1
|
Gerna G, Lilleri D, Fornara C, d'Angelo P, Baldanti F. Relationship of human cytomegalovirus-infected endothelial cells and circulating leukocytes in the pathogenesis of disseminated human cytomegalovirus infection: A narrative review. Rev Med Virol 2024; 34:e2496. [PMID: 38282408 DOI: 10.1002/rmv.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/12/2023] [Accepted: 11/26/2023] [Indexed: 01/30/2024]
Abstract
Among the leucocyte subpopulations circulating in peripheral blood of immune-compromised patients with disseminated Human cytomegalovirus (HCMV) infection, polymorphonuclear leuckocytes (PMNL) and M/M may carry infectious virus. While only in PMNL early HCMV replicative events do occur, monocytes are susceptible to complete virus replication when they enter human organs, where as macrophages become a site of active complete virus replication. In vivo leucocytes and endothelial cells interact continuously, as suggested by several in vitro experimental findings showing the bidirectional HCMV transmission from leucocytes to and from endothelial cells with the critical aid of adhesion molecules. Recently, the neutralising antibody response in sera from subjects with primary HCMV infection was reported to be much higher and earlier than in human embryonic lung fibroblasts (HELF) cells when measured in endothelial cells and epithelial cells, where virus entry is mediated mostly by the pentamer complex gH/gL/pUL128/pUL130/pUL131, whereas it was much lower and delayed when determined in HELF, where virus entry is mediated mostly by the trimer complex gH/gL/gO. Thus, these results suggested that products of UL128L were the molecules primary responsible for the differential neutralising antibody response. This conclusion was confirmed by a series of polyclonal and monoclonal antibodies directed to the components of pUL128L. Very recently, based on two sets of experiments including inhibition and immunoblotting assays, the pentamer complex/trimer complex ratio has been finally identified as the main factor of the neutralising antibody response. This ratio may change with the virus suspension producer and target cell system as well as number of cell culture passages.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fornara
- Laboratory Medicine Service, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Piera d'Angelo
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Penner I, Dejung M, Freiwald A, Butter F, Chen JX, Plachter B. Proteome changes of fibroblasts and endothelial cells upon incubation with human cytomegalovirus subviral Dense Bodies. Sci Data 2023; 10:517. [PMID: 37542058 PMCID: PMC10403606 DOI: 10.1038/s41597-023-02418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen of high medical relevance. Subviral Dense Bodies (DB) were developed as a vaccine candidate to ameliorate the severe consequences of HCMV infection. Development of such a candidate vaccine for human application requires detailed knowledge of its interaction with the host. A comprehensive mass spectrometry (MS)- based analysis was performed regarding the changes in the proteome of cell culture cells, exposed to DB.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Anja Freiwald
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology, Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
3
|
Kutle I, Dittrich A, Wirth D. Mouse Models for Human Herpesviruses. Pathogens 2023; 12:953. [PMID: 37513800 PMCID: PMC10384569 DOI: 10.3390/pathogens12070953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
More than one hundred herpesviruses have been isolated from different species so far, with nine infecting humans. Infections with herpesviruses are characterized by life-long latency and represent a significant challenge for human health. To investigate the consequences of infections and identify novel treatment options, in vivo models are of particular relevance. The mouse has emerged as an economical small animal model to investigate herpesvirus infections. However, except for herpes simplex viruses (HSV-1, HSV-2), human herpesviruses cannot infect mice. Three natural herpesviruses have been identified in mice: mouse-derived cytomegalovirus (MCMV), mouse herpesvirus 68 (MHV-68), and mouse roseolovirus (MRV). These orthologues are broadly used to investigate herpesvirus infections within the natural host. In the last few decades, immunocompromised mouse models have been developed, allowing the functional engraftment of various human cells and tissues. These xenograft mice represent valuable model systems to investigate human-restricted viruses, making them particularly relevant for herpesvirus research. In this review, we describe the various mouse models used to study human herpesviruses, thereby highlighting their potential and limitations. Emphasis is laid on xenograft mouse models, covering the development and refinement of immune-compromised mice and their application in herpesvirus research.
Collapse
Affiliation(s)
- Ivana Kutle
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Dittrich
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
5
|
Braun B, Laib Sampaio K, Kuderna AK, Widmann M, Sinzger C. Viral and Cellular Factors Contributing to the Hematogenous Dissemination of Human Cytomegalovirus via Polymorphonuclear Leukocytes. Viruses 2022; 14:v14071561. [PMID: 35891541 PMCID: PMC9323586 DOI: 10.3390/v14071561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) presumably transmit human cytomegalovirus (HCMV) between endothelial cells in blood vessels and thereby facilitate spread to peripheral organs. We aimed to identify viral components that contribute to PMN-mediated transmission and test the hypothesis that cellular adhesion molecules shield transmission sites from entry inhibitors. Stop codons were introduced into the genome of HCMV strain Merlin to delete pUL74 of the trimeric and pUL128 of the pentameric glycoprotein complex and the tegument proteins pp65 and pp71. Mutants were analyzed regarding virus uptake by PMNs and transfer of infection to endothelial cells. Cellular adhesion molecules were evaluated for their contribution to virus transmission using function-blocking antibodies, and hits were further analyzed regarding shielding against inhibitors of virus entry. The viral proteins pUL128, pp65, and pp71 were required for efficient PMN-mediated transmission, whereas pUL74 was dispensable. On the cellular side, the blocking of the αLβ2-integrin LFA-1 reduced virus transfer by 50% and allowed entry inhibitors to reduce it further by 30%. In conclusion, these data show that PMN-mediated transmission depends on the pentameric complex and an intact tegument and supports the idea of a virological synapse that promotes this dissemination mode both directly and via immune evasion.
Collapse
|
6
|
Hamad S, Derichsweiler D, Gaspar JA, Brockmeier K, Hescheler J, Sachinidis A, Pfannkuche KP. High-efficient serum-free differentiation of endothelial cells from human iPS cells. Stem Cell Res Ther 2022; 13:251. [PMID: 35690874 PMCID: PMC9188069 DOI: 10.1186/s13287-022-02924-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Endothelial cells (ECs) form the inner lining of all blood vessels of the body play important roles in vascular tone regulation, hormone secretion, anticoagulation, regulation of blood cell adhesion and immune cell extravasation. Limitless ECs sources are required to further in vitro investigations of ECs’ physiology and pathophysiology as well as for tissue engineering approaches. Ideally, the differentiation protocol avoids animal-derived components such as fetal serum and yields ECs at efficiencies that make further sorting obsolete for most applications.
Method Human induced pluripotent stem cells (hiPSCs) are cultured under serum-free conditions and induced into mesodermal progenitor cells via stimulation of Wnt signaling for 24 h. Mesodermal progenitor cells are further differentiated into ECs by utilizing a combination of human vascular endothelial growth factor A165 (VEGF), basic fibroblast growth factor (bFGF), 8-Bromoadenosine 3′,5′-cyclic monophosphate sodium salt monohydrate (8Bro) and melatonin (Mel) for 48 h.
Result This combination generates hiPSC derived ECs (hiPSC-ECs) at a fraction of 90.9 ± 1.5% and is easily transferable from the two-dimensional (2D) monolayer into three-dimensional (3D) scalable bioreactor suspension cultures. hiPSC-ECs are positive for CD31, VE-Cadherin, von Willebrand factor and CD34. Furthermore, the majority of hiPSC-ECs express the vascular endothelial marker CD184 (CXCR4).
Conclusion The differentiation method presented here generates hiPSC-ECs in only 6 days, without addition of animal sera and at high efficiency, hence providing a scalable source of hiPSC-ECs.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02924-x.
Collapse
Affiliation(s)
- Sarkawt Hamad
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany.,Biology Department, Faculty of Science, Soran University, Kurdistan Region, Soran, Iraq
| | - Daniel Derichsweiler
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany
| | - John Antonydas Gaspar
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany
| | - Konrad Brockmeier
- Department of Pediatric Cardiology, University Hospital of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany
| | - Agapios Sachinidis
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kurt Paul Pfannkuche
- Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany. .,Department of Pediatric Cardiology, University Hospital of Cologne, Cologne, Germany. .,Marga-and-Walter-Boll Laboratory for Cardiac Tissue Engineering, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Braun B, Sinzger C. Transmission of cell-associated human cytomegalovirus isolates between various cell types using polymorphonuclear leukocytes as a vehicle. Med Microbiol Immunol 2021; 210:197-209. [PMID: 34091753 PMCID: PMC8286230 DOI: 10.1007/s00430-021-00713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/15/2021] [Indexed: 12/25/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) are regarded as vehicles for the hematogenous dissemination of human cytomegalovirus (HCMV). In cell culture, this concept has been validated with cell-free laboratory strains but not yet with clinical HCMV isolates that grow strictly cell-associated. We, therefore, aimed to evaluate whether PMNs can also transmit such isolates from initially infected fibroblasts to other cell types, which might further clarify the role of PMNs in HCMV dissemination and provide a model to search for potential inhibitors. PMNs, which have been isolated from HCMV-seronegative individuals, were added for 3 h to fibroblasts infected with recent cell-associated HCMV isolates, then removed and transferred to various recipient cell cultures. The transfer efficiency in the recipient cultures was evaluated by immunofluorescence staining of viral immediate early antigens. Soluble derivatives of the cellular HCMV entry receptor PDGFRα were analyzed for their potential to interfere with this transfer. All of five tested HCMV isolates could be transferred to fibroblasts, endothelial and epithelial cells with transfer rates ranging from 2 to 9%, and the transferred viruses could spread focally in these recipient cells within 1 week. The PDGFRα-derived peptides IK40 and GT40 reduced transfer by 40 and 70% when added during the uptake step. However, when added during the transfer step, only IK40 was effective, inhibiting transmission by 20% on endothelial cells and 50–60% on epithelial cells and fibroblasts. These findings further corroborate the assumption of cell-associated HCMV dissemination by PMNs and demonstrate that it is possible to inhibit this transmission mode.
Collapse
Affiliation(s)
- Berenike Braun
- Institute for Virology, Ulm University Medical Center, Ulm, Germany.
| | | |
Collapse
|
8
|
Feldmann S, Grimm I, Stöhr D, Antonini C, Lischka P, Sinzger C, Stegmann C. Targeted mutagenesis on PDGFRα-Fc identifies amino acid modifications that allow efficient inhibition of HCMV infection while abolishing PDGF sequestration. PLoS Pathog 2021; 17:e1009471. [PMID: 33780515 PMCID: PMC8031885 DOI: 10.1371/journal.ppat.1009471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα) serves as an entry receptor for the human cytomegalovirus (HCMV), and soluble PDGFRα-Fc can neutralize HCMV at a half-maximal effective concentration (EC50) of about 10 ng/ml. While this indicates a potential for usage as an HCMV entry inhibitor PDGFRα-Fc can also bind the physiological ligands of PDGFRα (PDGFs), which likely interferes with the respective signaling pathways and represents a potential source of side effects. Therefore, we tested the hypothesis that interference with PDGF signaling can be prevented by mutations in PDGFRα-Fc or combinations thereof, without losing the inhibitory potential for HCMV. To this aim, a targeted mutagenesis approach was chosen. The mutations were quantitatively tested in biological assays for interference with PDGF-dependent signaling as well as inhibition of HCMV infection and biochemically for reduced affinity to PDGF-BB, facilitating quantification of PDGFRα-Fc selectivity for HCMV inhibition. Mutation of Ile 139 to Glu and Tyr 206 to Ser strongly reduced the affinity for PDGF-BB and hence interference with PDGF-dependent signaling. Inhibition of HCMV infection was less affected, thus increasing the selectivity by factor 4 and 8, respectively. Surprisingly, the combination of these mutations had an additive effect on binding of PDGF-BB but not on inhibition of HCMV, resulting in a synergistic 260fold increase of selectivity. In addition, a recently reported mutation, Val 242 to Lys, was included in the analysis. PDGFRα-Fc with this mutation was fully effective at blocking HCMV entry and had a drastically reduced affinity for PDGF-BB. Combining Val 242 to Lys with Ile 139 to Glu and/or Tyr 206 to Ser further reduced PDGF ligand binding beyond detection. In conclusion, this targeted mutagenesis approach identified combinations of mutations in PDGFRα-Fc that prevent interference with PDGF-BB but maintain inhibition of HCMV, which qualifies such mutants as candidates for the development of HCMV entry inhibitors.
Collapse
Affiliation(s)
- Svenja Feldmann
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Dagmar Stöhr
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Chiara Antonini
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Peter Lischka
- AiCuris Anti-infective Cures GmbH, Wuppertal, Germany
| | | | - Cora Stegmann
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030104. [PMID: 31480520 PMCID: PMC6789746 DOI: 10.3390/vaccines7030104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a safe vaccine based on that strain. A GMP-compliant protocol for DB production was established. Furthermore, the DB producer strain Towne-UL130rep was attenuated by deleting the UL25 open reading frame. Additional genetic modifications aim to abrogate its capacity to replicate in vivo by conditionally expressing pUL51 using the Shield-1/FKBP destabilization system. We further show that the terminase inhibitor letermovir can be used to reduce infectious virus contamination of a DB vaccine by more than two orders of magnitude. Taken together, strategies are provided here that allow for the production of a safe and immunogenic DB vaccine for clinical testing.
Collapse
|
10
|
Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response. J Virol 2019; 93:JVI.00931-19. [PMID: 31189713 DOI: 10.1128/jvi.00931-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCE Infections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.
Collapse
|
11
|
The N Terminus of Human Cytomegalovirus Glycoprotein O Is Important for Binding to the Cellular Receptor PDGFRα. J Virol 2019; 93:JVI.00138-19. [PMID: 30894468 DOI: 10.1128/jvi.00138-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
The human cytomegalovirus (HCMV) glycoprotein complex gH/gL/gO is required for the infection of cells by cell-free virions. It was recently shown that entry into fibroblasts depends on the interaction of gO with the platelet-derived growth factor receptor alpha (PDGFRα). This interaction can be blocked with soluble PDGFRα-Fc, which binds to HCMV virions and inhibits entry. The aim of this study was to identify parts of gO that contribute to PDGFRα binding. In a systematic mutational approach, we targeted potential interaction sites by exchanging conserved clusters of charged amino acids of gO with alanines. To screen for impaired interaction with PDGFRα, virus mutants were tested for sensitivity to inhibition by soluble PDGFRα-Fc. Two mutants with mutations within the N terminus of gO (amino acids 56 to 61 and 117 to 121) were partially resistant to neutralization. To validate whether these mutations impair interaction with PDGFRα-Fc, we compared binding of PDGFRα-Fc to mutant and wild-type virions via quantitative immunofluorescence analysis. PDGFRα-Fc staining intensities were reduced by 30% to 60% with mutant virus particles compared to wild-type particles. In concordance with the reduced binding to the soluble receptor, virus penetration into fibroblasts, which relies on binding to the cellular PDGFRα, was also reduced. In contrast, PDGFRα-independent penetration into endothelial cells was unaltered, demonstrating that the phenotypes of the gO mutant viruses were specific for the interaction with PDGFRα. In conclusion, the mutational screening of gO revealed that the N terminus of gO contributes to efficient spread in fibroblasts by promoting the interaction of virions with its cellular receptor.IMPORTANCE The human cytomegalovirus is a highly prevalent pathogen that can cause severe disease in immunocompromised hosts. Currently used drugs successfully target the viral replication within the host cell, but their use is restricted due to side effects and the development of resistance. An alternative approach is the inhibition of virus entry, for which understanding the details of the initial virus-cell interaction is desirable. As binding of the viral gH/gL/gO complex to the cellular PDGFRα drives infection of fibroblasts, this is a potential target for inhibition of infection. Our mutational mapping approach suggests the N terminus as the receptor binding portion of the protein. The respective mutants were partially resistant to inhibition by PDGFRα-Fc but also attenuated for infection of fibroblasts, indicating that such mutations have little if any benefit for the virus. These findings highlight the potential of targeting the interaction of gH/gL/gO with PDGFRα for therapeutic inhibition of HCMV.
Collapse
|
12
|
Natural Inhibitor of Human Cytomegalovirus in Human Seminal Plasma. J Virol 2019; 93:JVI.01855-18. [PMID: 30626669 DOI: 10.1128/jvi.01855-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/15/2018] [Indexed: 01/20/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital infections that can lead to severe birth defects. Although HCMV is frequently detected in semen and thus is potentially sexually transmitted, the role of semen in HCMV transmission is largely unclear. Here we describe that human seminal plasma (SP; the cell-free supernatant of semen) inhibits HCMV infection. The inhibition of HCMV infection was dose dependent and effective for different cell types, virus strains, and semen donors. This inhibitory effect was specific for HCMV, as herpes simplex virus 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1) infections were enhanced by SP. Mechanistically, SP inhibited infection by interfering with the attachment of virions to cells most likely via an interaction with the trimeric glycoprotein complex gH/gL/gO. Together, our findings suggest that semen contains a factor that potentially limits sexual transmission of HCMV.IMPORTANCE The role of semen in sexual transmission of human cytomegalovirus (HCMV) is currently unclear. This is surprising, as HCMV is frequently detected in this body fluid and infection is of high danger for neonates and pregnant women. In this study, we found that seminal plasma (SP) dose dependently inhibited HCMV infection. The infection inhibition was specific for HCMV, as other viruses, such as human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus 2 (HSV-2), were not inhibited by SP. SP must contain a soluble, heat-resistant factor that limits attachment of HCMV particles to cells, probably by interaction with the trimeric glycoprotein complex gH/gL/gO. This novel virus-host interaction could possibly limit transmission of HCMV via semen during sexual intercourse.
Collapse
|
13
|
Abdellatif ME, Sinzger C, Walther P. Investigating HCMV entry into host cells by STEM tomography. J Struct Biol 2018; 204:406-419. [DOI: 10.1016/j.jsb.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
|
14
|
Inhibition of Tetraspanin Functions Impairs Human Papillomavirus and Cytomegalovirus Infections. Int J Mol Sci 2018; 19:ijms19103007. [PMID: 30279342 PMCID: PMC6212908 DOI: 10.3390/ijms19103007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.
Collapse
|
15
|
Large-Scale Screening of HCMV-Seropositive Blood Donors Indicates that HCMV Effectively Escapes from Antibodies by Cell-Associated Spread. Viruses 2018; 10:v10090500. [PMID: 30223489 PMCID: PMC6163834 DOI: 10.3390/v10090500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are only moderately effective for the treatment of human cytomegalovirus (HCMV) infections, possibly due to ineffectiveness against cell-associated virus spread. To overcome this limitation, we aimed to identify individuals with exceptional antibodies in their plasma that can efficiently block the cell-associated spread of HCMV. A Gaussia luciferase-secreting mutant of the cell-associated HCMV strain Merlin was generated, and luciferase activity evaluated as a readout for the extent of cell-associated focal spread. This reporter virus-based assay was then applied to screen plasma samples from 8400 HCMV-seropositive individuals for their inhibitory effect, including direct-acting antiviral drugs as positive controls. None of the plasmas reduced virus spread to the level of these controls. Even the top-scoring samples that partially reduced luciferase activity in the screening assay failed to inhibit focal growth when reevaluated with a more accurate, immunofluorescence-based assay. Selected sera with high neutralizing capacity against free viruses were analyzed separately, and none of them prevented the focal spread of three recent clinical HCMV isolates nor reduced the number of particles transmitted, as demonstrated with a fluorescent Merlin mutant. We concluded that donors with cell-to-cell-spread-inhibiting plasma are nonexistent or extremely rare, emphasizing cell-associated spread as a highly efficient immune escape mechanism of HCMV.
Collapse
|
16
|
Lin CH, Su JJM, Lee SY, Lin YM. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12:2099-2111. [PMID: 30058281 DOI: 10.1002/term.2745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 06/09/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023]
Abstract
For stem cell differentiation, the microenvironment can play an important role, and hydrogels can provide a three-dimensional microenvironment to allow native cell growth in vitro. A challenge is that the stem cell's differentiation can be influenced by the matrix stiffness. We demonstrate a low-toxicity method to create different stiffness matrices, by using a photopolymerizable gelatin methacrylate (GelMA) hydrogel cross-linked by blue light (440 nm). The stiffness and porosity of GelMA hydrogel is easily modified by altering its concentration. We used human bone marrow mesenchymal stem cells (MSCs) as a cell source and cultured the GelMA-encapsulated cells with EGM-2 medium to induce endothelial differentiation. In our GelMA blue light hydrogel system, we found that MSCs can be differentiated into both endothelial-like and osteogenic-like cells. The mRNA expressions of endothelial cell markers CD31, von Willebrand factor, vascular endothelial growth factor receptor-2, and CD34 were significantly increased in softer GelMA hydrogels (7.5% and 10%) compared with stiffer matrices (15% GelMA). On the other hand, the enhancements of osteogenic markers mRNA expressions (Alkaline phosphatase (ALP), Runx2, osteocalcin, and osteopontin) were highest in 10% GelMA. We also found that 10% GelMA hydrogel offered optimal conditions for MSCs to form capillary-like structures. These results suggest that the mechanical properties of the GelMA hydrogel can influence both endothelial and osteogenic differentiation of MSCs and sequent capillary-like formation.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Shyh-Yuan Lee
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Min Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Falk JJ, Winkelmann M, Stöhr D, Alt M, Schrezenmeier H, Krawczyk A, Lotfi R, Sinzger C. Identification of Elite Neutralizers With Broad and Potent Neutralizing Activity Against Human Cytomegalovirus (HCMV) in a Population of HCMV-Seropositive Blood Donors. J Infect Dis 2018; 218:876-885. [DOI: 10.1093/infdis/jiy229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Martina Winkelmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, Ulm, Germany
| | - Mira Alt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany
| | | |
Collapse
|
18
|
Stegmann C, Hochdorfer D, Lieber D, Subramanian N, Stöhr D, Laib Sampaio K, Sinzger C. A derivative of platelet-derived growth factor receptor alpha binds to the trimer of human cytomegalovirus and inhibits entry into fibroblasts and endothelial cells. PLoS Pathog 2017; 13:e1006273. [PMID: 28403220 PMCID: PMC5389858 DOI: 10.1371/journal.ppat.1006273] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/06/2017] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widely distributed herpesvirus that causes significant morbidity in immunocompromised hosts. Inhibitors of viral DNA replication are available, but adverse effects limit their use. Alternative antiviral strategies may include inhibition of entry. We show that soluble derivatives of the platelet-derived growth factor receptor alpha (PDGFR-alpha), a putative receptor of HCMV, can inhibit HCMV infection of various cell types. A PDGFR-alpha-Fc fusion protein binds to and neutralizes cell-free virus particles at an EC50 of 10–30 ng/ml. Treatment of particles reduced both attachment to and fusion with cells. In line with the latter, PDGFR-alpha-Fc was also effective when applied postattachment. A peptide scan of the extracellular domain of PDGFR-alpha identified a 40mer peptide that inhibits infection at an EC50 of 1–2 nmol/ml. Both, peptide and fusion protein, were effective against various HCMV strains and are hence promising candidates for the development of novel anti-HCMV therapies. Human cytomegalovirus (HCMV) depends on expression of platelet-derived growth factor receptor alpha (PDGFR-alpha) for infection of fibroblasts whereas this cell surface protein is not required for infection of endothelial cells. Surprisingly, pretreatment of HCMV with a soluble derivative of PDGFR-alpha prevents infection of both cell types, most probably via specific binding to the trimeric gH/gL/pUL74 complex. While adsorption is inhibited in both cell types, an additional penetration block occurs only in fibroblasts. The finding that an essential molecular interaction of HCMV with fibroblasts can be subverted for inhibition of the virus provides an antiviral strategy that may be hard to circumvent by the virus.
Collapse
Affiliation(s)
- Cora Stegmann
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | - Diana Lieber
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | - Dagmar Stöhr
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
19
|
A Luciferase Gene Driven by an Alphaherpesviral Promoter Also Responds to Immediate Early Antigens of the Betaherpesvirus HCMV, Allowing Comparative Analyses of Different Human Herpesviruses in One Reporter Cell Line. PLoS One 2017; 12:e0169580. [PMID: 28060895 PMCID: PMC5217978 DOI: 10.1371/journal.pone.0169580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Widely used methods for quantification of human cytomegalovirus (HCMV) infection in cell culture such as immunoblotting or plaque reduction assays are generally restricted to low throughput and require time-consuming evaluation. Up to now, only few HCMV reporter cell lines have been generated to overcome these restrictions and they are afflicted with other limitations because permanently expandable cell lines are normally not fully permissive to HCMV. In this work, a previously existing epithelial cell line hosting a luciferase gene under control of a Varicella-zoster virus promoter was adopted to investigate HCMV infection. The cells were susceptible to different HCMV strains at infection efficiencies that corresponded to their respective degree of epithelial cell tropism. Expression of early and late viral antigens, formation of nuclear inclusions, release of infectious virus progeny, and focal growth indicated productive viral replication. However, viral release and spread occurred at lower levels than in primary cell lines which appears to be due to a malfunction of virion morphogenesis during the nuclear stage. Expression of the luciferase reporter gene was specifically induced in HCMV infected cultures as a function of the virus dose and dependent on viral immediate early gene expression. The level of reporter activity accurately reflected infection efficiencies as determined by viral antigen immunostaining, and hence could discriminate the cell tropism of the tested virus strains. As proof-of-principle, we demonstrate that this cell line is applicable to evaluate drug resistance of clinical HCMV isolates and the neutralization capacity of human sera, and that it allows comparative and simultaneous analysis of HCMV and human herpes simplex virus type 1. In summary, the permanent epithelial reporter cell line allows robust, rapid and objective quantitation of HCMV infection and it will be particularly useful in higher throughput analyses as well as in comparative analyses of different human herpesviruses.
Collapse
|
20
|
Importance of Highly Conserved Peptide Sites of Human Cytomegalovirus gO for Formation of the gH/gL/gO Complex. J Virol 2016; 91:JVI.01339-16. [PMID: 27795411 DOI: 10.1128/jvi.01339-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
The glycoprotein O (gO) is betaherpesvirus specific. Together with the viral glycoproteins H and L, gO forms a covalent trimeric complex that is part of the viral envelope. This trimer is crucial for cell-free infectivity of human cytomegalovirus (HCMV) but dispensable for cell-associated spread. We hypothesized that the amino acids that are conserved among gOs of different cytomegaloviruses are important for the formation of the trimeric complex and hence for efficient virus spread. In a mutational approach, nine peptide sites, containing all 13 highly conserved amino acids, were analyzed in the context of HCMV strain TB40-BAC4 with regard to infection efficiency and formation of the gH/gL/gO complex. Mutation of amino acids (aa) 181 to 186 or aa 193 to 198 resulted in the loss of the trimer and a complete small-plaque phenotype, whereas mutation of aa 108 or aa 249 to 254 caused an intermediate phenotype. While individual mutations of the five conserved cysteines had little impact, their relevance was revealed in a combined mutation, which abrogated both complex formation and cell-free infectivity. C343 was unique, as it was sufficient and necessary for covalent binding of gO to gH/gL. Remarkably, however, C218 together with C167 rescued infectivity in the absence of detectable covalent complex formation. We conclude that all highly conserved amino acids contribute to the function of gO to some extent but that aa 181 to 198 and cysteines 343, 218, and 167 are particularly relevant. Surprisingly, covalent binding of gO to gH/gL is required neither for its incorporation into virions nor for proper function in cell-free infection. IMPORTANCE Like all herpesviruses, the widespread human pathogen HCMV depends on glycoproteins gB, gH, and gL for entry into target cells. Additionally, gH and gL have to bind gO in a trimeric complex for efficient cell-free infection. Homologs of gO are shared by all cytomegaloviruses, with 13 amino acids being highly conserved. In a mutational approach we analyzed these amino acids to elucidate their role in the function of gO. All conserved amino acids contributed either to formation of the trimeric complex or to cell-free infection. Notably, these two phenotypes were not inevitably linked as the mutation of a charged cluster in the center of gO abrogated cell-free infection while trimeric complexes were still being formed. Cysteine 343 was essential for covalent binding of gO to gH/gL; however, noncovalent complex formation in the absence of cysteine 343 also allowed for cell-free infectivity.
Collapse
|
21
|
Falk JJ, Winkelmann M, Schrezenmeier H, Stöhr D, Sinzger C, Lotfi R. A two-step screening approach for the identification of blood donors with highly and broadly neutralizing capacities against human cytomegalovirus. Transfusion 2016; 57:412-422. [PMID: 27861998 DOI: 10.1111/trf.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hyperimmunoglobulins are frequently applied for prophylaxis and treatment of human cytomegalovirus (HCMV) infections but were only marginally effective in meta-analyses of clinical studies. This might be partially due to selection of donors rather for total anti-HCMV titers than for neutralizing capacities. To improve efficacy against HCMV infection, we aimed at developing a high-throughput screening method for identification of blood donors with highly and broadly neutralizing capacities. STUDY DESIGN AND METHODS Using a Gaussia luciferase-expressing reporter virus, 1000 HCMV immunoglobulin (Ig)G-positive plasma samples with known anti-HCMV immunoglobulin titers were analyzed regarding their neutralization titers against fibroblast and endothelial cell infection. Based on these results, a high-throughput screening was designed. Highly neutralizing plasma samples were further tested 1) by an enzyme-linked immunosorbent assay-based neutralization assay regarding efficiency against different HCMV strains and 2) for their efficiency compared to commercially available hyperimmunoglobulins. RESULTS Total anti-HCMV immunoglobulin titers did not correlate with neutralization. Mean neutralization capacities were 15-fold higher in endothelial cells compared to fibroblasts. All plasma samples neutralizing fibroblast infection were at least equally effective against infection of endothelial cells, providing the possibility to simplify our screening method by testing only fibroblasts as target cells with a plasma dilution of 1 in 400. Of the nine tested top HCMV neutralizers, four were broadly effective against different HCMV strains. All nine were significantly superior to hyperimmunoglobulins. CONCLUSION Donors with highly and broadly neutralizing capacities can be identified by a two-step high-throughput screening approach. This may provide a basis for improved antibody-based treatment or prophylaxis of HCMV infections.
Collapse
Affiliation(s)
| | - Martina Winkelmann
- University Hospital Ulm.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm.,University Hospital Ulm.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany.,German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Dagmar Stöhr
- Institute for Virology, University Hospital Ulm, Ulm
| | | | - Ramin Lotfi
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm.,University Hospital Ulm.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany.,German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| |
Collapse
|
22
|
Hochdorfer D, Florin L, Sinzger C, Lieber D. Tetraspanin CD151 Promotes Initial Events in Human Cytomegalovirus Infection. J Virol 2016; 90:6430-42. [PMID: 27147745 PMCID: PMC4936157 DOI: 10.1128/jvi.00145-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/26/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV), a betaherpesvirus, can cause life-threatening disease in immunocompromised individuals. Viral envelope glycoproteins that mediate binding to and penetration into target cells have been identified previously. In contrast, cellular proteins supporting HCMV during entry are largely unknown. In order to systematically identify host genes affecting initial steps of HCMV infection, a targeted RNA interference screen of 96 cellular genes was performed in endothelial cells by use of a virus strain expressing the full set of known glycoprotein H and L (gH/gL) complexes. The approach yielded five proviral host factors from different protein families and eight antiviral host factors, mostly growth factor receptors. The tetraspanin CD151 was uncovered as a novel proviral host factor and was analyzed further. Like endothelial cells, fibroblasts were also less susceptible to HCMV infection after CD151 depletion. Virus strains with different sets of gH/gL complexes conferring either broad or narrow cell tropism were equally impaired. Infection of CD151-depleted cells by a fluorescent virus with differentially labeled capsid and envelope proteins revealed a role of CD151 in viral penetration but not in adsorption to the cell. In conclusion, the tetraspanin CD151 has emerged as a novel host factor in HCMV entry and as a putative antiviral target. IMPORTANCE At present, the events at the virus-cell interface and the cellular proteins involved during the HCMV entry steps are scarcely understood. In this study, several host factors with putative roles in this process were identified. The tetraspanin CD151 was discovered as a previously unrecognized proviral host factor for HCMV and was found to support viral penetration into the target cells. The findings of this study shed light on the cellular contribution during the initial steps of HCMV infection and open a new direction in HCMV research.
Collapse
Affiliation(s)
| | - Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Diana Lieber
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
23
|
Generation of a Gaussia luciferase-expressing endotheliotropic cytomegalovirus for screening approaches and mutant analyses. J Virol Methods 2016; 235:182-189. [PMID: 27326666 DOI: 10.1016/j.jviromet.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/23/2022]
Abstract
For many questions in human cytomegalovirus (HCMV) research, assays are desired that allow robust and fast quantification of infection efficiencies under high-throughput conditions. The secreted Gaussia luciferase has been demonstrated as a suitable reporter in the context of a fibroblast-adapted HCMV strain, which however is greatly restricted in the number of cell types to which it can be applied. We inserted the Gaussia luciferase expression cassette into the BAC-cloned virus strain TB40-BAC4, which displays the natural broad cell tropism of HCMV and hence allows application to screening approaches in a variety of cell types including fibroblasts, epithelial, and endothelial cells. Here, we applied the reporter virus TB40-BAC4-IE-GLuc to identify mouse hybridoma clones that preferentially neutralize infection of endothelial cells. In addition, as the Gaussia luciferase is secreted into culture supernatants from infected cells it allows kinetic analyses in living cultures. This can speed up and facilitate phenotypic characterization of BAC-cloned mutants. For example, we analyzed a UL74 stop-mutant of TB40-BAC4-IE-GLuc immediately after reconstitution in transfected cultures and found the increase of luciferase delayed and reduced as compared to wild type. Phenotypic monitoring directly in transfected cultures can minimize the risk of compensating mutations that might occur with extended passaging.
Collapse
|