PJI. In this work,
New Zealand white rabbits (n=19) underwent knee joint arthrotomy,
titanium tibial implant insertion, and inoculation with Xen36 (bioluminescent
Staphylococcus aureus) or a saline control after capsule closure. Biofilm was quantified via
scanning electron microscopy (SEM) of the tibial explant 14 d after
inoculation (n=3 noninfected, n=2 infected). Rabbits underwent
debridement, antibiotics, and implant retention (DAIR) (n=6) or sham
surgery (n=2 noninfected, n=6 infected) 14 d after inoculation, and
they were sacrificed 14 d post-treatment. Tibial explant and periprosthetic tissues
were examined for infection.
Laboratory assays supported bacterial infection in infected
animals. No differences in weight or C-reactive protein (CRP) were detected after
DAIR compared to sham treatment. Biofilm coverage was significantly
decreased with DAIR treatment when compared with sham treatment (61.4 % vs.
90.1 %, p<0.0011) and was absent in noninfected control
explants. In summary, we have developed an experimental rabbit hemiarthroplasty knee
PJI model with bacterial infection that reliably produces quantifiable
biofilm and provides an opportunity to introduce treatments at 14 d. This
model may be used to better understand the pathogenesis of this condition
and to measure treatment strategies for PJI.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Santana
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Minseon Ju
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Alison K Klika
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
9
|
Staats K, Sosa BR, Kuyl EV, Niu Y, Suhardi V, Turajane K, Windhager R, Greenblatt MB, Ivashkiv L, Bostrom MPG, Yang X. Intermittent parathyroid hormone increases stability and improves osseointegration of initially unstable implants. Bone Joint Res 2022; 11:260-269. [PMID: 35502760 PMCID: PMC9130671 DOI: 10.1302/2046-3758.115.bjr-2021-0489.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion iPTH treatment mediated successful osseointegration and increased bone mechanical strength, despite initial implant instability. Clinically, this suggests that initially unstable implants may be osseointegrated with iPTH treatment. Cite this article: Bone Joint Res 2022;11(5):260–269.
Collapse
Affiliation(s)
- Kevin Staats
- Hospital for Special Surgery, New York City, New York, USA.,Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Branden R Sosa
- Hospital for Special Surgery, New York City, New York, USA
| | | | - Yingzhen Niu
- Hospital for Special Surgery, New York City, New York, USA
| | | | | | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | | | | | - Xu Yang
- Hospital for Special Surgery, New York City, New York, USA
| |
Collapse
|
10
|
Sokhi UK, Xia Y, Sosa B, Turajane K, Nishtala SN, Pannellini T, Bostrom MP, Carli AV, Yang X, Ivashkiv LB. Immune Response to Persistent Staphyloccocus Aureus Periprosthetic Joint Infection in a Mouse Tibial Implant Model. J Bone Miner Res 2022; 37:577-594. [PMID: 34897801 PMCID: PMC8940655 DOI: 10.1002/jbmr.4489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
Staphyloccocus aureus is one of the major pathogens in orthopedic periprosthetic joint infection (PJI), a devastating complication of total joint arthroplasty that often results in chronic and persistent infections that are refractory to antibiotics and require surgical interventions. Biofilm formation has been extensively investigated as a reason for persistent infection. The cellular composition, activation status, cytokine profile, and role of the immune response during persistent S. aureus PJI are incompletely understood. In this study, we used histology, multiparametric flow cytometry, and gene expression analysis to characterize the immune response in a clinically relevant orthopedic PJI model. We tested the hypothesis that persistent S. aureus infection induces feedback mechanisms that suppress immune cell activation, thereby affecting the course of infection. Surprisingly, persistent infection was characterized by strikingly high cytokine gene expression indicative of robust activation of multiple components of innate and adaptive immunity, along with ongoing severe neutrophil-dominated inflammation, in infected joint and bone tissues. Activation and expansion of draining lymph nodes and a bone marrow stress granulopoiesis reaction were also maintained during late phase infection. In parallel, feedback mechanisms involving T-cell inhibitory receptors and exhaustion markers, suppressive cytokines, and regulatory T cells were activated and associated with decreased T-cell proliferation and tissue infiltration during the persistent phase of infection. These results identify the cellular and molecular components of the mouse immune response to persistent S. aureus PJI and indicate that neutrophil infiltration, inflammatory cytokine responses, and ongoing lymph node and bone marrow reactions are insufficient to clear infection and that immune effector mechanisms are suppressed by feedback inhibitory pathways. These immune-suppressive mechanisms are associated with diminished T-cell proliferation and tissue infiltration and can be targeted as part of adjuvant immunotherapeutic strategies in combination with debridement of biofilm, antibiotics, and other therapeutic modalities to promote eradication of infection. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Upneet K Sokhi
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yunwei Xia
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Branden Sosa
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Kathleen Turajane
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Sita N Nishtala
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Tania Pannellini
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Department of Pathology, Hospital for Special Surgery, New York, NY, USA
| | - Mathias P Bostrom
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA.,Department of Orthopaedics, Weill Cornell Medicine, New York, NY, USA
| | - Alberto V Carli
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, NY, USA.,David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Bone fixation techniques for managing joint disorders and injuries: A review study. J Mech Behav Biomed Mater 2021; 126:104982. [PMID: 34852984 DOI: 10.1016/j.jmbbm.2021.104982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023]
Abstract
The majority of surgical procedures treating joint disorders require a technique to realize a firm implant-to-tissue and/or a tissue-to-tissue fixation. Fixation methods have direct effects on survival, performance and integration of orthopedic implants This review paper gives an overview of novel fixation techniques that have been evaluated and optimized for orthopaedic joint implants and could be alternatives for traditional implant fixation techniques or inspirations for future design of joint implantation procedures. METHOD The articles were selected using the Scopus search engine. Key words referring to traditional fixation methods have been excluded to find potential innovative fixation techniques. In order to review the recent anchorage systems, only articles that been published during the period of 2010-2020 have been included. RESULTS A total of 57 studies were analyzed. The result revealed that three main fixation principles are being employed: using mechanical interlockings, employing adhesives, and performing tissue-bonding strategies. CONCLUSION The development of fixation techniques demonstrates a transformation from the general anchoring tools like K-wires toward application-specific designs. Several new methods have been designed and evaluated, which highlight encouraging results as described in this review. It seems that mechanical fixations provide the strongest anchorage. Employing (bio)-adhesives as fixation tool could revolutionize the field of orthopedic surgery. However, the adhesives must be improved and optimized to meet the requirements of an anchorage system. Long-term fixation might be formed by tissue ingrowth approaches which showed promising results. In most cases further clinical studies are required to explore their outputs in clinical applications.
Collapse
|
12
|
Turajane K, Ji G, Chinenov Y, Chao M, Ayturk U, Suhardi VJ, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. RNA-seq Analysis of Peri-Implant Tissue Shows Differences in Immune, Notch, Wnt, and Angiogenesis Pathways in Aged Versus Young Mice. JBMR Plus 2021; 5:e10535. [PMID: 34761143 PMCID: PMC8567488 DOI: 10.1002/jbm4.10535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
The number of total joint replacements (TJRs) in the United States is increasing annually. Cementless implants are intended to improve upon traditional cemented implants by allowing bone growth directly on the surface to improve implant longevity. One major complication of TJR is implant loosening, which is related to deficient osseointegration in cementless TJRs. Although poor osseointegration in aged patients is typically attributed to decreased basal bone mass, little is known about the molecular pathways that compromise the growth of bone onto porous titanium implants. To identify the pathways important for osseointegration that are compromised by aging, we developed an approach for transcriptomic profiling of peri-implant tissue in young and aged mice using our murine model of osseointegration. Based on previous findings of changes of bone quality associated with aging, we hypothesized that aged mice have impaired activation of bone anabolic pathways at the bone-implant interface. We found that pathways most significantly downregulated in aged mice relative to young mice are related to angiogenic, Notch, and Wnt signaling. Downregulation of these pathways is associated with markedly increased expression of inflammatory and immune genes at the bone-implant interface in aged mice. These results identify osseointegration pathways affected by aging and suggest that an increased inflammatory response in aged mice may compromise peri-implant bone healing. Targeting the Notch and Wnt pathways, promoting angiogenesis, or modulating the immune response at the peri-implant site may enhance osseointegration and improve the outcome of joint replacement in older patients. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Gang Ji
- Hospital for Special SurgeryNew YorkNYUSA
- The Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yurii Chinenov
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | - Max Chao
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | | | | | - Matthew B Greenblatt
- Hospital for Special SurgeryNew YorkNYUSA
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Lionel B Ivashkiv
- Hospital for Special SurgeryNew YorkNYUSA
- David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNYUSA
| | | | - Xu Yang
- Hospital for Special SurgeryNew YorkNYUSA
| |
Collapse
|
13
|
Mann KA, Miller MA, Rossow JK, Tatusko ME, Horton JA, Damron TA, Oest ME. Progressive loss of implant fixation in a preclinical rat model of cemented knee arthroplasty. J Orthop Res 2021; 39:2353-2362. [PMID: 33382095 PMCID: PMC8243390 DOI: 10.1002/jor.24977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023]
Abstract
Aseptic loosening of total knee arthroplasty continues to be a challenging clinical problem. The progression of the loosening process, from the initial well-fixed component, is not fully understood. In this study, loss of fixation of cemented hemiarthroplasty was explored using 9-month-old Sprague-Dawley rats with 0, 2, 6, 12, 26 week end points. Morphological and cellular changes of cement-bone fixation were determined for regions directly below the tibial tray (epiphysis) and distal to the tray (metaphysis). Loss of fixation, with a progressive increase in cement-bone gap volume was found in the epiphysis (0.162 mm3 /week), but did not progress appreciably in the metaphysis (0.007 mm3 /week). In the epiphysis, there was an early and sustained elevation of osteoclasts adjacent to the cement border and development of a fibrous tissue layer between the cement and bone. There was early formation of bone around the cement in the metaphysis, resulting in a condensed bone layer without osteoclastic bone resorption or development of a fibrous tissue layer. Implant positioning was also an important factor in the cement-bone gap formation, with greater gap formation for implants that were placed medially on the tibial articular surface. Loss of fixation in the rat model mimicked patterns found in human arthroplasty where cement-bone gaps initiate under the tibial tray, at the periphery of the implant. This preclinical model could be used to study early biological response to cemented fixation and associated contributions of mechanical instability, component alignment, and periprosthetic inflammation.
Collapse
Affiliation(s)
- Kenneth A. Mann
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Mark A. Miller
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Jeffrey K. Rossow
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Megan E. Tatusko
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Jason A. Horton
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Timothy A. Damron
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| | - Megan E. Oest
- Department of Orthopedic Surgery SUNY Upstate Medical University Syracuse New York USA
| |
Collapse
|
14
|
Xia Y, Sokhi UK, Bell RD, Pannellini T, Turajane K, Niu Y, Frye L, Chao M, Ayturk U, Otero M, Bostrom M, Oliver D, Yang X, Ivashkiv LB. Immune and repair responses in joint tissues and lymph nodes after knee arthroplasty surgery in mice. J Bone Miner Res 2021; 36:1765-1780. [PMID: 34076292 PMCID: PMC8727029 DOI: 10.1002/jbmr.4381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
The importance of a local tissue immune response in healing injured tissues such as skin and lung is well established. Little is known about whether sterile wounds elicit lymph node (LN) responses and inflammatory responses after injury of musculoskeletal tissues that are mechanically loaded during the repair response. We investigated LN and tissue immune responses in a tibial implant model of joint replacement surgery where wounded tissue is subjected to movement and mechanical loading postoperatively. Draining inguinal and iliac LNs expanded postoperatively, including increases in regulatory T cells and activation of a subset of T cells. Thus, tissue injury was actively sensed in secondary lymphoid organs, with the potential to activate adaptive immunity. Joint tissues exhibited three temporally distinct immune response components, including a novel interferon (IFN) response with activation of signal transducer and activator of transcription (STAT) and interferon regulatory factor (IRF) pathways. Fibrovascular tissue formation was not associated with a macrophage type 2 (M2) reparative immune response, but instead with delayed induction of interleukin-1 family (IL-1β, IL-33, IL-36), IL-17, and prostaglandin pathway genes concomitant with transforming growth factor (TGF)-β and growth factor signaling, fibroblast activation, and tissue formation. Tissue remodeling was associated with activity of the HOX antisense intergenic RNA (HOTAIR) pathway. These results provide insights into immune responses and regulation of tissue healing after knee arthroplasty that potentially can be used to develop therapeutic strategies to improve healing, prevent arthrofibrosis, and improve surgical outcomes. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yunwei Xia
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Upneet K. Sokhi
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Richard D. Bell
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Tania Pannellini
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Pathology, Hospital for Special Surgery, New York, New York, USA
| | - Kathleen Turajane
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Laura Frye
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Max Chao
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Ugur Ayturk
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Miguel Otero
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedics, Weill Cornell Medicine, New York, New York, USA
| | - Mathias Bostrom
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedics, Weill Cornell Medicine, New York, New York, USA
| | - David Oliver
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B. Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Kuyl EV, Shu F, Sosa BR, Lopez JD, Qin D, Pannellini T, Ivashkiv LB, Greenblatt MB, Bostrom MPG, Yang X. Inhibition of PAD4 mediated neutrophil extracellular traps prevents fibrotic osseointegration failure in a tibial implant murine model : an animal study. Bone Joint J 2021; 103-B:135-144. [PMID: 34192911 DOI: 10.1302/0301-620x.103b7.bjj-2020-2483.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system's response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue. METHODS Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure. RESULTS NETs biomarkers were identified in peri-implant fibrotic tissue collected from aseptic loosening patients and at the bone-implant interface in a murine model of osseointegration failure. Inhibition (Pad4-/- ) or resolution (DNase 1) of NETs improved osseointegration and reduced fibrotic tissue despite loose implant conditions in mice. CONCLUSION This study identifies a biological target (NETs) for potential noninvasive treatments of aseptic loosening by discovering a novel connection between the innate immune system and post-injury bone remodelling caused by implant loosening. By inhibiting or resolving NETs in an osseointegration failure murine model, fibrotic tissue encapsulation around an implant is reduced and osseointegration is enhanced, despite loose implant conditions. Cite this article: Bone Joint J 2021;103-B(7 Supple B):135-144.
Collapse
Affiliation(s)
- Emile-Victor Kuyl
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Fei Shu
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Branden R Sosa
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - Juan D Lopez
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - Di Qin
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tania Pannellini
- Research Institute and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B Ivashkiv
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA.,Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Mathias P G Bostrom
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA.,Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
16
|
Vesprey A, Suh ES, Aytürk DG, Yang X, Rogers M, Sosa B, Niu Y, Kalajzic I, Ivashkiv LB, Bostrom MPG, Ayturk UM. Tmem100- and Acta2-Lineage Cells Contribute to Implant Osseointegration in a Mouse Model. J Bone Miner Res 2021; 36:1000-1011. [PMID: 33528844 PMCID: PMC8715516 DOI: 10.1002/jbmr.4264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/11/2022]
Abstract
Metal implants are commonly used in orthopedic surgery. The mechanical stability and longevity of implants depend on adequate bone deposition along the implant surface. The cellular and molecular mechanisms underlying peri-implant bone formation (ie, osseointegration) are incompletely understood. Herein, our goal was to determine the specific bone marrow stromal cell populations that contribute to bone formation around metal implants. To do this, we utilized a mouse tibial implant model that is clinically representative of human joint replacement procedures. Using a lineage-tracing approach, we found that both Acta2.creERT2 and Tmem100.creERT2 lineage cells are involved in peri-implant bone formation, and Pdgfra- and Ly6a/Sca1-expressing stromal cells (PαS cells) are highly enriched in both lineages. Single-cell RNA-seq analysis indicated that PαS cells are quiescent in uninjured bone tissue; however, they express markers of proliferation and osteogenic differentiation shortly after implantation surgery. Our findings indicate that PαS cells are mobilized to repair bone tissue and participate in implant osseointegration after surgery. Biologic therapies targeting PαS cells might improve osseointegration in patients undergoing orthopedic procedures. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | - Xu Yang
- Hospital for Special Surgery, New York, NY, USA
| | | | | | - Yingzhen Niu
- Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | - Ivo Kalajzic
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Lionel B Ivashkiv
- Hospital for Special Surgery, New York, NY, USA
- Departments of Medicine and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Mathias PG Bostrom
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Ugur M Ayturk
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Lupi SM, Sassi AN, Addis A, Rodriguez y Baena R. The Impact of Nandrolone Decanoate in the Osseointegration of Dental Implants in a Rabbit Model: Histological and Micro-Radiographic Results. MATERIALS 2021; 14:ma14092258. [PMID: 33925604 PMCID: PMC8123797 DOI: 10.3390/ma14092258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022]
Abstract
Despite high rates of osseointegration in healthy patients, complex cases present an increased risk of osseointegration failure when treated with dental implants. Furthermore, if immediate loading of the implants is used, maximizing the response of the host organism would be desirable. Anabolic steroids, such as Nandrolone Decanoate (ND), are reported to have beneficial clinical effects on various bone issues such as osteoporosis and bone fractures. However, their beneficial effects in promoting osseointegration in dental implant placement have not been documented. The study aimed to examine histological changes induced by ND in experimental dental implants in rabbit models. Two dental implants were placed in the tibias of 24 adult rabbits. Rabbits were allocated to one of two groups: control group or test group. Rabbits in the latter group were given nandrolone decanoate (15 mg/kg, immediately after implant placement and after 1 week). Micro-radiographic and histological analyses were assessed to characterize the morphological changes promoted by the nandrolone decanoate use. Total bone volume and fluorescence were significantly higher in the control group after 2 weeks. Such a difference between the two groups might indicate that, initially, nandrolone lengthens the non-specific healing period characteristic of all bone surgeries. However, after the beginning of the reparative processes, the quantity of newly formed bone appears to be significantly higher, indicating a positive stimulation of the androgen molecule on bone metabolism. Based on micro-radiology and fluorescence microscopy, nandrolone decanoate influenced bone regeneration in the implant site. The anabolic steroid nandrolone decanoate affects the healing processes of the peri-implant bone and therefore has the potential to improve the outcomes of implant treatment in medically complex patients.
Collapse
Affiliation(s)
- Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
- Correspondence:
| | - Alessandra Nicole Sassi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
| | - Alessandro Addis
- CRABCC, Biotechnology Research Centre for Cardiothoracic Applications, 26027 Rivolta d’Adda, Italy;
| | - Ruggero Rodriguez y Baena
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.N.S.); (R.R.y.B.)
| |
Collapse
|
18
|
Vertesich K, Sosa BR, Niu Y, Ji G, Suhardi V, Turajane K, Mun S, Xu R, Windhager R, Park-Min KH, Greenblatt MB, Bostrom MP, Yang X. Alendronate enhances osseointegration in a murine implant model. J Orthop Res 2021; 39:719-726. [PMID: 32915488 PMCID: PMC8672942 DOI: 10.1002/jor.24853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023]
Abstract
Administration of bisphosphonates following total joint arthroplasty might be beneficial to reduce aseptic loosening. However, their effects on peri-implant bone formation and bone-implant interface strength have not been investigated yet. We used a physiologically loaded mouse implant model to investigate the short-term effects of postoperative systemic alendronate on osseointegration. A titanium implant with a rough surface was inserted in the proximal tibiae of 17-week-old female C57BL/6 mice (n = 44). Postimplantation mice were given alendronate (73 μg/kg/days, n = 22) or vehicle (n = 22) 5 days/week. At 7- and 14-day postimplantation, histology and histomorphometry were conducted. At 28 days, microcomputed tomography and biomechanical testing were performed (n = 10/group). Postoperative alendronate treatment enhanced osseointegration, increasing maximum pullout load by 45% (p < .001) from 19.1 ± 4.5 N in the control mice to 27.6 ± 4.9 N in the treated mice, at day 28 postimplantation. Alendronate treatment increased the bone volume fraction by 139% (p < .001) in the region distal to the implant and 60% (p < .05) in the peri-implant region. At 14-day postimplantation, alendronate treatment decreased the number of osteoclasts per bone perimeter (p < .05) and increased bone volume fraction (p < .01) when compared with the control group. Postimplantation, short-term alendronate treatment enhanced osseointegration as demonstrated by increased bone mass, trabecular bone thickness, and maximum pullout load. Alendronate decreased peri-implant osteoclasts while preserving peri-implant osteoblasts and endothelial cells, in turn, increasing bone volume fraction. This data supports the postoperative clinical use of bisphosphonates, especially in patients with high risks of aseptic loosening.
Collapse
Affiliation(s)
- Klemens Vertesich
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA,Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Branden R. Sosa
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Yingzhen Niu
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA,Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Ji
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA,Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Vincentius Suhardi
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Kathleen Turajane
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Sehwan Mun
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Ren Xu
- Regulation of Bone Mass Laboratory, Weill Cornell Medicine, New York, New York, USA
| | - Reinhard Windhager
- Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Kyung Hyun Park-Min
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA,Regulation of Bone Mass Laboratory, Weill Cornell Medicine, New York, New York, USA
| | | | - Mathias P. Bostrom
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA,Regulation of Bone Mass Laboratory, Weill Cornell Medicine, New York, New York, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
19
|
Mahri M, Shen N, Berrizbeitia F, Rodan R, Daer A, Faigan M, Taqi D, Wu KY, Ahmadi M, Ducret M, Emami E, Tamimi F. Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence. Acta Biomater 2021; 119:284-302. [PMID: 33181361 DOI: 10.1016/j.actbio.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Clinical performance of osseointegrated implants could be compromised by the medications taken by patients. The effect of a specific medication on osseointegration can be easily investigated using traditional systematic reviews. However, assessment of all known medications requires the use of evidence mapping methods. These methods allow assessment of complex questions, but they are very resource intensive when done manually. The objective of this study was to develop a machine learning algorithm to automatically map the literature assessing the effect of medications on osseointegration. Datasets of articles classified manually were used to train a machine-learning algorithm based on Support Vector Machines. The algorithm was then validated and used to screen 599,604 articles identified with an extremely sensitive search strategy. The algorithm included 281 relevant articles that described the effect of 31 different drugs on osseointegration. This approach achieved an accuracy of 95%, and compared to manual screening, it reduced the workload by 93%. The systematic mapping revealed that the treatment outcomes of osseointegrated medical devices could be influenced by drugs affecting homeostasis, inflammation, cell proliferation and bone remodeling. The effect of all known medications on the performance of osseointegrated medical devices can be assessed using evidence mappings executed with highly accurate machine learning algorithms.
Collapse
|
20
|
Zhang Y, Jiang W, Yuan S, Zhao Q, Liu Z, Yu W. Impacts of a Nano-Laponite Ceramic on Surface Performance, Apatite Mineralization, Cell Response, and Osseointegration of a Polyimide-Based Biocomposite. Int J Nanomedicine 2020; 15:9389-9405. [PMID: 33262594 PMCID: PMC7699455 DOI: 10.2147/ijn.s273240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Polyimide (PI) exhibits good biocompatibility and high mechanical strength, but biological inertness that does not stimulate bone regeneration, while laponite possesses excellent bioactivity. METHODS In this study, to improve the bioactivity of PI, nano-laponite ceramic (LC)-PI composites (LPCs) were fabricated by melt processing as implantable materials for bone repair. RESULTS The compressive strength, hydrophilicity, and surface roughness of LPCs with 40 w% LC content (LPC40s) were higher than LPC20s, and LPC20s higher than pure PI. In addition, no apatite mineralization occurred on PI, while apatite mineralized on LPCs in simulated body fluid. Compared with LPC20, more apatite deposited on LPC40, indicating good bioactivity. Moreover, the adhesion, proliferation, and alkaline phosphatase activity of rat bone mesenchymal stem cells on LPCs significantly increased with LC content increasing in vitro. Furthermore, the evaluations of animal experiments (micro-CT, histology, and pushout load) revealed that compared with LPC20 and PI, LPC40 significantly enhanced osteogenesis and osseointegration in vivo. DISCUSSION Incorporation of LC into PI obviously improved not only surface physicochemical properties but also biological properties of LPCs. LPC40 with high LC content displayed good biocompatibility and bioactivity, which markedly promoted osteogenesis and osseointegration. Therefore, with its superior biocompatibility and bioactivity, LPC40 could be an alternative candidate as an implant for orthopedic applications.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Hand Surgery, China–Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Weibo Jiang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun130022, People’s Republic of China
| | - Sheng Yuan
- Department of Orthopedics, Peoples’ Hospital of Huolinguole City, Tongliao029200, People’s Republic of China
| | - Qinghui Zhao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai200123, People’s Republic of China
| | - Zhongling Liu
- Department of Hospital Infection Control, China–Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Wei Yu
- Department of Hand Surgery, China–Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| |
Collapse
|
21
|
Oláh T, Michaelis JC, Cai X, Cucchiarini M, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: Small animals. Ann Anat 2020; 234:151630. [PMID: 33129976 DOI: 10.1016/j.aanat.2020.151630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Small animal models are critical to model the complex disease mechanisms affecting a functional joint leading to articular cartilage disorders. They are advantageous for several reasons and significantly contributed to the understanding of the mechanisms of cartilage diseases among which osteoarthritis. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major small animal species, including mice, rats, guinea pigs, and rabbits compared with humans. Specific characteristics of each species, including kinematical gait parameters are provided and compared with the human situation. When placed in a proper context respecting their challenges and limitations, small animal models are important and appropriate models for articular cartilage disorders.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
22
|
Wang YN, Jia TT, Xu X, Zhang DJ. [Overview of animal researches about the effects of systemic drugs on implant osseointegration]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:211-217. [PMID: 32314897 PMCID: PMC7184276 DOI: 10.7518/hxkq.2020.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/25/2019] [Indexed: 11/21/2022]
Abstract
Implant osseointegration is an important biological basis for dental implantology. Many factors, including surgical factors, implant factors, and patients' own factors, affect implant osseointegration. Notably, the application of systemic drugs to improve implant osseointegration has become a research hotspot. This article reviews the effects of systemic drugs on implant osseointegration based on animal researches to provide systemic drug selection to improve implant osseointegration and lay a good foundation for later clinical trials.
Collapse
Affiliation(s)
- Ya-Nan Wang
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Ting-Ting Jia
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China;Dept. of Implantology, Stomatological Hospital of Shandong University, Jinan 250012, China
| | - Dong-Jiao Zhang
- School of Stomatology, Shandong University, Jinan 250012, China;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China;Dept. of Implantology, Stomatological Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
23
|
Jie K, Deng P, Cao H, Feng W, Chen J, Zeng Y. Prosthesis design of animal models of periprosthetic joint infection following total knee arthroplasty: A systematic review. PLoS One 2019; 14:e0223402. [PMID: 31581252 PMCID: PMC6776332 DOI: 10.1371/journal.pone.0223402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The number of periprosthetic joint infections (PJI) after total knee arthroplasty (TKA) is increasing annually. Animal models have been used to clarify their clinical characteristics and the infection mechanism of pathogenic bacteria, However, since the prosthesis design of animal models is not uniform, it is difficult to simulate the environment of clinical PJI. OBJECTIVES To retrospect the progress on the prosthesis design of animal models of PJI after TKA and to summarize the criteria for evaluating a clinically representative model of PJI. METHODS This systematic review was reported on the basis of Systematic Reviews and Meta-Analyzes (PRISMA). Pubmed, EMbase, Cochrane Library, Web of Science, Wanfang Data and China National Knowledge Infrastructure were researched for animal models of PJI after TKA from database establishment to April 2019 according to Chinese and English retrieval words, including "periprosthetic joint infections and total knee arthroplasty," "periprosthetic joint infections and model," "periprosthetic joint infections and biofilm," and "total knee arthroplasty and model." RESULTS A total of 12 quantitative studies were enrolled in our study finally: 8 representative studies described prosthesis designs used in PJI animal models, 4 studies described prosthesis designs in non-infected animal models which were suitable for infection models. The major problems need to be dealed with were prosthesis, installation location, material, the function of separating the articular and medullary cavity, fixation manner, and the procedure of preserving the posterior cruciate ligament. CONCLUSION A highly representative design of the animal prosthesis of PJI should meet the following criteria: the surface of the prosthesis is smooth with the formation of biofilm, composed of titanium-6Al-4V or cobalt-chromium-molybdenum alloy; prosthesis can bear weight and is highly stable; and it can connect the joint cavity and medullary cavity simultaneously. To reach a more reliable conclusion, further experiments and improvements are required.
Collapse
Affiliation(s)
- Ke Jie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Peng Deng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
- The Third Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Houran Cao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Wenjun Feng
- The Third Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Jinlun Chen
- The Third Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Yirong Zeng
- The Third Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
Mann KA, Miller MA, Amendola RL, Cyndari KI, Horton JA, Damron TA, Oest ME. Early Changes in Cement-Bone Fixation Using a Novel Rat Knee Replacement Model. J Orthop Res 2019; 37:2163-2171. [PMID: 31206747 PMCID: PMC6739174 DOI: 10.1002/jor.24390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Trabecular resorption from interdigitated regions between cement and bone has been found in postmortem-retrieved knee replacements, but the viability of interdigitated bone, and the mechanism responsible for this bone loss is not known. In this work, a Sprague-Dawley (age 12 weeks) rat knee replacement model with an interdigitated cement-bone interface was developed. Morphological and cellular changes in the interdigitated region of the knee replacement over time (0, 2, 6, or 12 weeks) were determined for ovariectomy (OVX) and Sham OVX treatment groups. Interdigitated bone volume fraction (BV/TV) increased with time for Sham OVX (0.022 BV/TV/wk) and OVX (0.015 BV/TV/wk) group, but the rate of increase was greater for the Sham OVX group (p = 0.0064). Tissue mineral density followed a similar increase with time in the interdigitated regions. Trabecular resorption, when it did occur, started at the cement border with medullary-adjacent bone in the presence of osteoclasts. There was substantial loss of viable bone (~80% empty osteocyte lacunae) in the interdigitated regions. Pre-surgical fluorochrome labels remained in the interdigitated regions, and did not diminish with time, indicating that the bone was not remodeling. There was also some evidence of continued surface mineralization in the interdigitated region after cementing of the knee, but this diminished over time. Statement of clinical significance: Interdigitated bone with cement provides mechanical stability for success of knee replacements. Improved understanding of the fate of the interdigitated bone over time could lead to a better understanding of the loosening process and interventions to prevent loss of fixation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2163-2171, 2019.
Collapse
Affiliation(s)
- Kenneth A. Mann
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Mark A. Miller
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Richard L. Amendola
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Karen I. Cyndari
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Jason A. Horton
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Timothy A. Damron
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| | - Megan E. Oest
- Department of Orthopedic SurgerySUNY Upstate Medical University Syracuse New York
| |
Collapse
|
25
|
Ji G, Xu R, Niu Y, Li N, Ivashkiv L, Bostrom MPG, Greenblatt MB, Yang X. Vascular endothelial growth factor pathway promotes osseointegration and CD31 hiEMCN hi endothelium expansion in a mouse tibial implant model: an animal study. Bone Joint J 2019; 101-B:108-114. [PMID: 31256654 DOI: 10.1302/0301-620x.101b7.bjj-2018-1473.r1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS It is increasingly appreciated that coordinated regulation of angiogenesis and osteogenesis is needed for bone formation. How this regulation is achieved during peri-implant bone healing, such as osseointegration, is largely unclear. This study examined the relationship between angiogenesis and osteogenesis in a unique model of osseointegration of a mouse tibial implant by pharmacologically blocking the vascular endothelial growth factor (VEGF) pathway. MATERIALS AND METHODS An implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (n = 38). Mice received anti-VEGF receptor-1 (VEGFR-1) antibody (25 mg/kg) and VEGF receptor-2 (VEGFR-2) antibody (25 mg/kg; n = 19) or an isotype control antibody (n = 19). Flow cytometric (n = 4/group) and immunofluorescent (n = 3/group) analyses were performed at two weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium. RNA sequencing analysis was performed using sorted CD31hiEMCNhi endothelial cells (n = 2/group). Osteoblast lineage cells expressing osterix (OSX) and osteopontin (OPN) were also detected with immunofluorescence. Mechanical pull-out testing (n = 12/group) was used at four weeks post-implantation to determine the strength of the bone-implant interface. After pull-out testing, the tissue attached to the implant surface was harvested. Whole mount immunofluorescent staining of OSX and OPN was performed to determine the amount of osteoblast lineage cells. RESULTS Flow cytometry revealed that anti-VEGFR treatment decreased CD31hiEMCNhi vascular endothelium in the peri-implant bone versus controls at two weeks post-implantation. This was confirmed by the decrease of CD31 and endomucin (EMCN) double-positive cells detected with immunofluorescence. In addition, treated mice had more OPN-positive cells in both peri-implant bone and tissue on the implant surface at two weeks and four weeks, respectively. More OSX-positive cells were present in peri-implant bone at two weeks. More importantly, anti-VEGFR treatment decreased the maximum load of pull-out testing compared with the control. CONCLUSION VEGF pathway controls the coupling of angiogenesis and osteogenesis in orthopaedic implant osseointegration by affecting the formation of CD31hiEMCNhi endothelium. Cite this article: Bone Joint J 2019;101-B(7 Supple C):108-114.
Collapse
Affiliation(s)
- G Ji
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Research Division, Hospital for Special Surgery, New York, New York, USA
| | - R Xu
- Department of Orthopedics, Xiang'an Hospital and State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Y Niu
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Research Division, Hospital for Special Surgery, New York, New York, USA
| | - N Li
- Department of Orthopedics, Xiang'an Hospital and State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - L Ivashkiv
- Research Division, Hospital for Special Surgery, New York, New York, USA
| | - M P G Bostrom
- Research Division, Hospital for Special Surgery, New York, New York, USA.,Division of Adult Reconstruction and Joint Replacement, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - M B Greenblatt
- Research Division, Hospital for Special Surgery, New York, New York, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - X Yang
- Research Division, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
26
|
AbuMoussa S, Ruppert DS, Lindsay C, Dahners L, Weinhold P. Local delivery of a zoledronate solution improves osseointegration of titanium implants in a rat distal femur model. J Orthop Res 2018; 36:3294-3298. [PMID: 30117189 DOI: 10.1002/jor.24125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023]
Abstract
This study aimed to determine whether locally applied anti-resorptive agents acetazolamide or zoledronic acid would improve mechanical stability in implant osseointegration when applied as a solution within the medullary canal. Thirty-three rats received titanium-implants bilaterally in their intramedullary femoral canals. Prior to implantation, animals received 0.1 ml saline, 1 mM acetazolamide solution, or 0.7 mM zoledronic acid solution directly into the medullary cavity. The control group only received saline within the medullary canal while the treatment groups only received the respective treatment to which they were randomized. Animals were allowed to heal 4 weeks, at which time they were euthanized and femurs isolated for mechanical and radiographic evaluation. Push-out force to failure increased 152% in the zoledronic acid group relative to the control. There was no significant difference in push-out force with acetazolamide relative to control. Also, zoledronic acid increased metaphyseal bone volume fraction 46% and increased metaphyseal bone-implant contact 58% relative to the control. Recent research exploring local injection of medications to improve implant osseointegration and minimize systemic-effects has failed to quantitatively evaluate implant fixation strength on non-hydroxyapatite coated implants or implants without previous bone compaction. This study demonstrated that a simple injection of zoledronic acid into the medullary canal, rather than coatings or commercial gels, can increase fixation strength of an uncoated titanium-implant. Our findings indicate simple injection of zoledronic acid in saline solution has the potential for improving fixation of uncemented joint implants. Clinical Significance: Intramedullary injection of local bisphosphonate solutions could be implemented to improve osseointegration in cementless arthroplasty. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3294-3298, 2018.
Collapse
Affiliation(s)
- Samuel AbuMoussa
- University of North Carolina School of Medicine, CB# 7546, 134 Glaxo Bldg 101A Mason Farm Rd, Chapel Hill 27599, North Carolina.,Department of Orthopaedic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - David S Ruppert
- Department of Biomedical Engineering, UNC/NCSU, Chapel Hill, North Carolina
| | - Christopher Lindsay
- University of North Carolina School of Medicine, CB# 7546, 134 Glaxo Bldg 101A Mason Farm Rd, Chapel Hill 27599, North Carolina.,Department of Orthopaedic Surgery, University of Iowa, Iowa City, Iowa
| | - Laurence Dahners
- Department of Orthopaedic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Paul Weinhold
- Department of Orthopaedic Surgery, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
27
|
Carli AV, Bhimani S, Yang X, de Mesy Bentley KL, Ross FP, Bostrom MPG. Vancomycin-Loaded Polymethylmethacrylate Spacers Fail to Eradicate Periprosthetic Joint Infection in a Clinically Representative Mouse Model. J Bone Joint Surg Am 2018; 100:e76. [PMID: 29870449 DOI: 10.2106/jbjs.17.01100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Periprosthetic joint infection (PJI) remains a devastating complication following total joint arthroplasty. Current animal models of PJI do not effectively recreate the clinical condition and thus provide limited help in understanding why treatments fail. We developed a mouse model of the first-stage surgery of a 2-stage revision for PJI involving a 3-dimensionally printed Ti-6Al-4V implant and a mouse-sized cement spacer that elutes vancomycin. METHODS Vancomycin was mixed with polymethylmethacrylate (PMMA) cement and inserted into custom-made mouse-sized spacer molds. Twenty C57BL/6 mice received a proximal tibial implant and an intra-articular injection of 3 × 10 colony-forming units of Staphylococcus aureus Xen36. At 2 weeks, 9 mice underwent irrigation and debridement of the leg with revision of the implant to an articulating vancomycin-loaded PMMA spacer. Postoperatively, mice underwent radiography and serum inflammatory-marker measurements. Following euthanasia of the mice at 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants and articulating spacers were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize the biofilm. RESULTS Vancomycin-loaded PMMA spacers eluted vancomycin for ≤144 hours and retained antimicrobial activity. Control mice had elevated levels of inflammatory markers, radiographic evidence of septic loosening of the implant, and osseous destruction. Mice treated with a vancomycin-loaded PMMA spacer had significantly lower levels of inflammatory markers (p < 0.01), preserved tibial bone, and no intra-articular purulence. Retrieved vancomycin-loaded spacers exhibited significantly lower bacterial counts compared with implants (p < 0.001). However, bacterial counts in periprosthetic tissue did not significantly differ between the groups. SEM identified S. aureus encased within biofilm on control implants, while vancomycin-loaded spacers contained no bacteria. CONCLUSIONS This animal model is a clinically representative model of PJI treatment. The results suggest that the antimicrobial effects of PMMA spacers are tightly confined to the articular space and must be utilized in conjunction with thorough tissue debridement and systemic antibiotics. CLINICAL RELEVANCE These data provide what we believe to be the first insight into the effect of antibiotic-loaded cement spacers in a clinically relevant animal model and justify the adjunctive use of intravenous antibiotics when performing a 2-stage revision for PJI.
Collapse
Affiliation(s)
| | | | - Xu Yang
- Hospital for Special Surgery, New York, NY
| | | | | | | |
Collapse
|
28
|
Suzuki T, Sukezaki F, Shibuki T, Toyoshima Y, Nagai T, Inagaki K. Teriparatide Administration Increases Periprosthetic Bone Mineral Density After Total Knee Arthroplasty: A Prospective Study. J Arthroplasty 2018; 33:79-85. [PMID: 28869116 DOI: 10.1016/j.arth.2017.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Teriparatide is a currently available therapeutic agent for osteoporosis. Previous studies have reported that teriparatide affects periprosthetic bone mineral density (BMD) after total knee arthroplasty (TKA). However, little agreement has been reached concerning the treatment of periprosthetic BMD after TKA with teriparatide. Moreover, BMD in the femoral and tibial sides of the joints together has never been examined. We investigated the efficacy of teriparatide to inhibit BMD loss in the femoral and tibial side and considered complications such as migration and periprosthetic fractures after TKA. METHODS Twenty-two knees in 17 patients were included in this study, and a control group of patients who underwent TKA was identified according to their medical records. Dual-energy X-ray absorptiometry was performed for different locations (knee, hip, and lumbar spine), and regions of interest were measured to estimate BMD at initiation of the study as a baseline reference, followed by subsequent measurements at 6 and 12 months. RESULTS As a result of adjusting the difference between the BMDs of the 2 groups at initiation, there was a significant increase in R3 (posterior condyle) and R4 (lateral) at 6 months. Furthermore, there was a significant increase in R2 (anterior condyle), R3 (posterior condyle), and R6 (tibial diaphysis) at 12 months. The study group had a higher adjusted mean BMD in all regions than did the control group at 6 and 12 months. CONCLUSION Teriparatide may be a reasonable treatment option for osteoporotic patients to preserve or improve periprosthetic BMD after TKA.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Fumio Sukezaki
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Shibuki
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yoichi Toyoshima
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Nagai
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Katsunori Inagaki
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Carli AV, Bhimani S, Yang X, Shirley MB, de Mesy Bentley KL, Ross FP, Bostrom MPG. Quantification of Peri-Implant Bacterial Load and in Vivo Biofilm Formation in an Innovative, Clinically Representative Mouse Model of Periprosthetic Joint Infection. J Bone Joint Surg Am 2017; 99:e25. [PMID: 28291188 DOI: 10.2106/jbjs.16.00815] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Periprosthetic joint infection (PJI) is a devastating complication following total joint arthroplasty. Current animal models of PJI are limited because of a lack of quantitative methods and failure to effectively recreate the periprosthetic space. We therefore developed a murine PJI model involving a 3-dimensionally printed Ti-6Al-4V implant capable of bearing weight and permitting quantitative analysis of periprosthetic bacterial load and evaluation of biofilm. METHODS Twenty-five 12-week-old C57BL/6 mice received a unilateral proximal tibial implant and intra-articular injection of either 3 × 10 colony forming units (CFUs) of Staphylococcus aureus Xen 36 or saline solution. Postoperatively, mice underwent gait analysis, knee radiographs, and serum inflammatory marker measurements. Following euthanasia at 2 or 6 weeks, bone and soft tissues were homogenized to quantify bacteria within periprosthetic tissues. Implants were either sonicated to quantify adherent bacteria or examined under scanning electron microscopy (SEM) to characterize biofilm. RESULTS All mice survived surgery and were not systemically septic. The control mice immediately tolerated weight-bearing and had normal inflammatory markers and radiographic signs of osseointegration. Infected mice had difficulty walking over time, exhibited radiographic findings of septic implant loosening, and had significantly elevated inflammatory markers. Periprosthetic tissues of the infected animals displayed a mean of 4.46 × 10 CFUs of S. aureus at 2 weeks and 2.53 × 10 CFUs at 6 weeks. Viable S. aureus was quantified on retrieved implant surfaces. SEM demonstrated S. aureus cocci in clusters encased within biofilm. CONCLUSIONS This animal model is, to our knowledge, the most clinically representative PJI replication to date. It is the first that we know of to produce infection through the same method hypothesized to occur clinically, utilize a weight-bearing implant that can osseointegrate, and provide quantitative data on 8 aspects of PJI, including radiographic features, inflammatory markers, and bacterial loads. CLINICAL RELEVANCE This novel animal model is, to our knowledge, the first to provide a load-bearing translational representation of clinical PJI that effectively recreates the periprosthetic space.
Collapse
Affiliation(s)
- Alberto V Carli
- 1Hospital for Special Surgery, New York, NY 2University of Rochester, Rochester, New York
| | | | | | | | | | | | | |
Collapse
|
30
|
Carli AV, Ross FP, Bhimani SJ, Nodzo SR, Bostrom MPG. Developing a Clinically Representative Model of Periprosthetic Joint Infection. J Bone Joint Surg Am 2016; 98:1666-1676. [PMID: 27707853 DOI: 10.2106/jbjs.15.01432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤The poor treatment outcomes for periprosthetic joint infection (PJI) reflect the limited understanding that currently exists regarding the pathogenesis of this devastating clinical problem.➤Current animal models of PJI are limited in their translational nature primarily because of their inability to recreate the periprosthetic environment.➤A greater mechanistic understanding of the musculoskeletal and immune systems of small animals, such as mice and rats, provides a more robust platform for modeling and examining the pathogenesis of PJI.➤A clinically representative PJI model must involve an implant that recreates the periprosthetic space and be amenable to methodologies that identify implant biofilm as well as quantify the peri-implant bacterial load.
Collapse
|
31
|
Cosman F, Dempster DW, Nieves JW, Zhou H, Zion M, Roimisher C, Houle Y, Lindsay R, Bostrom M. Effect of Teriparatide on Bone Formation in the Human Femoral Neck. J Clin Endocrinol Metab 2016; 101:1498-505. [PMID: 26900640 PMCID: PMC4880158 DOI: 10.1210/jc.2015-3698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE Teriparatide (TPTD) improves bone mass and microstructure resulting in reduced risk of vertebral and nonvertebral fractures. However, hip bone mineral density improvements are modest and there are no data confirming that TPTD reduces hip fracture risk. To study the effects of TPTD on the proximal femur, we performed a double-blind trial of TPTD vs placebo (PBO) in patients with osteoarthritis from whom femoral neck (FN) samples were obtained at total hip replacement (THR) surgery. METHODS Participants were randomly assigned to receive TPTD or PBO for an average of 40 days before THR. Double tetracycline labeling was initiated 21 days prior to THR to allow histomorphometric assessment of bone formation. During the THR, an intact sample of the FN was procured, fixed, and sectioned transversely. Serum levels of bone turnover markers were measured at baseline and during the THR. Standard histomorphometric parameters were measured and calculated on four bone envelopes (cancellous, endocortical, intracortical, and periosteal). The primary outcome measure was bone formation rate/bone surface (BFR/BS). RESULTS Forty individuals were enrolled (25 women, mean age, 71.5 ± 8.0 y and 15 men, mean age, 68.9 ± 7.7 y). In cancellous and endocortical envelopes, BFR/BS was 100% higher in the TPTD vs PBO group (P < .05). Bone turnover markers measured at the time of THR correlated with BFR/BS. CONCLUSIONS TPTD stimulates bone formation rapidly in cancellous and endocortical envelopes of the FN. Our findings provide a mechanistic basis for TPTD-mediated improvement in FN bone mass and ultimately hip strength. This study is the first demonstration of the effect of any osteoporosis medication on osteoblast activity in the human proximal femur.
Collapse
Affiliation(s)
- Felicia Cosman
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - David W Dempster
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Jeri W Nieves
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Marsha Zion
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Catherine Roimisher
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Yvonne Houle
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Robert Lindsay
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| | - Mathias Bostrom
- Regional Bone Center, Helen Hayes Hospital (F.C., D.W.D., J.W.N., H.Z., M.Z., C.R., R.L.), West Haverstraw, New York 10993; Department of Medicine (F.C., R.L.), Department of Pathology (D.W.D.), and Department of Epidemiology (J.W.N.), Columbia University, New York, New York 10032; and Department of Orthopedics (Y.H., M.B.), Hospital for Special Surgery, New York, New York 10021
| |
Collapse
|