1
|
Ishikawa K, Murao A, Aziz M, Wang P. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury. Surgery 2025; 178:108872. [PMID: 39455391 PMCID: PMC11717596 DOI: 10.1016/j.surg.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells. METHODS We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion. RESULTS The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice. CONCLUSION Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kouhei Ishikawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
2
|
Costamagna A, Pasquino C, Lamorte S, Navarro-Tableros V, Delsedime L, Fanelli V, Camussi G, Del Sorbo L. Human liver stem cells and derived extracellular vesicles protect from sepsis-induced acute lung injury and restore bone marrow myelopoiesis in a murine model of sepsis. Intensive Care Med Exp 2024; 12:111. [PMID: 39627601 PMCID: PMC11615238 DOI: 10.1186/s40635-024-00701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Sepsis is a condition with high mortality and morbidity, characterized by deregulation of the immune response against the pathogen. Current treatment strategies rely mainly on antibiotics and supportive care. However, there is growing interest in exploring cell-based therapies as complementary approaches. Human liver stem cells (HLSCs) are pluripotent cells of mesenchymal origin, showing some advantages compared to mesenchymal stem cells in terms of immunomodulatory properties. HSLC-derived extracellular vesicles (EVs) exhibited a superior efficacy profile compared to cells due to their potential to get through biological barriers and possibly to avoid tumorigenicity and showed to be effective in vivo and ex vivo models of liver and kidney disease. The potential of HLSCs and their EVs in recovering damage to distal organs due to sepsis other than the kidney remains unknown. This study aimed to investigate the therapeutic potential of the intravenous administration of HSLCs or HSLCs-derived EVs in a murine model of sepsis. RESULTS Sepsis was induced by caecal ligation and puncture (CLP) on C57/BL6 mice. After CLP, mice were assigned to receive either normal saline, HLSCs or their EVs and compared to a sham group which underwent only laparotomy. Survival, persistence of bacteraemia, lung function evaluation, histology and bone marrow analysis were performed. Administration of HLSCs or HLSC-EVs resulted in improved bacterial clearance and lung function in terms of lung elastance and oedema. Naïve murine hematopoietic progenitors in bone marrow were enhanced after treatment as well. Administration of HLSCs and HLSC-EVs after CLP to significantly improved survival. CONCLUSIONS Treatment with HLSCs or HLSC-derived EVs was effective in improving acute lung injury, dysmyelopoiesis and ultimately survival in this experimental murine model of lethal sepsis.
Collapse
Affiliation(s)
| | - Chiara Pasquino
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Sara Lamorte
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | | | - Luisa Delsedime
- Pathology Unit, A.O.U, Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Zhang F, Ma G, Chaung W, Jacob A, Brenner M, Wang P. TAG-FREE GLYCOSYLATED RHMFG-E8 AS A THERAPY FOR ACUTE KIDNEY INJURY. Shock 2024; 62:286-293. [PMID: 38691106 DOI: 10.1097/shk.0000000000002382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
ABSTRACT Background: Acute kidney injury (AKI) can result from renal ischemia and reperfusion (I/R) and often occurs during surgical procedures in cardiac, liver, kidney transplantation, and trauma-hemorrhage. Milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. Because MFG-E8 promotes clearance of apoptotic cells, we have explored its therapeutic potential in various organ injury conditions. To develop human MFG-E8 as a potential therapy, we have generated a human cell-expressed, and thus glycosylated, tag-free recombinant human (rh) MFG-E8 and tested its safety and biological activity in vitro . We hypothesize that the tag-free glycosylated rhMFG-E8 is protective in I/R-induced AKI and it can be developed as an effective therapy for AKI. Methods: To assess the pharmacokinetic properties of the tag-free rhMFG-E8, Sprague-Dawley rats were either untreated or treated with a bolus dose of the tag-free rhMFG-E8, blood collected at various time points and the recovery of human MFG-E8 in the blood were measured by ELISA. Adult male C57BL6 mice underwent bilateral renal ischemia for 30 min, and immediately upon reperfusion, mice were treated intraperitoneally with either normal saline (vehicle) or 20 μg/kg human cell expressed, glycosylated tag-free rhMFG-E8. At either 24 h or 48 h after I/R, blood and kidneys were harvested for further analysis. In separate cohorts of mice after I/R and treatment, mice were observed for 10 days, and survival recorded. Results: AKI rats treated with the tag-free rhMFG-E8 had similar half-life as those in the treated control rats. At 48 h after I/R-induced AKI, renal function markers, blood urea nitrogen, and creatinine were increased and treatment with the tag-free rhMFG-E8 significantly decreased these markers. At both 24 h and 48 h after AKI, inflammatory cytokines, TNF-α, IL-6, and IL-1β were increased and treatment decreased these levels. The kidney mRNA expressions of these cytokines were also increased at 24 h after AKI and treatment significantly decreased those mRNA expressions. Histologically, at 48 h after AKI, tubular damage, and the number of TUNEL staining cells were increased and treatment markedly decreased these measurements. Administration of tag-free rhMFG-E8 at the time of reperfusion improved survival in a 10-day survival study. Conclusion: Our new human cell-expressed tag-free rhMFG-E8 is protective in I/R-induced AKI and it may have the potential to be further developed as a safe and effective therapy for AKI.
Collapse
|
4
|
Li P, Peng K, Liu LG, Liu QY, Huang ZH, Ahmad DMS, Wei X, Gao SH. Ex vivo MFG-E8 treatment improves the function of lungs procured from cardiac death donors in preclinical porcine model. Heliyon 2024; 10:e33614. [PMID: 39040292 PMCID: PMC11261799 DOI: 10.1016/j.heliyon.2024.e33614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Ex vivo lung perfusion (EVLP) is a promising technology that allows the re-evaluation of donor lungs and has the potential to improve marginal lung reconditioning. The present study focused on the effects of milk fat globule epidermal growth factor 8 (MFG-E8) on the function of donation after circulatory death (DCD) lungs during EVLP and transplant reperfusion. Domestic swine were assigned to 4 groups. In the control group, the donor lungs lacking warm ischemia were preserved in Perfadex for 4 h. The swine in the other three groups underwent hypoxic arrest, followed by 1 h of warm ischemia. The DCD lungs were procured and randomly divided into three groups: cold static preservation (DCD-CSP) group, DCD-EVLP group, and DCD-MFG-E8 group. The left lung of all groups was transplanted and reperfused. During EVLP and reperfusion, lung functions and pathological evaluations were performed. Treatment with MFG-E8 resulted in significantly improved blood oxygenation. The mean pulmonary artery pressure, peak airway pressure, and expression of IL-1β, IL-6, and IL-12 were significantly lower but IL-10 was higher in the DCD -MFG-E8 group. Furthermore, the lung injury severity score, pulmonary edema, and wet-to-dry weight ratio were also reduced in MFG-E8-treated lungs. However, the pulmonary vascular resistance and expression of TNF-α did not differ from the DCD -EVLP group but were significantly lower than in the DCD -CSP group. Adding MFG-E8 into the perfusate during EVLP obtains optimal graft function of lungs from DCD. This finding, if confirmed clinically, can be applied to recondition grafts and expanded use of DCD lungs.
Collapse
Affiliation(s)
- Ping Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Kai Peng
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Li Gang Liu
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qing Yun Liu
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhen Hua Huang
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Durgahee Mouniir Sha Ahmad
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiang Wei
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Si Hai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Chinese Ministry of Education and Chinese Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
5
|
Nofi CP, Prince JM, Aziz M, Wang P. The Novel MFG-E8-derived Oligopeptide, MOP3, Improves Outcomes in a Preclinical Murine Model of Neonatal Sepsis. J Pediatr Surg 2024; 59:1282-1290. [PMID: 38582704 DOI: 10.1016/j.jpedsurg.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION Neonatal sepsis is a devastating inflammatory condition that remains a leading cause of morbidity and mortality. Milk fat globule-EGF-factor VIII (MFG-E8) is a glycoprotein that reduces inflammation, whereas extracellular cold-inducible RNA binding protein (eCIRP) worsens inflammation. This study aimed to determine the therapeutic potential of a novel MFG-E8-derived oligopeptide 3 (MOP3) designed to clear eCIRP and protect against inflammation, organ injury, and mortality in neonatal sepsis. METHODS C57BL6 mouse pups were injected intraperitoneally with cecal slurry (CS) and treated with MOP3 (20 μg/g) or vehicle. 10 h after injection, blood, lungs, and intestines were collected for analyses, and in a 7-day experiment, pups were monitored for differences in mortality. RESULTS MOP3 treatment protected septic pups from inflammation by reducing eCIRP, IL-6, TNFα, and LDH. MOP3 reduced lung and intestinal inflammation and injury as assessed by reductions in tissue mRNA levels of inflammatory markers, histopathologic injury, and apoptosis in lung and intestines. MOP3 also significantly improved 7-day overall survival for CS-septic mouse pups compared to vehicle (75% vs. 46%, respectively). CONCLUSION Deriving from MFG-E8 and designed to clear eCIRP, MOP3 protects against sepsis-induced inflammation, organ injury, and mortality in a preclinical model of neonatal sepsis, implicating it as an exciting potential new therapeutic. LEVEL OF EVIDENCE Level 1.
Collapse
Affiliation(s)
- Colleen P Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Jose M Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA; Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA; Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
6
|
Nofi CP, Tan C, Ma G, Kobritz M, Prince JM, Wang H, Aziz M, Wang P. A novel opsonic eCIRP inhibitor for lethal sepsis. J Leukoc Biol 2024; 115:385-400. [PMID: 37774691 PMCID: PMC10799304 DOI: 10.1093/jleuko/qiad119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Sepsis is a life-threatening inflammatory condition partly orchestrated by the release of various damage-associated molecular patterns such as extracellular cold-inducible RNA-binding protein (eCIRP). Despite advances in understanding the pathogenic role of eCIRP in inflammatory diseases, novel therapeutic strategies to prevent its excessive inflammatory response are lacking. Milk fat globule-epidermal growth factor-VIII (MFG-E8) is critical for the opsonic clearance of apoptotic cells, but its potential involvement in the removal of eCIRP was previously unknown. Here, we report that MFG-E8 can strongly bind eCIRP to facilitate αvβ3-integrin-dependent internalization and lysosome-dependent degradation of MFG-E8/eCIRP complexes, thereby attenuating excessive inflammation. Genetic disruption of MFG-E8 expression exaggerated sepsis-induced systemic accumulation of eCIRP and other cytokines, and consequently exacerbated sepsis-associated acute lung injury. In contrast, MFG-E8-derived oligopeptide recapitulated its eCIRP binding properties, and significantly attenuated eCIRP-induced inflammation to confer protection against sepsis. Our findings suggest a novel therapeutic approach to attenuate eCIRP-induced inflammation to improve outcomes of lethal sepsis.
Collapse
Affiliation(s)
- Colleen P Nofi
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Chuyi Tan
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | - Gaifeng Ma
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
| | - Molly Kobritz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Jose M Prince
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Haichao Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, United States
| |
Collapse
|
7
|
Chaung W, Ma G, Jacob A, Brenner M, Wang P. Human cell-expressed tag-free rhMFG-E8 as an effective radiation mitigator. Sci Rep 2023; 13:22186. [PMID: 38092894 PMCID: PMC10719321 DOI: 10.1038/s41598-023-49499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and the possibility of antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 will have suitable structural and functional properties to be developed as a safe and effective novel biologic to treat inflammatory diseases including radiation injury. We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing an experimental rodent model of radiation injury, i.e., partial body irradiation (PBI). HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE with the standard human MFG-E8 loaded as control and, mass spectrometry followed by analysis using MASCOT for peptide mass fingerprint. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with a terminal elimination half-life in circulation of at least 1.45 h. In the 15 Gy PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 calculated using probit analysis was 1.058. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI suggesting it as a potential therapeutic candidate for a medical countermeasure for radiation injury. Our new human cell-expressed tag-free rhMFG-E8 has proper structural and functional properties to be further developed as a safe and effective therapy to treat victims of severe acute radiation injury.
Collapse
Affiliation(s)
- Wayne Chaung
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Gaifeng Ma
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Max Brenner
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA.
| |
Collapse
|
8
|
Liang H, Liu G, Zeng W, Fan Q, Nie Z, Hu H, Zhang R, Xie S. MEGF6 prevents sepsis-induced acute lung injury in mice. Int Immunopharmacol 2023; 123:110727. [PMID: 37597402 DOI: 10.1016/j.intimp.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) is featured as excessive inflammatory response and oxidative damage, and results in high death rate of septic patients. This research intends to determine the function of multiple EGF like domains 6 (MEGF6) in sepsis-induced ALI. METHODS Mice were intratracheally treated with adenovirus to knock down or overexpress MEGF6 in lung tissues, and then were subjected to cecum ligation and puncture (CLP) operation to induce ALI. Primary peritoneal macrophages were isolated, and were knocked down or overexpressed with MEGF6, and then, were stimulated with lipopolysaccharide (LPS) to confirm its role in vitro. RESULTS Serum and lung MEGF6 levels were significantly elevated in septic mice. MEGF6 knockdown exacerbated, while MEGF6 overexpression prevented inflammation, oxidative damage and ALI in CLP mice. Meanwhile, LPS-elicited inflammatory response and oxidative damage in primary macrophages were reduced by MEGF6 overexpression, but were further aggravated by MEGF6 knockdown. Mechanistic studies revealed that MEGF6 reduced cluster of differentiation 38 (CD38) expression and subsequently elevated intracellular nicotinamide adenine dinucleotide levels, thereby activating sirtuin 1 (SIRT1) without affecting the protein expression. SIRT1 suppression or CD38 overexpression with either genetic or pharmacologic methods remarkably blunted the lung protective effects of MEGF6 in CLP mice. CONCLUSION MEGF6 prevents CLP-induced ALI through CD38/SIRT1 pathway, and it might be a valuable therapeutic candidate for the management of sepsis-induced ALI.
Collapse
Affiliation(s)
- Hui Liang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Wenhui Zeng
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qinglu Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zhihao Nie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Haifeng Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
9
|
Ke MY, Fang Y, Cai H, Lu JW, Yang L, Wang Y, Wu RQ, Zhang XF, Lv Y, Dong J. The m 6A reader YTHDF1 attenuates fulminant hepatitis via MFG-E8 translation in an m 6A dependent manner. Int J Biol Sci 2023; 19:3987-4003. [PMID: 37564203 PMCID: PMC10411475 DOI: 10.7150/ijbs.84768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Background and Aims: N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes, which has been demonstrated to play important roles in various biological processes. However, its roles in fulminant hepatitis remain largely unknown. In the current study, YTHDF1 expression was found to be significantly downregulated in the livers among patients, as well as murine models with fulminant hepatitis versus normal controls. Thus, we hypothesized that YTHDF1 protects against fulminant hepatitis and investigated the underlying molecular mechanisms. Methods: Fulminant hepatitis was induced by D-GalN/LPS in conventional YTHDF1 knockout (YTHDF1-/-) mice, hepatocyte-specific YTHDF1 overexpression (AAV8- YTHDF1) mice, and corresponding control mice. Primary hepatocytes were cultured and subjected to LPS insult in vitro. Hepatic histology, cell death, oxidative stress and mitochondrial function were examined to assess liver damage. The molecular mechanisms of YTHDF1 function were explored using multi-omics analysis. Results: Ablation of YTHDF1 exacerbated hepatic apoptosis and reactive oxygen species (ROS) production and increased the number of aberrant mitochondria, while YTHDF1 overexpression resulted in the opposite effects. Multiomics analysis identified MFG-E8 as the direct target of YTHDF1. YTHDF1 augmented the translation of MFG-E8 in an m6A-dependent manner without effect on its mRNA expression, thereby restoring mitochondrial function. Additionally, administration of MFG-E8 almost completely reversed the YTHDF1 deficiency-mediated exacerbation of liver injury. Conclusions: The current study suggested that the m6A reader YTHDF1 alleviates cell death, enhances antioxidant capacity and restores mitochondrial function in fulminant hepatitis by promoting MFG-E8 protein translation in an m6A-dependent manner.
Collapse
Affiliation(s)
- Meng-Yun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Yi Fang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jian-Wen Lu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Lin Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yue Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xu-Feng Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
10
|
Beatty LA, Mansour KL, Bryant EJ, Garcia-Godoy FJ, Pantaleon DS, Sawatari Y, Huang CYC, Garcia-Godoy F. Chondroprotective Effects of Periodontal Ligament Derived Stem Cells Conditioned Medium on Articular Cartilage After Impact Injury. Stem Cells Dev 2022; 31:498-505. [PMID: 35730119 DOI: 10.1089/scd.2022.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracrine factors secreted in the conditioned media of periodontal ligament derived stem cells (PDLSCs) have been shown to downregulate inflammatory effects of IL-1β on chondrocytes wherein milk fat globule-epidermal growth factor 8 (MFG-E8) is one of the PDLSCs highly secretory proteins. Therefore, the objective of this study was to investigate the ability of PDLSC conditioned media (CM) and MFG-E8 to reduce the inflammatory effects of impact injury on porcine talar articular cartilage (AC) and IL-1β on chondrocytes, respectively. Stem cells were isolated from human periodontal ligaments. the MFG-E8 content in CM collected at 5% and 20% oxygen was measured by ELISA assay and compared across subcultures and donors. AC samples were divided into three groups: control, impact, and impact+CM. Chondrocytes were isolated from pig knees and were divided into three groups: control, IL-1β, and IL-1β+MFG-E8. Gene expression data was analyzed by RT-PCR. It was found that impact load and IL-1β treatment upregulated IL-1β, TNF-α, ADAMTS-4, and ADAMTS-5 gene expression in AC and chondrocytes, respectively. PDLSCs-CM prevented the upregulation of all four genes due to impact whereas MFG-E8 prevented upregulation of IL-1β, ADAMTS-4, and ADAMTS-5 in chondrocytes, but it did not prevent TNF-α upregulation. There were no significant differences in MFG-E8 content in CM among oxygen levels, passage numbers, or donors. The findings suggested that MFG-E8 is an effective anti-inflammatory agent contributing to the chondroprotective effects of PDLSCs-CM on acutely injured articular cartilage. Thus, introducing PDLSCs-CM to sites of acute traumatic AC injury could prevent the development of post-traumatic osteoarthritis.
Collapse
Affiliation(s)
- Logan Albert Beatty
- University of Miami - Coral Gables Campus, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Kailey L Mansour
- University of Miami Miller School of Medicine, 12235, Miami, Florida, United States;
| | - Evan J Bryant
- University of Miami Miller School of Medicine, 12235, Miami, Florida, United States;
| | | | | | - Yoh Sawatari
- University of Miami Miller School of Medicine, 12235, Division of Oral and Maxillofacial Surgery, Miami, Florida, United States;
| | - Chun-Yuh Charles Huang
- University of Miami - Coral Gables Campus, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Franklin Garcia-Godoy
- University of Tennessee Health Science Center, Bioscience Research, College of Dentistry, Memphis, Tennessee, United States;
| |
Collapse
|
11
|
Liu X, Wu J, Nie H, Zhu X, Song G, Han L, Qin W. Comprehensive Analysis of circRNAs, miRNAs, and mRNAs Expression Profiles and ceRNA Networks in Decidua of Unexplained Recurrent Spontaneous Abortion. Front Genet 2022; 13:858641. [PMID: 35711933 PMCID: PMC9194479 DOI: 10.3389/fgene.2022.858641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
The diagnosis and treatment of unexplained recurrent spontaneous abortion (URSA) are subject to debate, because the exact underlying mechanisms remain unclear. To address this issue, we elucidated the expression profiles of dysregulated circRNAs, miRNAs, and mRNAs and constructed circRNA-associated competitive endogenous RNA (ceRNA) networks by comparing the decidua of URSA with that of normal early pregnancy (NEP) using RNA-sequencing. In total, 550 mRNAs, 88 miRNAs, and 139 circRNAs were differentially expressed (DE) in decidua of URSA. Functional annotation revealed that DE mRNAs as well as potential target genes of DE miRNAs and DE circRNAs are mainly involved in immunologic function, such as antigen processing and presentation, allograft rejection, and T cell receptor signaling pathway. In addition, the top hub genes, including CCL4, DDX58, CXCL10, CXCL9, MX1, CD44, RPS2, SOCS3, RPS3A, and CXCL11, were identified. The mRNAs involved in ceRNA network were enriched in complement and coagulation cascades and protein processing in the endoplasmic reticulum. We found that circRNAs in the ceRNA network, which acted as decoys for hsa-miR-204-5p, were positively correlated with MFGE8 expression. Collectively, the results demonstrated that circRNAs, miRNAs, and mRNAs were aberrantly expressed in the decidua of patients with URSA and played a potential role in the development of URSA. Thus, the establishment of the ceRNA network may profoundly affect the diagnosis and therapy of URSA in the future.
Collapse
Affiliation(s)
- Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Xiaoli Zhu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Lu Han
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China.,Department of Center Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| |
Collapse
|
12
|
Huang CY, Vesvoranan O, Yin X, Montoya A, Londono V, Sawatari Y, Garcia-Godoy F. Anti-Inflammatory Effects of Conditioned Medium of Periodontal Ligament-Derived Stem Cells on Chondrocytes, Synoviocytes, and Meniscus Cells. Stem Cells Dev 2021; 30:537-547. [PMID: 33757298 DOI: 10.1089/scd.2021.0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis, afflicting millions of people in the world. Elevation of inflammatory mediators and enzymatic matrix destruction is often associated with OA. Therefore, the objective of this study was to investigate the effects of conditioned medium from periodontal ligament-derived stem cells (PDLSCs) on inflammatory and catabolic gene expressions of chondrocytes, synoviocytes, and meniscus cells under in vitro inflammatory condition. Stem cells were isolated from human periodontal ligaments. Conditioned medium was collected and concentrated 20 × . Chondrocytes, synoviocytes, and meniscus cells were isolated from pig knees and divided into four experimental groups: serum-free media, serum-free media+interleukin-1β (IL-1β) (10 ng/mL), conditioned media (CM), and CM+IL-1β. Protein content and extracellular vesicle (EV) miRNAs of CM were analyzed by liquid chromatography-tandem mass spectrometry and RNA sequencing, respectively. It was found that the IL-1β treatment upregulated the expression of IL-1β, tumor necrosis factor-α (TNF-α), MMP-13, and ADAMTS-4 genes in the three cell types, whereas PDLSC-conditioned medium prevented the upregulation of gene expression by IL-1β in all three cell types. This study also found that there was consistency in anti-inflammatory effects of PDLSC CM across donors and cell subcultures, while PDLSCs released several anti-inflammatory factors and EV miRNAs at high levels. OA has been suggested as an inflammatory disease in which all intrasynovial tissues are involved. PDLSC-conditioned medium is a cocktail of trophic factors and EV miRNAs that could mediate different inflammatory processes in various tissues in the joint. Introducing PDLSC-conditioned medium to osteoarthritic joints could be a potential treatment to prevent OA progression by inhibiting inflammation.
Collapse
Affiliation(s)
- Chun-Yuh Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Oraya Vesvoranan
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Xue Yin
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Amanda Montoya
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Valeria Londono
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
| | - Yoh Sawatari
- Division of Oral and Maxillofacial Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Bu HF, Subramanian S, Geng H, Wang X, Liu F, Chou PM, Du C, De Plaen IG, Tan XD. MFG-E8 Plays an Important Role in Attenuating Cerulein-Induced Acute Pancreatitis in Mice. Cells 2021; 10:728. [PMID: 33806041 PMCID: PMC8064467 DOI: 10.3390/cells10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is a secreted glycoprotein that regulates tissue homeostasis, possesses potent anti-inflammatory properties, and protects against tissue injury. The human pancreas expresses MFG-E8; however, the role of MFG-E8 in the pancreas remains unclear. We examined the expression of MFG-E8 in the pancreas at baseline and during cerulein-induced acute pancreatitis in mice and determined whether MFG-E8 attenuates the progression of pancreatitis, a serious inflammatory condition that can be life-threatening. We administered cerulein to wild-type (WT) and Mfge8 knockout (KO) mice to induce pancreatitis. Immunoblot analysis showed that MFG-E8 is constitutively expressed in the murine pancreas and is increased in mice with cerulein-induced acute pancreatitis. In situ hybridization revealed that ductal epithelial cells in the mouse pancreas express Mfge8 transcripts at baseline. During pancreatitis, Mfge8 transcripts were abundantly expressed in acinar cells and endothelial cells in addition to ductal epithelial cells. Knocking out Mfge8 in mice exacerbated the severity of cerulein-induced acute pancreatitis and delayed its resolution. In contrast, administration of recombinant MFG-E8 attenuated cerulein-induced acute pancreatitis and promoted repair of pancreatic injury in Mfge8 KO mice. Taken together, our study suggests that MFG-E8 protects the pancreas against inflammatory injury and promotes pancreatic tissue repair. MFG-E8 may represent a novel therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Heng-Fu Bu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Saravanan Subramanian
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hua Geng
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Xiao Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Fangyi Liu
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pauline M. Chou
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Chao Du
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Isabelle G. De Plaen
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Intestinal and Liver Inflammation Research, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (H.-F.B.); (S.S.); (H.G.); (X.W.); (F.L.); (C.D.)
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Ren Y, Liu W, zhang L, Zhang J, Bi J, Wang T, Wang M, Du Z, Wang Y, zhang L, Wu Z, Lv Y, Meng L, Wu R. Milk fat globule EGF factor 8 restores mitochondrial function via integrin-medicated activation of the FAK-STAT3 signaling pathway in acute pancreatitis. Clin Transl Med 2021; 11:e295. [PMID: 33634976 PMCID: PMC7828261 DOI: 10.1002/ctm2.295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Acute pancreatitis (AP) remains a significant clinical challenge. Mitochondrial dysfunction contributes significantly to the pathogenesis of AP. Milk fat globule EGF factor 8 (MFG-E8) is an opsonizing protein, which has many biological functions via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining a normal mitochondrial function. However, MFG-E8's role in AP has not been evaluated. METHODS Blood samples were acquired from 69 healthy controls and 134 AP patients. Serum MFG-E8 levels were measured by ELISA. The relationship between serum concentrations of MFG-E8 and disease severity were analyzed. The role of MFG-E8 was evaluated in experimental models of AP. RESULTS Serum concentrations of MFG-E8 were lower in AP patients than healthy controls. And serum MFG-E8 concentrations were negatively correlated with disease severity in AP patients. In mice, MFG-E8 administration decreased L-arginine-induced pancreatic injury and mortality. MFG-E8's protective effects in experimental AP were associated with improvement in mitochondrial function and reduction in oxidative stress. MFG-E8 knockout mice suffered more severe pancreatic injury and greater mitochondrial damage after l-arginine administration. Mechanistically, MFG-E8 activated the FAK-STAT3 pathway in AP mice. Cilengitide, a specific αvβ3/5 integrin inhibitor, abolished MFG-E8's beneficial effects in AP. PF00562271, a specific FAK inhibitor, blocked MFG-E8-induced STAT3 phosphorylation. APTSTAT3-9R, a specific STAT3 antagonist, also eliminated MFG-E8's beneficial effects under such a condition. CONCLUSIONS MFG-E8 acts as an endogenous protective mediator in the pathogenesis of AP. MFG-E8 administration protects against AP possibly by restoring mitochondrial function via activation of the integrin-FAK-STAT3 signaling pathway. Targeting the action of MFG-E8 may present a potential therapeutic option for AP.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Lin zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Zhaoqing Du
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Yawen Wang
- BiobankFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Laboratory MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Lin zhang
- Department of Laboratory MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Zheng Wu
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| | - Lingzhong Meng
- Department of AnesthesiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative MedicineShaanxi Provincial Center for Regenerative Medicine and Surgical EngineeringFirst Affiliated Hospital of Xi'an Jiaotong University.Xi'anShaanxi ProvinceChina
| |
Collapse
|
15
|
Chatterton DEW, Aagaard S, Hesselballe Hansen T, Nguyen DN, De Gobba C, Lametsch R, Sangild PT. Bioactive proteins in bovine colostrum and effects of heating, drying and irradiation. Food Funct 2021; 11:2309-2327. [PMID: 32108849 DOI: 10.1039/c9fo02998b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine colostrum (BC) contains bioactive proteins, such as immunoglobulin G (IgG), lactoferrin (LF) and lactoperoxidase (LP). BC was subjected to low-temperature, long-time pasteurization (LTLT, 63 °C, 30 min) or high-temperature, short-time pasteurization (HTST, 72 °C, 15 s) and spray-drying (SD), with or without γ-irradiation (GI, ∼14 kGy) to remove microbial contamination. Relative to unpasteurized liquid BC, SD plus GI increased protein denaturation by 6 and 11%, respectively, increasing to 19 and 27% after LTLT and to 48% after HTST, with no further effects after GI (all P < 0.05). LTLT, without or with GI, resulted in 15 or 29% denaturation of IgG, compared with non-pasteurized BC, and 34 or 58% for HTST treatment (all P < 0.05, except LTLT without GI). For IgG, only GI, not SD or LTLT, increased denaturation (30-38%, P < 0.05) but HTST increased denaturation to 40%, with further increases after GI (60%, P < 0.05). LTLT and HTST reduced LP levels (56 and 81% respectively) and LTLT reduced LF levels (21%), especially together with GI (47%, P < 0.05). Denaturation of BSA, β-LgA, β-LgB and α-La were similar to IgG. Methionine, a protective amino acid against free oxygen radicals, was oxidised by LTLT + GI (P < 0.05) while LTLT and HTST had no effect. Many anti-inflammatory proteins, including serpin anti-proteinases were highly sensitive to HTST and GI but preserved after LTLT pasteurization. LTLT, followed by SD is an optimal processing technique preserving bioactive proteins when powdered BC is used as a diet supplement for sensitive patients.
Collapse
Affiliation(s)
| | - Sasha Aagaard
- Department of Food Science, University of Copenhagen, DK-1958, Denmark. and Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | | | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - René Lametsch
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| |
Collapse
|
16
|
Wu J, Yang H, Cheng J, Zhang L, Ke Y, Zhu Y, Wang C, Zhang X, Zhen X, Zheng LT. Knockdown of milk-fat globule EGF factor-8 suppresses glioma progression in GL261 glioma cells by repressing microglial M2 polarization. J Cell Physiol 2020; 235:8679-8690. [PMID: 32324268 DOI: 10.1002/jcp.29712] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/02/2023]
Abstract
Tumor-associated microglial cells promote glioma growth, invasion, and chemoresistance by releasing inflammatory factors. Milk fat globule EGF factor 8 protein (MFG-E8), a secreted glycoprotein, is closely related to tissue homeostasis and anti-inflammation. In the present study, we investigated the role of MFG-E8 in microglial polarization and glioma progression in vitro and in vivo. We found that glioma cells secrete comparable amounts of MFG-E8 in culture media to astrocytes. Recombinant MFG-E8 triggered microglia to express the M2 polarization markers, such as arginase-1 (ARG-1), macrophage galactose-type C-type lectin-2 (MGL-2), and macrophage mannose receptor (CD206). Forced expression of MFG-E8 in BV-2 microglia cells not only promoted IL-4-induced M2 polarization but also inhibited lipopolysaccharide (LPS)-induced M1 microglial polarization. Mechanistic studies demonstrated that recombinant MFG-E8 markedly induced signal transducer and activator of transcription 3 (STAT3) phosphorylation, and the STAT3 inhibitor stattic significantly blocked MFG-E8-induced ARG-1 expression. Administration of antibody against MFG-E8 and knockdown of its receptor, integrin β3, significantly attenuated MFG-E8-induced ARG-1 expression. Similarly, knockdown of MFG-E8 also markedly reduced IL-4-induced M2 marker expression and increased LPS-induced M1 marker expression in microglia cells. Moreover, the knockdown of MFG-E8 in GL261 glioma cells inhibited cell proliferation and enhanced chemosensitivity to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), which was likely associated with the downregulation of FAK/AKT activation and STAT3/cyclin D1 signaling. The murine GL261 glioma experimental model demonstrated that knockdown of MFG-E8 significantly reduced tumor size and extended survival times. Additionally, attenuated CD11b+ cell infiltration and reduced CD206+ expression in CD11b+ cells were also observed in an MFG-E8 knockdown GL261 murine glioma model. These results suggested that inhibition of MFG-E8 might hamper the immunosuppressive microenvironment in gliomas and therefore ameliorate tumor progression.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Junjie Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Li Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Youliang Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Cheng Wang
- The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Long Tai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Ramiro-Cortijo D, Singh P, Liu Y, Medina-Morales E, Yakah W, Freedman SD, Martin CR. Breast Milk Lipids and Fatty Acids in Regulating Neonatal Intestinal Development and Protecting against Intestinal Injury. Nutrients 2020; 12:E534. [PMID: 32092925 PMCID: PMC7071444 DOI: 10.3390/nu12020534] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human breast milk is the optimal source of nutrition for infant growth and development. Breast milk fats and their downstream derivatives of fatty acids and fatty acid-derived terminal mediators not only provide an energy source but also are important regulators of development, immune function, and metabolism. The composition of the lipids and fatty acids determines the nutritional and physicochemical properties of human milk fat. Essential fatty acids, including long-chain polyunsaturated fatty acids (LCPUFAs) and specialized pro-resolving mediators, are critical for growth, organogenesis, and regulation of inflammation. Combined data including in vitro, in vivo, and human cohort studies support the beneficial effects of human breast milk in intestinal development and in reducing the risk of intestinal injury. Human milk has been shown to reduce the occurrence of necrotizing enterocolitis (NEC), a common gastrointestinal disease in preterm infants. Preterm infants fed human breast milk are less likely to develop NEC compared to preterm infants receiving infant formula. Intestinal development and its physiological functions are highly adaptive to changes in nutritional status influencing the susceptibility towards intestinal injury in response to pathological challenges. In this review, we focus on lipids and fatty acids present in breast milk and their impact on neonatal gut development and the risk of disease.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; (D.R.-C.); (P.S.); (Y.L.); (E.M.-M.); (S.D.F.)
| | - Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; (D.R.-C.); (P.S.); (Y.L.); (E.M.-M.); (S.D.F.)
| | - Yan Liu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; (D.R.-C.); (P.S.); (Y.L.); (E.M.-M.); (S.D.F.)
| | - Esli Medina-Morales
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; (D.R.-C.); (P.S.); (Y.L.); (E.M.-M.); (S.D.F.)
| | - William Yakah
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA;
| | - Steven D. Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; (D.R.-C.); (P.S.); (Y.L.); (E.M.-M.); (S.D.F.)
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Camilia R. Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA;
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
18
|
MFGE8 attenuates Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol 2020; 139:164-175. [PMID: 31958465 DOI: 10.1016/j.yjmcc.2020.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022]
Abstract
Atrial fibrillation (AF) is characterized by potentiated growth of atrial fibroblasts and excessive deposition of the extracellular matrix. Atrial fibrosis has emerged as a hallmark of atrial structural remodeling linked to AF. Nonetheless, the specific mechanism underlying the progression of atrial fibrosis to AF is still largely unknown. MFGE8 (milk fat globule-EGF factor 8) is a soluble glycoprotein associated with many human diseases. Recently, a number of studies revealed that MFGE8 plays a crucial role in heart disease. Yet, MFGE8 regulation and function in the process of atrial fibrosis and vulnerability to AF remain unexplored. In this study, we found that the expression of MFGE8 was downregulated in the atriums of patients with AF compared with individuals without AF. In addition, the expression of MFGE8 was lower in atriums of angiotensin II (Ang-II)-stimulated rats as compared with the sham group. In vitro, silencing of MFGE8 by small interfering RNA significantly increased Ang-II-induced atrial fibrosis, whereas administration of recombinant human MFGE8 (rhMFGE8) attenuated the atrial fibrosis. Moreover, we found that the activated TGF-β1/Smad2/3 pathway after Ang-II treatment was significantly potentiated by the MFGE8 knockdown but inhibited by rhMFGE8 in vitro. Inhibition of integrin β3 which is the receptor for MFGE8, suppressed the TGF-β1/Smad2/3 activating effects of the MFGE8 knockdown in Ang-II-treated rat atrial fibroblasts. Finally, we administered rhMFGE8 to rats; it attenuated atrial fibrosis and remodeling and further reduced AF vulnerability induced by Ang-II, indicating that MFGE8 might have the potential both as a novel biomarker and as a therapeutic target in atrial fibrosis and AF.
Collapse
|
19
|
Retinol Saturase Knock-Out Mice are Characterized by Impaired Clearance of Apoptotic Cells and Develop Mild Autoimmunity. Biomolecules 2019; 9:biom9110737. [PMID: 31766264 PMCID: PMC6920856 DOI: 10.3390/biom9110737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis and the proper clearance of apoptotic cells play a central role in maintaining tissue homeostasis. Previous work in our laboratory has shown that when a high number of cells enters apoptosis in a tissue, the macrophages that engulf them produce retinoids to enhance their own phagocytic capacity by upregulating several phagocytic genes. Our data indicated that these retinoids might be dihydroretinoids, which are products of the retinol saturase (RetSat) pathway. In the present study, the efferocytosis of RetSat-null mice was investigated. We show that among the retinoid-sensitive phagocytic genes, only transglutaminase 2 responded in macrophages and in differentiating monocytes to dihydroretinol. Administration of dihydroretinol did not affect the expression of the tested genes differently between differentiating wild type and RetSat-null monocytes, despite the fact that the expression of RetSat was induced. However, in the absence of RetSat, the expression of numerous differentiation-related genes was altered. Among these, impaired production of MFG-E8, a protein that bridges apoptotic cells to the αvβ3/β5 integrin receptors of macrophages, resulted in impaired efferocytosis, very likely causing the development of mild autoimmunity in aged female mice. Our data indicate that RetSat affects monocyte/macrophage differentiation independently of its capability to produce dihydroretinol at this stage.
Collapse
|
20
|
Yavuz MC, Pekbağriyanik T, Sağlam M, Köseoğlu S. Evaluation of milk fat globule-epidermal growth factor-factor VIII and IL-1β levels in gingival crevicular fluid and saliva in periodontal disease and health. Odontology 2019; 107:449-456. [PMID: 30903320 DOI: 10.1007/s10266-019-00419-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
The aim of this study is to determine the levels of MFG-E8 and interleukin (IL)-1β in saliva and gingival crevicular fluid (GCF) associated with periodontal health and disease. Whole saliva and GCF samples were obtained from systemically healthy participants who were either periodontally healthy (n = 24) or suffered from gingivitis (n = 25) or chronic periodontitis (n = 25). Full-mouth clinical periodontal measurements, including bleeding on probing, probing depth, gingival index, plaque index, and clinical attachment level were also recorded. Enzyme-linked immunosorbent assay was used to estimate MFG-E8 and IL-1β levels in the samples. Analysis of variance, Kruskal-Wallis tests, and Pearson correlation tests were used to analyse the data statistically. The total level of MFG-E8 in GCF was significantly higher in the healthy group than in the other two groups (P = 0.01). Salivary MFG-E8 levels did not differ significantly among the groups. There were negative correlations between the level of MFG-E8 in GCF and probing depth (P = 0.03), bleeding on probing (P = 0.001), plaque index (P = 0.003), and gingival index (P = 0.003). The total level of IL-1β in GCF was significantly lower in the healthy group than in the groups with gingivitis and chronic periodontitis (P < 0.001). Salivary IL-1β levels showed significant differences across all three groups (P < 0.001). The level of MFG-E8 in GCF was higher in the healthy group than in the periodontal disease groups. Furthermore, there was no difference between gingivitis and periodontitis groups. The relationship between MFG-E8 and periodontal status should be further investigated.
Collapse
Affiliation(s)
- Mustafa Cihan Yavuz
- Department of Periodontology, Faculty of Dentistry, Istanbul Medeniyet University, 34100, Istanbul, Turkey.
| | | | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| | - Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, University of Health Science, Istanbul, Turkey
| |
Collapse
|
21
|
Zhao Y, Wang Q, Zang B. Milk fat globule-epidermal growth factor 8 (MFG-E8) attenuates sepsis-induced acute kidney injury by inhibiting NF-κB signaling pathway1. Acta Cir Bras 2019; 34:e201900209. [PMID: 30843942 PMCID: PMC6585916 DOI: 10.1590/s0102-8650201900209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/20/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose To explore the effect of milk fat globule-epidermal growth factor 8 (MFG-E8)
on sepsis-induced acute kidney injury (SAKI). Methods Male C57BL/6 mice were randomized to control, sham, CLP, CLP+PBS, and
CLP+rmMFG-E8 groups. SAKI was induced by cecal ligation and puncture (CLP).
Recombinant mouse MFG-E8 (rmMFG-E8) (20 μg/kg) or PBS (vehicle) was
administered intraperitoneally. Blood, urine and renal tissue were collected
at 24 h after CLP. Blood samples were tested for serum kidney injury
biomarker and cytokines. Urine samples were collected to detect KIM-1, and
NGAL. Real-time PCR was tested for Bax and Bcl-2. TUNEL staining was used to
determine renal apoptosis. Western blot was used to detect the expression of
Bax, Bcl-2, and proteins in the NF-κB pathway. Results MFG-E8 alleviated SAKI by decreasing serum Cre, BUN, urine KIM-1 and NGAL
and by mitigating renal pathological changes significant (p < 0.05).
IL-1β, IL-6, TNF-α were significantly inhibited by MFG-E8 (p < 0.05).
Apoptosis induced by SAKI was markedly suppressed by MFG-E8. Finally, MFG-E8
attenuated the activation of the NF-𝜅B signaling pathway in SAKI. Conclusion MFG-E8 has beneficial effects on SAKI, which may be achieved by inhibiting
the NF-κB pathway.
Collapse
Affiliation(s)
- Yang Zhao
- Master, Department of Critical Care Medicine, Shengjing Hospital, China Medical University, Shenyang, China. Technical procedures, interpretation of data, statistical analysis, manuscript preparation
| | - Qian Wang
- Master, Department of Emergency Medicine, 4th Affiliated Hospital, China Medical University, Shenyang, China. Acquisition and interpretation of data, statistical analysis, critical revision
| | - Bin Zang
- Master, Chairman and Head, Department of Critical Care Medicine, Shengjing Hospital, China Medical University, Shenyang, China. Conception and design of the study, critical revision
| |
Collapse
|
22
|
Yang Y, Li J, Song Q, Zhu K, Yu X, Tian Y, Zhang J. Reduction in milk fat globule-EGF factor 8 inhibits triple-negative breast cancer cell viability and migration. Oncol Lett 2019; 17:3457-3465. [PMID: 30867784 PMCID: PMC6396170 DOI: 10.3892/ol.2019.9968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/29/2018] [Indexed: 11/06/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) has been demonstrated to be associated with the progression and metastasis of breast cancer, although the underlying mechanisms remain undefined. The aim of the present study was to explore the role of MFG-E8 in human breast cancer and examine the underlying molecular mechanisms. Reverse transcription-quantitative polymerase chain reaction analysis was used to evaluate the expression levels of MFG-E8 in human breast carcinoma cell lines. An MFG-E8 small interfering RNA lentiviral vector was constructed and transfected into MDA-MB-231 cells. The results indicated that the in vitro silencing of MFG-E8 significantly inhibited the viability, invasion and migration of breast cancer cells. By using a flow cytometric approach, the knockdown of MFG-E8 was revealed to significantly induce cell cycle arrest at the G2/M phase and cell apoptosis. Furthermore, the downregulation of MFG-E8 induced the activation of apoptosis-associated proteins, and inhibited the expression of matrix metalloproteinase and epithelial-mesenchymal transition-associated proteins. Collectively, the results of the present study emphasize the importance of MFG-E8 deregulation in mammary carcinogenesis and its potential use as a biomarker for the diagnosis of breast carcinomas.
Collapse
Affiliation(s)
- Yong Yang
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiebao Li
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qi Song
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kongjun Zhu
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaocheng Yu
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ye Tian
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jiaheng Zhang
- Department of Breast and Thyroid Surgery, Wuhan No. 1 Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
23
|
Zhi Y, Huang H, Liang L. MFG-E8/integrin β3 signaling contributes to airway inflammation response and airway remodeling in an ovalbumin-induced murine model of asthma. J Cell Biochem 2018; 119:8887-8896. [PMID: 30076648 DOI: 10.1002/jcb.27142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Asthma is the most common chronic childhood disease worldwide, characterized by airway remodeling and chronic inflammation, orchestrated primarily by Th2 cytokines. The aim of the current study was to explore the influences of milk fat globule epidermal growth factor 8 (MFG-E8)/integrin β3 signaling involved in airway inflammation and remodeling in asthma. BALB/c mice were sensitized by intraperitoneal injection of ovalbumin (OVA), followed by OVA nebulization. The levels of MFG-E8 expression were declined markedly in the OVA-induced allergy murine model. In addition, administration of MFG-E8 strongly reduced the accumulation of T-helper type 2 (Th2)-associated cytokines (such as interleukin-4, -5, and -13) as well as chemokine CCL11 (eotaxin) in bronchoalveolar lavage fluid and tissues in the OVA-sensitized mice. Moreover, MFG-E8 remarkably repressed the total immunoglobulin E and OVA-specific immunoglobulin E in serum in OVA-challenged mice. Meanwhile, treatment with recombinant murine MFG-E8 noticeably prevented inflammatory cell infiltration into the airways, as showed by a marked decrease in the numbers of total immune cells, eosinophils, neutrophils, macrophages, and lymphocytes in the bronchoalveolar lavage fluid in response to OVA challenge. Importantly, MFG-E8 apparently alleviated OVA-driven airway remodeling, which were evidenced by declined secretion of important mediators of airway remodeling, including transforming growth factor-β1, matrix metalloproteinase 9, ADAM8, and vascular endothelial growth factor, and reduced airway collagen deposition and inhibited goblet cell hyperplasia in OVA-induced asthma in mice. Mechanistically, integrin 3 contributes to the protective effect of MFG-E8 in inhibiting airway inflammation and remodeling in OVA-driven features of allergic asthma. Overall, MFG-E8, as a candidate molecule to evaluate airway inflammation and remodeling, could be a potential target for the management and prevention of asthma exacerbations, suggesting that MFG-E8/integrin β3 signaling may serve as a promising therapeutic agent for childhood asthma.
Collapse
Affiliation(s)
- Yueli Zhi
- Department of Respiratory Medicine, The Affiliated Children's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Han Huang
- Department of Respiratory Medicine, The Affiliated Children's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Lihong Liang
- Department of Respiratory Medicine, The Affiliated Children's Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Michalski MN, Seydel AL, Siismets EM, Zweifler LE, Koh AJ, Sinder BP, Aguirre JI, Atabai K, Roca H, McCauley LK. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide. FASEB J 2018; 32:3730-3741. [PMID: 29475373 DOI: 10.1096/fj.201701238r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance, and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs. adult skeleton was determined in mice deficient in MFG-E8 (KO). In vivo, trabecular bone was similar in MFG-E8KO and wild-type (WT) mice at 6 and 16 wk, whereas 22 wk adult MFG-E8KO mice displayed significantly reduced trabecular BV/TV. The number of osteoclasts per bone surface was increased in 22-wk MFG-E8 KO vs. WT mice, and recombinant murine MFG-E8 decreased the number and size of osteoclasts in vitro. Adult MFG-E8KO spleen weight:body weight was increased compared with WT, and flow cytometric analysis showed significantly increased myeloid-derived suppressor cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow, suggesting an inflammatory phenotype. PTH-treated MFG-E8KO mice showed a greater anabolic response (+124% BV/TV) than observed in PTH-treated WT mice (+64% BV/TV). These data give insight into the role of MFG-E8 in the adult skeleton and suggest that anabolic PTH may be a valuable therapeutic approach for autoimmune-associated skeletal disease.-Michalski, M. N., Seydel, A. L., Siismets, E. M., Zweifler, L. E., Koh, A. J., Sinder, B. P., Aguirre, J. I., Atabai, K., Roca, H., McCauley, L. K. Inflammatory bone loss associated with MFG-E8 deficiency is rescued by teriparatide.
Collapse
Affiliation(s)
- Megan N Michalski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Anna L Seydel
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Erica M Siismets
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Benjamin P Sinder
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kamran Atabai
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA; and
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Schmitz CR, Oehninger S, Genro VK, Chandra N, Lattanzio F, Yu L, Cunha-Filho JS. Alterations in expression of endometrial milk fat globule-EGF factor 8 (MFG-E8) and leukemia inhibitory factor (LIF) in patients with infertility and endometriosis. JBRA Assist Reprod 2017; 21:313-320. [PMID: 28967712 PMCID: PMC5714598 DOI: 10.5935/1518-0557.20170056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The aim of this study was to compare the endometrial expression of milk fat globule-EGF factor 8 (MFG-E8), its receptor integrin αvβ3, and leukemia inhibitory factor (LIF) in patients with endometriosis and infertility and in healthy fertile patients during the window of implantation. METHODS Five patients with peritoneal endometriosis and infertility (case group) and four healthy fertile patients (control group) were recruited. All patients were either diagnosed with or ruled out for endometriosis by laparoscopic surgery; the case group underwent surgery for infertility investigation and the control group for tubal ligation. Endometrial biopsies were performed in all patients during the window of implantation (LH+8 to LH+10), and then the samples were analyzed by immunochemistry for MFG-E8, integrin αvβ3, and LIF. RESULTS In patients with endometriosis and infertility, expression of MFG-E8 was significantly increased in the glandular epithelium when compared to healthy fertile patients (p<0.001). Moreover, LIF expression was lower in patients with endometriosis and infertility (p<0.05). Nevertheless, we found no difference in integrin αvβ3 expression between the groups (p=0.084). CONCLUSION This study showed for the first time that MFG-E8 expression is impaired in the endometrium of patients with endometriosis and infertility during the window of implantation. Moreover, LIF is also diminished in the endometrium of these patients as shown before.
Collapse
Affiliation(s)
- Carla Regina Schmitz
- Graduate Program in Internal Medicine of the Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sergio Oehninger
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, The Jones Institute for Reproductive Medicine, Norfolk VA, USA
| | - Vanessa Krebs Genro
- Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Neelima Chandra
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, The Jones Institute for Reproductive Medicine, Norfolk VA, USA
| | - Frank Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk VA, USA
| | - Liang Yu
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, The Jones Institute for Reproductive Medicine, Norfolk VA, USA
| | - João Sabino Cunha-Filho
- Graduate Program in Internal Medicine of the Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Nyegaard S, Andreasen T, Rasmussen JT. Lactadherin orthologs inhibit migration of human, porcine and murine intestinal epithelial cells. Food Sci Nutr 2017; 5:934-942. [PMID: 28748083 PMCID: PMC5520951 DOI: 10.1002/fsn3.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/24/2016] [Accepted: 02/21/2017] [Indexed: 01/25/2023] Open
Abstract
Lactadherin was originally described due to its appearance in milk, but is abundantly expressed especially by professional and nonprofessional phagocytes. The proteins has been shown to have a multitude of bioactive effects, including inhibition of inflammatory phospholipases, induction of effero‐ and phagocytosis, prevent rotavirus induced gastroenteritis, and modulate intestinal homeostasis by regulating epithelial cell migration. The level of expression seems to be important in a row of serious pathologies linked to the intestinal epithelial barrier function, vascular‐ and autoimmune disease. This study examines the ability of lactadherin to modulate migration of intestinal epithelium. A cell exclusion assay is used to quantify the ability of human, bovine and murine lactadherin orthologs to affect migration of primary small intestine epithelium cells. Previous reports show that recombinant murine lactadherin stimulate rat small intestine cell migration. The present study could not confirm this. Conversely, 10 μg/ml lactadherin inhibits migration. Therefore, as lactadherins enteroprotective properties is well established using in vivo models we conclude that the protective effects are linked to lactadherins ability operate as an opsonin, or other modulating effects, and not a direct lactadherin‐cell induction of migration. Thus, the molecular mechanism behind the enteroprotective role of lactadherin remains to be established.
Collapse
Affiliation(s)
- Steffen Nyegaard
- Department of Molecular Biology University of Aarhus Aarhus C Denmark
| | - Trine Andreasen
- Department of Molecular Biology University of Aarhus Aarhus C Denmark
| | | |
Collapse
|
27
|
Milk fat globule-epidermal growth factor-factor VIII attenuates sepsis-induced acute kidney injury. J Surg Res 2017; 213:281-289. [PMID: 28601327 DOI: 10.1016/j.jss.2017.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is most commonly caused by sepsis in critically ill patients, and it is associated with high morbidity and mortality. The pathophysiology of sepsis-induced AKI is generally accepted to include direct inflammatory injury, endothelial cell dysfunction, and apoptosis. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein with a known role in the enhancement of apoptotic cell clearance and regulation of inflammation. We hypothesize that administration of recombinant mouse MFG-E8 (rmMFG-E8) can protect mice from kidney injuries caused by sepsis. METHODS Sepsis was induced in 8-wk-old male C57BL/6 mice by cecal ligation and puncture (CLP). rmMFG-E8 or phosphate-buffered saline (vehicle) was injected intravenously at a dosage of 20 μg/kg body weight at time of CLP (n = 5-8 mice per group). After 20 h, serum and renal tissue were harvested for various analyses. The renal injury markers blood urea nitrogen (BUN) and creatinine were determined by enzymatic and chemical reactions, respectively. The gene expression analysis was carried out by real-time quantitative polymerase chain reaction. RESULTS At 20 h after CLP, serum levels of BUN and creatinine were both significantly increased in the vehicle group compared with the sham group, whereas the mice treated with rmMFG-E8 had a significant reduction in BUN and creatinine levels by 28% and 24.1%, respectively (BUN: 197.7 ± 23.6 versus 142.3 ± 20.7 mg/dL; creatinine: 0.83 ± 0.12 versus 0.63 ± 0.06 mg/dL; P < 0.05). Expressions of novel biomarkers of renal tissue injury neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 were also significantly downregulated by 58.2% and 95%, respectively, after treatment with rmMFG-E8. Proinflammatory cytokine interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) were significantly reduced by 50.8% and 50.3%, respectively, in rmMFG-E8-treated mice compared with vehicle-treated mice. The mRNA levels of the chemokines keratinocyte chemoattractant and macrophage inhibitory protein-2 were reduced by 85.1% and 78%, respectively, in mice treated with rmMFG-E8 compared with the vehicle mice. In addition, the expression of intercellular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) mRNA was downregulated by 35.6% and 77.8%, respectively, in rmMFG-E8-treated mice compared with the vehicle animals (P < 0.05). CONCLUSIONS Treatment with rmMFG-E8 reduces renal tissue injury induced by sepsis through inhibiting the production of proinflammatory cytokines and chemokine, as well as through the activation of endothelial cells. Thus, MFG-E8 may have a therapeutic potential for treating AKI induced by sepsis.
Collapse
|
28
|
Li Y, Ran W, Zhang J, Chen S, Li Y, Luo D, Wang C, Jia W. Circulating milk fat globule-epidermal growth factor 8 levels are increased in pregnancy and gestational diabetes mellitus. J Diabetes Investig 2017; 8:571-581. [PMID: 28035763 PMCID: PMC5497050 DOI: 10.1111/jdi.12616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022] Open
Abstract
AIMS/INTRODUCTION Milk fat globule-epidermal growth factor 8 (MFG-E8) is the key mediator in anti-inflammatory responses that facilitate phagocytosis of apoptotic cells, and play an essential role in type 2 diabetes and pregnancy, both of which are under a low-grade inflammatory state. However, the action of MFG-E8 in gestational diabetes mellitus (GDM) is unclear. We measured plasma MFG-E8 levels in pregnancy and GDM for the first time, and elucidated possible relationships between its plasma levels and various metabolic parameters. MATERIALS AND METHODS Plasma MFG-E8 levels were quantified by enzyme-linked immunosorbent assay in 66 women with GDM, 70 with normal pregnancy (p-NGT) and 44 healthy non-pregnant controls (CON), who were matched for age and body mass index. Inflammatory factors tumor necrosis factor-α (TNF-α) and C-reactive protein levels were measured, oral glucose tolerance test was carried out and β-cell function was evaluated. RESULTS Plasma MFG-E8 levels were remarkably higher in p-NGT than in CON (P = 0.024), and were further elevated in GDM vs p-NGT (P = 0.016). MFG-E8 concentrations correlated positively with hemoglobin A1c, glucose levels and insulin resistance (homeostasis model assessment for insulin resistance), and correlated inversely with TNF-α and insulin secretion evaluated by disposition indices in pregnancies. Fasting glucose levels, disposition index of first phase insulin secretion and TNF-α were independent predictors of MFG-E8 levels in pregnancies. Logistic regression analyses showed that women in the third tertile of MFG-E8 levels had a markedly elevated risk of GDM. CONCLUSIONS Circulating MFG-E8 levels are dramatically elevated in pregnancy, and are significantly higher in GDM vs p-NGT. MFG-E8 concentrations are significantly associated with TNF-α, fasting glucose levels, homeostasis model assessment for insulin resistance and disposition indices. However, further studies are required to elucidate the regulation mechanism of MFG-E8 during pregnancy and GDM.
Collapse
Affiliation(s)
- Yuanyuan Li
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenzhuo Ran
- Department of Clinical Laboratory, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiang Zhang
- Department of Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Shi Chen
- Department of Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Yihang Li
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Deng Luo
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chen Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
29
|
Hirano Y, Yang WL, Aziz M, Zhang F, Sherry B, Wang P. MFG-E8-derived peptide attenuates adhesion and migration of immune cells to endothelial cells. J Leukoc Biol 2017; 101:1201-1209. [PMID: 28096298 DOI: 10.1189/jlb.3a0416-184rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) plays an immunomodulatory role in inflammatory diseases. MFG-E8-derived short peptide (MSP68) greatly reduces neutrophil infiltration and injury in the lung during sepsis. In this study, we examined the effect of MSP68 on chemotaxis of various immune cells and its regulatory mechanism. Bone marrow-derived neutrophils (BMDNs) from C57BL/6 mice, human monocyte THP-1 cell line, and human T lymphocyte Jurkat cell line were used for adhesion and migration assays using a Transwell method in the presence of MSP68. Treatment with MSP68 significantly inhibited the BMDN and THP-1 cell but not Jurkat cell adhesion on the TNF-α-stimulated pulmonary artery endothelial cell (PAEC) monolayer dose-dependently. MSP68 also significantly reduced BMDN adhesion on VCAM-1-coated wells dose dependently. Surface plasmon resonance (SPR) analysis revealed that MSP68 efficiently recognized integrin α4β1 (receptor for VCAM-1) at the dissociation constant (KD) of 1.53 × 10-7 M. These findings implicate that MSP68 prevents neutrophil adhesion to the activated endothelial cells by interfering with the binding between integrin α4β1 on neutrophils and VCAM-1 on endothelial cells. Moreover, MSP68 significantly attenuated the migration of BMDN and THP-1 cells but not Jurkat cells to their chemoattractants. Pretreatment with MSP68 inhibited the transmigration of BMDNs across the PAECs toward chemoattractants, fMLP, MIP-2, and complement fragment 5a (C5a) dose-dependently. Finally, we identified that the activation of p38 MAPK in BMDNs by fMLP was inhibited by MSP68. Thus, MSP68 attenuates extravasation of immune cells through the endothelial cell lining into inflamed tissue, implicating MSP68 to be a novel, therapeutic agent for inflammatory diseases caused by excessive immune cell infiltration.
Collapse
Affiliation(s)
- Yohei Hirano
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Emergency and Critical Care Medicine, Juntendo University and Urayasu Hospital, Chiba, Japan; and
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA; .,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| |
Collapse
|
30
|
Sun G, Liu J, Xia G, Zhang L, Li Y, Zhou Z, Lv Y, Wei S, Liu J, Quan J. Reduced serum milk fat globule-epidermal growth factor 8 (MFG-E8) concentrations are associated with an increased risk of microvascular complications in patients with type 2 diabetes. Clin Chim Acta 2017; 466:201-206. [PMID: 28089751 DOI: 10.1016/j.cca.2017.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/01/2017] [Accepted: 01/11/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND The association between serum milk fat globule-epidermal growth factor 8 (MFG-E8) concentrations and vascular complications in T2DM remains unclear. METHODS A total of 149 patients with T2DM were included. The serum concentrations of MFG-E8, glycosylated hemoglobin (HbA1c), and high-sensitivity C-reactive protein (hs-CRP) were measured. RESULTS There was no significant difference in serum MFG-E8 concentrations between the T2DM group and the T2DM with subclinical atherosclerosis (AS) group (615.49±143.54 vs. 596.22±79.46ng/ml, P=0.365), while the serum concentrations of MFG-E8 in the T2DM with microvascular complications group (446.70±61.53ng/ml) and the T2DM with subclinical AS and microvascular complications group (200.87±38.86ng/ml) were significantly lower than those in the T2DM group (P=0.000 for both). In addition, hs-CRP and HbAlc concentrations were independently associated with serum MFG-E8 concentrations (P=0.024 and P=0.01, respectively), and low serum MFG-E8 concentrations were significantly associated with an increased risk of microvascular complications in T2DM patients. CONCLUSIONS Serum concentrations of MFG-E8 were negatively associated with the risk of microvascular complications in patients with T2DM. Thus, it might be a potential candidate biomarker for diabetic microvascular complications.
Collapse
Affiliation(s)
- Guohua Sun
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Key Lab of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Guanghao Xia
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Key Lab of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Lijuan Zhang
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Yonghong Li
- Institute of Clinical and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Zubang Zhou
- Ultrasonic Diagnostic Center, Gansu Provincial Hospital, Lanzhou, China
| | - Yaya Lv
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Key Lab of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Suhong Wei
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Key Lab of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Key Lab of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China; Key Lab of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China.
| |
Collapse
|
31
|
Li Y, Ran W, Zhang J, Chen S, Li Y, Luo D, Wang C, Jia W. Elevated serum milk fat globule-epidermal growth factor 8 levels in type 2 diabetic patients are suppressed by overweight or obese status. IUBMB Life 2017; 69:63-71. [PMID: 28067023 DOI: 10.1002/iub.1592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/03/2016] [Indexed: 11/07/2022]
Abstract
Inflammation is the most important link between obesity and type 2 diabetes (T2D). Although milk fat globule-epidermal growth factor 8 (MFG-E8) is a key mediator in anti-inflammatory responses, its role in obesity and diabetes is not yet completely understood. We aimed to measure MFG-E8 serum levels and to explore the role of MFG-E8 in obesity and T2D. Fasting serum MFG-E8 levels were quantified by enzyme-linked immunosorbent assay for 168 individuals, whose oral glucose tolerance test was conducted, and levels of inflammatory factors, including tumor necrosis factor-α (TNF-α) and C-reactive protein, were measured. The participants were subdivided into 66 newly diagnosed T2D individuals, 44 impaired glucose tolerance (IGT) subjects and 58 healthy controls. Their characteristics were further classified as lean or nonlean for investigation. MFG-E8 levels were significantly higher in T2D subjects than in healthy controls (P = 0.028). Decreased levels of MFG-E8 were found in overweight or obese individuals, compared to those in lean subjects, in both the T2D and IGT groups (P < 0.001). Interestingly, MFG-E8 levels showed a negative correlation with body mass index (BMI) and TNF-α levels in the total population and the T2D subgroup. Further, BMI and TNF-α concentrations were found to be independent predictors of MFG-E8 levels in all subjects. MFG-E8 levels are elevated in T2D but suppressed by increased adipose tissues, thereby allowing inflammatory factors to rise to high levels. MFG-E8 may serve as a potential biomarker for obesity and T2D in the clinical setting. © 2017 IUBMB Life, 69(2):63-71, 2017.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenzhuo Ran
- Department of Clinical Laboratory, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaqiang Zhang
- Department of Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Shi Chen
- Department of Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Yihang Li
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Deng Luo
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chen Wang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
32
|
Roth J, Sahota N, Patel P, Mehdi SF, Wiese MM, Mahboob HB, Bravo M, Eden DJ, Bashir MA, Kumar A, Alsaati F, Kurland IJ, Brima W, Danoff A, Szulc AL, Pavlov VA, Tracey KJ, Yang H. Obesity paradox, obesity orthodox, and the metabolic syndrome: An approach to unity. Mol Med 2016; 22:873-885. [PMID: 27878212 DOI: 10.2119/molmed.2016.00211] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Obesity and the accompanying metabolic syndrome are strongly associated with heightened morbidity and mortality in older adults. In our review of more than 20 epidemiologic studies of major infectious diseases, including leaders such as tuberculosis, community-acquired pneumonia, and sepsis, obesity was associated with better outcomes. A cause-and-effect relationship between over-nutrition and survival with infection is suggested by results of two preliminary studies of infections in mice, where high fat feeding for 8-10 weeks provided much better outcomes. The better outcomes of infections with obesity are reminiscent of many recent studies of "sterile" non-infectious medical and surgical conditions where outcomes for obese patients are better than for their thinner counterparts --- and given the tag "obesity paradox". Turning to the history of medicine and biological evolution, we hypothesize that the metabolic syndrome has very ancient origins and is part of a lifelong metabolic program. While part of that program (the metabolic syndrome) promotes morbidity and mortality with aging, it helps infants and children as well as adults in their fight against infections and recovery from injuries, key roles in the hundreds of centuries before the public health advances of the 20th century. We conclude with speculation on how understanding the biological elements that protect obese patients with infections or injuries might be applied advantageously to thin patients with the same medical challenges.
Collapse
Affiliation(s)
- Jesse Roth
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY.,Hofstra Northwell School of Medicine, Northwell Health, Hempstead, NY
| | - Navneet Sahota
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY.,NYIT College of Osteopathic Medicine, Old Westbury, NY
| | - Priya Patel
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY.,NYIT College of Osteopathic Medicine, Old Westbury, NY
| | - Syed Faizan Mehdi
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Mohammad Masum Wiese
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY.,California Northstate University, College of Medicine, Elk Grove, CA 11
| | - Hafiz B Mahboob
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Michelle Bravo
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY.,Hofstra Northwell School of Medicine, Northwell Health, Hempstead, NY 12
| | - Daniel J Eden
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Muhammad A Bashir
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Amrat Kumar
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Farah Alsaati
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 13
| | - Wunnie Brima
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Ann Danoff
- Department of Medicine, CPL Michael J. Crescenz VA Medical Center, Philadelphia, PA 14
| | - Alessandra L Szulc
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 13
| | - Valentin A Pavlov
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Kevin J Tracey
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| | - Huan Yang
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, 8 Northwell Health, Manhasset, NY
| |
Collapse
|
33
|
Hendricks L, Aziz M, Yang WL, Nicastro J, Coppa GF, Symons M, Wang P. Milk fat globule-epidermal growth factor-factor VIII-derived peptide MSP68 is a cytoskeletal immunomodulator of neutrophils that inhibits Rac1. J Surg Res 2016; 208:10-19. [PMID: 27993196 DOI: 10.1016/j.jss.2016.08.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prolonged neutrophil infiltration leads to exaggerated inflammation and tissue damage during sepsis. Neutrophil migration requires rearrangement of their cytoskeleton. Milk fat globule-epidermal growth factor-factor VIII-derived short peptide 68 (MSP68) has recently been shown to be beneficial in sepsis-induced tissue injury and mortality. We hypothesize that MSP68 inhibits neutrophil migration by modulating small GTPase Rac1-dependent cytoskeletal rearrangements. METHODS Bone marrow-derived neutrophils (BMDNs) or whole lung digest isolated neutrophils were isolated from 8 to 10 wk old C57BL/6 mice by Percoll density gradient centrifugation. The purity of BMDN was verified by flow cytometry with CD11b/Gr-1 staining. Neutrophils were stimulated with N-formylmethionine-leucine-phenylalanine (f-MLP) (10 nM) in the presence or absence of MSP68 at 10 nM or cecal ligation and puncture (CLP) was used to induce sepsis, and MSP68 was administered at 1 mg/kg intravenously. Cytoskeletal organization was assessed by phalloidin staining, followed by analysis using fluorescence microscopy. Activity of the Rac1 GTPase in f-MLP or CLP-activated BMDN in the presence or absence of MSP68 was assessed by GTPase enzyme-linked immunosorbent assay. Mitogen-activated protein (MAP) kinase activity was determined by western blot densitometry. RESULTS BMDN treatment with f-MLP increased cytoskeletal remodeling as revealed by the localization of filamentous actin to the periphery of the neutrophil. By contrast, cells pretreated with MSP68 had considerably reduced filamentous actin polymerization. Cytoskeletal spreading is associated with the activation of the small GTPase Rac1. We found BMDN-treated with f-MLP or that were exposed to sepsis by CLP had increased Rac1 signaling, whereas the cells pretreated with MSP68 had significantly reduced Rac1 activation (P < 0.05). MAP kinases related to cell migration including pp38 and pERK were upregulated by treatment with f-MLP. Upregulation of these MAP kinases was also significantly reduced after pretreatment with MSP68 (P < 0.05). CONCLUSIONS MSP68 downregulates actin cytoskeleton-dependent, Rac1-MAP kinase-mediated neutrophil motility. Thus, MSP68 is a novel therapeutic candidate for regulating inflammation and tissue damage caused by excessive neutrophil migration in sepsis.
Collapse
Affiliation(s)
- Louie Hendricks
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Weng-Lang Yang
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Gene F Coppa
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York
| | - Marc Symons
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ping Wang
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, New York; Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York.
| |
Collapse
|
34
|
Spherical nucleic acid targeting microRNA-99b enhances intestinal MFG-E8 gene expression and restores enterocyte migration in lipopolysaccharide-induced septic mice. Sci Rep 2016; 6:31687. [PMID: 27538453 PMCID: PMC4990839 DOI: 10.1038/srep31687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) maintains the intestinal homeostasis by enhancing enterocyte migration and attenuating inflammation. We previously reported that sepsis is associated with down-regulation of intestinal MFG-E8 and impairment of enterocyte migration. Here, we showed that impairment of intestinal epithelial cell migration occurred in lipopolysaccharide (LPS)-induced septic mice. Treatment of RAW264.7 cells (a murine macrophage-like cell line) with LPS increased expression of miR-99b, a microRNA that is predicted to target mouse MFG-E8 3′UTR. Using a luciferase assay, we showed that miR-99b mimic suppressed the activity of a reporter containing MFG-E8 3′UTR. This suggests the role of miR-99b in inhibition of MFG-E8 gene expression. In addition, we developed an anti-miR99b spherical nucleic acid nanoparticle conjugate (SNA-NCanti-miR99b). Treatment of both naïve and LPS-challenged cells with SNA-NCanti-miR99b enhanced MFG-E8 expression in the cells. Administration of SNA-NCanti-miR99b rescued intestinal MFG-E8 expression in LPS-induced septic mice and attenuated LPS inhibitory effects on intestinal epithelial cell migration along the crypt-villus axis. Collectively, our study suggests that LPS represses MFG-E8 expression and disrupts enterocyte migration via a miR-99b dependent mechanism. Furthermore, this work shows that SNA-NCanti-miR99b is a novel nanoparticle-conjugate capable of rescuing MFG-E8 gene expression and maintaining intestinal epithelial homeostasis in sepsis.
Collapse
|
35
|
Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases. Mediators Inflamm 2016; 2016:5628486. [PMID: 27429513 PMCID: PMC4939324 DOI: 10.1155/2016/5628486] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.
Collapse
|
36
|
Wang X, Bu HF, Liu SXL, De Plaen IG, Tan XD. Molecular Mechanisms Underlying the Regulation of the MFG-E8 Gene Promoter Activity in Physiological and Inflammatory Conditions. J Cell Biochem 2016; 116:1867-79. [PMID: 25711369 DOI: 10.1002/jcb.25142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
Milk fat globule-EGF factor 8 (MFG-E8) is expressed by macrophages and plays an important role in attenuating inflammation and maintaining tissue homeostasis. Previously, we and others found that lipopolysaccharide (LPS) inhibits MFG-E8 gene expression in macrophages. Here, we characterized the 5'-flanking region of the mouse MFG-E8 gene. To functionally analyze the upstream regulatory region of the MFG-E8 gene, a series of luciferase reporter gene constructs containing deleted or mutated regulatory elements were prepared. Using the luciferase assay, we revealed that Sp1 binding motifs within the proximal promoter region were necessary for full activity of the MFG-E8 promoter, whereas AP-1 like binding sequence at -372 played a role in governing the promoter activity at a homeostatic level. With chromatin immunoprecipitation assay, we showed that Sp1 and c-Jun physically interact with the MFG-E8 promoter region in vivo. In addition, Sp1 was found to regulate the MFG-E8 promoter activity positively and c-Jun negatively. Furthermore, we demonstrated that LPS inhibited MFG-E8 promoter activity via targeting Sp1 and AP-1-like motifs in the 5'-flanking region. Collectively, our data indicate that Sp1 and AP-1-related factors are involved in the regulation of MFG-E8 gene transcription by targeting their binding sites in the 5'-flanking region under physiological and inflammatory states.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Heng-Fu Bu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shirley X L Liu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Isabelle G De Plaen
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Research & Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
37
|
Albus E, Sinningen K, Winzer M, Thiele S, Baschant U, Hannemann A, Fantana J, Tausche AK, Wallaschofski H, Nauck M, Völzke H, Grossklaus S, Chavakis T, Udey MC, Hofbauer LC, Rauner M. Milk Fat Globule-Epidermal Growth Factor 8 (MFG-E8) Is a Novel Anti-inflammatory Factor in Rheumatoid Arthritis in Mice and Humans. J Bone Miner Res 2016; 31:596-605. [PMID: 26391522 PMCID: PMC6999704 DOI: 10.1002/jbmr.2721] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is an anti-inflammatory glycoprotein that mediates the clearance of apoptotic cells and is implicated in the pathogenesis of autoimmune and inflammatory diseases. Because MFG-E8 also controls bone metabolism, we investigated its role in rheumatoid arthritis (RA), focusing on inflammation and joint destruction. The regulation of MFG-E8 by inflammation was assessed in vitro using osteoblasts, in arthritic mice and in patients with RA. K/BxN serum transfer arthritis (STA) was applied to MFG-E8 knock-out mice to assess its role in the pathogenesis of arthritis. Stimulation of osteoblasts with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α downregulated the expression of MFG-E8 by 30% to 35%. MFG-E8-deficient osteoblasts responded to LPS with a stronger production of pro-inflammatory cytokines. In vivo, MFG-E8 mRNA levels were 52% lower in the paws of collagen-induced arthritic (CIA) mice and 24% to 42% lower in the serum of arthritic mice using two different arthritis models (CIA and STA). Similarly, patients with RA (n = 93) had lower serum concentrations of MFG-E8 (-17%) compared with healthy controls (n = 140). In a subgroup of patients who had a moderate to high disease activity (n = 21), serum concentrations of MFG-E8 rose after complete or partial remission had been achieved (+67%). Finally, MFG-E8-deficient mice subjected to STA exhibited a stronger disease burden, an increased number of neutrophils in the joints, and a more extensive local and systemic bone loss. This was accompanied by an increased activation of osteoclasts and a suppression of osteoblast function in MFG-E8-deficient mice. Thus, MFG-E8 is a protective factor in the pathogenesis of RA and subsequent bone loss. Whether MFG-E8 qualifies as a novel biomarker or therapeutic target for the treatment of RA is worth addressing in further studies.
Collapse
Affiliation(s)
- Elise Albus
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Sinningen
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Department of Obstetrics and Gynecology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria Winzer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia Fantana
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sylvia Grossklaus
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Mark C Udey
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Yang WL, Sharma A, Zhang F, Matsuo S, Wang Z, Wang H, Wang P. Milk fat globule epidermal growth factor-factor 8-derived peptide attenuates organ injury and improves survival in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:375. [PMID: 26507263 PMCID: PMC4624601 DOI: 10.1186/s13054-015-1094-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/07/2015] [Indexed: 02/08/2023]
Abstract
Introduction Sepsis involves overwhelming inflammatory responses with subsequent immune-suppression that can lead to multiple organ dysfunction and ultimately death. Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a secretory protein found to have multiple biological activities against autoimmune and inflammatory diseases. MFG-E8 contains an Arg-Gly-Asp (RGD) motif involved in cell-cell and cell-matrix interactions. In sepsis, excessive neutrophils migration through endothelial cells and matrix to sites of inflammation results in organ damage. We hypothesized that MFG-E8-derived short peptides (MSP) flanking its RGD motif could provide protection against organ injury in sepsis. Methods The differentiated human neutrophil-like HL-60 cells (dHL60) were incubated with a series of peptides flanking the RGD motif of human MFG-E8 for a cell adhesion assay to fibronectin or human pulmonary artery endothelial cells (PAECs). For the induction of sepsis, male C57BL/6 mice (20–25 g) were subjected to cecal ligation and puncture (CLP). Peptide MSP68 (1 mg/kg body weight) or normal saline (vehicle) was injected intravenously at 2 h after CLP. Blood and tissue samples were collected at 20 h after CLP for various measurements. Results After screening, peptide MSP68 (VRGDV) had the highest inhibition of dHL-60 cell adhesion to fibronectin by 55.8 % and to PAEC by 67.7 %. MSP68 treatment significantly decreased plasma levels of organ injury marker AST by 37.1 % and the proinflammatory cytokines IL-6 and TNF-α by 61.9 % and 22.1 %, respectively after CLP. MSP68 improved the integrity of microscopic architectures, decreased IL-6 levels in the lungs by 85.1 %, and reduced apoptosis. MSP68 treatment also significantly reduced the total number of neutrophil infiltration by 61.9 % and 48.3 % as well as MPO activity by 40.8 % and 47.3 % in the lungs and liver, respectively, after CLP. Moreover, the number of bacteria translocated to mesenteric lymph nodes was decreased by 57 % with MSP68 treatment. Finally, the 10-day survival rate was increased from 26 % in the vehicle group to 58 % in the MSP68-treated group. Conclusions MSP68 effectively inhibits excessive neutrophils infiltrating to organs, leading to moderate attenuation of organ injury and significantly improved survival in septic mice. Thus, MSP68 may be a potential therapeutic agent for treating sepsis.
Collapse
Affiliation(s)
- Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY, 11030, USA. .,Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
| | - Archna Sharma
- Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
| | - Fangming Zhang
- Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
| | - Shingo Matsuo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY, 11030, USA. .,Present address: Department of Surgery II, Tokyo Women's Medical University, Tokyo, Japan.
| | - Zhimin Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
| | - Haichao Wang
- Laboratory for Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY, 11030, USA. .,Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
| |
Collapse
|
39
|
Cen C, Aziz M, Yang WL, Nicastro J, Coppa GF, Wang P. Milk fat globule-epidermal growth factor-factor VIII downregulates interleukin-17 expression in sepsis by modulating STAT3 activation. Surgery 2015; 159:560-9. [PMID: 26376757 DOI: 10.1016/j.surg.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/13/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein with a known role in inflammation. In sepsis, interleukin (IL)-17 acts as a proinflammatory cytokine to exaggerate systemic inflammation. We hypothesize that MFG-E8 downregulates IL-17 expression in sepsis. METHODS Sepsis was induced in 8-week-old male C57BL/6 mice by cecal ligation and puncture (CLP). Recombinant mouse MFG-E8 (rmMFG-E8) at a dosage of 20 μg/kg body weight or phosphate-buffered saline was concurrently injected. After 10 hours, blood and spleen samples were harvested for analysis. For in vitro studies, splenocytes isolated from healthy mice pretreated with rmMFG-E8 and splenocytes from MFG-E8 knockout (mfge8(-/-)) mice were stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin, followed by measurement of IL-17 expression with either quantitative PCR or enzyme-linked immunosorbent assay. RESULTS At 10 hours after CLP, rmMFG-E8 inhibited the elevated levels of IL-17 protein in serum by 31%, compared with the vehicle. In the spleen, rmMFG-E8 reduced the upregulated IL-17 mRNA and protein levels by 81% and 51%, respectively. This correlated with a significant reduction in organ injury markers AST and ALT in sepsis after administration of rmMFG-E8. In vitro treatment of splenocytes isolated from healthy mice with rmMFG-E8 showed significant downregulation in PMA/ionomycin-induced IL-17 expression. In contrast, CD4 T-cells from mfge8(-/-) mice showed significant upregulation of IL-17 compared with wild-type mice. The phosphorylated level of signal transducer and activator of transcription 3 (STAT3) was downregulated in spleen tissue of septic mice treated with rmMFG-E8. Conversely, mfge8(-/-) mice showed increased phosphorylated STAT3 compared with wild-type mice after sepsis. CONCLUSION Our findings demonstrate MFG-E8-mediated downregulation of IL-17 expression, implicating its potential as a novel therapeutic agent against sepsis.
Collapse
Affiliation(s)
- Cindy Cen
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Monowar Aziz
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY.
| |
Collapse
|
40
|
Sinningen K, Albus E, Thiele S, Grossklaus S, Kurth T, Udey MC, Chavakis T, Hofbauer LC, Rauner M. Loss of milk fat globule-epidermal growth factor 8 (MFG-E8) in mice leads to low bone mass and accelerates ovariectomy-associated bone loss by increasing osteoclastogenesis. Bone 2015; 76:107-14. [PMID: 25868798 DOI: 10.1016/j.bone.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/13/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that controls the engulfment of apoptotic cells and exerts inflammation-modulatory effects. Recently, it has been implicated in osteoclastogenesis and the pathogenesis of inflammatory periodontal bone loss, but its role in physiological bone homeostasis is still not well defined. Here, we evaluated the influence of MFG-E8 on osteoblasts and osteoclasts and its impact on bone remodeling in healthy and ovariectomized mice as a model for post-menopausal osteoporosis. Total and trabecular bone mineral densities at the lumbar spine in 6-week-old MFG-E8 KO mice were reduced by 11% (p < 0.05) and 17% (p < 0.01), respectively, as compared to wild-type (WT) mice. Accordingly, serum levels of the bone formation marker P1NP were decreased by 37% (p < 0.01) in MFG-E8 KO mice as were the ex vivo mineralization capacity and expression of osteoblast genes (Runx2, alkaline phosphatase, osteocalcin) in MFG-E8 KO osteoblasts. In contrast, serum bone resorption markers CTX1 and TRAP5b were increased by 30% and 60% (p < 0.05), respectively, in MFG-E8 KO mice. Furthermore, bone marrow macrophages from MFG-E8-KO mice differentiated more effectively into osteoclasts, as compared to WT cells. MFG-E8-deficient osteoclasts displayed increased bone resorption ex vivo, which could be reversed by the presence of recombinant MFG-E8. To determine the significance of the enhanced osteoclastogenesis in MFG-E8 KO mice, we performed an ovariectomy, which is associated with bone loss due to increased osteoclast activity. Indeed, MFG-E8 KO mice lost 12% more trabecular bone density than WT mice after ovariectomy. Together, these data indicate that MFG-E8 controls steady-state and pathological bone turnover and may therefore represent a new target gene in the treatment of bone diseases.
Collapse
Affiliation(s)
- Kathrin Sinningen
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany
| | - Elise Albus
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany
| | - Sylvia Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany
| | - Sylvia Grossklaus
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany
| | - Thomas Kurth
- Electron Microscopy Facility, Center for Regenerative Therapies Dresden, Germany
| | - Mark C Udey
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany; DFG Research Center for Regenerative Therapies Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany; DFG Research Center for Regenerative Therapies Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany.
| |
Collapse
|
41
|
Stimulation of Wnt/β-catenin signaling pathway with Wnt agonist reduces organ injury after hemorrhagic shock. J Trauma Acute Care Surg 2015; 78:793-800. [PMID: 25742253 DOI: 10.1097/ta.0000000000000566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hemorrhagic shock is a leading cause of morbidity and mortality in surgery and trauma patients. Despite a large number of preclinical trials conducted to develop therapeutic strategies against hemorrhagic shock, there is still an unmet need for effective therapy for hemorrhage patients. Wnt/β-catenin signaling controls developmental processes and cellular regeneration owing to its central role in cell survival and proliferation. We therefore hypothesized that the activation of Wnt signaling reduces systemic injury caused by hemorrhagic shock. METHODS Adult male Sprague-Dawley rats underwent hemorrhagic shock by controlled bleeding of the femoral artery to maintain a mean arterial pressure of 30 mm Hg for 90 minutes, followed by resuscitation with crystalloid equal to two times the shed blood volume. After resuscitation, animals were infused with Wnt agonist (5 mg/kg) or vehicle (20% dimethyl sulfoxide in saline). Blood and tissue samples were collected 6 hours after resuscitation for analysis. RESULTS Hemorrhagic shock increased serum levels of aspartate aminotransferase, lactate, and lactate dehydrogenase. Treatment with Wnt agonist significantly reduced these levels by 40%, 36%, and 77%, respectively. Wnt agonist also decreased blood urea nitrogen and creatinine by 34% and 56%, respectively. The treatment reduced lung myeloperoxidase activity and interleukin 6 messenger RNA by 55% and 68%, respectively, and significantly improved lung histology. Wnt agonist treatment increased Bcl-2 protein to sham values and decreased cleaved caspase 3 by 46%, indicating attenuation of hemorrhage-induced apoptosis in the lungs. Hemorrhage resulted in significant reductions of β-catenin protein levels in the lungs as well as down-regulation of a Wnt target gene, cyclin D1, while Wnt agonist treatment preserved these levels. CONCLUSION The administration of Wnt agonist attenuated hemorrhage-induced organ injury, inflammation, and apoptosis. This was correlated with the preservation of the Wnt signaling pathway. Thus, Wnt/β-catenin activation could be protective in hemorrhagic shock.
Collapse
|
42
|
Liu F, Chen Y, Hu Q, Li B, Tang J, He Y, Guo Z, Feng H, Tang J, Zhang JH. MFGE8/Integrin β3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Exp Neurol 2015; 272:120-7. [PMID: 25936875 DOI: 10.1016/j.expneurol.2015.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/20/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Milk fat globule-epidermal growth factor-factor 8(MFGE8)/Integrin β3 pathway was reported to be involved in reducing oxidative stress and early brain injury after subarachnoid hemorrhage (SAH). In the present study, the potential effects of MFGE8 and its receptor Integrin β3 in the inhibition of apoptosis and neuroinflammation in early brain injury after SAH were investigated. METHODS Ninety-five (95) male Sprague-Dawley rats were used. The SAH model was induced by endovascular perforation. Recombinant human MFGE8 (rhMFGE8), MFGE8 small interfering RNA (siRNA) and Integrin β3 siRNA were injected intracerebroventricularly. SAH grade, neurologic scores, Western blots and immunofluorescence were employed to study the mechanisms of MFGE8 and its receptor Integrin β3, as well as neurological outcome. RESULTS SAH induced significant neuronal apoptosis and inflammation and exhibited neurological dysfunction in rats. Knockdown endogenous MFGE8 with siRNA significantly increased the protein levels of cleaved caspase 3 and IL-1β, accompanied with more neurological deficits. rhMFGE8 significantly reduced neural cell death in cortex, decreased cleaved caspase 3 and IL-1β expressions, and improved neurological functions 24h after SAH. The anti-apoptosis and anti-inflammation effects of rhMFGE8 were abolished by Integrin β3 siRNA. CONCLUSION MFGE8 could alleviate neurologic damage in early brain injury after SAH via anti-inflammation and anti-apoptosis effects. MFGE8 may serve as a promising therapeutic target for future management of SAH patients.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Qin Hu
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Bo Li
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Junjia Tang
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Yue He
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Zongduo Guo
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiping Tang
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University, CA, USA; Department of Neurosurgery, Loma Linda University, CA, USA; Department of Physiology, Loma Linda University, CA, USA.
| |
Collapse
|
43
|
Aziz M, Yang WL, Corbo LM, Chaung WW, Matsuo S, Wang P. MFG-E8 inhibits neutrophil migration through αvβ₃-integrin-dependent MAP kinase activation. Int J Mol Med 2015; 36:18-28. [PMID: 25936372 PMCID: PMC4494603 DOI: 10.3892/ijmm.2015.2196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/20/2015] [Indexed: 11/26/2022] Open
Abstract
We have previously demonstrated the involvement of milk fat globule-epidermal growth factor-factor 8 (MFG-E8) in reducing neutrophil infiltration in a murine model of acute lung injury (ALI). In the present study, we aimed to delineate the mechanisms through which MFG-E8 attenuates neutrophil migration. Recombinant human MFG-E8 (rhMFG-E8) was expressed and purified in our facility. The human differentiated neutrophil cell line, dHL-60, was treated with rhMFG-E8 and cell migration assay was performed in a Boyden chamber using recombinant interleukin-8 (IL-8) as the chemoattractant. Surface CXCR2 and intracellular G protein-coupled receptor kinase 2 (GRK2) levels were evaluated by flow cytometry or western blot analysis. The levels of mitogen-activated protein (MAP) kinases were determined by western blot analysis. Treatment with rhMFG-E8 resulted in a significant inhibition of dHL-60 cell migration in a dose-dependent manner. There was a 46% decrease in CXCR2 expression in the rhMFG-E8-treated dHL-60 cells, which was associated with a 32% increase in GRK2 expression. In the dHL-60 cells, treatment with rhMFG-E8 promoted the phosphorylation of p38 and extracellular signal-regulated kinase (ERK) within 10–30 min. The use of SB203580, a p38 inhibitor, and PD98059, an ERK inhibitor, resulted in the restoration of dHL-60 cell migration which was significantly inhibited treatment with rhMFG-E8. Furthermore, blocking the MFG-E8 receptors, αvβ3/αvβ5-integrins, by anti-αv-integrin neutralizing antibody (Ab) inhibited the activation of p38 and ERK, and reversed the rhMFG-E8-induced inhibition of dHL-60 cell migration. Finally, treatment of the dHL-60 cells with SB203580 and PD98059 neutralized the rhMFG-E8-induced downregulation of CXCR2 expression and upregulation of GRK2 expression, as well as the inhibitory effects on cell migration. Our findings reveal a novel mechanism of action of MFG-E8 through which it inhibits neutrophil migration through αvβ3-integrin-dependent MAP kinase activation.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Translational Research, The Feinstein Institute for Medical Research and Department of Surgery, Hofstra North Shore‑LIJ School of Medicine, Manhasset, NY, USA
| | - Weng-Lang Yang
- Center for Translational Research, The Feinstein Institute for Medical Research and Department of Surgery, Hofstra North Shore‑LIJ School of Medicine, Manhasset, NY, USA
| | - Lana M Corbo
- Center for Translational Research, The Feinstein Institute for Medical Research and Department of Surgery, Hofstra North Shore‑LIJ School of Medicine, Manhasset, NY, USA
| | - Wayne W Chaung
- Center for Translational Research, The Feinstein Institute for Medical Research and Department of Surgery, Hofstra North Shore‑LIJ School of Medicine, Manhasset, NY, USA
| | - Shingo Matsuo
- Center for Translational Research, The Feinstein Institute for Medical Research and Department of Surgery, Hofstra North Shore‑LIJ School of Medicine, Manhasset, NY, USA
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research and Department of Surgery, Hofstra North Shore‑LIJ School of Medicine, Manhasset, NY, USA
| |
Collapse
|
44
|
Hajishengallis G. MFG-E8, a novel homeostatic regulator of osteoclastogenesis. INFLAMMATION AND CELL SIGNALING 2014; 1:e285. [PMID: 26052544 DOI: 10.14800/ics.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although the glycoprotein MFG-E8 (milk fat globule-epidermal growth factor-factor 8) has been investigated extensively as an anti-inflammatory and homeostatic molecule, a possible role in bone homeostasis and disease was not addressed until recently. Our group has now shown that MFG-E8 is expressed by human and mouse osteoclasts and regulates their differentiation and function (Abe et al., J Immunol 2014;193:1383-1391). Whereas genetic deficiency or antibody-mediated neutralization of MFG-E8 enhances osteoclastogenesis and promotes inflammation-induced bone loss in mice, local administration of recombinant MFG-E8 blocks bone loss. These findings establish MFG-E8 as a novel homeostatic regulator of osteoclastogenesis and suggest that MFG-E8 could be exploited therapeutically to treat disorders associated with inflammatory bone loss, such as periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania, School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Abe T, Shin J, Hosur K, Udey MC, Chavakis T, Hajishengallis G. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E8. THE JOURNAL OF IMMUNOLOGY 2014; 193:1383-91. [PMID: 24958900 DOI: 10.4049/jimmunol.1400970] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The glycoprotein milk fat globule-epidermal growth factor factor 8 (MFG-E8) is expressed in several tissues and mediates diverse homeostatic functions. However, whether it plays a role in bone homeostasis has not been established. In this study, we show for the first time, to our knowledge, that osteoclasts express and are regulated by MFG-E8. Bone marrow-derived osteoclast precursors from MFG-E8-deficient (Mfge8(-/-)) mice underwent increased receptor activator of NF-κB ligand-induced osteoclastogenesis, leading to enhanced resorption pit formation compared with wild-type controls. Consistently, exogenously added MFG-E8 inhibited receptor activator of NF-κB ligand-induced osteoclastogenesis from mouse or human osteoclast precursors. Upon induction of experimental periodontitis, an oral inflammatory disease characterized by loss of bone support of the dentition, Mfge8(-/-) mice exhibited higher numbers of osteoclasts and more bone loss than did wild-type controls. Accordingly, local microinjection of anti-MFG-E8 mAb exacerbated periodontal bone loss in wild-type mice. Conversely, microinjection of MFG-E8 inhibited bone loss in experimental mouse periodontitis. In comparison with wild-type controls, Mfge8(-/-) mice also experienced >60% more naturally occurring chronic periodontal bone loss. In conclusion, MFG-E8 is a novel homeostatic regulator of osteoclasts that could be exploited therapeutically to treat periodontitis and perhaps other immunological disorders associated with inflammatory bone loss.
Collapse
Affiliation(s)
- Toshiharu Abe
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jieun Shin
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kavita Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark C Udey
- Center for Cancer Research, Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Triantafyllos Chavakis
- Department of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Dresden University of Technology, 01307 Dresden, Germany; and Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Dresden University of Technology, 01307 Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
46
|
Dai W, Li Y, Lv YN, Wei CD, Zheng HY. The roles of a novel anti-inflammatory factor, milk fat globule-epidermal growth factor 8, in patients with coronary atherosclerotic heart disease. Atherosclerosis 2014; 233:661-665. [DOI: 10.1016/j.atherosclerosis.2014.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
|
47
|
Li BZ, Zhang HY, Pan HF, Ye DQ. Identification of MFG-E8 as a novel therapeutic target for diseases. Expert Opin Ther Targets 2013; 17:1275-85. [PMID: 23972256 DOI: 10.1517/14728222.2013.829455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a peripheral membrane glycoprotein has been widely studied in recent years due to its omnipresent locations, express and multiple functions. Traditionally, MFG-E8 was identified as an outstanding factor for phagocytosis of apoptotic cells and a significant factor in immune systems. Recent studies with some new findings have shed an interesting light on the old peripheral membrane glycoprotein in various diseases. AREAS COVERED In inflammatory and the systemic lupus erythematosus-type autoimmune disease, age-related diseases and tumors, MFG-E8 plays a multifunctional role in attenuating inflammation and improving prognosis, healing wound and remodeling arterial and enhancing tumorigenicity and cancer metastasis. This review provides a comprehensive view on the latest advances in the field. The summarized knowledge will help to explore the potential therapeutic roles of MFG-E8 and to design MFG-E8-based strategies for the treatment of these diseases. EXPERT OPINION Though the exact roles of MFG-E8 have not been fully elucidated in diseases. MFG-E8 may serve as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , 81 Meishan Road, Hefei, Anhui, 230032 , PR China +86 551 5167726 ; +86 551 5161171 ;
| | | | | | | |
Collapse
|
48
|
Chatterton DE, Nguyen DN, Bering SB, Sangild PT. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 2013; 45:1730-47. [DOI: 10.1016/j.biocel.2013.04.028] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
|
49
|
Matsuda A, Jacob A, Wu R, Aziz M, Yang WL, Matsutani T, Suzuki H, Furukawa K, Uchida E, Wang P. Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses. J NIPPON MED SCH 2013; 79:4-18. [PMID: 22398786 DOI: 10.1272/jnms.79.4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sepsis is a devastating and complex syndrome and continues to be a major cause of morbidity and mortality among critically ill patients at the surgical intensive care unit setting in the United States. The occurrence of sepsis and septic shock has increased significantly over the past two decades. Despite of highly dedicated basic research and numerous clinical trials, remarkable progress has not been made in the development of novel and effective therapeutics. The sepsis-induced physiologic derangements are due largely to the host responses to the invading microorganism in contrast to the direct effects of the microorganism itself. Sepsis, the systemic inflammatory response to infection, is marked by dysregulated production of pro-inflammatory cytokines. Although pro-inflammatory cytokine production is normally indispensable to protect against pathogens and promote tissue repair, the dysregulated and prolonged production of these cytokines can trigger a systemic inflammatory cascade mediated by chemokines, vasoactive amines, the complement and coagulation system, and reactive oxygen species (ROS), amongst others. These mediators collectively lead to multiple organ failure, and ultimately to death. In this regard, the role of inflammation in the pathophysiology of sepsis, although still incompletely understood, is clearly critical. Recent findings resulting from vigorous investigations have contributed to delineate various novel directions of sepsis therapeutics. Among these, this review article is focused on new promising mechanisms and concepts that could have a key role in anti-inflammatory strategies against sepsis, including 1) "inflammasome": a multiprotein complex that activates caspase-1; 2) "the cholinergic anti-inflammatory pathway": the efferent arm of the vagus nerve-mediated, brain-to-immune reflex; 3) "stem cells": unspecialized and undifferentiated precursor cells with the capacity for self-renewal and potential to change into cells of multiple lineages; 4) "milk fat globule-EGF factor VIII (MFG-E8)": a bridging molecule between apoptotic cells and phagocytes, which promotes phagocytosis of apoptotic cells.
Collapse
Affiliation(s)
- Akihisa Matsuda
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset and Laboratory of Surgical Research, the Feinstein Institute for Medical Research, Manhasset, NY 11303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol 2013; 93:329-42. [PMID: 23136259 PMCID: PMC3579020 DOI: 10.1189/jlb.0912437] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022] Open
Abstract
Sepsis refers to severe systemic inflammation in response to invading pathogens. An overwhelming immune response, as mediated by the release of various inflammatory mediators, can lead to shock, multiple organ damage, and even death. Cytokines, proteases, lipid mediators, gaseous substances, vasoactive peptides, and cell stress markers play key roles in sepsis pathophysiology. Various adhesion molecules and chemokines sequester and activate neutrophils into the target organs, further augmenting inflammation and tissue damage. Although the anti-inflammatory substances counterbalance proinflammatory mediators, prolonged immune modulation may cause host susceptibility to concurrent infections, thus reflecting enormous challenge toward developing effective clinical therapy against sepsis. To understand the complex interplay between pro- and anti-inflammatory phenomenon in sepsis, there is still an unmet need to study newly characterized mediators. In addition, revealing the current trends of novel mediators will upgrade our understanding on their signal transduction, cross-talk, and synergistic and immunomodulating roles during sepsis. This review highlights the latest discoveries of the mediators in sepsis linking to innate and adaptive immune systems, which may lead to resolution of many unexplored queries.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Akihisa Matsuda
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| |
Collapse
|