1
|
Her L, Shi J, Wang X, He B, Smith LS, Jiang H, Zhu H. Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms. Proteomics 2023; 23:e2200176. [PMID: 36413357 PMCID: PMC10077986 DOI: 10.1002/pmic.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants.
Collapse
Affiliation(s)
- Lucy Her
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | - Jian Shi
- Alliance Pharma, IncMalvernPennsylvaniaUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Bing He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Logan S. Smith
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Hui Jiang
- Department of BiostatisticsUniversity of MichiganAnn ArborMichiganUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Imai T, Isozaki M, Ohura K. Esterases Involved in the Rapid Bioconversion of Esmolol after Intravenous Injection in Humans. Biol Pharm Bull 2022; 45:1544-1552. [PMID: 36184514 DOI: 10.1248/bpb.b22-00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Esmolol is indicated for the acute and temporary control of ventricular rate due to its rapid onset of action and elimination at a rate greater than cardiac output. This rapid elimination is achieved by the hydrolysis of esmolol to esmolol acid. It has previously been reported that esmolol is hydrolyzed in the cytosol of red blood cells (RBCs). In order to elucidate the metabolic tissues and enzymes involved in the rapid elimination of esmolol, a hydrolysis study was performed using different fractions of human blood and liver. Esmolol was slightly hydrolyzed by washed RBCs and plasma proteins while it was extensively hydrolyzed in plasma containing white blood cells and platelets. The negligible hydrolysis of esmolol in RBCs is supported by its poor hydrolysis by esterase D, the sole cytosolic esterase in RBCs. In human liver microsomes, esmolol was rapidly hydrolyzed according to Michaelis-Menten kinetics, and its hepatic clearance, calculated by the well-stirred model, was limited by hepatic blood flow. An inhibition study and a hydrolysis study using individual recombinant esterases showed that human carboxylesterase 1 isozyme (hCE1) is the main metabolic enzyme of esmolol in both white blood cells and human liver. These studies also showed that acyl protein thioesterase 1 (APT1) is involved in the cytosolic hydrolysis of esmolol in the liver. The hydrolysis of esmolol by hCE1 and APT1 also results in its pulmonary metabolism, which might be a reason for its high total clearance (170-285 mL/min/kg bodyweight), 3.5-fold greater than cardiac output (80.0 mL/min/kg bodyweight).
Collapse
Affiliation(s)
- Teruko Imai
- Graduate School of Pharmaceutical Sciences, Kumamoto University.,Daiichi University of Pharmacy
| | - Mizuki Isozaki
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kayoko Ohura
- Graduate School of Pharmaceutical Sciences, Kumamoto University.,Headquarters for Admissions and Education, Kumamoto University
| |
Collapse
|
3
|
Human carboxylesterase 1A plays a predominant role in the hydrolytic activation of remdesivir in humans. Chem Biol Interact 2021; 351:109744. [PMID: 34774545 DOI: 10.1016/j.cbi.2021.109744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022]
Abstract
Remdesivir, an intravenous nucleotide prodrug, has been approved for treating COVID-19 in hospitalized adults and pediatric patients. Upon administration, remdesivir can be readily hydrolyzed to form its active form GS-441524, while the cleavage of the carboxylic ester into GS-704277 is the first step for remdesivir activation. This study aims to assign the key enzymes responsible for remdesivir hydrolysis in humans, as well as to investigate the kinetics of remdesivir hydrolysis in various enzyme sources. The results showed that remdesivir could be hydrolyzed to form GS-704277 in human plasma and the microsomes from human liver (HLMs), lung (HLuMs) and kidney (HKMs), while the hydrolytic rate of remdesivir in HLMs was the fastest. Chemical inhibition and reaction phenotyping assays suggested that human carboxylesterase 1 (hCES1A) played a predominant role in remdesivir hydrolysis, while cathepsin A (CTSA), acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) contributed to a lesser extent. Enzymatic kinetic analyses demonstrated that remdesivir hydrolysis in hCES1A (SHUTCM) and HLMs showed similar kinetic plots and much closed Km values to each other. Meanwhile, GS-704277 formation rates were strongly correlated with the CES1A activities in HLM samples from different individual donors. Further investigation revealed that simvastatin (a therapeutic agent for adjuvant treating COVID-19) strongly inhibited remdesivir hydrolysis in both recombinant hCES1A and HLMs. Collectively, our findings reveal that hCES1A plays a predominant role in remdesivir hydrolysis in humans, which are very helpful for predicting inter-individual variability in response to remdesivir and for guiding the rational use of this anti-COVID-19 agent in clinical settings.
Collapse
|
4
|
Zhou Q, Yan B, Sun W, Chen Q, Xiao Q, Xiao Y, Wang X, Shi D. Pig Liver Esterases Hydrolyze Endocannabinoids and Promote Inflammatory Response. Front Immunol 2021; 12:670427. [PMID: 34079552 PMCID: PMC8165269 DOI: 10.3389/fimmu.2021.670427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Endocannabinoids are endogenous ligands of cannabinoid receptors and activation of these receptors has strong physiological and pathological significance. Structurally, endocannabinoids are esters (e.g., 2-arachidonoylglycerol, 2-AG) or amides (e.g., N-arachidonoylethanolamine, AEA). Hydrolysis of these compounds yields arachidonic acid (AA), a major precursor of proinflammatory mediators such as prostaglandin E2. Carboxylesterases are known to hydrolyze esters and amides with high efficiency. CES1, a human carboxylesterase, has been shown to hydrolyze 2-AG, and shares a high sequence identity with pig carboxylesterases: PLE1 and PLE6 (pig liver esterase). The present study was designed to test the hypothesis that PLE1 and PLE6 hydrolyze endocannabinoids and promote inflammatory response. Consistent with the hypothesis, purified PLE1 and PLE6 efficaciously hydrolyzed 2-AG and AEA. PLE6 was 40-fold and 3-fold as active as PLE1 towards 2-AG and AEA, respectively. In addition, both PLE1 and PLE6 were highly sensitive to bis(4-nitrophenyl) phosphate (BNPP), an aryl phosphodiester known to predominately inhibit carboxylesterases. Based on the study with BNPP, PLEs contributed to the hydrolysis of 2-AG by 53.4 to 88.4% among various organs and cells. Critically, exogenous addition or transfection of PLE6 increased the expression and secretion of proinflammatory cytokines in response to the immunostimulant lipopolysaccharide (LPS). This increase was recapitulated in cocultured alveolar macrophages and PLE6 transfected cells in transwells. Finally, BNPP reduced inflammation trigged by LPS accompanied by reduced formation of AA and proinflammatory mediators. These findings define an innovative connection: PLE-endocannabinoid-inflammation. This mechanistic connection signifies critical roles of carboxylesterases in pathophysiological processes related to the metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH, United States
| | - Wanying Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Her L, Zhu HJ. Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators. Drug Metab Dispos 2020; 48:230-244. [PMID: 31871135 PMCID: PMC7031766 DOI: 10.1124/dmd.119.089680] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Carboxylesterase (CES) 1 is the most abundant drug-metabolizing enzyme in human livers, comprising approximately 1% of the entire liver proteome. CES1 is responsible for 80%-95% of total hydrolytic activity in the liver and plays a crucial role in the metabolism of a wide range of drugs (especially ester-prodrugs), pesticides, environmental pollutants, and endogenous compounds. Expression and activity of CES1 vary markedly among individuals, which is a major contributing factor to interindividual variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by CES1. Both genetic and nongenetic factors contribute to CES1 variability. Here, we discuss genetic polymorphisms, including single-nucleotide polymorphisms (SNPs), and copy number variants and nongenetic contributors, such as developmental status, genders, and drug-drug interactions, that could influence CES1 functionality and the PK and PD of CES1 substrates. Currently, the loss-of-function SNP G143E (rs71647871) is the only clinically significant CES1 variant identified to date, and alcohol is the only potent CES1 inhibitor that could alter the therapeutic outcomes of CES1 substrate medications. However, G143E and alcohol can only explain a small portion of the interindividual variability in the CES1 function. A better understanding of the regulation of CES1 expression and activity and identification of biomarkers for CES1 function in vivo could lead to the development of a precision pharmacotherapy strategy to improve the efficacy and safety of many CES1 substrate drugs. SIGNIFICANCE STATEMENT: The clinical relevance of CES1 has been well demonstrated in various clinical trials. Genetic and nongenetic regulators can affect CES1 expression and activity, resulting in the alteration of the metabolism and clinical outcome of CES1 substrate drugs, such as methylphenidate and clopidogrel. Predicting the hepatic CES1 function can provide clinical guidance to optimize pharmacotherapy of numerous medications metabolized by CES1.
Collapse
Affiliation(s)
- Lucy Her
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Lan L, Ren X, Yang J, Liu D, Zhang C. Detection techniques of carboxylesterase activity: An update review. Bioorg Chem 2020; 94:103388. [DOI: 10.1016/j.bioorg.2019.103388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
|
7
|
Shen Y, Shi Z, Yan B. Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Batalhão IG, Lima D, Russi APM, Boscolo CNP, Silva DGH, Pereira TSB, Bainy ACD, de Almeida EA. Effects of methylphenidate on the aggressive behavior, serotonin and dopamine levels, and dopamine-related gene transcription in brain of male Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1377-1391. [PMID: 31054043 DOI: 10.1007/s10695-019-00645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment has increased considerably in the last decades, causing negative biochemical, physiological, and behavioral effects in aquatic organisms. In this study, we evaluated the effects of methylphenidate (MPH) on the aggressive behavior, dopamine-related gene transcript levels, monoamine levels, and carboxylesterase transcript levels and activity in the brain of male Nile tilapia (Oreochromis niloticus). Carboxylesterase activity was also measured in the liver and gills. Fish were exposed for 5 days to MPH at 20 and 100 ng L-1. Fish exposed to 100 ng L-1 of MPH showed increased aggressiveness and decreased dopamine (DA) and serotonin (5-HT) levels. No changes were observed in plasma testosterone levels and in the transcript levels of D1 and D2 dopamine receptors, dopamine transporter (DAT), and carboxylesterase 2 (CES2). Exposure to 100 ng L-1 of MPH caused a decrease in the transcript levels of carboxylesterase 3 (CES3) and an increase in tyrosine hydroxylase (TH), while exposure to 20 ng L-1 of MPH increased the transcript levels of D5 dopamine receptor. Carboxylesterase activity was unchanged in the brain and liver and increased in the gills of fish exposed to 20 ng L-1. These results indicate that MPH at 100 ng L-1 increases aggressiveness in Nile tilapia, possibly due to a decrease in 5-HT levels in the brain and alterations in dopamine levels and dopamine-related genes.
Collapse
Affiliation(s)
- Isabela Gertrudes Batalhão
- Department of Chemistry and Environmental Sciences, UNESP - Sao Paulo State University, São Paulo, Brazil
| | - Daína Lima
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Ana Paula Montedor Russi
- Department of Physiology, UNESP - Sao Paulo State University, Jaboticabal, São Paulo, SP, Brazil
| | | | | | - Thiago Scremin Boscolo Pereira
- UNIRP - University Center of Rio Preto, São José do Rio Preto, SP, Brazil
- FACERES - Morphofunctional Laboratory, FACERES Medical School, São José do Rio Preto, SP, Brazil
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, FURB Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
9
|
Mizoi K, Takahashi M, Sakai S, Ogihara T, Haba M, Hosokawa M. Structure-activity relationship of atorvastatin derivatives for metabolic activation by hydrolases. Xenobiotica 2019; 50:261-269. [DOI: 10.1080/00498254.2019.1625083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Masato Takahashi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Sachiko Sakai
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Masami Haba
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Masakiyo Hosokawa
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| |
Collapse
|
10
|
Chen F, Zhang B, Parker RB, Laizure SC. Clinical implications of genetic variation in carboxylesterase drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:131-142. [DOI: 10.1080/17425255.2018.1420164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bo Zhang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B. Parker
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Wu XM, Xu BY, Si FL, Li J, Yan ZT, Yan ZW, He X, Chen B. Identification of carboxylesterase genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2018; 74:159-169. [PMID: 28731595 DOI: 10.1002/ps.4672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/03/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Carboxylesterases (CCEs) are one of three large detoxification enzyme families. Some CCEs are active on synthetic insecticides with ester structures. Anopheles sinensis is an important malaria vector in eastern Asia. This study identified and characterized the CCE genes in the A. sinensis genome and determined CCE genes associated with pyrethroid resistance using RNA sequencing (RNA-seq) and quantitative reverse transcription - polymerase chain reaction (qRT-PCR), in A. sinensis from Anhui, Chongqing, and Yunnan in China. RESULTS Fifty-seven putative CCEs were identified and placed into three classes, 12 subfamilies and 14 clades through phylogenetic and homology analyses. Exon sizes ranged from 31 to 4317 bp, with 49 CCEs having two to five exons and eight having six to 11 exons. A total of 183 introns were recognized with sizes ranging from 31 to 4317 bp. The 57 CCEs were located on 14 scaffolds, with 70% located on four scaffolds. The alpha-esterase subfamily was significantly expanded compared with that of Anopheles gambiae. In a pyrethroid-resistant strain, RNA-seq detected five upregulated CCE genes and qRT-PCR detected 12 upregulated CCE genes. The α-esterase 10 (AsAe10) and acetylcholinesterase 1 (AsAce1) genes were the main CCE genes associated with pyrethroid resistance. CONCLUSION This information will be useful for further study of the CCE gene family and pyrethroid resistance mechanisms mediated by CCEs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bo-Ying Xu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Jianyong Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zheng-Wen Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xiu He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
12
|
Ferrero-Miliani L, Bjerre D, Stage C, Madsen MB, Jűrgens G, Dalhoff KP, Rasmussen HB. Reappraisal of the genetic diversity and pharmacogenetic assessment of CES1. Pharmacogenomics 2017; 18:1241-1257. [DOI: 10.2217/pgs-2017-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The CES1 gene encodes a hydrolase that metabolizes important drugs. Variants generated by exchange of segments with CES1P1 complicate genotyping of CES1. Using a highly specific procedure we examined DNA samples from 200 Caucasians and identified 46 single nucleotide variants (SNVs) in CES1 and 21 SNVs in CES1A2, a hybrid composed of CES1 and CES1P1. Several of these SNVs were novel. The frequencies of SNVs with a potential functional impact were below 0.02 suggesting limited pharmacogenetic potential for CES1 genotyping. In silico PCR revealed that the majority of the primer pairs for amplification of CES1 or CES1A2 in three previous studies lacked specificity, which partially explains a limited overlap with our findings.
Collapse
Affiliation(s)
- Laura Ferrero-Miliani
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Ditte Bjerre
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Claus Stage
- Department of Clinical Pharmacology, Bispebjerg & Frederiksberg University Hospital, Copenhagen, Denmark
| | - Majbritt Busk Madsen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Gesche Jűrgens
- Clinical Pharmacological Unit, Zealand University Hospital, Roskilde, Denmark
| | - Kim Peder Dalhoff
- Department of Clinical Pharmacology, Bispebjerg & Frederiksberg University Hospital, Copenhagen, Denmark
- Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
- Department of Science & Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
13
|
Novel procedure with improved resolution and specificity for amplification and differentiation of variants of the gene encoding carboxylesterase 1. Pharmacogenet Genomics 2017; 27:155-158. [DOI: 10.1097/fpc.0000000000000267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
|
15
|
Ohura K, Nishiyama H, Saco S, Kurokawa K, Imai T. Establishment and Characterization of a Novel Caco-2 Subclone with a Similar Low Expression Level of Human Carboxylesterase 1 to Human Small Intestine. Drug Metab Dispos 2016; 44:1890-1898. [PMID: 27638507 DOI: 10.1124/dmd.116.072736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Caco-2 cells predominantly express human carboxylesterase 1 (hCE1), unlike the human intestine that predominantly expresses human carboxylesterase 2 (hCE2). Transport experiments using Caco-2 cell monolayers often lead to misestimation of the intestinal absorption of prodrugs because of this difference, as prodrugs designed to increase the bioavailability of parent drugs are made to be resistant to hCE2 in the intestine, so that they can be hydrolyzed by hCE1 in the liver. In the present study, we tried to establish a new Caco-2 subclone, with a similar pattern of carboxylase expression to human intestine, to enable a more accurate estimation of the intestinal absorption of prodrugs. Although no subclone could be identified with high expression levels of only hCE2, two subclones, #45 and #78, with extremely low expression levels of hCE1 were subcloned from parental Caco-2 cells by the limiting dilution technique. Unfortunately, subclone #45 did not form enterocyte-like cell monolayers due to low expression of claudins and β-actin. However, subclone #78 formed polarized cell monolayers over 4 weeks and showed similar paracellular and transcellular transport properties to parental Caco-2 cell monolayers. In addition, the intestinal transport of oseltamivir, a hCE1 substrate, could be evaluated in subclone #78 cell monolayers, including P-glycoprotein-mediated efflux under nonhydrolysis conditions, unlike parental Caco-2 cells. Consequently, it is proposed that subclone #78 may provide a more effective system in which to evaluate the intestinal absorption of prodrugs that are intended to be hydrolyzed by hCE1.
Collapse
Affiliation(s)
- Kayoko Ohura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Saco
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Kurokawa
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruko Imai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Sanford JC, Wang X, Shi J, Barrie ES, Wang D, Zhu HJ, Sadee W. Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus. Pharmacogenet Genomics 2016; 26:197-207. [PMID: 26871237 PMCID: PMC4821783 DOI: 10.1097/fpc.0000000000000206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CES1 encodes carboxylesterase-1, an important drug-metabolizing enzyme with high expression in the liver. Previous studies have reported a genomic translocation of the 5' region from the poorly expressed pseudogene CES1P1, to CES1, yielding the structural variant CES1VAR. The aim of this study was to characterize this translocation and its effect on CES1 expression in the human liver. MATERIALS AND METHODS Experiments were conducted in human liver tissues and cell culture (HepG2). The promoter and exon 1 of CES1 were sequenced by Sanger and Ion Torrent sequencing to identify gene translocations. The effects of CES1 5'UTRs on mRNA and protein expression were assessed by quantitative real-time PCR, allelic ratio mRNA analysis by primer extension (SNaPshot), quantitative targeted proteomics, and luciferase reporter gene assays. RESULTS Sequencing of CES1 identified two translocations: first, CES1VAR (17% minor allele frequency) comprising the 5'UTR, exon 1, and part of intron 1. A second shorter translocation, CES1SVAR, was observed excluding exon 1 and intron 1 regions (<0.01% minor allele frequency). CES1VAR is associated with 2.6-fold decreased CES1 mRNA and ∼1.35-fold lower allelic mRNA. Luciferase reporter constructs showed that CES1VAR decreases luciferase activity 1.5-fold, whereas CES1SVAR slightly increases activity. CES1VAR was not associated with CES1 protein expression or metabolism of the CES1 substrates enalapril, clopidogrel, or methylphenidate in the liver. CONCLUSION The frequent translocation variant CES1VAR reduces mRNA expression of CES1 in the liver by ∼30%, but protein expression and metabolizing activity in the liver were not detectably altered - possibly because of variable CES1 expression masking small allelic effects. Whether drug therapies are affected by CES1VAR will require further in-vivo studies.
Collapse
Affiliation(s)
| | - Xinwen Wang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Stofko Barrie
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1198-1217. [PMID: 27113289 DOI: 10.1016/j.bbagrm.2016.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known xenobiotic-sensing nuclear receptors with overlapping functions. However, there lacks a quantitative characterization to distinguish between the PXR and CAR target genes and signaling pathways in the liver. The present study performed a transcriptomic comparison of the PXR- and CAR-targets using RNA-Seq in livers of adult wild-type mice that were treated with the prototypical PXR ligand PCN (200mg/kg, i.p. once daily for 4days in corn oil) or the prototypical CAR ligand TCPOBOP (3mg/kg, i.p., once daily for 4days in corn oil). At the given doses, TCPOBOP differentially regulated many more genes (2125) than PCN (212), and 147 of the same genes were differentially regulated by both chemicals. As expected, the top pathways differentially regulated by both PCN and TCPOBOP were involved in xenobiotic metabolism, and they also up-regulated genes involved in retinoid metabolism, but down-regulated genes involved in inflammation and iron homeostasis. Regarding unique pathways, PXR activation appeared to overlap with the aryl hydrocarbon receptor signaling, whereas CAR activation appeared to overlap with the farnesoid X receptor signaling, acute-phase response, and mitochondrial dysfunction. The mRNAs of differentially regulated drug-processing genes (DPGs) partitioned into three patterns, namely TCPOBOP-induced, PCN-induced, as well as TCPOBOP-suppressed gene clusters. The cumulative mRNAs of the differentially regulated DPGs, phase-I and -II enzymes, as well as efflux transporters were all up-regulated by both PCN and TCPOBOPOP, whereas the cumulative mRNAs of the uptake transporters were down-regulated only by TCPOBOP. The absolute mRNA abundance in control and receptor-activated conditions was examined in each DPG category to predict the contribution of specific DPG genes in the PXR/CAR-mediated pharmacokinetic responses. The preferable differential regulation by TCPOBOP in the entire hepatic transcriptome correlated with a marked change in the expression of many DNA and histone epigenetic modifiers. In conclusion, the present study has revealed known and novel, as well as common and unique targets of PXR and CAR in mouse liver following pharmacological activation using their prototypical ligands. Results from this study will further support the role of these receptors in regulating the homeostasis of xenobiotic and intermediary metabolism in the liver, and aid in distinguishing between PXR and CAR signaling at various physiological and pathophysiological conditions. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
18
|
Comment on Xie et al.: The effects of CES1A2 A(-816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenet Genomics 2015; 25:147. [PMID: 25647335 DOI: 10.1097/fpc.0000000000000114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30:30-51. [DOI: 10.1016/j.dmpk.2014.12.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
|
20
|
Johnson KA, Barry E, Lambert D, Fitzgerald M, McNicholas F, Kirley A, Gill M, Bellgrove MA, Hawi Z. Methylphenidate side effect profile is influenced by genetic variation in the attention-deficit/hyperactivity disorder-associated CES1 gene. J Child Adolesc Psychopharmacol 2013; 23:655-64. [PMID: 24350812 DOI: 10.1089/cap.2013.0032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A naturalistic, prospective study of the influence of genetic variation on dose prescribed, clinical response, and side effects related to stimulant medication in 77 children with attention-deficit/hyperactivity disorder (ADHD) was undertaken. The influence of genetic variation of the CES1 gene coding for carboxylesterase 1A1 (CES1A1), the major enzyme responsible for the first-pass, stereoselective metabolism of methylphenidate, was investigated. METHODS Parent- and teacher-rated behavioral questionnaires were collected at baseline when the children were medication naïve, and again at 6 weeks while they were on medication. Medication dose, prescribed at the discretion of the treating clinician, and side effects, were recorded at week 6. Blood and saliva samples were collected for genotyping. Single nucleotide polymorphisms (SNPs) were selected in the coding, non-coding and the 3' flanking region of the CES1 gene. Genetic association between CES1 variants and ADHD was investigated in an expanded sample of 265 Irish ADHD families. Analyses were conducted using analysis of covariance (ANCOVA) and logistic regression models. RESULTS None of the CES1 gene variants were associated with the dose of methylphenidate provided or the clinical response recorded at the 6 week time point. An association between two CES1 SNP markers and the occurrence of sadness as a side effect of short-acting methylphenidate was found. The two associated CES1 markers were in linkage disequilibrium and were significantly associated with ADHD in a larger sample of ADHD trios. The associated CES1 markers were also in linkage disequilibrium with two SNP markers of the noradrenaline transporter gene (SLC6A2). CONCLUSIONS This study found an association between two CES1 SNP markers and the occurrence of sadness as a side effect of short-acting methylphenidate. These markers were in linkage disequilibrium together and with two SNP markers of the noradrenaline transporter gene.
Collapse
|
21
|
Zhu HJ, Wang X, Gawronski BE, Brinda BJ, Angiolillo DJ, Markowitz JS. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther 2013; 344:665-72. [PMID: 23275066 DOI: 10.1124/jpet.112.201640] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Clopidogrel pharmacotherapy is associated with substantial interindividual variability in clinical response, which can translate into an increased risk of adverse outcomes. Clopidogrel, a recognized substrate of hepatic carboxylesterase 1 (CES1), undergoes extensive hydrolytic metabolism in the liver. Significant interindividual variability in the expression and activity of CES1 exists, which is attributed to both genetic and environmental factors. We determined whether CES1 inhibition and CES1 genetic polymorphisms would significantly influence the biotransformation of clopidogrel and alter the formation of the active metabolite. Coincubation of clopidogrel with the CES1 inhibitor bis(4-nitrophenyl) phosphate in human liver s9 fractions significantly increased the concentrations of clopidogrel, 2-oxo-clopidogrel, and clopidogrel active metabolite, while the concentrations of all formed carboxylate metabolites were significantly decreased. As anticipated, clopidogrel and 2-oxo-clopidogrel were efficiently hydrolyzed by the cell s9 fractions prepared from wild-type CES1 transfected cells. The enzymatic activity of the CES1 variants G143E and D260fs were completely impaired in terms of catalyzing the hydrolysis of clopidogrel and 2-oxo-clopidogrel. However, the natural variants G18V, S82L, and A269S failed to produce any significant effect on CES1-mediated hydrolysis of clopidogrel or 2-oxo-clopidogrel. In summary, deficient CES1 catalytic activity resulting from CES1 inhibition or CES1 genetic variation may be associated with higher plasma concentrations of clopidogrel-active metabolite, and hence may enhance antiplatelet activity. Additionally, CES1 genetic variants have the potential to serve as a biomarker to predict clopidogrel response and individualize clopidogrel dosing regimens in clinical practice.
Collapse
Affiliation(s)
- Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
22
|
A discriminative analytical method for detection of CES1A1 and CES1A2/CES1A3 genetic variants. Pharmacogenet Genomics 2012; 22:215-8. [PMID: 22237548 DOI: 10.1097/fpc.0b013e32834f03eb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human carboxylesterase 1 (hCES1), encoded by the CES1 gene, is the predominant hepatic hydrolase responsible for the metabolism of many therapeutic agents, toxins, and endogenous substances. Genetic variants of CES1 can affect hCES1 function and expression and ultimately influence clinical response to drugs serving as hCES1 substrates. The CES1 gene consists of three isoforms including the functional CES1A1 and CES1A2 genes and the nonfunctional pseudogene CES1A3. Natural variants of these isoforms exert differing impacts on hCES1 function. However, the existing CES1 genotyping methods are incapable of determining whether these variants belong to CES1A1, CES1A2, or CES1A3 because of the high similarity among these three genes, as a consequence they are unable to discriminate between heterozygotes and homozygotes. We report the development of a novel long-range PCR-based, discriminative genotyping assay capable of specifically detecting the variants among CES1A1, CES1A2, and CES1A3 genes. The comparison of the genotyping results between this novel assay and those previously reported methods highlighted the necessity of applying the discriminative genotyping assay in pharmacogenetic studies involving CES1 gene.
Collapse
|
23
|
Carboxylesterase 1 (CES1) genetic polymorphisms and oseltamivir activation. Eur J Clin Pharmacol 2012; 69:733-4. [DOI: 10.1007/s00228-012-1350-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
24
|
Antioxidant sulforaphane and sensitizer trinitrobenzene sulfonate induce carboxylesterase-1 through a novel element transactivated by nuclear factor-E2 related factor-2. Biochem Pharmacol 2012; 84:864-71. [PMID: 22776248 DOI: 10.1016/j.bcp.2012.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/21/2022]
Abstract
Carboxylesterase-1 (CES1), the most versatile human carboxylesterase, plays critical roles in drug metabolism and lipid mobilization. This enzyme is highly induced by antioxidants and sensitizers in various cell lines. These compounds are known to activate nuclear factor-E2 related factor-2 (Nrf2) by reacting to kelch-like ECH-associated protein-1 (Keap1). The aims of this study were to determine whether antioxidant sulforaphane (SFN) and sensitizer trinitrobenzene sulfonate (TNBS) target Keap1 similarly and whether they use the same element for CES1 induction. Cells over-expressing Keap1 were treated with TNBS or SFN and the formation of disulfide bonds among Keap1 molecules were determined. SFN promoted intramolecular disulfide formation whereas TNBS promoted intermolecular disulfide formation of Keap1. Two elements, sensitizing/antioxidant response element (S/ARE) and ARE4, were identified to support Nrf2 in the regulated expression of CES1A1. Both elements were bound by Nrf2, however, the S/ARE element supported, whereas the ARE4 element repressed Nrf2 transactivation. The repression required higher amounts of Nrf2, suggesting that the transactivation through the S/ARE element dominates the trans-repression through the ARE4 element under normal antioxidative condition. These findings conclude that compounds, although triggering the Keap1-Nrf2 pathway, may differ in the mode of reacting with Keap1. These findings also conclude that both positive and negative Nrf2 elements exist even within the same gene, and such opposing mechanisms provide fine-tuning in transcriptional regulation by the Keap1-Nrf2 pathway. High levels of CES1 are linked to lipid retention. Excessive induction of CES1 by antioxidants and sensitizers likely provides a mechanism for potential detrimental effect on human health.
Collapse
|
25
|
The effect of carboxylesterase 1 (CES1) polymorphisms on the pharmacokinetics of oseltamivir in humans. Eur J Clin Pharmacol 2012; 69:21-30. [DOI: 10.1007/s00228-012-1315-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/14/2012] [Indexed: 01/11/2023]
|
26
|
Zhang Y, Cheng X, Aleksunes L, Klaassen CD. Transcription factor-mediated regulation of carboxylesterase enzymes in livers of mice. Drug Metab Dispos 2012; 40:1191-7. [PMID: 22429928 PMCID: PMC3362786 DOI: 10.1124/dmd.111.043877] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/19/2012] [Indexed: 11/22/2022] Open
Abstract
The induction of drug-metabolizing enzymes by chemicals is one of the major reasons for drug-drug interactions. In the present study, the regulation of mRNA expression of one arylacetamide deacetylase (Aadac) and 11 carboxylesterases (Cess) by 15 microsomal enzyme inducers (MEIs) was examined in livers of male C57BL/6 mice. The data demonstrated that Aadac mRNA expression was suppressed by three aryl hydrocarbon receptor (AhR) ligands, two constitutive androstane receptor (CAR) activators, two pregnane X receptor (PXR) ligands, and one nuclear factor erythroid 2-related factor 2 (Nrf2) activator. Ces1 subfamily mRNA expression was not altered by most of the MEIs, whereas Ces2 subfamily mRNA was readily induced by the activators of CAR, PXR, and Nrf2 but not by peroxisome proliferator-activated receptor α activators. Studies using null mice demonstrated that 1) AhR was required for the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of Aadac and Ces3a; 2) CAR was involved in the 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene-mediated induction of Aadac, Ces2c, Ces2a, and Ces3a; 3) PXR was required for the pregnenolone-16α-carbonitrile-mediated induction of Aadac, Ces2c, and Ces2a; 4) Nrf2 was required for the oltipraz-mediated induction of Ces1g and Ces2c; and 5) PXR was not required for the DEX-mediated suppression of Cess in livers of mice. In conclusion, the present study systematically investigated the regulation of Cess by MEIs in livers of mice and demonstrated that MEIs modulated mRNA expression of mouse hepatic Cess through the activation of AhR, CAR, PXR, and/or Nrf2 transcriptional pathways.
Collapse
Affiliation(s)
- Youcai Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
27
|
Ding XL, Deng YL, Zhang J, Miao LY. Mutation-Sensitive Molecular Switch Method to Detect CES1A2 Mutation in the Chinese Han and Yao Populations. Genet Test Mol Biomarkers 2011; 15:659-62. [DOI: 10.1089/gtmb.2011.0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xiao-Liang Ding
- Clinical Pharmacology Research Laboratory, The First Affiliated of Soochow University, Suzhou, China
| | - Yang-Lin Deng
- Center of Clinical Pharmacy, The First Affiliated of Kunming Medical College, Kunming, China
| | - Jun Zhang
- Center of Clinical Pharmacy, The First Affiliated of Kunming Medical College, Kunming, China
| | - Li-Yan Miao
- Clinical Pharmacology Research Laboratory, The First Affiliated of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Wang J, Williams ET, Bourgea J, Wong YN, Patten CJ. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2. Drug Metab Dispos 2011; 39:1329-33. [PMID: 21540359 DOI: 10.1124/dmd.111.039628] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human carboxylesterase (CES) 1 and CES2 are members of the serine hydrolase superfamily, and both exhibit broad substrate specificity and are involved in xenobiotic and endobiotic metabolism. Although expression of CES1 and CES2 occurs in several organs, their expression in liver and small intestine is predominantly attributed to CES1 and CES2, respectively. We successfully expressed CES1 form b (CES1-b) and form c (CES1-c) as well as CES2 in baculovirus-infected High Five insect cells. With 4-nitrophenyl acetate (4-NPA) as the probe substrate, the K(m) values of recombinant CES1-b and CES2 matched those of human liver microsomes (HLM) and human intestinal microsomes (HIM) with approximately 200 and 180 μM, respectively. Bis(4-nitrophenyl) phosphate potently inhibited 4-NPA hydrolysis by HLM, CES1-b, CES1-c, HIM, and CES2 with IC(50) values less than 1 μM. With fluorescein diacetate (FD) as the substrate, the K(m) values were similar for all enzyme systems, with the exception of CES1-b, which was slightly lower; however, the V(max) values for HIM and CES2 were 39.5 and 14.6 μmol · mg(-1) · min(-1), respectively, which were at least 50-fold higher than those of CES1-b or CES1-c. Loperamide potently inhibited HLM, HIM, and CES2 with similar IC(50) values of approximately 1 μM. Substrate specificity was compared between human tissues and recombinant enzymes. The data suggest the following: 1) FD is a probe substrate for CES2; 2) CES1-b is the predominant form in human liver; and 3) recombinant CES1-b and CES2 expressed in insect cells are functionally consistent with native carboxylesterases expressed in human liver and intestine, respectively.
Collapse
Affiliation(s)
- Jie Wang
- BD Biosciences, Bedford, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
29
|
Shi D, Yang D, Prinssen EP, Davies BE, Yan B. Surge in expression of carboxylesterase 1 during the post-neonatal stage enables a rapid gain of the capacity to activate the anti-influenza prodrug oseltamivir. J Infect Dis 2011; 203:937-42. [PMID: 21402544 DOI: 10.1093/infdis/jiq145] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Oseltamivir, a widely used anti-influenza drug, is hydrolytically activated by carboxylesterase 1 (CES1). The expression of this carboxylesterase is developmentally regulated. This study was performed to determine when after birth infants acquire competence of activating this prodrug. METHODS Liver tissue samples were collected and divided into 5 age groups: group 1 (1-31 d old), group 2 (35-70 d old), group 3 (89-119 d old), group 4 (123-198 d old), and group 5 (>18 years of age). These samples were analyzed for oseltamivir hydrolysis and CES1 expression. RESULTS Liver samples in group 1 expressed the lowest level of CES1 with the lowest hydrolytic activity toward oseltamivir. A 4-7-fold increase between groups 1 and 2 (1-31 vs 35-70 d of age) was detected in the hydrolysis and expression analyses, respectively. Liver samples in the other 3 pediatric groups (35-198 d of age) exhibited similar expression and hydrolysis levels. Overall, liver samples in group 1 had CES1 expression and hydrolysis levels that were 10% of those of adults, whereas liver samples in the other 3 pediatric groups had levels that were ∼50% of adult levels. CONCLUSIONS The post-neonatal surge in CES1 expression ensures the hydrolytic capacity to be gained rapidly after birth in infants, but the larger variability during this period suggests that caution should be exercised on the extrapolated dosing regimens of ester drugs from other age groups.
Collapse
Affiliation(s)
- Deshi Shi
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
30
|
Sai K, Saito Y, Tatewaki N, Hosokawa M, Kaniwa N, Nishimaki-Mogami T, Naito M, Sawada JI, Shirao K, Hamaguchi T, Yamamoto N, Kunitoh H, Tamura T, Yamada Y, Ohe Y, Yoshida T, Minami H, Ohtsu A, Matsumura Y, Saijo N, Okuda H. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br J Clin Pharmacol 2011; 70:222-33. [PMID: 20653675 DOI: 10.1111/j.1365-2125.2010.03695.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT * Association of UDP-glucuronosyltransferase 1A1 (UGT1A1) genetic polymorphisms *6 and *28 with reduced clearance of SN-38 and severe neutropenia in irinotecan therapy was demonstrated in Japanese cancer patients. * The detailed gene structure of CES1 has been characterized. * Possible functional SNPs in the promoter region have been reported. WHAT THIS STUDY ADDS * Association of functional CES1 gene number with AUC ratio [(SN-38 + SN-38G)/irinotecan], an in vivo index of CES activity, was observed in patients with irinotecan monotherapy. * No significant effects of major CES1 SNPs on irinotecan PK were detected. AIMS Human carboxylesterase 1 (CES1) hydrolyzes irinotecan to produce an active metabolite SN-38 in the liver. The human CES1 gene family consists of two functional genes, CES1A1 (1A1) and CES1A2 (1A2), which are located tail-to-tail on chromosome 16q13-q22.1 (CES1A2-1A1). The pseudogene CES1A3 (1A3) and a chimeric CES1A1 variant (var1A1) are also found as polymorphic isoforms of 1A2 and 1A1, respectively. In this study, roles of CES1 genotypes and major SNPs in irinotecan pharmacokinetics were investigated in Japanese cancer patients. METHODS CES1A diplotypes [combinations of haplotypes A (1A3-1A1), B (1A2-1A1), C (1A3-var1A1) and D (1A2-var1A1)] and the major SNPs (-75T>G and -30G>A in 1A1, and -816A>C in 1A2 and 1A3) were determined in 177 Japanese cancer patients. Associations of CES1 genotypes, number of functional CES1 genes (1A1, 1A2 and var1A1) and major SNPs, with the AUC ratio of (SN-38 + SN-38G)/irinotecan, a parameter of in vivo CES activity, were analyzed for 58 patients treated with irinotecan monotherapy. RESULTS The median AUC ratio of patients having three or four functional CES1 genes (diplotypes A/B, A/D or B/C, C/D, B/B and B/D; n= 35) was 1.24-fold of that in patients with two functional CES1 genes (diplotypes A/A, A/C and C/C; n= 23) [median (25th-75th percentiles): 0.31 (0.25-0.38) vs. 0.25 (0.20-0.32), P= 0.0134]. No significant effects of var1A1 and the major SNPs examined were observed. CONCLUSION This study suggests a gene-dose effect of functional CES1A genes on SN-38 formation in irinotecan-treated Japanese cancer patients.
Collapse
Affiliation(s)
- Kimie Sai
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Paracetamol (acetaminophen) is a worldwide used analgesic and antipyretic drug. It is metabolised via several metabolic pathways, including glucuronidation, sulfation, oxidation, hydroxylation, and deacetylation: Hepatic and other organ damage may occur, especially in overdose, because of the accumulation of a toxic metabolite. Intersubject and ethnic differences have been reported in paracetamol metabolism activation, suggesting possible differences in susceptibility to toxicity and in pain alleviation, linked to different pharmacogenetic profiles. This article aims at reviewing, in the literature, the links between paracetamol metabolism and enzyme genotypes in the context of toxic side effects and efficacy of paracetamol in therapeutics.
Collapse
Affiliation(s)
- Lizi Zhao
- Institute of Clinical Pharmacology, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
32
|
Holmes RS, Wright MW, Laulederkind SJF, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan B, Yokoi T, Zechner R, Maltais LJ. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm Genome 2010; 21:427-41. [PMID: 20931200 PMCID: PMC3127206 DOI: 10.1007/s00335-010-9284-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/27/2010] [Indexed: 12/11/2022]
Abstract
Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
Collapse
Affiliation(s)
- Roger S Holmes
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227-5301, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hori T, Hosokawa M. DNA methylation and its involvement incarboxylesterase 1A1(CES1A1) gene expression. Xenobiotica 2010; 40:119-28. [DOI: 10.3109/00498250903431794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
|
35
|
|
36
|
Zhu HJ, Appel DI, Jiang Y, Markowitz JS. Age- and sex-related expression and activity of carboxylesterase 1 and 2 in mouse and human liver. Drug Metab Dispos 2009; 37:1819-25. [PMID: 19487248 DOI: 10.1124/dmd.109.028209] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carboxylesterase (CES) 1 and CES2 are two major hepatic hydrolases responsible for the metabolism of numerous endogenous and exogenous compounds. In this study, age- and sex-dependent expression and activity of CES1 and CES2 were investigated using both animal models and individual human liver s9 samples. The expression and activity of mouse CES1 (mCES1) and mCES2 in the liver were markedly lower in newborns relative to adults and increased gradually with age, approximating levels of adult animals by age 2 to 4 weeks. Likewise, the average human CES1 (hCES1) expression in the subjects <1 year of age was significantly lower than that of pooled samples. In particular, hCES1 expression in the 13-day and 1-month-old subjects was just 20.3 and 11.1%, respectively, of the pooled sample values. In addition, the subjects <1 year of age exhibited a trend suggestive of low hCES2 expression, but this difference failed to reach statistical significance because of large interindividual variability. The expression and activity of mCES1 and mCES2 were not significantly altered after the animals were treated with human growth hormone, indicating growth hormone may not be associated with the low level of CES expression during early developmental stages. No significant differences of the expression and activity of mCES1 and mCES2 were observed between sexually mature male and female mice. In conclusion, the expression and activity of CES1 and CES2 are age-related but independent of growth hormone level. Sex seems to be an unlikely factor contributing to the regulation of CES1 and CES2.
Collapse
Affiliation(s)
- Hao-Jie Zhu
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 73 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
37
|
Maruichi T, Fukami T, Nakajima M, Yokoi T. Transcriptional regulation of human carboxylesterase 1A1 by nuclear factor-erythroid 2 related factor 2 (Nrf2). Biochem Pharmacol 2009; 79:288-95. [PMID: 19715681 DOI: 10.1016/j.bcp.2009.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/30/2022]
Abstract
Human carboxylesterase (CES) 1A, which is predominantly expressed in liver and lung, plays an important role in the hydrolysis of endogenous compounds and xenobiotics. CES1A is reported to be induced in human hepatocytes by butylated hydroxyanisole, ticlopidine and diclofenac, and the induction is assumed to be caused by oxidative stress. However, the molecular mechanism remains to be determined. In this study, we sought to investigate whether CES1A is regulated by nuclear factor-erythroid 2 related factor 2 (Nrf2), which is a transcriptional factor activated by oxidative stress, and clarify the molecular mechanism. Real-time reverse transcription-PCR assays revealed that CES1A1 mRNA was significantly induced by tert-butylhydroquinone (tBHQ) and sulforaphane (SFN), which are representative activators of Nrf2 in HepG2, Caco-2 and HeLa cells. The induction was completely suppressed with small interfering RNA for Nrf2. In HepG2 cells, the CES1A protein level and imidapril hydrolase activity, which is specifically catalyzed by CES1A, were also significantly induced by tBHQ and SFN. Luciferase assays revealed that the antioxidant response element (ARE) at -2025 in the CES1A1 gene was responsible for the transactivation by Nrf2. In addition, electrophoretic mobility shift assays and chromatin immunoprecipitation assays revealed that Nrf2 binds to the ARE in the CES1A1 gene. These findings clearly demonstrated that human CES1A1 is induced by Nrf2. This is the first study to demonstrate the molecular mechanism of the inducible regulation of human CES1A1.
Collapse
Affiliation(s)
- Taiga Maruichi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
38
|
Toovey S, Rayner C, Prinssen E, Chu T, Donner B, Thakrar B, Dutkowski R, Hoffmann G, Breidenbach A, Lindemann L, Carey E, Boak L, Gieschke R, Sacks S, Solsky J, Small I, Reddy D. Assessment of neuropsychiatric adverse events in influenza patients treated with oseltamivir: a comprehensive review. Drug Saf 2009; 31:1097-114. [PMID: 19026027 DOI: 10.2165/0002018-200831120-00006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
After reports from Japan of neuropsychiatric adverse events (NPAEs) in children taking oseltamivir phosphate (hereafter referred to as oseltamivir [Tamiflu; F. Hoffmann-La Roche Ltd, Basel, Switzerland]) during and after the 2004--5 influenza season, Roche explored possible reasons for the increase in reporting rate and presented regular updates to the US FDA and other regulatory authorities. This review summarizes the results of a comprehensive assessment of the company's own preclinical and clinical studies, post-marketing spontaneous adverse event reporting, epidemiological investigations utilizing health claims and medical records databases and an extensive review of the literature, with the aim of answering the following questions: (i) what the types and rates of neuropsychiatric abnormalities reported in patients with influenza are, and whether these differ in patients who have received oseltamivir compared with those who have not; (ii) what levels of oseltamivir and its active metabolite, oseltamivir carboxylate are achieved in the CNS; (iii) whether oseltamivir and oseltamivir carboxylate have pharmacological activity in the CNS; and (iv) whether there are genetic differences between Japanese and Caucasian patients that result in different levels of oseltamivir and/or oseltamivir carboxylate in the CNS, differences in their metabolism or differences in their pharmacological activity in the CNS. In total, 3051 spontaneous reports of NPAEs were received by Roche, involving 2466 patients who received oseltamivir between 1999 and 15 September 2007; 2772 (90.9%) events originated from Japan, 190 (6.2%) from the US and 89 (2.9%) from other countries. During this period, oseltamivir was prescribed to around 48 million people worldwide. Crude NPAE reporting rates (per 1,000,000 prescriptions) in children (aged < or =16 years) and adults, respectively, were 99 and 28 events in Japan and 19 and 8 in the US. NPAEs were more commonly reported in children (2218 events in 1808 children aged < or =16 years vs 833 in 658 adults) and generally occurred within 48 hours of the onset of influenza illness and initiation of treatment. After categorizing the reported events according to International Classification of Diseases (9th edition) codes, abnormal behaviour (1160 events, 38.0%) and delusions/perceptual disturbances (661 events, 21.7%) were the largest categories of events, and delirium or delirium-like events (as defined by the American Psychiatric Association) were very common in most categories. No difference in NPAE reporting rates between oseltamivir and placebo was found in phase III treatment studies (0.5% vs 0.6%). Analyses of US healthcare claims databases showed the risk of NPAEs in oseltamivir-treated patients (n = 159,386) was no higher than those not receiving antivirals (n = 159,386). Analysis of medical records in the UK General Practice Research Database showed that the adjusted relative risk of NPAEs in influenza patients was significantly higher (1.75-fold) than in the general population. Based on literature reports, NPAEs in Japanese and Taiwanese children with influenza have occurred before the initiation of oseltamivir treatment; events were also similar to those occurring after the initiation of oseltamivir therapy. No clinically relevant differences in plasma pharmacokinetics of oseltamivir and its active metabolite oseltamivir carboxylate were noted between Japanese and Caucasian adults or children. Penetration into the CNS of both oseltamivir and oseltamivir carboxylate was low in Japanese and Caucasian adults (cerebrospinal fluid/plasma maximum concentration and area under the plasma concentration-time curve ratios of approximately 0.03), and the capacity for converting oseltamivir to oseltamivir carboxylate in rat and human brains was low. In animal autoradiography and pharmacokinetic studies, brain : plasma radioactivity ratios were generally 20% or lower. Animal studies showed no specific CNS/behavioural effects after administration of doses corresponding to > or =100 times the clinical dose. Oseltamivir or oseltamivir carboxylate did not interact with human neuraminidases or with 155 known molecular targets in radioligand binding and functional assays. A review of the information published to date on functional variations of genes relevant to oseltamivir pharmacokinetics and pharmacodynamics and simulated gene knock-out scenarios did not identify any plausible genetic explanations for the observed NPAEs. The available data do not suggest that the incidence of NPAEs in influenza patients receiving oseltamivir is higher than in those who do not, and no mechanism by which oseltamivir or oseltamivir carboxylate could cause or worsen such events could be identified.
Collapse
|
39
|
Zhu HJ, Markowitz JS. Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants. Drug Metab Dispos 2009; 37:264-7. [PMID: 19022936 DOI: 10.1124/dmd.108.024943] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Oseltamivir phosphate is an ethyl ester prodrug widely used in the treatment and prevention of both Influenzavirus A and B infections. The conversion of oseltamivir to its active metabolite oseltamivir carboxylate is dependent on ester hydrolysis mediated by carboxylesterase 1 (CES1). We recently identified two functional CES1 variants p.Gly143Glu and p.Asp260fs in a research subject who displayed significant impairment in his ability to metabolize the selective CES1 substrate, methylphenidate. In vitro functional studies demonstrated that the presence of either of the two mutations can result in severe reductions in the catalytic efficiency of CES1 toward methylphenidate, which is required for hydrolysis and pharmacological deactivation. The aim of the present study was to investigate the function of these mutations on activating (hydrolyzing) oseltamivir to oseltamivir carboxylate using the cell lines expressing wild type (WT) and each mutant CES1. In vitro incubation studies demonstrated that the S9 fractions prepared from the cells transfected with WT CES1 and human liver tissues rapidly convert oseltamivir to oseltamivir carboxylate. However, the catalytic activity of the mutant hydrolases was dramatically hindered. The V(max) value of p.Gly143Glu was approximately 25% of that of WT enzyme, whereas the catalytic activity of p.Asp260fs was negligible. These results suggest that the therapeutic efficacy of oseltamivir could be compromised in treated patients expressing either functional CES1 mutation. Furthermore, the potential for increased adverse effects or toxicity as a result of exposure to high concentrations of the nonhydrolyzed prodrug should be considered.
Collapse
Affiliation(s)
- Hao-Jie Zhu
- Department of Pharmaceutical and Biomedical Sciences, Laboratory of Drug Disposition and Pharmacogenetics, Charles P. Darby Children's Research Institute, Room 405B, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
40
|
Rajaseger G, Lim CL, Wui LK, Saravanan P, Tang K, Gopalakrishnakone P, Pen-Huat YE, Lu J, Shabbir MM. A study on the differential protein profiles in liver cells of heat stress rats with and without turpentine treatment. Proteome Sci 2009; 7:1. [PMID: 19126242 PMCID: PMC2626589 DOI: 10.1186/1477-5956-7-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress (HS) and related illnesses are a major concern in military, sports, and fire brigadiers. HS results in physiologic responses of increased temperature, heart rate and sweating. In heat stroke, inflammatory response plays an important role and it is evidenced that turpentine (T) induced circulating inflammatory cytokines reduced survival rate and duration at 42 degrees C. Here we report the alteration in the protein expression in liver cells upon HS with and without T treatment using two dimensional gel electrophoresis (2-DE), tryptic in-gel digestion and MALDI-TOF-MS/MS approaches. RESULTS The effects of HS and T treatments alone and a combined treatments (T+HS) was performed in Wistar rat models. Proteomic analysis of liver in the HS and T+HS groups were analyzed compared to liver profiles of resting control and T treated groups. The study revealed a total of 25 and 29 differentially expressed proteins in the HS and T+HS groups respectively compared to resting control group. Fourteen proteins showed altered expression upon T treatment compared to resting control group. Proteins that are involved in metabolic and signal transduction pathways, defense, redox regulation, and cytoskeletal restructuring functions were identified. The altered expression of proteins reflected in 2D gels were corroborated by quantitative real time RT-PCR analysis of 8 protein coding genes representing metabolic and regulatory pathways for their expression and normalized with the house keeping gene beta-actin. CONCLUSION The present study has identified a number of differentially expressed proteins in the liver cells of rats subjected to T, HS and T+HS treatments. Most of these proteins are implicated in cell metabolism, as well as adaptive response to incurred oxidative stress and tissue damage due to T+HS and HS effects.
Collapse
Affiliation(s)
- Ganapathy Rajaseger
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Chin Leong Lim
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Lee Koon Wui
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Padmanabhan Saravanan
- Department of Anatomy (MD10), Venom and Toxin Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Lower Kent Ridge Road 117597, Singapore
| | - Kai Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Ponnampalam Gopalakrishnakone
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore.,Department of Anatomy (MD10), Venom and Toxin Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Lower Kent Ridge Road 117597, Singapore
| | - Yap Eric Pen-Huat
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Jia Lu
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| | - Moochhala M Shabbir
- Defence Medical & Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, #09-01 Kent Ridge117510, Singapore
| |
Collapse
|
41
|
Fukami T, Nakajima M, Maruichi T, Takahashi S, Takamiya M, Aoki Y, McLeod HL, Yokoi T. Structure and characterization of human carboxylesterase 1A1, 1A2, and 1A3 genes. Pharmacogenet Genomics 2008; 18:911-20. [PMID: 18794728 DOI: 10.1097/fpc.0b013e32830b0c5e] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Human carboxylesterase (CES) 1A1 gene (14 exons) and CES1A3 pseudogene (six exons) are inverted and duplicated genes in a reference sequence (NT_010498). In contrast, earlier studies reported the CES1A2 gene (14 exons) instead of the CES1A3 pseudogene. The sequences of the CES1A2 gene downstream and upstream of intron 1 are identical with those of the CES1A1 and CES1A3 genes, respectively. A CES1A1 variant of which exon 1 is converted with that of the CES1A3 gene (the transcript is CES1A2) has recently been identified. We sought to clarify the confusing gene structure of human CES1A. METHODS A panel of 55 human liver as well as 318 blood samples (104 Caucasians, 107 African-Americans, and 107 Japanese) was used to clarify the gene structures of CES1A1, CES1A2, and CES1A3. Real-time reverse transcription-PCR and western blot analysis were carried out. Imidapril hydrolase activity in human liver microsomes and cytosol was determined by liquid chromatography-mass spectrometry (LC-MS)/MS. RESULTS By PCR analyses, we found that the CES1A2 gene is a variant of the CES1A3 gene. Four haplotypes, A (CES1A1 wild type and CES1A3), B (CES1A1 wild type and CES1A2), C (CES1A1 variant and CES1A3), and D (CES1A1 variant and CES1A2), were demonstrated. Ethnic differences were observed in allele frequencies of CES1A1 variant (17.3% in Caucasians and African-Americans and 25.2% in Japanese) and CES1A2 gene (14.4% in Caucasians, 5.1% in African-Americans, and 31.3% in Japanese). In human livers whose diplotype was A/A and C/C or C/D, no CES1A2 and CES1A1 mRNA was detected, respectively. In the other participants, the CES1A1 mRNA levels were higher than the CES1A2 mRNA levels. The CES1A proteins translated from CES1A1 mRNA and CES1A2 mRNA were detected in both human liver microsomes and cytosol fractions suggesting that the differences in exon 1 encoding a signal peptide did not affect the subcellular localization. Imidapril hydrolase activities reflected the CES1A protein levels. CONCLUSION We found that the CES1A2 gene is a variant of the CES1A3 pseudogene. The findings presented here significantly increase our understanding about the gene structure and expression properties of human CES1A.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 2008; 13:412-31. [PMID: 18305428 PMCID: PMC6245361 DOI: 10.3390/molecules13020412] [Citation(s) in RCA: 301] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/09/2008] [Accepted: 02/11/2008] [Indexed: 11/20/2022] Open
Abstract
Mammalian carboxylesterases (CESs) comprise a multigene family whose gene products play important roles in biotransformation of ester- or amide-type prodrugs. They are members of an α,β-hydrolase-fold family and are found in various mammals. It has been suggested that CESs can be classified into five major groups denominated CES1-CES5, according to the homology of the amino acid sequence, and the majority of CESs that have been identified belong to the CES1 or CES2 family. The substrate specificities of CES1 and CES2 are significantly different. The CES1 isozyme mainly hydrolyzes a substrate with a small alcohol group and large acyl group, but its wide active pocket sometimes allows it to act on structurally distinct compounds of either a large or small alcohol moiety. In contrast, the CES2 isozyme recognizes a substrate with a large alcohol group and small acyl group, and its substrate specificity may be restricted by the capability of acyl-enzyme conjugate formation due to the presence of conformational interference in the active pocket. Since pharmacokinetic and pharmacological data for prodrugs obtained from preclinical experiments using various animals are generally used as references for human studies, it is important to clarify the biochemical properties of CES isozymes. Further experimentation for an understanding of detailed substrate specificity of prodrugs for CES isozymes and its hydrolysates will help us to design the ideal prodrugs.
Collapse
Affiliation(s)
- Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Shiomi-Cho, Choshi-City, Chiba 288-0025, Japan.
| |
Collapse
|