1
|
Xu J, Guo G, Zhou S, Wang H, Chen Y, Lin R, Huang P, Lin C. Physiologically-based pharmacokinetic modeling to predict the exposure and provide dosage regimens of tacrolimus in pregnant women with infection disease. Eur J Pharm Sci 2025; 206:107003. [PMID: 39788164 DOI: 10.1016/j.ejps.2025.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Tacrolimus is extensively used for the prevention of graft rejection following solid organ transplantation in pregnant women. However, knowledge gaps in the dosage of tacrolimus for pregnant patients with different CYP3A5 genotypes and infection conditions have been identified. This study aimed to develop a pregnant physiologically based pharmacokinetic (PBPK) model to characterize the maternal and fetal pharmacokinetics of tacrolimus during pregnancy and explore and provide dosage adjustments. We developed PBPK models for nonpregnant patients and validated them via data from previous clinical studies using PK-Sim and Mobi software. To extrapolate to pregnancy, we considered anatomical, physiological, and metabolic alterations and simulated tacrolimus by adding six groups of IL-6 concentrations (0, 5, 25, 50, 500, and 5000 pg/mL). Models were verified by assessing goodness-of-fit plots and ratios of predicted-to-observed pharmacokinetic parameters. The developed PBPK models adequately describe the available clinical data; the fold errors of the predicted and observed values of the area under the curve and peak plasma concentration were between 0.59 and 1.64, and the average folding error and the absolute average folding error values for all concentration-time data points were 1.15 and 1.36, respectively. The simulation results indicated that the area under the steady-state concentration‒time curve and trough concentrations decreased from the first to the third trimester of pregnancy. The trough concentrations were not within the therapeutic range (4-11 ng/mL) in pregnant patients with the CYP3A5 genotype for most of the infection conditions and exceeded its effective concentration in all the CYP3A5 nonexpressers. Based on the model-derived dosing regimen, the tacrolimus trough concentration in pregnant patients with different CYP3A5 genotypes could fall into the therapeutic window, which provided a clinical practice reference for dosage adjustments during pregnancy.
Collapse
Affiliation(s)
- Jianwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guimu Guo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuifang Zhou
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuewen Chen
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Kawase A, Chuma T, Irie K, Kazaoka A, Kakuno A, Matsuda N, Shimada H, Iwaki M. Increased penetration of diphenhydramine in brain via proton-coupled organic cation antiporter in rats with lipopolysaccharide-induced inflammation. Brain Behav Immun Health 2020; 10:100188. [PMID: 34589723 PMCID: PMC8474606 DOI: 10.1016/j.bbih.2020.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 01/18/2023] Open
Abstract
Uptake transporters in brain microvascular endothelial cells (BMECs) are involved in the penetration of basic (cationic) drugs such as diphenhydramine (DPHM) into the brain. Lipopolysaccharide (LPS)-induced inflammation alters the expression levels and activities of uptake transporters, which change the penetration of DPHM into the brain. A brain microdialysis study showed that the unbound brain-to-plasma partition coefficient (Kp,uu,brain) for DPHM in LPS rats was approximately two times higher than that in control rats. The transcellular transport of DPHM to BMECs was increased when BMECs were cultured with serum from LPS rats. Compared with control rats or BMECs, the brain uptake of DPHM in LPS rats was increased and the intracellular accumulation of DPHM was increased under a high intracellular pH in BMECs from LPS rats, respectively. Treatment of BMECs with transporter inhibitors or inflammatory cytokines had little impact on the intracellular accumulation of DPHM in BMECs. This study suggests that LPS-induced inflammation promotes unidentified proton-coupled organic cation (H+/OC) antiporters that improve the penetration of DPHM into rat brain via the blood-brain barrier. The unbound brain-to-plasma partition coefficient for diphenhydramine (DPHM) was increased in lipopolysaccharide-induced inflammation in rats. The uptake of DPHM to brain microvascular endothelial cells (BMECs) was promoted by treatments of serum from rats with inflammation. Treatment of BMECs with transporter inhibitors or inflammatory cytokines had little impact on the intracellular accumulation of DPHM in BMECs. LPS-induced inflammation promotes unidentified proton-coupled organic cation antiporters that improve the brain penetration of DPHM.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
- Corresponding author. 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Taihei Chuma
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kota Irie
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Akira Kazaoka
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Asuka Kakuno
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Naoya Matsuda
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
- Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
3
|
Murakami T, Bodor E, Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Expert Opin Drug Metab Toxicol 2019; 16:59-78. [DOI: 10.1080/17425255.2020.1701653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, FL, USA
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Ou Y, Xu Y, Gore L, Harvey RD, Mita A, Papadopoulos KP, Wang Z, Cutler RE, Pinchasik DE, Tsimberidou AM. Physiologically-based pharmacokinetic modelling to predict oprozomib CYP3A drug-drug interaction potential in patients with advanced malignancies. Br J Clin Pharmacol 2018; 85:530-539. [PMID: 30428505 DOI: 10.1111/bcp.13817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS Oprozomib is an oral, second-generation, irreversible proteasome inhibitor currently in clinical development for haematologic malignancies, including multiple myeloma and other malignancies. Oprozomib is a rare example of a small molecule drug that demonstrates cytochrome P450 (CYP) mRNA suppression. This unusual property elicits uncertainty regarding the optimal approach for predicting its drug-drug interaction (DDI) risk. The current study aims to understand DDI potential during early clinical development of oprozomib. METHODS To support early development of oprozomib (e.g. inclusion/exclusion criteria, combination study design), we used human hepatocyte data and physiologically-based pharmacokinetic (PBPK) modelling to predict its CYP3A4-mediated DDI potential. Subsequently, a clinical DDI study using midazolam as the substrate was conducted in patients with advanced malignancies. RESULTS The clinical DDI study enrolled a total of 21 patients, 18 with advanced solid tumours. No patient discontinued oprozomib due to a treatment-related adverse event. The PBPK model prospectively predicted oprozomib 300 mg would not cause a clinically relevant change in exposure to CYP3A4 substrates (≤30%), which was confirmed by the results of this clinical DDI study. CONCLUSIONS These results indicate oprozomib has a low potential to inhibit the metabolism of CYP3A4 substrates in humans. The study shows that cultured human hepatocytes are a more reliable system for DDI prediction than human liver microsomes for studying this class of compounds. Developing a PBPK model prior to a clinical DDI study has been valuable in supporting clinical development of oprozomib.
Collapse
Affiliation(s)
- Ying Ou
- Amgen Inc., South San Francisco, CA, USA
| | - Yang Xu
- Amgen Inc., Thousand Oaks, CA, USA
| | - Lia Gore
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R Donald Harvey
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Alain Mita
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Richard E Cutler
- Onyx Pharmaceuticals, Inc., an Amgen subsidiary, South San Francisco, CA, USA
| | | | | |
Collapse
|
5
|
Kawase A, Tateishi S, Kazaoka A. Profiling of hepatic metabolizing enzymes and nuclear receptors in rats with adjuvant arthritis by targeted proteomics. Biopharm Drug Dispos 2018; 39:308-314. [DOI: 10.1002/bdd.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shunsuke Tateishi
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Akira Kazaoka
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
6
|
Bao BH, Kang A, Zhao Y, Shen Q, Li JS, Di LQ, Li JX. A selective HPLC-MS/MS method for quantification of SND-117 in rat plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:60-65. [PMID: 28359984 DOI: 10.1016/j.jchromb.2017.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA), a chronic systemic inflammatory disorder affects many adults. Sinomenine, a natural product, has been clinically available for the treatment of RA in China. SND-117, a sinomenine derivative with much more potent activity, might serve as a candidate for anti-arthritis. The aim of the present study was to develop a sensitive and rapid high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for quantification of SND-117 in rat plasma and to understand its absolute bioavailability. The HPLC-MS/MS method was developed and fully validated for determination of SND-117 in rat plasma, and the pharmacokinetic differences were investigated after different administration routes. The pharmacokinetics parameters were calculated by non-compartment model with DAS 3.0 software. After the oral or intravenous administration of different doses of SND-117, the time to peak is 1.5h, half-life time is 8-10h. The absolute oral bioavailability of SND-117 in rats was 9.60%. The results showed that SND-117 in rats was quickly absorbed, slowly eliminate, and the kinetics were linear. This method was suitable for pharmacokinetic studies of SNA-117 in rats.
Collapse
Affiliation(s)
- Bei-Hua Bao
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yang Zhao
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Qi Shen
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jun-Song Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Liu-Qing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jian-Xin Li
- State Key Lab of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Ikuta H, Kawase A, Iwaki M. Stereoselective Pharmacokinetics and Chiral Inversion of Ibuprofen in Adjuvant-induced Arthritic Rats. Drug Metab Dispos 2017; 45:316-324. [PMID: 27927688 DOI: 10.1124/dmd.116.073239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
2-Arylpropionic acid (2-APA) nonsteroidal anti-inflammatory drugs are commonly used in racemic mixtures (rac) for clinical use. 2-APA undergoes unidirectional chiral inversion of the in vivo inactive R-enantiomer to the active S-enantiomer. Inflammation causes the reduction of metabolic activities of drug-metabolizing enzymes such as cytochrome P450 (P450) and UDP-glucuronosyltransferase. However, it is unclear whether inflammation affects the stereoselective pharmacokinetics and chiral inversion of 2-APA such as ibuprofen (IB). We examined the effects of inflammation on the pharmacokinetics of R-IB and S-IB after intravenous administration of rac-IB, R-IB, and S-IB to adjuvant-induced arthritic (AA) rats, an animal model of inflammation. The plasma protein binding of rac-IB, glucuronidation activities for R-IB and S-IB, and P450 contents of liver microsomes in AA rats were determined. Total clearance (CLtot) of IB significantly increased in AA rats, although the glucuronidation activities for IB, and P450 contents of liver microsomes decreased in AA rats. We presumed that the increased CLtot of IB in AA rats was caused by the elevated plasma unbound fraction of IB due to decreased plasma albumin levels in AA rats. Notably, CLtot of R-IB but not S-IB significantly increased in AA rats after intravenous administration of rac-IB. These results suggested that AA could affect drug efficacies after stereoselective changes in the pharmacokinetics of R-IB and S-IB.
Collapse
Affiliation(s)
- Hiroyuki Ikuta
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
8
|
Duan C, Guo JM, Dai Y, Xia YF. The absorption enhancement of norisoboldine in the duodenum of adjuvant-induced arthritis rats involves the impairment of P-glycoprotein. Biopharm Drug Dispos 2017; 38:75-83. [PMID: 27925244 DOI: 10.1002/bdd.2053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 01/15/2023]
Abstract
Lindera aggregata (Sims) Kosterm root has been used in traditional Chinese medicine for the treatment of rheumatism palsy, dyspepsia and frequent urination for a long time. Norisoboldine, the main active constituent of this herb drug, possesses outstanding anti-arthritis activity. However, the in vivo disposition of norisoboldine is known to a limited extent, especially under the pathological condition of rheumatoid arthritis (RA). The aim of this study is to investigate whether and how the absorption of norisoboldine is altered in adjuvant-induced arthritis (AIA) rats. Comparative studies of the intestinal absorption of norisoboldine in normal and AIA rats at different pathological stages of the arthritis were performed using in situ single-pass intestinal perfusion, and the effects of an inhibitor of efflux proteins were also investigated. Norisoboldine was shown to be a substrate of P-glycoprotein (P-gp), as P-gp inhibitor verapamil markedly increased the permeability coefficient (Peff ) of norisoboldine by 88% in the intestine of normal rats. Compared with normal rats, AIA rats displayed increased Peff values of norisoboldine by 84% and 86% on day 5 and day 10 after the appearance of the secondary response of arthritis, respectively. Verapamil could eliminate the difference of intestinal absorption of norisoboldine between normal and AIA rats. Further studies showed that impaired expression and activity of P-gp in AIA rats play a decisive role in the absorption enhancement of norisoboldine. Notably, the impairment of P-gp function positively correlated with the severity of arthritis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cong Duan
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Jiao-Mei Guo
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yu-Feng Xia
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| |
Collapse
|
9
|
Uraki M, Kawase A, Iwaki M. Stereoselective hepatic disposition of ibuprofen in the perfused liver of rat with adjuvant-induced arthritis. Xenobiotica 2016; 47:943-950. [DOI: 10.1080/00498254.2016.1252869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Misato Uraki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
10
|
Jiang X, Zhuang Y, Xu Z, Wang W, Zhou H. Development of a Physiologically Based Pharmacokinetic Model to Predict Disease-Mediated Therapeutic Protein-Drug Interactions: Modulation of Multiple Cytochrome P450 Enzymes by Interleukin-6. AAPS JOURNAL 2016; 18:767-76. [PMID: 26961818 DOI: 10.1208/s12248-016-9890-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/16/2016] [Indexed: 01/30/2023]
Abstract
Disease-mediated therapeutic protein-drug interactions have recently gained attention from regulatory agencies and pharmaceutical industries in the development of new biological products. In this study, we developed a physiologically based pharmacokinetic (PBPK) model using SimCYP to predict the impact of elevated interleukin-6 (IL-6) levels on cytochrome P450 (CYP) enzymes and the treatment effect of an anti-IL-6 monoclonal antibody, sirukumab, in patients with rheumatoid arthritis (RA). A virtual RA patient population was first constructed by incorporating the impact of systemic IL-6 level on hepatic and intestinal expression of multiple CYP enzymes with information from in vitro studies. Then, a PBPK model for CYP enzyme substrates was developed for healthy adult subjects. After incorporating the virtual RA patient population, the PBPK model was applied to quantitatively predict pharmacokinetics of multiple CYP substrates in RA patients before and after sirukumab treatment from a clinical cocktail drug interaction study. The results suggested that, compared with observed clinical data, changes in systemic exposure to multiple CYP substrates by anti-IL-6 treatment in virtual RA patients have been reasonably captured by the PBPK model, as manifested by modulations in area under plasma concentration versus time curves for midazolam, omeprazole, S-warfarin, and caffeine. This PBPK model reasonably captured the modulation effect of IL-6 and sirukumab on activity of CYP3A, CYP2C9, CYP2C19, and CYP1A2 and holds the potential to be utilized to assess the modulation effect of sirukumab on the metabolism and pharmacokinetics of concomitant small-molecule drugs in RA patients.
Collapse
Affiliation(s)
- Xiling Jiang
- Biologics Clinical Pharmacology, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Yanli Zhuang
- Biologics Clinical Pharmacology, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Zhenhua Xu
- Biologics Clinical Pharmacology, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Weirong Wang
- Biologics Clinical Pharmacology, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Honghui Zhou
- Biologics Clinical Pharmacology, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
11
|
Xu Y, Hijazi Y, Wolf A, Wu B, Sun YN, Zhu M. Physiologically Based Pharmacokinetic Model to Assess the Influence of Blinatumomab-Mediated Cytokine Elevations on Cytochrome P450 Enzyme Activity. CPT Pharmacometrics Syst Pharmacol 2015; 4:507-15. [PMID: 26451330 PMCID: PMC4592530 DOI: 10.1002/psp4.12003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/22/2015] [Indexed: 01/22/2023] Open
Abstract
Blinatumomab is a CD19/CD3 bispecific T-cell engager (BiTE®) antibody construct for treatment of leukemia. Transient elevation of cytokines (interleukin (IL)-6, IL-10, interferon-gamma (IFN-γ)) has been observed within the first 48 hours of continuous intravenous blinatumomab infusion. In human hepatocytes, blinatumomab showed no effect on cytochrome P450 (CYP450) activities, whereas a cytokine cocktail showed suppression of CYP3A4, CYP1A2, and CYP2C9 activities. We developed a physiologically based pharmacokinetic (PBPK) model to evaluate the effect of transient elevation of cytokines, particularly IL-6, on CYP450 suppression. The predicted suppression of hepatic CYP450 activities was <30%, and IL-6-mediated changes in exposure to sensitive substrates of CYP3A4, CYP1A2, and CYP2C9 were
Collapse
Affiliation(s)
- Y Xu
- Amgen, Clinical Pharmacology, Modeling and Simulation Group, Department of Medical SciencesThousand Oaks, California, USA
| | - Y Hijazi
- Amgen Research (Munich)Munich, Germany
| | - A Wolf
- Amgen Research (Munich)Munich, Germany
| | - B Wu
- Amgen, Clinical Pharmacology, Modeling and Simulation Group, Department of Medical SciencesThousand Oaks, California, USA
| | - Y-N Sun
- Amgen, Clinical Pharmacology, Modeling and Simulation Group, Department of Medical SciencesThousand Oaks, California, USA
| | - M Zhu
- Amgen, Clinical Pharmacology, Modeling and Simulation Group, Department of Medical SciencesThousand Oaks, California, USA
| |
Collapse
|
12
|
Zeng XY, Dong S, He NN, Jiang CJ, Dai Y, Xia YF. Comparative pharmacokinetics of arctigenin in normal and type 2 diabetic rats after oral and intravenous administration. Fitoterapia 2015; 105:119-26. [PMID: 26102179 DOI: 10.1016/j.fitote.2015.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/03/2023]
Abstract
Arctigenin is the main active ingredient of Fructus Arctii for the treatment of type 2 diabetes. In this study, the pharmacokinetics of arctigenin in normal and type 2 diabetic rats following oral and intravenous administration was investigated. As compared to normal rats, Cmax and AUC(0-10h) values of oral arctigenin in diabetic rats increased by 356.8% and 223.4%, respectively. In contrast, after intravenous injection, the Cmax and AUC(0-10h) values of arctigenin showed no significant difference between diabetic and normal rats. In order to explore how the bioavailability of oral arctigenin increased under diabetic condition, the absorption behavior of arctigenin was evaluated by in situ single-pass intestinal perfusion (SPIP). The results indicated that arctigenin was a substrate of P-glycoprotein (P-gp). The absorption difference of arctigenin in the normal and diabetic rats could be eliminated by the pretreatment of classic P-gp inhibitor verapamil, suggesting that P-gp might be the key factor causing the absorption enhancement of arctigenin in diabetic rats. Further studies revealed that the uptake of rhodamine 123 (Rho123) in diabetic rats was significantly higher, indicating that diabetes mellitus might impair P-gp function. Consistently, a lower mRNA level of P-gp in the intestine of diabetic rats was found. In conclusion, the absorption of arctigenin after oral administration was promoted in diabetic rats, which might be partially attribute to the decreased expression and impaired function of P-gp in intestines.
Collapse
Affiliation(s)
- Xiao-yan Zeng
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Shu Dong
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Nan-nan He
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chun-jie Jiang
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yu-feng Xia
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
13
|
Tong B, Yu J, Wang T, Dou Y, Wu X, Kong L, Dai Y, Xia Y. Sinomenine suppresses collagen-induced arthritis by reciprocal modulation of regulatory T cells and Th17 cells in gut-associated lymphoid tissues. Mol Immunol 2015; 65:94-103. [PMID: 25656802 DOI: 10.1016/j.molimm.2015.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 01/25/2023]
Abstract
Sinomenine (SIN) has long been used as a therapeutic agent of rheumatoid arthritis (RA) in China. However, the discrepancy between low oral bioavailability and higher minimal effective concentration made its action mode mysterious. The present study aimed to gain insight into the mechanisms by which SIN suppressed collagen-induced arthritis (CIA) in rats in view of Th17 and regulatory T (Treg) cell balance. SIN was orally administered, and the clinical symptoms of CIA rats were monitored; inflammatory cytokines levels in serum were measured by ELISA; pharmacokinetic studies were performed in normal and CIA rats; Th17 and Treg cell frequencies were analyzed by flow cytometry. The data showed that SIN treatment resulted in a dramatic decrease of arthritis scores and paw volume of CIA rats, which was accompanied by down-regulation of IL-17A and up-regulation of IL-10 in rat serum. The frequency of Treg cells was increased and the frequency of Th17 cells was decreased in the gut lymphoid tissues of SIN-treated rats. Immunohistochemistry assay demonstrated that more α4β7-positive cells were detained in joint tissues after SIN treatment. Moreover, the anti-arthritis efficacy of SIN disappeared when it was given by intraperitoneal injection, further confirming the action of SIN was gut-dependent. In conclusion, SIN exerts anti-RA action probably through modulating the frequencies of Treg cells and Th17 cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from gut to joint.
Collapse
Affiliation(s)
- Bei Tong
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juntao Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ting Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
14
|
Tong B, Dou Y, Wang T, Yu J, Wu X, Lu Q, Chou G, Wang Z, Kong L, Dai Y, Xia Y. Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicol Appl Pharmacol 2015; 282:90-9. [PMID: 25481498 DOI: 10.1016/j.taap.2014.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Norisoboldine (NOR), the main active ingredient of the dry root of Lindera aggregata, was previously proven to have substantial therapeutic effects on collagen-induced arthritis (CIA) in mice by oral administration. However, it exhibited a very poor bioavailability in normal rats. The pharmacokinetic-pharmacodynamics disconnection attracts us to explore its anti-arthritic mechanism in more detail. In this study, NOR, administered orally, markedly attenuated the pathological changes in CIA rats, which was accompanied by the down-regulation of pro-inflammatory cytokines and the up-regulation of anti-inflammatory cytokine IL-10. Pharmacokinetic studies demonstrated that the plasma concentration of NOR was moderately elevated in CIA rats compared with normal rats, but it was still far lower than the minimal effective concentration required for inhibiting the proliferation and activation of T lymphocytes in vitro. Interestingly, NOR was shown to regulate the balance between Th17 and regulatory T (Treg) cells in the intestinal lymph nodes more strikingly than in other tissues. It could increase the expression of Foxp3 mRNA in both gut and joints, and markedly up-regulate the number of integrin α4β7 (a marker of gut source)-positive Foxp3(+) cells in the joints of CIA rats. These results suggest that the gut might be the primary action site of NOR, and NOR exerts anti-arthritis effect through regulating the balance between Th17 and Treg cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from the gut to joint. The findings of the present study also provide a plausible explanation for the anti-arthritic effects of poorly absorbed compounds like NOR.
Collapse
MESH Headings
- Administration, Oral
- Alkaloids/administration & dosage
- Alkaloids/blood
- Alkaloids/pharmacokinetics
- Alkaloids/pharmacology
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/blood
- Anti-Inflammatory Agents/pharmacokinetics
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/blood
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Chemotaxis, Leukocyte/drug effects
- Collagen Type II
- Cytokines/blood
- Female
- Forkhead Transcription Factors/metabolism
- Freund's Adjuvant
- Inflammation Mediators/blood
- Joints/drug effects
- Joints/immunology
- Joints/metabolism
- Joints/pathology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mesentery
- Peyer's Patches/drug effects
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Rats, Wistar
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Bei Tong
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ting Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juntao Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qian Lu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Guixin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
15
|
Kawase A, Sakata M, Yada N, Nakasaka M, Shimizu T, Kato Y, Iwaki M. Decreased radixin function for ATP-binding cassette transporters in liver in adjuvant-induced arthritis rats. J Pharm Sci 2014; 103:4058-4065. [PMID: 25331966 DOI: 10.1002/jps.24210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023]
Abstract
Pathophysiological changes are associated with alterations in the expression and function of numerous ADME-related proteins. We have previously demonstrated that the membrane localization of ATP-binding cassette (ABC) transporters in liver was decreased without change of total expression levels in adjuvant-induced arthritis (AA) in rats. Ezrin/radixin/moesin (ERM) proteins are involved in localization of some ABC transporters in canalicular membrane. The mRNA levels of radixin decreased significantly in liver but not kidney, small intestine, and brain. The mRNA levels of ezrin and moesin did not change in AA. The membrane localization of radixin was reduced in liver of AA and the ratios of activated radixin (p-radixin) to total radixin were decreased in AA, although the protein levels of radixin did not change in homogenate and membrane protein. To clarify whether AA affects the linker functions of ERM proteins, we examined the interactions between ERM proteins and ABC transporters. The interactions between radixin and ABC transporters were decreased in AA. In vitro studies using human hepatoma HepG2 cells showed that interleukin-1β decreased the mRNA levels of radixin and colocalization of radixin and Mrp2. Our results show that the decreased radixin functions affect the interaction between radixin and ABC transporters in inflammation.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misato Sakata
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Nagisa Yada
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misaki Nakasaka
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Takuya Shimizu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan.
| |
Collapse
|
16
|
Kawase A. Alterations in Expression and Function of ABC Transporters and ERM Proteins in Inflammation. YAKUGAKU ZASSHI 2014; 134:925-9. [DOI: 10.1248/yakushi.14-00160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kinki University
| |
Collapse
|
17
|
Age-related changes in mRNA levels of hepatic transporters, cytochrome P450 and UDP-glucuronosyltransferase in female rats. Eur J Drug Metab Pharmacokinet 2014; 40:239-44. [PMID: 24899460 DOI: 10.1007/s13318-014-0208-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Hepatic transporters and metabolic enzymes affect drug pharmacokinetics. Limited information exists on the alteration in mRNA levels of hepatic transporters and metabolic enzymes with aging. We examined the effects of aging on the mRNA levels of representative hepatic drug transporters and metabolic enzymes by analyzing their levels in 10-, 30- and 50-week-old male and female rats. Levels of mRNA of drug transporters including multidrug resistance protein (Mdr)1a, multidrug resistance-associated protein (Mrp)2, breast cancer resistance protein (Bcrp) and organic anion-transporting polypeptide (Oatp)1a1, and the metabolic enzymes cytochrome P450 (CYP)3A1, CYP3A2 and UDP-glucuronosyltransferase (UGT)1A1 were analyzed using real-time reverse transcriptase polymerase chain reaction. The mRNA levels of transporters in male rats did not decrease with age, while the mRNA levels of Bcrp and Oatp1a1 in female rats decreased with age. The mRNA levels of CYP3A1 and CYP3A2 in male rats were higher than those in female rats. The mRNA levels of metabolic enzymes decreased with age in female but not male rats. In particular, the mRNA levels of UGT1A1 in 10-week-old female rats were higher than those in male rats. mRNA expression of hepatic transporters and metabolic enzymes are more susceptible to aging in female than male rats. The age-related decreases in the mRNA levels of Bcrp, Oatp1a1, CYP3A1 and CYP3A2 in female rats may affect the metabolism and transport of substrates. This study showed that aging affected the mRNA expression of hepatic transporters and metabolic enzymes in rats.
Collapse
|
18
|
Dumais G, Iovu M, du Souich P. Inflammatory reactions and drug response: importance of cytochrome P450 and membrane transporters. Expert Rev Clin Pharmacol 2014; 1:627-47. [DOI: 10.1586/17512433.1.5.627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2014; 5:69-89. [DOI: 10.1586/ecp.11.66] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Li H, Wu H, Shen C, Chen JY, Hu SL, Wu H. Comparative pharmacokinetics study after oral administration of geniposide in normal rats and adjuvant-induced arthritis rats by UPLC-MS/MS. Basic Clin Pharmacol Toxicol 2013; 113:294-9. [PMID: 23953346 DOI: 10.1111/bcpt.12113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/29/2013] [Indexed: 12/01/2022]
Abstract
A simple and rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method for quantitative analysis of geniposide (GE) in rat plasma was developed, validated and applied to determine the level of GE in rat plasma after oral administration of GE in adjuvant-induced arthritis (AA) and normal rats. The investigation showed that there were significant differences in the groups between the normal rat and AA rat in pharmacokinetics parameters, such as the area under the time versus drug concentration curve (AUC(0-∞)) (3.77 ± 0.68 versus 2.27 ± 0.42, p < 0.05), the apparent volume of distribution (V) (140.41 ± 2.07 versus 136.51 ± 1.03, p < 0.05), the mean residence time (MRT) (3.98 ± 0.90 versus 3.80 ± 0.50, p < 0.05) and the clearance from the total body (CL) (16.10 ± 2.87 versus 26.44 ± 4.94, p < 0.05). The results indicated that AA could alter the pharmacokinetics of the drug and these experimental findings could be useful for the further study of the clinical applications of GE.
Collapse
Affiliation(s)
- Hui Li
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, Key Laboratory of Modernized Chinese Medicine in Anhui Province, Hefei, Anhui, China
| | | | | | | | | | | |
Collapse
|
21
|
Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2013; 13:1327-44. [PMID: 22746301 DOI: 10.2174/138920012803341302] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022]
Abstract
Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.
Collapse
Affiliation(s)
- Adarsh Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
22
|
Machavaram KK, Almond LM, Rostami-Hodjegan A, Gardner I, Jamei M, Tay S, Wong S, Joshi A, Kenny JR. A Physiologically Based Pharmacokinetic Modeling Approach to Predict Disease–Drug Interactions: Suppression of CYP3A by IL-6. Clin Pharmacol Ther 2013; 94:260-8. [DOI: 10.1038/clpt.2013.79] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/27/2013] [Indexed: 11/09/2022]
|
23
|
Kawase A, Wada S, Iwaki M. Changes in mRNA Expression and Activity of Xenobiotic Metabolizing Enzymes in Livers from Adjuvant-Induced Arthritis Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.46069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Lee JH, Lee A, Oh JH, Lee YJ. Comparative pharmacokinetic study of paclitaxel and docetaxel in streptozotocin-induced diabetic rats. Biopharm Drug Dispos 2012; 33:474-86. [PMID: 22936118 DOI: 10.1002/bdd.1814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/08/2022]
Abstract
The pharmacokinetics of paclitaxel and docetaxel were compared in diabetic rats induced by streptozotocin (DMIS rats) and the impact of altered expression of cytochrome P450 3A (Cyp3A) and P-glycoprotein (P-gp) in the diabetic state. The pharmacokinetics of paclitaxel and docetaxel were determined after intravenous (5 mg/kg) and oral (30 and 40 mg/kg, respectively) administration to both groups and the mRNA expression levels of Cyp3A isozymes and Mdr1a and Mdr1b in the liver and small intestine were determined in control and DMIS rats. After intravenous administration, the AUC and clearance of paclitaxel and docetaxel were not significantly different in DMIS vs control rats. After oral administration, the AUC and C(max) of paclitaxel in DMIS rats were significantly greater than those in the control rats, whereas those of docetaxel was not changed significantly. The mRNA expression levels of hepatic Cyp3A1, Cyp3A9 and Mdr1b were significantly increased in DMIS compared with the control rats. In the intestine, Cyp3A62 expression decreased in the DMIS rats compared with the controls. Thus the pharmacokinetic changes of taxanes observed in the DMIS rats were attributed to changes in P-gp and Cyp3A, predominant factors that control the absorption of paclitaxel and docetaxel, respectively. It seemed that there were different susceptibilities to intestinal P-gp and Cyp3A between the two taxanes.
Collapse
Affiliation(s)
- Joo Hyun Lee
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | | | | | | |
Collapse
|
25
|
Sanaee F, Clements JD, Waugh AWG, Fedorak RN, Lewanczuk R, Jamali F. Drug-disease interaction: Crohn's disease elevates verapamil plasma concentrations but reduces response to the drug proportional to disease activity. Br J Clin Pharmacol 2012; 72:787-97. [PMID: 21592185 DOI: 10.1111/j.1365-2125.2011.04019.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM Inflammation is involved in the pathogenesis of cardiovascular diseases that includes reduced response to pharmacotherapy due to altered pharmacokinetics and pharmacodynamics. It is not known if these effects exist in general in all inflammatory conditions. It also remains unknown whether in a given population the effect is a function of disease severity. We investigated whether pharmacokinetics and pharmacodynamics of a typical calcium channel inhibitor are influenced by Crohn's disease (CD), a disease for which the disease severity can be readily ranked. METHODS We administered 80 mg verapamil orally to (i) healthy control subjects (n= 9), (ii) patients with clinically quiescent CD (n= 22) and (iii) patients with clinically active CD (n= 14). Serial analysis of verapamil enantiomers (total and plasma unbound), blood pressure and electrocardiograms were recorded over 8 h post dose. The severity of CD was measured using the Harvey-Bradshaw Index. RESULTS CD substantially and significantly increased plasma verapamil concentration and in a stereoselective fashion (S, 9-fold; R, 2-fold). The elevated verapamil concentration, however, failed to result in an increased verapamil pharmacodynamic effect so that the patients with elevated verapamil concentration demonstrated no significant increase in response measured as PR interval and blood pressure. Instead, the greater the disease severity, the lower was the drug potency to prolong PR interval (r= 0.86, P < 0.0006), CONCLUSIONS CD patients with severe disease may not respond to cardiovascular therapy with calcium channel blockers. Reducing the severity increases response despite reduced drug concentration. This observation may have therapeutic implication beyond the disease and the drug studies herein.
Collapse
Affiliation(s)
- Forough Sanaee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Uno S, Uraki M, Ito A, Shinozaki Y, Yamada A, Kawase A, Iwaki M. Changes in mRNA expression of ABC and SLC transporters in liver and intestines of the adjuvant-induced arthritis rat. Biopharm Drug Dispos 2009; 30:49-54. [PMID: 19152228 DOI: 10.1002/bdd.639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, a real-time reverse transcription-polymerase chain reaction was used to determine the effects of adjuvant-induced arthritis (AA) on the amounts of mRNA of 12 types of rat ATP-binding cassette (ABC) and solute carrier (SLC) transporters in the liver and small intestine, 7 (D7) and 21 days (D21) after the injection of adjuvant. There were no significant differences in mRNA levels of ABC and SLC transporters between the livers of AA and control rats on D7, except in the case of Mdr1a. However, levels of Mdr1a, Mrp2 and Oatp SLC transporters were significantly lower in AA than in the control livers on D21. In contrast, the mRNA levels of several ABC and SLC transporters, especially Mrp2, Bcrp, LAT2 and Oatp1a5, were significantly lower in the small intestines of AA rats compared with the controls on D7, though there were no significant differences by D21. The time-dependent alterations in mRNA levels of the pregnane X receptor, but not the constitutive androstane receptor, in the liver and intestine were similar to the changes in mRNA levels of most transporters examined. The present study showed that AA was associated with reduced mRNA expression of several ABC and SLC transporters in the liver and small intestine, but that the time courses of the effects of AA on mRNA expression differed between the liver and small intestine. These results raise the possibility of a functional change of the transporters of liver and intestine in AA rats.
Collapse
Affiliation(s)
- Satoshi Uno
- Department of Pharmacy, School of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
de Wildt SN, Ito S, Koren G. Challenges for drug studies in children: CYP3A phenotyping as example. Drug Discov Today 2008; 14:6-15. [PMID: 18721895 DOI: 10.1016/j.drudis.2008.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/20/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
A paucity of data exists on the disposition and effect of drugs in young children. This information gap can be reduced by elucidating developmental principles of absorption, distribution, metabolism and excretion (ADME) in vivo. Such knowledge might enable the prediction of the disposition of individual drugs in children over the whole pediatric age range. CYP3A, the most abundant human drug metabolizing enzyme, is involved in the metabolism of more than 50% of all marketed drugs. Hence, elucidating the developmental pattern of CYP3A in relation to genetic background, disease and comedications might greatly enhance our knowledge on drug disposition in children. Several methods have been used to determine in vivo CYP3A activity in human adults, while similar studies in children face several ethical, practical and scientific challenges. The aim of this review is to identify these challenges and offer feasible solutions for studying drugs in young children, with an emphasis on CYP3A phenotyping as an example.
Collapse
Affiliation(s)
- Saskia N de Wildt
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|