1
|
Thapa BB, Huo C, Budhathoki R, Chaudhary P, Joshi S, Poudel PB, Magar RT, Parajuli N, Kim KH, Sohng JK. Metabolic Comparison and Molecular Networking of Antimicrobials in Streptomyces Species. Int J Mol Sci 2024; 25:4193. [PMID: 38673777 PMCID: PMC11050201 DOI: 10.3390/ijms25084193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.
Collapse
Affiliation(s)
- Bijaya Bahadur Thapa
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Pratiksha Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| |
Collapse
|
2
|
Ceravolo IP, Leoni LF, Krettli AU, Murta SMF, Resende DDM, Cruz MGFDML, Varejão JOS, Mendes LL, Varejão EVV, Kohlhoff M. Novel 2,5-Diketopiperazines with In Vitro Activities against Protozoan Parasites of Tropical Diseases. Pharmaceuticals (Basel) 2024; 17:223. [PMID: 38399438 PMCID: PMC10893061 DOI: 10.3390/ph17020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/25/2024] Open
Abstract
Malaria, Chagas disease, and leishmaniasis are tropical diseases caused by protozoan parasites of the genera Plasmodium, Trypanosoma and Leishmania, respectively. These diseases constitute a major burden on public health in several regions worldwide, mainly affecting low-income populations in economically poor countries. Severe side effects of currently available drug treatments and the emergence of resistant parasites need to be addressed by the development of novel drug candidates. Natural 2,5-Diketopiperazines (2,5-DKPs) constitute N-heterocyclic secondary metabolites with a wide range of biological activities of medicinal interest. Its structural and physicochemical properties make the 2,5-DKP ring a versatile, peptide-like, and stable pharmacophore attractive for synthetic drug design. In the present work, twenty-three novel synthetic 2,5-DKPs, previously synthesized through the versatile Ugi multicomponent reaction, were assayed for their anti-protozoal activities against P. falciparum, T. cruzi, and L. infantum. Some of the 2,5-DKPs have shown promising activities against the target protozoans, with inhibitory concentrations (IC50) ranging from 5.4 to 9.5 µg/mL. The most active compounds also show low cytotoxicity (CC50), affording selectivity indices ≥ 15. Results allowed for observing a clear relationship between the substitution pattern at the aromatic rings of the 2,5-DKPs and their corresponding anti-Plasmodium activity. Finally, calculated drug-like properties of the compounds revealed points for further structure optimization of promising drug candidates.
Collapse
Affiliation(s)
- Isabela P. Ceravolo
- Laboratory of Immunopathology, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil; (I.P.C.); (L.F.L.); (A.U.K.)
| | - Letícia F. Leoni
- Laboratory of Immunopathology, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil; (I.P.C.); (L.F.L.); (A.U.K.)
| | - Antoniana U. Krettli
- Laboratory of Immunopathology, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil; (I.P.C.); (L.F.L.); (A.U.K.)
| | - Silvane M. F. Murta
- Laboratory of Functional Genomics of Parasites, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil; (S.M.F.M.); (D.d.M.R.); (M.G.F.d.M.L.C.)
| | - Daniela de M. Resende
- Laboratory of Functional Genomics of Parasites, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil; (S.M.F.M.); (D.d.M.R.); (M.G.F.d.M.L.C.)
| | - Mariza G. F. de M. L. Cruz
- Laboratory of Functional Genomics of Parasites, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil; (S.M.F.M.); (D.d.M.R.); (M.G.F.d.M.L.C.)
| | - Jodieh O. S. Varejão
- Laboratory of Natural Product Chemistry Studies and Organic Synthesis, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Viçosa 36570-900, Brazil; (J.O.S.V.); (L.L.M.); (E.V.V.V.)
| | - Lorena L. Mendes
- Laboratory of Natural Product Chemistry Studies and Organic Synthesis, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Viçosa 36570-900, Brazil; (J.O.S.V.); (L.L.M.); (E.V.V.V.)
| | - Eduardo V. V. Varejão
- Laboratory of Natural Product Chemistry Studies and Organic Synthesis, Federal University of Viçosa (UFV), Av. PH Rolfs, s/n, Viçosa 36570-900, Brazil; (J.O.S.V.); (L.L.M.); (E.V.V.V.)
| | - Markus Kohlhoff
- Laboratory of Bioactive Natural Product Chemistry, René Rachou Institute (IRR), Oswaldo Cruz Foundation (FIOCRUZ), Av. Augusto de Lima, 1715, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
3
|
Stelmasiewicz M, Świątek Ł, Ludwiczuk A. Chemical and Biological Studies of Endophytes Isolated from Marchantia polymorpha. Molecules 2023; 28:2202. [PMID: 36903448 PMCID: PMC10004590 DOI: 10.3390/molecules28052202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Natural bioresources, predominantly plants, have always been regarded as the richest source of drugs for diseases threatening humanity. Additionally, microorganism-originating metabolites have been extensively explored as weapons against bacterial, fungal, and viral infections. However, the biological potential of metabolites produced by plant endophytes still remains understudied, despite significant efforts reflected in recently published papers. Thus, our goal was to evaluate the metabolites produced by endophytes isolated from Marchantia polymorpha and to study their biological properties, namely anticancer and antiviral potential. The cytotoxicity and anticancer potential were assessed using the microculture tetrazolium technique (MTT) against non-cancerous VERO cells and cancer cells-namely the HeLa, RKO, and FaDu cell lines. The antiviral potential was tested against the human herpesvirus type-1 replicating in VERO cells by observing the influence of the extract on the virus-infected cells and measuring the viral infectious titer and viral load. The most characteristic metabolites identified in the ethyl acetate extract and fractions obtained by use of centrifugal partition chromatography (CPC) were volatile cyclic dipeptides, cyclo(l-phenylalanyl-l-prolyl), cyclo(l-leucyl-l-prolyl), and their stereoisomers. In addition to the diketopiperazine derivatives, this liverwort endophyte also produced arylethylamides and fatty acids amides. The presence of N-phenethylacetamide and oleic acid amide was confirmed. The endophyte extract and isolated fractions showed a potential selective anticancer influence on all tested cancer cell lines. Moreover, the extract and the first separated fraction noticeably diminished the formation of the HHV-1-induced cytopathic effect and reduced the virus infectious titer by 0.61-1.16 log and the viral load by 0.93-1.03 log. Endophytic organisms produced metabolites with potential anticancer and antiviral activity; thus, future studies should aim to isolate pure compounds and evaluate their biological activities.
Collapse
Affiliation(s)
- Mateusz Stelmasiewicz
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Baba MS, Abd Jalil MA. In Vivo Antimalarial Activity of Trichosanthes cucumerina Against Plasmodium berghei NK65 in Mice. MALAYSIAN APPLIED BIOLOGY 2022; 51:187-192. [DOI: 10.55230/mabjournal.v51i5.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Undoubtedly, malaria is a vector-borne infectious disease that is increasingly being given attention by many researchers in their efforts to find the best drugs for its treatment. Four groups of mice (6-8 weeks old, 20-25 gram body weight (g bw) were inoculated with Plasmodium berghei NK65 intraperitoneally (i.p.) at 1.0 × 106 infected red blood cells (RBC) before being orally treated for the prophylactic and curative treatment regime with 0.2 mL of 100 mg/kg bw freeze-dried T. cucumerina aqueous extract. Parasitemia levels and inhibition rates were microscopically measured using Giemsa stained blood smear method. Trichosanthes cucumerina possessed strong antimalarial activities against P. berghei NK65 infection in mice. A significant correlation was successfully recorded between the survival time of the seven-day prophylactic treatment group (P7) with its ability to inhibit parasite growth as compared to the curative treatment groups. However, these values are still incomparable to the control group treated with the commercial drugs primaquine and chloroquine. In addition, blood biochemical toxicity analysis of ALT, AST, ALP, and STP showed that acute and sub-acute toxicity treatments of T. cucumerina did not cause liver injury and were non-toxic to the animals. Thus, this study significantly proves (p≤0.05, n=6) that T. cucumerina has antiparasitic properties that can be manipulated as an alternative antimalarial drug.
Collapse
|
5
|
Nazari MT, Machado BS, Marchezi G, Crestani L, Ferrari V, Colla LM, Piccin JS. Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech 2022; 12:232. [PMID: 35996673 PMCID: PMC9391553 DOI: 10.1007/s13205-022-03307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this article, we reviewed the international scientific production of the last years on actinomycetes isolated from soil aiming to report recent advances in using these microorganisms for different applications. The most promising genera, isolation conditions and procedures, pH, temperature, and NaCl tolerance of these bacteria were reported. Based on the content analysis of the articles, most studies have focused on the isolation and taxonomic description of new species of actinomycetes. Regarding the applications, the antimicrobial potential (antibacterial and antifungal) prevailed among the articles, followed by the production of enzymes (cellulases and chitinases, etc.), agricultural uses (plant growth promotion and phytopathogen control), bioremediation (organic and inorganic contaminants), among others. Furthermore, a wide range of growth capacity was verified, including temperatures from 4 to 60 °C (optimum: 28 °C), pH from 3 to 13 (optimum: 7), and NaCl tolerance up to 32% (optimum: 0-1%), which evidence a great tolerance for actinomycetes cultivation. Streptomyces was the genus with the highest incidence among the soil actinomycetes and the most exploited for different uses. Besides, the interest in isolating actinomycetes from soils in extreme environments (Antarctica and deserts, for example) is growing to explore the adaptive capacities of new strains and the secondary metabolites produced by these microorganisms for different industrial interests, especially for pharmaceutical, food, agricultural, and environmental purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Larissa Crestani
- Graduate Program Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| |
Collapse
|
6
|
Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L. Molecules 2021; 27:molecules27010153. [PMID: 35011384 PMCID: PMC8746834 DOI: 10.3390/molecules27010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Liverwort endophytes could be a source of new biologically active substances, especially when these spore-forming plants are known to produce compounds that are not found in other living organisms. Despite the significant development of plant endophytes research, there are only a few studies describing liverwort endophytic microorganisms and their metabolites. In the presented study, the analysis of the volatile compounds obtained from thallose liverwort species, Marchantia polymorpha L., and its endophytes was carried out. For this purpose, non-polar extracts of plant material and symbiotic microorganisms were obtained. The extracts were analyzed using gas chromatography coupled to mass spectrometry. Compounds with the structure of diketopiperazine in the endophyte extract were identified. Liverwort volatile extract was a rich source of cuparane-, chamigrane-, acorane-, and thujopsane-type sesquiterpenoids. The cytotoxicity of ethyl acetate extracts from endophytic microorganisms was evaluated on a panel of cancer (FaDu, HeLa, and SCC-25) cell lines and normal (VERO), and revealed significant anticancer potential towards hypopharyngeal squamous cell carcinoma and cervical adenocarcinoma.
Collapse
|
7
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
8
|
Compounds from Mucuna pruriens Seeds and their Neuroprotective Effects. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Ishiyama A, Hokari R, Nonaka K, Chiba T, Miura H, Otoguro K, Iwatsuki M. Diatretol, an α, α'-dioxo-diketopiperazine, is a potent in vitro and in vivo antimalarial. J Antibiot (Tokyo) 2021; 74:266-268. [PMID: 33446930 PMCID: PMC7807217 DOI: 10.1038/s41429-020-00390-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023]
Abstract
A fungal metabolite, diatretol, has shown to be a promising antimalarial agent. Diatretol displayed potent in vitro antiparasitic activity against the Plasmodium falciparum K1 strain, with an IC50 value of 378 ng ml-1, as well as in vivo efficacy in a Plasmodium berghei-infected mice model, with ca. 50% inhibition at 30 mg/kg (p.o.).
Collapse
Affiliation(s)
- Aki Ishiyama
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | - Rei Hokari
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | - Kenichi Nonaka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | - Takuya Chiba
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | - Hiromi Miura
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | - Kazuhiko Otoguro
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan.
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, 108-8641, Tokyo, Japan.
| |
Collapse
|
10
|
Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL. Metabolite profiling of endophytic Streptomyces spp. and its antiplasmodial potential. PeerJ 2021; 9:e10816. [PMID: 33777509 PMCID: PMC7971094 DOI: 10.7717/peerj.10816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach. Methods Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts. Results The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.
Collapse
Affiliation(s)
- Siti Junaidah Ahmad
- Faculty of Health Sciences, University of Sultan Zainal Abidin, Kuala Nerus, Terengganu, Malaysia.,Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noor Wini Mazlan
- Analytical and Environmental Chemistry, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Mohd Shukri Baba
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University, Kuantan, Pahang, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Leesombun A, Iijima M, Pagmadulam B, Orkhon B, Doi H, Issiki K, Sawa R, Nihei CI, Nishikawa Y. Metacytofilin has potent anti-malarial activity. Parasitol Int 2020; 81:102267. [PMID: 33307212 DOI: 10.1016/j.parint.2020.102267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 11/15/2022]
Abstract
Metacytofilin (MCF) was isolated from the fungus Metarhizium sp. TA2759. Although MCF possesses anti-Toxoplasma activity, the effects of this compound against other parasites are unknown. Here, we evaluated the in vitro anti-malarial activity of MCF against the 3D7 strain and the chloroquine-resistant K1 strain of Plasmodium falciparum. The half maximal inhibitory concentrations (IC50) of MCF against the 3D7 and K-1 strains following culture for 48 h were 666 nM and 605 nM, respectively. Artemisinin was more potent than MCF against both strains (3D7 IC50: 17.4 nM; K-1 IC50: 18.3 nM), while chloroquine was ineffective against the chloroquine-resistant strain (3D7 IC50: 39.1 nM; K-1 IC50: 1.62 μM). MCF affected the ring stage of the parasites, resulting in their death as shown by spots within red blood cells. MCF also inhibited parasite growth following culture for 72 h (3D7 IC50, 285 nM). Four optical isomers of cyclo[Leu-Phe]-diketopiperazine derivatives with modified methoxy and/or hydroxyl groups lost anti-malarial activity, suggesting that the spatial positions of the methoxy and hydroxyl groups in MCF play an important role in its anti-malarial effects. Together, these data suggest that MCF may represent a promising lead compound for treatment of drug-resistant malarial parasites.
Collapse
Affiliation(s)
- Arpron Leesombun
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon Nakhonpathom 73170, Thailand
| | - Masatomi Iijima
- Institute of Microbial Chemistry (BIKAKEN), Shizuoka 410-0301, Japan
| | - Baldorj Pagmadulam
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Banzragchgarav Orkhon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hiroyasu Doi
- Institute of Microbial Chemistry (BIKAKEN), Shizuoka 410-0301, Japan
| | - Kunio Issiki
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo 141-0021, Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo 141-0021, Japan
| | - Coh-Ichi Nihei
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo 141-0021, Japan.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
12
|
Silva TL, Toffano L, Fernandes JB, das Graças Fernandes da Silva MF, de Sousa LRF, Vieira PC. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases. Braz J Microbiol 2020; 51:1169-1175. [PMID: 32189177 PMCID: PMC7455666 DOI: 10.1007/s42770-020-00256-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 μM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 μM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.
Collapse
Affiliation(s)
- Taynara Lopes Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Leonardo Toffano
- Department of Agronomy, Brasil University, Campus Descalvado, Descalvado, SP, 13565-905, Brazil
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | - Paulo Cezar Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
13
|
Otto-Hanson LK, Kinkel LL. Densities and inhibitory phenotypes among indigenous Streptomyces spp. vary across native and agricultural habitats. MICROBIAL ECOLOGY 2020; 79:694-705. [PMID: 31656973 DOI: 10.1007/s00248-019-01443-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Streptomyces spp. perform vital roles in natural and agricultural soil ecosystems including in decomposition and nutrient cycling, promotion of plant growth and fitness, and plant disease suppression. Streptomyces densities can vary across the landscape, and inhibitory phenotypes are often a result of selection mediated by microbial competitive interactions in soil communities. Diverse environmental factors, including those specific to habitat, are likely to determine microbial densities in the soil and the outcomes of microbial species interactions. Here, we characterized indigenous Streptomyces densities and inhibitory phenotypes from soil samples (n = 82) collected in 6 distinct habitats across the Cedar Creek Ecosystem Science Reserve (CCESR; agricultural, prairie, savanna, wetland, wet-woodland, and forest). Significant variation in Streptomyces density and the frequency of antagonistic Streptomyces were observed among habitats. There was also significant variation in soil chemical properties among habitats, including percent carbon, percent nitrogen, available phosphorus, extractable potassium, and pH. Density and frequency of antagonists were significantly correlated with one or more environmental parameters across all habitats, though relationships with some parameters differed among habitats. In addition, we found that habitat rather than spatial proximity was a better predictor of variation in Streptomyces density and inhibitory phenotypes. Moreover, habitats least conducive for Streptomyces growth and proliferation, as determined by population density, had increased frequencies of inhibitory phenotypes. Identifying environmental parameters that structure variation in density and frequency of antagonistic Streptomyces can provide insight for determining factors that mediate selection for inhibitory phenotypes across the landscape.
Collapse
Affiliation(s)
- L K Otto-Hanson
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA.
| | - L L Kinkel
- University of Minnesota-Twin Cities, 1991 Upper Buford Circle, 495 Borlaug Hall, Saint Paul, MN, 55108, USA
| |
Collapse
|
14
|
Pagmadulam B, Tserendulam D, Rentsenkhand T, Igarashi M, Sawa R, Nihei CI, Nishikawa Y. Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasitol Int 2019; 74:101961. [PMID: 31437553 DOI: 10.1016/j.parint.2019.101961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/16/2023]
Abstract
Natural resources are recognized as important sources of potential drugs for treating various infections, and microorganisms are a rich natural source of diverse compounds. Among the world's microorganisms, actinomycetes, which are abundant in soil and marine, are the well-known producers of a wide range of bioactive secondary metabolites and antibiotics. In the present study, four actinomycetes (samples N25, N6, N18, and N12) were isolated from soil samples in Mongolia. Phylogenetic analysis of these isolates revealed that they share the highest similarity with Streptomyces canus (N25), S. cirratus (N6), S. bacillaris (N18) and S. peucetius (N12), based on 16S rRNA gene sequencing. Crude extracts were obtained from them using ethyl acetate, and the crude fractions were separated by thin layer chromatography. The fractions were then evaluated for their cytotoxicities and their anti-Toxoplasma and antimalarial activities in vitro. The S. canus (N25) crude extract was selected for further chemical characterization based on its antiprotozoal activities. Using liquid chromatography-high resolution mass spectrometry, phenazine-1-carboxylic acid (PCA) was detected and identified in the active fractions of the metabolites from strain N25. We next confirmed that commercially available PCA possesses antiprotozoal activity against T. gondii (IC50: 55.5 μg/ml) and Plasmodium falciparum (IC50: 6.4 μg/ml) in vitro. The results of this study reveal that soil actinomycetes are potential sources of antiprotozoal compounds, and that PCA merits further investigation as an anti-protozoal agent.
Collapse
Affiliation(s)
- Baldorj Pagmadulam
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Laboratory of Microbial Synthesis, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Peace avenue-54b, Mongolia
| | - Dugarsuren Tserendulam
- Laboratory of Microbial Synthesis, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Peace avenue-54b, Mongolia
| | - Tserennadmid Rentsenkhand
- Laboratory of Microbial Synthesis, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Peace avenue-54b, Mongolia
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Coh-Ichi Nihei
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
15
|
Vu THN, Nguyen QH, Dinh TML, Quach NT, Khieu TN, Hoang H, Chu-Ky S, Vu TT, Chu HH, Lee J, Kang H, Li WJ, Phi QT. Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and, genetic features. J GEN APPL MICROBIOL 2019; 66:24-31. [PMID: 31378748 DOI: 10.2323/jgam.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endophytic microbes associated with medicinal plants are considered to be potential producers of various bioactive secondary metabolites. The present study investigated the distribution, antimicrobial activity and genetic features of endophytic actinomycetes isolated from the medicinal plant Cinnamomum cassia Presl collected in Hoa Binh province of northern Vietnam. Based on phenotypic characteristics, 111 actinomycetes were isolated from roots, stems and leaves of the host plants by using nine selective media. The isolated actinomycetes were mainly recovered from stems (n = 67; 60.4%), followed by roots (n = 29; 26.1%) and leaves (n = 15; 13.5%). The isolates were accordingly assigned into 5 color categories of aerial mycelium, of which gray is the most dominant (n = 42; 37.8%), followed by white (n = 33; 29.7%), yellow (n = 25; 22,5%), red (n = 8; 7.2%) and green (n = 3; 2.7%). Of the total endophytic actinomycetes tested, 38 strains (occupying 34.2%) showed antimicrobial activity against at least one of nine tested microbes and, among them, 26 actinomycetes (68.4%) revealed anthracycline-like antibiotics production. Analysis of 16S rRNA gene sequences deposited on GenBank (NCBI) of the antibiotic-producing actinomycetes identified 3 distinct genera, including Streptomyces, Microbacterium, and Nocardia, among which Streptomyces genus was the most dominant and represented 25 different species. Further genetic investigation of the antibiotic-producing actinomycetes found that 28 (73.7%) and 11 (28.9%) strains possessed genes encoding polyketide synthase (pks) and nonribosomal peptide synthetase (nrps), respectively. The findings in the present study highlighted endophytic actinomycetes from C. cassia Presl which possessed broad-spectrum bioactivities with the potential for applications in the agricultural and pharmaceutical sectors.
Collapse
Affiliation(s)
- Thi Hanh Nguyen Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Quang Huy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST).,University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)
| | - Thi My Linh Dinh
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Ngoc Tung Quach
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Thi Nhan Khieu
- Department of Science, Technology and Environment, Ministry of Education and Training
| | - Ha Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Son Chu-Ky
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST)
| | - Thu Trang Vu
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST)
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)
| | - Jusung Lee
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University NS-80
| | - Heonjoong Kang
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University NS-80.,Research Institute of Oceanography, Seoul National University NS-80
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University
| | - Quyet-Tien Phi
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)
| |
Collapse
|
16
|
Methanolic Extract of Artemia salina Eggs and Various Fractions in Different Solvents Contain Potent Compounds That Decrease Cell Viability of Colon and Skin Cancer Cell Lines and Show Antibacterial Activity against Pseudomonas aeruginosa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9528256. [PMID: 31198432 PMCID: PMC6526577 DOI: 10.1155/2019/9528256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
Artemia salina, crustaceans of class Branchiopoda and order Anostraca, are living and reproducing only in highly saline natural lakes and in other reservoirs where sea water is evaporated to produce salt. Artemia salina eggs can be purchased from pet stores, where they are sold as tropical fish food and a ready source for hatching shrimp. In the current study, methanolic crude extracts and various fractions of Artemia salina eggs extracted in other solvents were tested for effects on cell viability of human colorectal cancer cells (HCT116) and melanoma cells (B16F10) using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. A methanolic crude extract of eggs was obtained by cold maceration, followed by fractionation to obtain hexane, chloroform, ethyl acetate, n-butanol, and aqueous fractions. The methanolic crude extract decreased cell viability of HCT-116 and B16F10 cell lines at higher concentrations. The other fractions were evaluated using a cell viability assay, and chloroform and hexane showed the highest activity at significantly lower concentrations than did the methanolic fraction. Full scan profiles of the methanolic crude extract and the chloroform and hexane fractions were obtained by gas chromatography mass spectrometry (GC-MS), and the resultant compounds were identified by comparing their spectral data to those available in spectral matching libraries. ROS generation assay, flow cytometry, and western blot analysis provided supporting evidence that the hexane and chloroform fractions induced cell death in HCT116 and B16-F10 cell lines. All fractions were further tested for antibacterial activity against Pseudomonas aeruginosa, among which the hexane fraction showed the highest zone of inhibition on LB nutrient agar plates. This study demonstrated promising anticancer and antibacterial effects of Artemia salina egg extracts. Our results suggest that pure bioactive compounds obtained from Artemia salina eggs can provide new insights into the mechanisms of colon and skin cancer, as well as Pseudomonas aeruginosa inhibition.
Collapse
|
17
|
Ramachandran G, Rajivgandhi G, Maruthupandy M, Manoharan N. Extraction and partial purification of secondary metabolites from endophytic actinomycetes of marine green algae Caulerpa racemosa against multi drug resistant uropathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Singh R, Dubey AK. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Front Microbiol 2018; 9:1767. [PMID: 30135681 PMCID: PMC6092505 DOI: 10.3389/fmicb.2018.01767] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Actinobacteria are wide spread in nature and represent the largest taxonomic group within the domain Bacteria. They are abundant in soil and have been extensively explored for their therapeutic applications. This versatile group of bacteria has adapted to diverse ecological habitats, which has drawn considerable attention of the scientific community in recent times as it has opened up new possibilities for novel metabolites that may help in solving some of the most challenging problems of the day, for example, novel drugs for drug-resistant human pathogens, affordable means to maintain ecological balance in various habitats, and alternative practices for sustainable agriculture. Traditionally, free dwelling soil actinobacteria have been the subject of intensive research. Of late, symbiotic actinobacteria residing as endophytes within the plant tissues have generated immense interest as potential source of novel compounds, which may find applications in medicine, agriculture, and environment. In the light of these possibilities, this review focuses on the diversity of endophytic actinobacteria isolated from the plants of extreme habitats and specific ecological niches. Furthermore, an attempt has been made to assign chemical class to the compounds obtained from endophytic actinobacteria. Potential therapeutic applications of these compounds and the utility of endophytic actinobacteria in agriculture and environment are discussed.
Collapse
Affiliation(s)
| | - Ashok K. Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
19
|
Discovery of Antimalarial Drugs from Streptomycetes Metabolites Using a Metabolomic Approach. J Trop Med 2017; 2017:2189814. [PMID: 29123551 PMCID: PMC5662797 DOI: 10.1155/2017/2189814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 12/05/2022] Open
Abstract
Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging “omics” technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS), Gas Chromatography-Mass Spectrophotometry (GC-MS), and Nuclear Magnetic Resonance (1H-NMR) spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia.
Collapse
|