1
|
Pincikova T, Merikallio H, Kotortsi I, Karimi R, Li CX, Lappi-Blanco E, Lindén SK, Padra M, Wheelock ÅM, Nyrén S, Sköld CM, Kaarteenaho RL. Expression Levels of MUC5AC and MUC5B in Airway Goblet Cells Are Associated with Traits of COPD and Progression of Chronic Airflow Limitation. Int J Mol Sci 2024; 25:13653. [PMID: 39769414 PMCID: PMC11678853 DOI: 10.3390/ijms252413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Mucins 5AC (MUC5AC) and 5B (MUC5B) are the major mucins providing the organizing framework for the airway's mucus gel. We retrieved bronchial mucosal biopsies and bronchial wash (BW) samples through bronchoscopy from patients with chronic obstructive pulmonary disease (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). The expression of MUC5AC and MUC5B was assessed immunohistochemically. The mucin concentrations in BW were determined using the slot-blot technique. The immunohistochemical expression of MUC5AC and MUC5B was localized to goblet cells and submucosal glands. Smokers had higher MUC5AC and lower MUC5B goblet cell expression and higher concentrations of soluble MUC5AC in BW than never-smokers. The MUC5B expression in goblet cells correlated positively with expiratory air flows, diffusing capacity, and the dyspnoea score. Chronic bronchitis, emphysema, and the progression of chronic airflow limitation during a median follow-up time of 8.4 years were associated with higher MUC5AC and lower MUC5B expression in goblet cells. Sustainers, slow progressors, and rapid progressors of airflow obstruction differed in their MUC5B expression at baseline. Emphysema and bronchial wall thickening on CT at a follow-up visit were associated with lower MUC5B expression at baseline. Our findings strengthen the hypothesis that MUC5AC and MUC5B are yet another contributing factor to smoking-associated lung disease progression.
Collapse
Grants
- NA The Foundation of the Finnish Anti-Tuberculosis Association
- NA The Jalmari and Rauha Ahokas Foundation
- NA The Research Foundation of the Pulmonary Diseases
- NA A state subsidy of Oulu University Hospital
- CMS 20100435, 20130293, 20160418, 20180235, 20190320; SL 20230626 The Swedish Heart-Lung Foundation
- CMS 2016 The Swedish Respiratory Society
- CMS 2011, 2012, 2013 King Gustaf V's and Queen Victoria's Freemasons' Foundation
- CMS 2010 Hesselmans Foundation
- NA Karolinska Institutet
- 2017-01142, 2018-00520 and 2021-02542 The Swedish Research Council
- CMS 071217 The Swedish Cancer- and Allergy Foundation
- CMS 2013 Sandoz A/S
- CMS 20110434, 20130051, 20150061, 20170393 and 20200287 The Regional Agreement on Medical Training and Clinical Research (ALF) between Stockholm County Council and Karolinska Institutet
- MCF [7214]-2013 ERS-EU RESPIRE2
Collapse
Affiliation(s)
- Terezia Pincikova
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Stockholm CF-Center, Albatross, K56, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 902 20 Oulu, Finland
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, Oulu University Hospital, 902 20 Oulu, Finland
| | - Ioanna Kotortsi
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
| | - Elisa Lappi-Blanco
- Cancer and Translational Medicine Research Unit, Department of Pathology, Oulu University Hospital and University of Oulu, 902 20 Oulu, Finland
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (S.K.L.)
| | - Médea Padra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (S.K.L.)
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Division of Radiology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Carl Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, 171 76 Stockholm, Sweden (Å.M.W.)
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Riitta L. Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 902 20 Oulu, Finland
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, Oulu University Hospital, 902 20 Oulu, Finland
| |
Collapse
|
2
|
Petrache I, Riches DW. Reduced Bik expression drives low-grade airway inflammation and increased risk for COPD in females. J Clin Invest 2024; 134:e177753. [PMID: 38357926 PMCID: PMC10866644 DOI: 10.1172/jci177753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Chronic low-grade inflammation is increasingly recognized as a subtle yet potent risk factor for a multitude of age-related disorders, including respiratory diseases, cardiovascular conditions, metabolic syndromes, autoimmunity, and cancer. In this issue of the JCI, Mebratu, Jones, and colleagues shed new light on the mechanisms that promote low-grade airway inflammation and how this contributes to the development of chronic obstructive pulmonary disease (COPD). Their finding that Bik deficiency leads to spontaneous emphysema in female mice, but not in males, marks a notable advancement in our understanding of how inflammatory processes can diverge based on biological sex. This finding is of clinical relevance, given the vulnerability of women to developing COPD.
Collapse
Affiliation(s)
- Irina Petrache
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David W.H. Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
3
|
Sui Y, Andersen H, Li J, Hoang T, Minai M, Nagata BM, Bock KW, Alves DA, Lewis MG, Berzofsky JA. SARS-CoV-2 mucosal vaccine protects against clinical disease with sex bias in efficacy. Vaccine 2024; 42:339-351. [PMID: 38071106 PMCID: PMC10843685 DOI: 10.1016/j.vaccine.2023.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/01/2024]
Abstract
Intranasal mucosal vaccines can more effectively induce mucosal immune responses against SARS-CoV-2. Here, we show in hamsters that an intranasal subunit mucosal vaccine boost with the beta variant S1 can prevent weight loss, in addition to reducing viral load, which cannot be studied in macaques that don't develop COVID-like disease. Protective efficacy against both viral load and weight loss correlated with serum antibody titers. A sex bias was detected in that immune responses and protection against viral load were greater in females than males. We also found that priming with S1 from the Wuhan strain elicited lower humoral immune responses against beta variant and led to less protection against beta viral challenge, suggesting the importance of matched antigens. The greater efficacy of mucosal vaccines in the upper respiratory tract and the need to consider sex differences in vaccine protection are important in the development of future improved COVID-19 vaccines.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | - Jianping Li
- Vaccine Branch, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tanya Hoang
- Vaccine Branch, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | | | - Jay A Berzofsky
- Vaccine Branch, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Li CX, Chen H, Zounemat-Kermani N, Adcock IM, Sköld CM, Zhou M, Wheelock ÅM, U-BIOPRED study group. Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage. Brief Bioinform 2023; 25:bbad501. [PMID: 38205966 PMCID: PMC10782800 DOI: 10.1093/bib/bbad501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).
Collapse
Affiliation(s)
- Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet
| | - Hongyan Chen
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Nazanin Zounemat-Kermani
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Meng Zhou
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna & Centre for Molecular Medicine, Karolinska Institutet
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| | | |
Collapse
|
5
|
Merikallio H, Pincikova T, Kotortsi I, Karimi R, Li CX, Forsslund H, Mikko M, Nyrén S, Lappi-Blanco E, Wheelock ÅM, Kaarteenaho R, Sköld MC. Mucins 3A and 3B Are Expressed in the Epithelium of Human Large Airway. Int J Mol Sci 2023; 24:13546. [PMID: 37686350 PMCID: PMC10487631 DOI: 10.3390/ijms241713546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant mucus secretion is a hallmark of chronic obstructive pulmonary disease (COPD). Expression of the membrane-tethered mucins 3A and 3B (MUC3A, MUC3B) in human lung is largely unknown. In this observational cross-sectional study, we recruited subjects 45-65 years old from the general population of Stockholm, Sweden, during the years 2007-2011. Bronchial mucosal biopsies, bronchial brushings, and bronchoalveolar lavage fluid (BALF) were retrieved from COPD patients (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). Protein expression of MUC3A and MUC3B in bronchial mucosal biopsies was assessed by immunohistochemical staining. In a subgroup of subjects (n = 28), MUC3A and MUC3B mRNAs were quantified in bronchial brushings using microarray. Non-parametric tests were used to perform correlation and group comparison analyses. A value of p < 0.05 was considered statistically significant. MUC3A and MUC3B immunohistochemical expression was localized to ciliated cells. MUC3B was also expressed in basal cells. MUC3A and MUC3B immunohistochemical expression was equal in all study groups but subjects with emphysema had higher MUC3A expression, compared to those without emphysema. Smokers had higher mRNA levels of MUC3A and MUC3B than non-smokers. MUC3A and MUC3B mRNA were higher in male subjects and correlated negatively with expiratory air flows. MUC3B mRNA correlated positively with total cell concentration and macrophage percentage, and negatively with CD4/CD8 T cell ratio in BALF. We concluded that MUC3A and MUC3B in large airways may be a marker of disease or may play a role in the pathophysiology of airway obstruction.
Collapse
Affiliation(s)
- Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 90570 Oulu, Finland; (H.M.)
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, University Hospital of Oulu, 90220 Oulu, Finland
| | - Terezia Pincikova
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Stockholm CF-Center, Albatross, K56, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Ioanna Kotortsi
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mikael Mikko
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Division of Radiology, Karolinska Institutet, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Elisa Lappi-Blanco
- Cancer and Translational Medicine Research Unit, Department of Pathology, University Hospital of Oulu, Oulu University, 90220 Oulu, Finland
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, 90570 Oulu, Finland; (H.M.)
- Center of Internal Medicine and Respiratory Medicine, Medical Research Center Oulu, University Hospital of Oulu, 90220 Oulu, Finland
| | - Magnus C. Sköld
- Respiratory Medicine Unit, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
7
|
Reddy KD, Oliver BGG. Sexual dimorphism in chronic respiratory diseases. Cell Biosci 2023; 13:47. [PMID: 36882807 PMCID: PMC9993607 DOI: 10.1186/s13578-023-00998-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Sex differences in susceptibility, severity, and progression are prevalent for various diseases in multiple organ systems. This phenomenon is particularly apparent in respiratory diseases. Asthma demonstrates an age-dependent pattern of sexual dimorphism. However, marked differences between males and females exist in other pervasive conditions such as chronic obstructive pulmonary disease (COPD) and lung cancer. The sex hormones estrogen and testosterone are commonly considered the primary factors causing sexual dimorphism in disease. However, how they contribute to differences in disease onset between males and females remains undefined. The sex chromosomes are an under-investigated fundamental form of sexual dimorphism. Recent studies highlight key X and Y-chromosome-linked genes that regulate vital cell processes and can contribute to disease-relevant mechanisms. This review summarises patterns of sex differences in asthma, COPD and lung cancer, highlighting physiological mechanisms causing the observed dimorphism. We also describe the role of the sex hormones and present candidate genes on the sex chromosomes as potential factors contributing to sexual dimorphism in disease.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Brian Gregory George Oliver
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
8
|
Rogliani P, Cavalli F, Ritondo BL, Cazzola M, Calzetta L. Sex differences in adult asthma and COPD therapy: a systematic review. Respir Res 2022; 23:222. [PMID: 36038873 PMCID: PMC9426004 DOI: 10.1186/s12931-022-02140-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although asthma is more prevalent in women and the prevalence of COPD is increasing in women, the current international recommendations for the management and prevention of asthma and COPD provide no sex-related indication for the treatment of these diseases. Therefore, we systematically reviewed the evidence across literature on the sex-related effectiveness of asthma and COPD therapy. Methods This systematic review has been registered in PROSPERO and performed according to PRISMA-P. The PICO framework was applied for the literature search strategy: "patient problem” included adult patients suffering from asthma or COPD, “Intervention” regarded the pharmacological treatments for asthma or COPD, “Comparison” was vs. baseline, active controls, or placebo, “Outcome” was any difference sex-related in the effectiveness of interventions. Results In asthma 44% of the evidence reported that men responded better than women to the therapy, whereas this percentage was 28% in COPD. ICS was generally less effective in women than in men to treat asthma, and consistent evidence suggests that in asthmatic patients ICS/LABA/LAMA combination may be equally effective in both men and women. Due to the inconsistent available evidence, it is not possible to identify specific treatments whose effectiveness is related to sex difference in COPD patients. Conclusions There is a strong need of investigating the sex-related impact of asthma and COPD treatments. Pre-specified analyses in men and women should be planned in future trial protocols, a necessary condition that should be requested also by the regulatory agencies to overcome the anachronistic “one-size-fits-all” approach to therapeutics associated with suboptimal outcomes for patients.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1 - 00133, Rome, Italy. .,Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Francesco Cavalli
- Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1 - 00133, Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1 - 00133, Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Exendin-4 Exacerbates Burn-Induced Mortality in Mice by Switching to Th2 Response. J Surg Res 2022; 280:333-347. [PMID: 36030610 DOI: 10.1016/j.jss.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To determine if Exendin-4 could be a therapeutic agent for burn-induced hyperglycemia. MATERIALS AND METHODS Male Balb/c mice received a bolus of Exendin-4 intraperitoneally immediately after 15% total body surface area scald injury. Tail glucose levels were recorded and T-cell functions were analyzed at 4 h and 24 h postburn (pb). Pancreatic pathology was observed consecutively. The secretions of cytokines were detected in serum, spleen, and lung. Apoptosis of splenic CD3+ T-cells was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometry. RESULTS Although Exendin-4 could attenuate burn-induced hyperglycemia in mice at 4 h pb, it accelerated their survival dose dependently with progressive depletion of splenocyte number. T-cell function underwent two-phasic changes following Exendin-4 treatment. Compared to placebo mice, T-cell from Exendin-4-treated mice was manifested with increased proliferation, while decreased IL-2 secretion and lower ratio of IL-4/IFN-γ at 4 h pb. However, at 24 h pb, it showed decreased proliferation, while increased IL-2 secretion and higher ratio of IL-4/IFN-γ. Exendin-4 could elicit higher circulating IL-6 and IL-10 levels at 4 h pb, which were pronounced in the lung at 24 h pb. In the meanwhile, severe inflammation could be found in the pancreas. At 24 h pb, the numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling or caspase-3 positive cells and the apoptosis of CD3+ T-cells were significantly increased in the spleens of Exendin-4 mice relative to placebo mice. CONCLUSIONS These data support a pathogenic role of Exendin-4 signaling during thermal injury, warning against its clinical application in acute insults.
Collapse
|
10
|
Abdelhafez AT, Gomaa AMS, Ahmed AM, Sayed MM, Ahmed MA. Pioglitazone and/or irbesartan ameliorate COPD-induced endothelial dysfunction in side stream cigarette smoke-exposed mice model. Life Sci 2021; 280:119706. [PMID: 34102190 DOI: 10.1016/j.lfs.2021.119706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cigarette smoking (CS) is the main cause of chronic obstructive pulmonary disease (COPD). Endothelial dysfunction is related to the severity of pulmonary disease in COPD. This study aimed to evaluate the effectiveness of single and combined administration of pioglitazone (Pio) and irbesartan (Irb) against COPD-induced endothelial dysfunction in mice and the involvement of NO and H2S in their effects. MATERIALS AND METHODS Adult male Swiss mice (n = 40, weighing 25-30 g) were assigned into 5 groups. The normal control group received 1% carboxy methyl cellulose (CMC). The CS group was exposed to CS and administered 1% CMC for 3 months. The CS + Pio, CS + Irb, and CS + Pio/Irb groups were subjected to CS and received Pio (60 mg/kg), Irb (50 mg/kg), and their combination respectively, daily orally for 3 months. Body weight gain, mean blood pressure, urinary albumin, serum NO and ET-1 levels with TNF-α and IL-2 levels in lung tissue and bronchoalveolar lavage were measured. Lung H2S and ET-1 levels, protein expression of PPARγ in lung and VEGF in lung and aortic tissues with histological changes were assessed. KEY FINDINGS Our results illustrated that CS induced a model of COPD with endothelial dysfunction in mice. Pio/Irb singly and in combination elicited protective effects against the pathophysiology of the disease with more improvement in the combined group. There is a strong correlation between NO and H2S as well as the other measured parameters. SIGNIFICANCE Collectively, both drugs performed these effects via their anti-inflammatory potential and increasing H2S and NO levels.
Collapse
Affiliation(s)
- Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
11
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
12
|
Eriksson Ström J, Pourazar J, Linder R, Blomberg A, Lindberg A, Bucht A, Behndig AF. Airway regulatory T cells are decreased in COPD with a rapid decline in lung function. Respir Res 2020; 21:330. [PMID: 33317530 PMCID: PMC7734742 DOI: 10.1186/s12931-020-01593-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Differences in the expression of regulatory T cells (Tregs) have been suggested to explain why some smokers develop COPD and some do not. Upregulation of Tregs in response to smoking would restrain airway inflammation and thus the development of COPD; while the absense of such upregulation would over time lead to chronic inflammation and COPD. We hypothesized that—among COPD patients—the same mechanism would affect rate of decline in lung function; specifically, that a decreased expression of Tregs would be associated with a more rapid decline in FEV1. Methods Bronchoscopy with BAL was performed in 52 subjects recruited from the longitudinal OLIN COPD study; 12 with COPD and a rapid decline in lung function (loss of FEV1 ≥ 60 ml/year), 10 with COPD and a non-rapid decline in lung function (loss of FEV1 ≤ 30 ml/year), 15 current and ex-smokers and 15 non-smokers with normal lung function. BAL lymphocyte subsets were determined using flow cytometry. Results The proportions of Tregs with regulatory function (FoxP3+/CD4+CD25bright) were significantly lower in COPD subjects with a rapid decline in lung function compared to those with a non-rapid decline (p = 0.019). This result was confirmed in a mixed model regression analysis in which adjustments for inhaled corticosteroid usage, smoking, sex and age were evaluated. No significant difference was found between COPD subjects and smokers or non-smokers with normal lung function. Conclusions COPD subjects with a rapid decline in lung function had lower proportions of T cells with regulatory function in BAL fluid, suggesting that an inability to suppress the inflammatory response following smoking might lead to a more rapid decline in FEV1. Trial registration Clinicaltrials.gov identifier NCT02729220
Collapse
Affiliation(s)
- Jonas Eriksson Ström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden.
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Robert Linder
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Anne Lindberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| | - Anders Bucht
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden.,Division of CBRN Defence and Security, Swedish Defence Research Agency, Stockholm, Sweden
| | - Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
13
|
Merikallio H, Kaarteenaho R, Lindén S, Padra M, Karimi R, Li CX, Lappi-Blanco E, Wheelock ÅM, Sköld MC. Smoking-associated increase in mucins 1 and 4 in human airways. Respir Res 2020; 21:239. [PMID: 32948202 PMCID: PMC7499856 DOI: 10.1186/s12931-020-01498-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale Smoking-related chronic obstructive pulmonary disease (COPD) is associated with dysregulated production of mucus. Mucins (MUC) are important both for mucus secretion and epithelial defense. We have examined the distribution of MUC1 and MUC4 in the airway epithelial cells of never-smokers and smokers with and without COPD. Methods Mucosal biopsies and bronchial wash samples were obtained by bronchoscopy from age- and sex-matched COPD-patients (n = 38; GOLD I-II/A-B), healthy never-smokers (n = 40) and current smokers with normal lung function (n = 40) from the Karolinska COSMIC cohort (NCT02627872). Cell-specific expressions of MUC1, MUC4 and regulating factors, i.e., epithelial growth factor receptor (EGFR) 1 and 2, were analyzed by immunohistochemistry. Soluble MUC1 was measured by quantitative immunodetection on slot blot. Results The levels of cell-bound MUC1 expression in basal cells and in soluble MUC1 in bronchial wash were increased in smokers, regardless of airway obstruction. Patients with chronic bronchitis had higher MUC1 expression. The expression of MUC4 in cells with goblet cell phenotype was increased in smokers. The expression of EGFR2, but not that of EGFR1, was higher in never-smokers than in smokers. Conclusions Smoking history and the presence of chronic bronchitis, regardless of airway obstruction, affect both cellular and soluble MUC1 in human airways. Therefore, MUC1 may be a novel marker for smoking- associated airway disease.
Collapse
Affiliation(s)
- Heta Merikallio
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. .,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland.
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Sara Lindén
- Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Médea Padra
- Department of Biomedical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Lappi-Blanco
- Department of Pathology, Center for Cancer Research and Translational Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus C Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
14
|
Han MK. Chronic Obstructive Pulmonary Disease in Women: A Biologically Focused Review with a Systematic Search Strategy. Int J Chron Obstruct Pulmon Dis 2020; 15:711-721. [PMID: 32280209 PMCID: PMC7132005 DOI: 10.2147/copd.s237228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Evidence suggests that chronic obstructive pulmonary disease (COPD) symptoms and progression may differ between men and women. However, limited information is currently available on the pathophysiological and biological factors that may underlie these sex-related differences. The objective of this review is to systematically evaluate reports of potential sex-related differences, including genetic, pathophysiological, structural, and other biological factors, that may influence COPD development, manifestation, and progression in women. Patients and Methods A PubMed literature search was conducted from inception until January 2020. Original reports of genetic, hormonal, and physiological differences, and biological influences that could contribute to COPD development, manifestation, and progression in women were included. Results Overall, 491 articles were screened; 29 articles met the inclusion criteria. Results from this analysis demonstrated between-sex differences in inflammatory, immune, genetic, structural, and physiological factors in patients with COPD. Conclusion Various biological differences are observed between men and women with COPD including differences in inflammatory and metabolic pathways related to obesity and fat distribution, immune cell function and autophagy, extent and distribution of emphysema and airway wall remodeling. An enhanced understanding of these differences has the potential to broaden our understanding of how COPD develops and progresses, thereby providing an opportunity to ultimately improve diagnosis, treatment, and monitoring of COPD in both men and women.
Collapse
Affiliation(s)
- MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Galindo‐Feria AS, Albrecht I, Fernandes‐Cerqueira C, Notarnicola A, James EA, Herrath J, Dastmalchi M, Sandalova T, Rönnblom L, Jakobsson P, Fathi M, Achour A, Grunewald J, Malmström V, Lundberg IE. Proinflammatory Histidyl–Transfer
RNA
Synthetase–Specific
CD
4+ T Cells in the Blood and Lungs of Patients With Idiopathic Inflammatory Myopathies. Arthritis Rheumatol 2019; 72:179-191. [DOI: 10.1002/art.41075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/06/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Inka Albrecht
- Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| | | | | | | | - Jessica Herrath
- Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| | - Maryam Dastmalchi
- Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| | - Tatyana Sandalova
- Science for Life LaboratoryKarolinska Institutet, and Karolinska University Hospital Stockholm Sweden
| | - Lars Rönnblom
- Science for Life Laboratory, Stolkholm, Sweden, and Uppsala University Uppsala Sweden
| | | | | | - Adnane Achour
- Science for Life LaboratoryKarolinska Institutet, and Karolinska University Hospital Stockholm Sweden
| | - Johan Grunewald
- Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| | - Vivianne Malmström
- Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| | - Ingrid E. Lundberg
- Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
16
|
Naz S, Bhat M, Ståhl S, Forsslund H, Sköld CM, Wheelock ÅM, Wheelock CE. Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD. Metabolites 2019; 9:metabo9100212. [PMID: 31581603 PMCID: PMC6835831 DOI: 10.3390/metabo9100212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Increased activity of indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase (TPH) have been reported in individuals with chronic obstructive pulmonary disease (COPD). We therefore investigated the effect of gender stratification upon the observed levels of tryptophan metabolites in COPD. Tryptophan, serotonin, kynurenine, and kynurenic acid were quantified in serum of never-smokers (n = 39), smokers (n = 40), COPD smokers (n = 27), and COPD ex-smokers (n = 11) by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The individual metabolite associations with lung function, blood, and bronchoalveolar lavage (BAL) immune-cell composition, as well as chemokine and cytokine levels, were investigated. Stratification by gender and smoking status revealed that the observed alterations in kynurenine and kynurenic acid, and to a lesser extent serotonin, were prominent in males, irrespective of COPD status (kynurenine p = 0.005, kynurenic acid p = 0.009, and serotonin p = 0.02). Inferred serum IDO activity and kynurenine levels decreased in smokers relative to never-smokers (p = 0.005 and p = 0.004, respectively). In contrast, inferred tryptophan hydroxylase (TPH) activity and serotonin levels showed an increase with smoking that reached significance with COPD (p = 0.01 and p = 0.01, respectively). Serum IDO activity correlated with blood CXC chemokine ligand 9 (CXCL9, p = 0.0009, r = 0.93) and chemokine (C-C motif) ligand 4 (CCL4.(p = 0.04, r = 0.73) in female COPD smokers. Conversely, serum serotonin levels correlated with BAL CD4+ T-cells (%) (p = 0.001, r = 0.92) and CD8+ T-cells (%) (p = 0.002, r = -0.90) in female COPD smokers, but not in male COPD smokers (p = 0.1, r = 0.46 and p = 0.1, r = -0.50, respectively). IDO- and TPH-mediated tryptophan metabolites showed gender-based associations in COPD, which were primarily driven by smoking status.
Collapse
Affiliation(s)
- Shama Naz
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden;
| | - Maria Bhat
- Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, SE 171 65 Solna, Sweden; (M.B.); (S.S.)
- Department of Clinical Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Sara Ståhl
- Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, SE 171 65 Solna, Sweden; (M.B.); (S.S.)
- Department of Clinical Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
| | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
- Correspondence: (Å.M.W.); (C.E.W.); Tel.: +46-70-2200308 (Å.M.W.); +46-8-524-87630 (C.E.W.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden;
- Correspondence: (Å.M.W.); (C.E.W.); Tel.: +46-70-2200308 (Å.M.W.); +46-8-524-87630 (C.E.W.)
| |
Collapse
|
17
|
Riolobos L, Gad EA, Treuting PM, Timms AE, Hershberg EA, Corulli LR, Rodmaker E, Disis ML. The Effect of Mouse Strain, Sex, and Carcinogen Dose on Toxicity and the Development of Lung Dysplasia and Squamous Cell Carcinomas in Mice. Cancer Prev Res (Phila) 2019; 12:507-516. [PMID: 31101634 PMCID: PMC7687913 DOI: 10.1158/1940-6207.capr-18-0442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
In order to translate new treatments to the clinic, it is necessary to use animal models that closely recapitulate human disease. Lung cancer develops after extended exposure to carcinogens. It has one of the highest mutation rates of all cancer and is highly heterogenic. Topical treatment with N-nitrosotris-(2-chloroethyl)urea (NTCU) induces lung squamous cell carcinoma (SCC) with nonsynonymous mutation rates similar to those reported for human non-small cell lung cancer. However, NTCU induces lung cancer with variable efficacy and toxicity depending on the mouse strain. A detailed characterization of the NTCU model is needed. We have compared the effect of three different NTCU doses (20, 30, and 40 mmol/L) in female and male of NIH Swiss, Black Swiss, and FVB mice on tumor incidence, survival, and toxicity. The main findings in this study are (1) NIH Swiss mice present with a higher incidence of SCC and lower mortality compared with Black Swiss and FVB mice; (2) 30 mmol/L NTCU dose induces SCC at the same rate and incidence as the 40 mmol/L dose with lower mortality; (3) female mice present higher grade and incidence of preinvasive lesions and SCC compared with males; (4) NTCU-induced transformation is principally within the respiratory system; and (5) NTCU treatment does not affect the ability to elicit a specific adaptive immune response. This study provides a reference point for experimental designs to evaluate either preventive or therapeutic treatments for lung SCC, including immunotherapies, before initiating human clinical trials.
Collapse
Affiliation(s)
- Laura Riolobos
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington.
| | - Ekram A Gad
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Elliot A Hershberg
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Lauren R Corulli
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Erin Rodmaker
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Ni L, Dong C. Roles of Myeloid and Lymphoid Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front Immunol 2018; 9:1431. [PMID: 29977245 PMCID: PMC6021485 DOI: 10.3389/fimmu.2018.01431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third largest cause of human mortality in the world after stroke and heart disease. COPD is characterized by sustained inflammation of the airways, leading to destruction of lung tissue and declining pulmonary function. The main risk factor is known to be cigarette smoke currently. However, the strategies for prevention and treatment have not altered significantly for many years. A growing body of evidences indicates that the immune system plays a pivotal role in the pathogenesis of COPD. The repeated and progressive activation of immune cells is at least in part the source of this chronic inflammation. In this review paper, we have conducted an extensive literature search of the studies of immune cells in COPD patients. The objective is to assess the contributions of different immune cell types, the imbalance of pro/anti-inflammatory immune cells, such as M1/M2 macrophages, Tc1/Tc10, and Th17/Treg, and their mediators in the peripheral blood as well as in the lung to the pathogenesis of COPD. Therefore, understanding their roles in COPD development will help us find the potential target to modify this disease. This review focuses predominantly on data derived from human studies but will refer to animal studies where they help understand the disease in humans.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Li CX, Wheelock CE, Sköld CM, Wheelock ÅM. Integration of multi-omics datasets enables molecular classification of COPD. Eur Respir J 2018; 51:13993003.01930-2017. [PMID: 29545283 DOI: 10.1183/13993003.01930-2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/08/2018] [Indexed: 01/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an umbrella diagnosis caused by a multitude of underlying mechanisms, and molecular sub-phenotyping is needed to develop molecular diagnostic/prognostic tools and efficacious treatments.The objective of these studies was to investigate whether multi-omics integration improves the accuracy of molecular classification of COPD in small cohorts.Nine omics data blocks (comprising mRNA, micro RNA, proteomes and metabolomes) collected from several anatomical locations from 52 female subjects were integrated by similarity network fusion (SNF). Multi-omics integration significantly improved the accuracy of group classification of COPD patients from healthy never-smokers and from smokers with normal spirometry, reducing required group sizes from n=30 to n=6 at 95% power. Seven different combinations of four to seven omics platforms achieved >95% accuracy.For the first time, a quantitative relationship between multi-omics data integration and accuracy of data-driven classification power has been demonstrated across nine omics data blocks. Integrating five to seven omics data blocks enabled 100% correct classification of COPD diagnosis with groups as small as n=6 individuals, despite strong confounding effects of current smoking. These results can serve as guidelines for the design of future systems-based multi-omics investigations, with indications that integrating five to six data blocks from several molecular levels and anatomical locations suffices to facilitate unsupervised molecular classification in small cohorts.
Collapse
Affiliation(s)
- Chuan-Xing Li
- Respiratory Medicine Unit, Dept of Medicine and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Integrative Molecular Phenotyping Laboratory, Division of Physiological Chemistry II, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Dept of Medicine and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Lung-Allergy Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Dept of Medicine and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD. Respir Res 2018. [PMID: 29514648 PMCID: PMC5842534 DOI: 10.1186/s12931-017-0695-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Smoking represents a significant risk factor for many chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). Methods To identify dysregulation of specific proteins and pathways in bronchoalveolar lavage (BAL) cells associated with smoking, isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun proteomics analyses were performed on BAL cells from healthy never-smokers and smokers with normal lung function from the Karolinska COSMIC cohort. Multivariate statistical modeling, multivariate correlations with clinical data, and pathway enrichment analysis were performed. Results Smoking exerted a significant impact on the BAL cell proteome, with more than 500 proteins representing 15 molecular pathways altered due to smoking. The majority of these alterations occurred in a gender-independent manner. The phagosomal- and leukocyte trans endothelial migration (LTM) pathways significantly correlated with FEV1/FVC as well as the percentage of CD8+ T-cells and CD8+CD69+ T-cells in smokers. The correlations to clinical parameters in healthy never-smokers were minor. Conclusion The significant correlations of proteins in the phagosome- and LTM pathways with activated cytotoxic T-cells (CD69+) and the level of airway obstruction (FEV1/FVC) in smokers, both hallmarks of COPD, suggests that these two pathways may play a role in the molecular events preceding the development of COPD in susceptible smokers. Both pathways were found to be further dysregulated in COPD patients from the same cohort, thereby providing further support to this hypothesis. Given that not all smokers develop COPD in spite of decades of smoking, it is also plausible that some of the molecular pathways associated with response to smoking exert protective mechanisms to smoking-related pathologies in resilient individuals. Trial registration ClinicalTrials.gov identifier NCT02627872; Retrospectively registered on December 9, 2015. Electronic supplementary material The online version of this article (10.1186/s12931-017-0695-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Yang M, Kohler M, Heyder T, Forsslund H, Garberg HK, Karimi R, Grunewald J, Berven FS, Nyrén S, Magnus Sköld C, Wheelock ÅM. Proteomic profiling of lung immune cells reveals dysregulation of phagocytotic pathways in female-dominated molecular COPD phenotype. Respir Res 2018. [PMID: 29514663 PMCID: PMC5842633 DOI: 10.1186/s12931-017-0699-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Smoking is the main risk factor for chronic obstructive pulmonary disease (COPD). Women with COPD who smoke experienced a higher risk of hospitalization and worse decline of lung function. Yet the mechanisms of these gender-related differences in clinical presentations in COPD remain unknown. The aim of our study is to identify proteins and molecular pathways associated with COPD pathogenesis, with emphasis on elucidating molecular gender difference. Method We employed shotgun isobaric tags for relative and absolute quantitation (iTRAQ) proteome analyses of bronchoalveolar lavage (BAL) cells from smokers with normal lung function (n = 25) and early stage COPD patients (n = 18). Multivariate modeling, pathway enrichment analysis, and correlation with clinical characteristics were performed to identify specific proteins and pathways of interest. Results More pronounced alterations both at the protein- and pathway- levels were observed in female COPD patients, involving dysregulation of the FcγR-mediated phagocytosis-lysosomal axis and increase in oxidative stress. Alterations in pathways of the phagocytosis-lysosomal axis associated with a female-dominated COPD phenotype correlated well with specific clinical features: FcγR-mediated phagocytosis correlated with FEV1/FVC, the lysosomal pathway correlated with CT < −950 Hounsfield Units (HU), and regulation of actin cytoskeleton correlated with FEV1 and FEV1/FVC in female COPD patients. Alterations observed in the corresponding male cohort were minor. Conclusion The identified molecular pathways suggest dysregulation of several phagocytosis-related pathways in BAL cells in female COPD patients, with correlation to both the level of obstruction (FEV1/FVC) and disease severity (FEV1) as well as emphysema (CT < −950 HU) in women. Trial registration No.: NCT02627872, retrospectively registered on December 9, 2015. Electronic supplementary material The online version of this article (10.1186/s12931-017-0699-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingxing Yang
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden.
| | - Maxie Kohler
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Tina Heyder
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Hilde K Garberg
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Division of Radiology, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
22
|
Di Stefano A, Sangiorgi C, Gnemmi I, Casolari P, Brun P, Ricciardolo FLM, Contoli M, Papi A, Maniscalco P, Ruggeri P, Girbino G, Cappello F, Pavlides S, Guo Y, Chung KF, Barnes PJ, Adcock IM, Balbi B, Caramori G. TGF-β Signaling Pathways in Different Compartments of the Lower Airways of Patients With Stable COPD. Chest 2017; 153:851-862. [PMID: 29289685 PMCID: PMC5883327 DOI: 10.1016/j.chest.2017.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The expression and localization of transforming growth factor-β (TGF-β) pathway proteins in different compartments of the lower airways of patients with stable COPD is unclear. We aimed to determine TGF-β pathway protein expression in patients with stable COPD. METHODS The expression and localization of TGF-β pathway components was measured in the bronchial mucosa and peripheral lungs of patients with stable COPD (n = 44), control smokers with normal lung function (n = 24), and control nonsmoking subjects (n = 11) using immunohistochemical analysis. RESULTS TGF-β1, TGF-β3, and connective tissue growth factor expression were significantly decreased in the bronchiolar epithelium, with TGF-β1 also decreased in alveolar macrophages, in patients with stable COPD compared with control smokers with normal lung function. TGF-β3 expression was increased in the bronchial lamina propria of both control smokers with normal lung function and smokers with mild/moderate stable COPD compared with control nonsmokers and correlated significantly with pack-years of smoking. However, TGF-β3+ cells decreased in patients with severe/very severe COPD compared with control smokers. Latent TGF-β binding protein 1 expression was increased in the bronchial lamina propria in subjects with stable COPD of all severities compared with control smokers with normal lung function. Bone morphogenetic protein and activin membrane-bound inhibitor expression (BAMBI) in the bronchial mucosa was significantly increased in patients with stable COPD of all severities compared with control subjects. No other significant differences were observed between groups for all the other molecules studied in the bronchial mucosa and peripheral lung. CONCLUSIONS Expression of TGF-βs and their regulatory proteins is distinct within different lower airway compartments in stable COPD. Selective reduction in TGF-β1 and enhanced BAMBI expression may be associated with the increase in autoimmunity in COPD.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy.
| | - Claudia Sangiorgi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy
| | - Paolo Casolari
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Paola Brun
- Dipartimento di Medicina Molecolare, Università di Padova, Padova, Italy
| | - Fabio L M Ricciardolo
- Dipartimento di Scienze Cliniche e Biologiche, AOU, Ospedale San Luigi, Orbassano, Università di Torino, Torino, Italy
| | - Marco Contoli
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Alberto Papi
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy
| | - Pio Maniscalco
- Modulo di Chirurgia Toracica, Azienda Ospedaliera Universitaria S. Anna, Ferrara, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giuseppe Girbino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Anatomia Umana, Università di Palermo, and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stelios Pavlides
- Department of Computing and Data Science Institute, Imperial College London, England
| | - Yike Guo
- Department of Computing and Data Science Institute, Imperial College London, England
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, England
| | - Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, England
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, England; Priority Research Centre for Lung Health, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Bruno Balbi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, SpA, Società Benefit, IRCCS, Veruno (NO), Italy
| | - Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate (CEMICEF), Sezione di Medicina Interna e Cardiorespiratoria, Università di Ferrara, Ferrara, Italy; Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
23
|
Rodrigues Brandao-Rangel MA, Bachi ALL, Oliveira-Junior MC, Abbasi A, Silva-Renno A, Aparecida de Brito A, Ligeiro de Oliveira AP, Choqueta Toledo-Arruda A, Belvisi MG, Paula Vieira R. Exercise Inhibits the Effects of Smoke-Induced COPD Involving Modulation of STAT3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6572714. [PMID: 29326759 PMCID: PMC5664289 DOI: 10.1155/2017/6572714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 01/31/2023]
Abstract
PURPOSE Evaluate the participation of STAT3 in the effects of aerobic exercise (AE) in a model of smoke-induced COPD. METHODS C57Bl/6 male mice were divided into control, Exe, COPD, and COPD+Exe groups. Smoke were administered during 90 days. Treadmill aerobic training begun on day 61 until day 90. Pulmonary inflammation, systemic inflammation, the level of lung emphysema, and the airway remodeling were evaluated. Analysis of integral and phosphorylated expression of STAT3 by airway epithelial cells, peribronchial leukocytes, and parenchymal leukocytes was performed. RESULTS AE inhibited smoke-induced accumulation of total cells (p < 0.001), lymphocytes (p < 0.001), and neutrophils (p < 0.001) in BAL, as well as BAL levels of IL-1β (p < 0.001), CXCL1 (p < 0.001), IL-17 (p < 0.001), and TNF-α (p < 0.05), while increased the levels of IL-10 (p < 0.001). AE also inhibited smoke-induced increases in total leukocytes (p < 0.001), neutrophils (p < 0.05), lymphocytes (p < 0.001), and monocytes (p < 0.01) in blood, as well as serum levels of IL-1β (p < 0.01), CXCL1 (p < 0.01), IL-17 (p < 0.05), and TNF-α (p < 0.01), while increased the levels of IL-10 (p < 0.001). AE reduced smoke-induced emphysema (p < 0.001) and collagen fiber accumulation in the airways (p < 0.001). AE reduced smoke-induced STAT3 and phospho-STAT3 expression in airway epithelial cells (p < 0.001), peribronchial leukocytes (p < 0.001), and parenchymal leukocytes (p < 0.001). CONCLUSIONS AE reduces smoke-induced COPD phenotype involving STAT3.
Collapse
Affiliation(s)
- Maysa Alves Rodrigues Brandao-Rangel
- Nove de Julho University, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), School of Medical Sciences of São José dos Campos Humanitas and Universidade Brasil, São Paulo, SP, Brazil
| | - Andre Luis Lacerda Bachi
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Manoel Carneiro Oliveira-Junior
- Nove de Julho University, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), School of Medical Sciences of São José dos Campos Humanitas and Universidade Brasil, São Paulo, SP, Brazil
| | - Asghar Abbasi
- Institute for Memory Impairments and Neurological Disorders (MIND Institute), University of California, Irvine, CA, USA
| | - Adriano Silva-Renno
- Nove de Julho University, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), School of Medical Sciences of São José dos Campos Humanitas and Universidade Brasil, São Paulo, SP, Brazil
| | | | | | - Alessandra Choqueta Toledo-Arruda
- Laboratory of Experimental Therapeutics (LIM 20), Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, SP, Brazil
| | - Maria Gabriela Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rodolfo Paula Vieira
- Nove de Julho University, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), School of Medical Sciences of São José dos Campos Humanitas and Universidade Brasil, São Paulo, SP, Brazil
| |
Collapse
|