1
|
Sharma P, Bhattacharyya J, Sharma N. Phloretin and Enalapril co-administration ameliorates hyperglycemia mediated exacerbation of myocardial injury in rats. Eur J Pharmacol 2025; 995:177394. [PMID: 39978711 DOI: 10.1016/j.ejphar.2025.177394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Hyperglycemia exacerbates myocardial injury by amplifying oxidative stress, inflammation and apoptosis. This study explores the therapeutic potential of phloretin and enalapril co-administration in mitigating hyperglycemia-exacerbated myocardial damage. Using network pharmacology, 47 therapeutic targets and 10 hub genes, including albumin, insulin, prostaglandin endoperoxide synthase 2, matrix metallopeptidase 9, caspase3, tumor protein p53, insulin like growth factor 1, transforming growth factor beta 1, matrix metallopeptidase 2 and glycogen synthase kinase 3, were identified as critical to the drugs' synergistic action. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted key pathways, such as Interleukin-17 (IL-17), Advanced Glycation End Product-Receptor for Advanced Glycation End Products (AGE-RAGE), Mitogen activated protein kinase (MAPK), Phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt), Tumor necrosis factor (TNF) and Forkhead box O (FoxO), involved in angiogenesis, glucose metabolism, oxidative stress regulation and inflammation. Molecular docking confirmed strong affinities of phloretin and enalapril for key targets like insulin (INS), matrix metallopeptidase 9 (MMP9), prostaglandin endoperoxide synthase 2 (PTGS2) and insulin like growth factor 1 (IGF1). In-vivo studies using hyperglycemic rats with isoproterenol-induced myocardial ischemia validated the therapeutic efficacy of the combination. Co-treatment significantly enhanced antioxidant enzyme levels, reduced myocardial injury markers and improved histopathological features. These findings demonstrate the synergistic cardioprotective effects of phloretin and enalapril, offering a promising strategy for managing hyperglycemia and cardiac injury. The study provides a foundation for further preclinical and clinical evaluations to optimize the use of this combination in cardiovascular therapies.
Collapse
Affiliation(s)
- Prasanti Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Joydeep Bhattacharyya
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Dagar N, Habshi T, Shelke V, Jadhav HR, Gaikwad AB. Esculetin and Phloretin Combination Mitigates Acute Kidney Injury-Diabetes Comorbidity via Regulating Mitophagy and Inflammation: A Dual-Pronged Approach. Phytother Res 2025. [PMID: 40159308 DOI: 10.1002/ptr.8489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/29/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025]
Abstract
Induction of PINK1/Parkin-mediated mitophagy and reducing inflammation via targeting the TLR4/NF-κB axis simultaneously could be a promising therapy for the complex pathophysiology of AKI-diabetes comorbidity. Earlier, esculetin by mitophagy activation and phloretin by inhibiting inflammation have shown promising renoprotection. Therefore, we aimed to evaluate the synergistic renoprotective ability of esculetin and phloretin combination against AKI-diabetes comorbidity. AKI-diabetes comorbidity was mimicked in vivo by bilateral ischemia/reperfusion injury (IRI) in diabetic rats and in vitro by sodium azide-induced hypoxia/reperfusion injury (HRI) under hyperglycemic conditions. The cells were pretreated with esculetin (50 μM) and phloretin (50 μM) for 24 h. Similarly, the diabetic AKI rats received esculetin (50 mg/kg/day, p.o.) and phloretin (50 mg/kg/day, p.o.) pretreatment for 4 days and 1 h before surgery. Further, the obtained samples were utilized for different experiments. Esculetin and phloretin in diabetic AKI rats preserved kidney function and prevented kidney injury, indicated by reduced plasma creatinine, blood urea nitrogen, and kidney injury molecule 1. Esculetin improved mitophagy, indicated by increased mitophagosome formation, increased PINK1, Parkin, LC3B, and decreased p62 expression. Similarly, phloretin suppressed the diabetic AKI-related increased expression of inflammatory mediators including NF-κB, TLR4, TNF-α, and MCP-1. Moreover, combination therapy showed a more pronounced effect via synergistically improving mitophagy, maintaining ΔΨm, preventing mitochondrial dysfunction, reducing inflammation, and apoptosis. Esculetin and phloretin combination ameliorated AKI-diabetes comorbidity more effectively than their monotherapies. Esculetin upregulated the PINK1/Parkin-mediated mitophagy, and phloretin reduced inflammation by inhibiting the TLR4/NF-κB axis, thereby synergistically preventing kidney dysfunction.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Tahib Habshi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
3
|
Dagar N, Jadhav HR, Gaikwad AB. Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol Divers 2025; 29:1-19. [PMID: 38578376 DOI: 10.1007/s11030-024-10829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024]
Abstract
Acute kidney injury (AKI) is a global health concern with high incidence and mortality, where diabetes further worsens the condition. The available treatment options are not uniformly effective against the complex pathogenesis of AKI-diabetes comorbidity. Hence, combination therapies based on the multicomponent, multitarget approach can tackle more than one pathomechanism and can aid in AKI-diabetes comorbidity management. This study aimed to investigate the therapeutic potential of esculetin and phloretin combination against AKI-diabetes comorbidity by network pharmacology followed by validation by molecular docking and dynamics. The curative targets for diabetes, AKI, esculetin, and phloretin were obtained from DisGeNET, GeneCards, SwissTargetPrediction database. Further, the protein-protein interaction of the potential targets of esculetin and phloretin against AKI-diabetes comorbidity was investigated using the STRING database. Gene ontology and pathway enrichment analysis were performed with the help of the DAVID and KEGG databases, followed by network construction and analysis via Cytoscape. Molecular docking and dynamic simulations were performed to validate the targets of esculetin and phloretin against AKI-diabetes comorbidity. We obtained 6341 targets for AKI-diabetes comorbidity. Further, a total of 54 and 44 targets of esculetin and phloretin against AKI-diabetes comorbidity were retrieved. The top 10 targets for esculetin selected based on the degree value were AKR1B1, DAO, ESR1, PLK1, CA3, CA2, CCNE1, PRKN, HDAC2, and MAOA. Similarly, phloretin's 10 key targets were ACHE, CDK1, MAPK14, APP, CDK5R1, CCNE1, MAOA, MAOB, HDAC6, and PRKN. These targets were enriched in 58 pathways involved in the pathophysiology of AKI-diabetes comorbidity. Further, esculetin and phloretin showed an excellent binding affinity for these critical targets. The findings of this study suggest that esculetin and phloretin combination as a multicomponent multitarget therapy has the potential to prevent AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
4
|
Moawad F, Le Meur M, Ruel Y, Gaëlle Roullin V, Pouliot R, Brambilla D. Impact of the crystal size of crystalline active pharmaceutical compounds on loading into microneedles. Int J Pharm 2024; 649:123676. [PMID: 38056795 DOI: 10.1016/j.ijpharm.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Microneedle (MN) technology offers a promising platform for the delivery of a wide variety of active pharmaceutical compounds into and/or through the skin. Yet, the low loading capacity of MNs limits their clinical translation. The solid state of loaded compounds, crystallinity versus amorphousness and crystal size of the former, could greatly affect their loading. Here, we investigated the effect of the crystal size of crystalline compounds on their loading into dissolving MNs, prepared using the solvent-casting technique. A model crystalline compound was subjected to crystal size reduction via wet bead milling and loaded into dissolving MNs. A range of crystal sizes, from micro to nano, was obtained via different milling periods. The obtained crystals were characterized for their size, morphology, and sedimentation behavior. Besides, their content, solid state inside the MNs, and impact on the MN mechanical strength were assessed. The crystals exhibited size-dependent sedimentation, which dramatically affected their loading inside the MNs. However, crystal size and sedimentation demonstrated a negligible effect on the mechanical strength and sharpness of the needles, hence no anticipated impact on the MNs' drug delivery efficiency. The elucidation of the correlation between the crystal size and MN loading opens new potentials to address a major drawback in MN technology.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Marion Le Meur
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada
| | | | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
5
|
Li X, Sun T, Liu J, Wei S, Yang Y, Liu J, Zhang B, Li W. Phloretin alleviates doxorubicin-induced cardiotoxicity through regulating Hif3a transcription via targeting transcription factor Fos. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155046. [PMID: 37659297 DOI: 10.1016/j.phymed.2023.155046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Doxorubicin (Dox), a chemotherapeutic agent known for its efficacy, has been associated with the development of severe cardiotoxicity, commonly referred to as doxorubicin-induced cardiotoxicity (DIC). The role and mechanism of action of phloretin (Phl) in cardiovascular diseases are well-established; however, its specific function and underlying mechanism in the context of DIC have yet to be fully elucidated. OBJECTIVE This research aimed to uncover the protective effect of Phl against DIC in vivo and in vitro, while also providing a comprehensive understanding of the underlying mechanisms involved. METHODS DIC cell and murine models were established. The action targets and mechanism of Phl against DIC were comprehensively examined by systematic network pharmacology, molecular docking, transcriptomics technologies, transcription factor (TF) prediction, and experimental validation. RESULTS Phl relieved Dox-induced cell apoptosis in vitro and in vivo. Through network pharmacology analysis, a total of 554 co-targeted genes of Phl and Dox were identified. Enrichment analysis revealed several key pathways including the PI3K-Akt signaling pathway, Apoptosis, and the IL-17 signaling pathway. Protein-protein interaction (PPI) analysis identified 24 core co-targeted genes, such as Fos, Jun, Hif1a, which were predicted to bind well to Phl based on molecular docking. Transcriptomics analysis was performed to identify the top 20 differentially expressed genes (DEGs), and 202 transcription factors (TFs) were predicted for these DEGs. Among these TFs, 10 TFs (Fos, Jun, Hif1a, etc.) are also the co-targeted genes, and 3 TFs (Fos, Jun, Hif1a) are also the core co-targeted genes. Further experiments validated the finding that Phl reduced the elevated levels of Hif3a (one of the top 20 DEGs) and Fos (one of Hif3a's predicted TFs) induced by Dox. Moreover, the interaction between Fos protein and the Hif3a promoter was confirmed through luciferase reporter assays. CONCLUSION Phl actively targeted and down-regulated the Fos protein to inhibit its binding to the promoter region of Hif3a, thereby providing protection against DIC.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; School of Pharmacy, Central South University, Changsha, Hunan 410078, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; School of Pharmacy, Central South University, Changsha, Hunan 410078, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Sha SP, Modak D, Sarkar S, Roy SK, Sah SP, Ghatani K, Bhattacharjee S. Fruit waste: a current perspective for the sustainable production of pharmacological, nutraceutical, and bioactive resources. Front Microbiol 2023; 14:1260071. [PMID: 37942074 PMCID: PMC10628478 DOI: 10.3389/fmicb.2023.1260071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Fruits are crucial components of a balanced diet and a good source of natural antioxidants, that have proven efficacy in various chronic illnesses. Various kinds of waste generated from fruit industries are considered a global concern. By utilizing this fruit waste, the international goal of "zero waste" can be achieved by sustainable utilization of these waste materials as a rich source of secondary metabolites. Moreover, to overcome this waste burden, research have focused on recovering the bioactive compounds from fruit industries and obtaining a new strategy to combat certain chronic diseases. The separation of high-value substances from fruit waste, including phytochemicals, dietary fibers, and polysaccharides which can then be used as functional ingredients for long-term health benefits. Several novel extraction technologies like ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) could provide an alternative approach for successful extraction of the valuable bioactives from the fruit waste for their utilization as nutraceuticals, therapeutics, and value-added products. Most of these waste-derived secondary metabolites comprise polyphenols, which have been reported to have anti-inflammatory, insulin resistance-treating, cardiovascular disease-maintaining, probiotics-enhancing, or even anti-microbial and anti-viral capabilities. This review summarizes the current knowledge of fruit waste by-products in pharmacological, biological, and probiotic applications and highlights several methods for identifying efficacious bioactive compounds from fruit wastes.
Collapse
Affiliation(s)
- Shankar Prasad Sha
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Debabrata Modak
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sourav Sarkar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| | - Sumit Prasad Sah
- Food Microbiology Laboratory, Department of Botany, Kurseong College, Kurseong, India
| | - Kriti Ghatani
- Food Microbiology Laboratory, Department of Food Technology, University of North Bengal, Raja Rammohunpur, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, India
| |
Collapse
|
7
|
Kumar S, Chhimwal J, Kumar S, Singh R, Patial V, Purohit R, Padwad YS. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice. Life Sci 2023; 322:121668. [PMID: 37023949 DOI: 10.1016/j.lfs.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
AIMS The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.
Collapse
Affiliation(s)
- Shiv Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suresh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
8
|
Shen TJ, Chen CL, Tsai TT, Jhan MK, Bai CH, Yen YC, Tsai CW, Tseng PC, Yu CY, Lin CF. Hyperglycemia exacerbates dengue virus infection by facilitating poly(A)-binding protein-mediated viral translation. JCI Insight 2022; 7:e142805. [PMID: 36125898 PMCID: PMC9675471 DOI: 10.1172/jci.insight.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is highly comorbid with severe dengue diseases; however, the underlying mechanisms are unclear. Patients with DM have a 1.61-fold increased risk of developing dengue hemorrhagic fever. In search of host factors involved in dengue virus (DENV) infection, we used high-glucose (HG) treatment and showed that HG increased viral protein expression and virion release but had no effects on the early stages of viral infection. After HG stimulation, DENV-firefly luciferase-transfected assay and cellular replicon-based assay indicated increased viral translation, whereas using the glucose uptake inhibitor phloretin blocked this effect. HG treatment increased the translational factor poly(A)-binding protein (PABP) in a glucose transporter-associated, PI3K/AKT-regulated manner. Silencing PABP significantly decreased HG-prompted virion production. HG enhanced the formation of the PABP-eukaryotic translation initiation factor 4G complex, which is regulated by protein-disulfide isomerase. Hyperglycemia increased PABP expression, mortality rate, viral protein expression, and viral loads in streptozotocin-induced DM mice. Overall, hyperglycemic stress facilitates DENV infection by strengthening PABP-mediated viral translation.
Collapse
Affiliation(s)
- Ting-Jing Shen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kai Jhan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Yen
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Tsai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Nakhate KT, Badwaik H, Choudhary R, Sakure K, Agrawal YO, Sharma C, Ojha S, Goyal SN. Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin. Nutrients 2022; 14:nu14173638. [PMID: 36079895 PMCID: PMC9460114 DOI: 10.3390/nu14173638] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases including cancers, diabetes, liver injury, kidney injury, encephalomyelitis, ulcerative colitis, asthma, arthritis, and cognitive impairment. It ameliorates the complications associated with diabetes such as cardiomyopathy, hypertension, depression, memory impairment, delayed wound healing, and peripheral neuropathy. It is effective against various microbial infections including Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Escherichia coli, Candida albicans and methicillin-resistant Staphylococcus aureus. Considering the therapeutic benefits, it generated interest for the pharmaceutical development. However, poor oral bioavailability is the major drawback. Therefore, efforts have been undertaken to enhance its bioavailability by modifying physicochemical properties and molecular structure, and developing nanoformulations. In the present review, we discussed the pharmacological actions, underlying mechanisms and molecular targets of phloretin. Moreover, the review provides insights into physicochemical and pharmacokinetic characteristics, and approaches to promote the pharmaceutical development of phloretin for its therapeutic applications in the future. Although convincing experimental data are reported, human studies are not available. In order to ascertain its safety, further preclinical studies are needed to encourage its pharmaceutical and clinical development.
Collapse
Affiliation(s)
- Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Bhilai 490020, Chhattisgarh, India
| | - Rajesh Choudhary
- Department of Pharmacology, Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai 490020, Chhattisgarh, India
| | - Kalyani Sakure
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai 490024, Chhattisgarh, India
| | - Yogeeta O. Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.O.); (S.N.G.)
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
- Correspondence: (S.O.); (S.N.G.)
| |
Collapse
|
10
|
In Vitro Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities and Antioxidant Capacity of Helichrysum cymosum and Helichrysum pandurifolium Schrank Constituents. SEPARATIONS 2022. [DOI: 10.3390/separations9080190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is a group of systemic metabolic disorders with a high rate of morbidity and mortality worldwide. Due to the detrimental side effects of the current treatment, there is a great need to develop more effective antidiabetic drugs with fewer side effects. Natural products are a well-known source for the discovery of new scaffolds for drug discovery, including new antidiabetic drugs. The genus Helichrysum has been shown to produce antidiabetic natural products. In this investigation, the methanolic extract of H. cymosum and H. pandurifolium resulted in the isolation and identification of eleven known compounds viz 5,8-dihydroxy-7-methoxy-2-phenyl flavanone (1), pinostrobin (2), dihydrobaicalein (3), glabranin (4), allopatuletin (5), pinostrobin chalcone (6), helichrysetin (7), 5-hydroxy-3,7-dimethoxyflavone (8), 3,5-dihydroxy-6,7,8-trimethoxyflavone (9), 3-O-methylquercetin (10), and 3-methylethergalangin (11). The in vitro bio-evaluation of isolated compounds against alpha-glucosidase showed that 10, 5, and 11 demonstrated the highest alpha-glucosidase inhibitory activity with IC50 values of 9.24 ± 0.4, 12.94 ± 0.2, and 16.00 ± 2.4 μM respectively, followed by 7 and 3 with IC50 values of 18.16 ± 1.2 and 44.44 ± 0.2 μM respectively. However, none of these compounds showed a measurable inhibitory effect on alpha-amylase under the experimental conditions used except compound 10 which showed a poor alpha-amylase inhibitory activity with an IC50 value of 230.66 ± 15.8 μM. Additionally, strong total antioxidant capacities were demonstrated by 10, 5 and 7 in ferric-ion reducing antioxidant power assay (374.34 ± 69.7; 334.37 ± 1.7; 279.93 ± 0.8) µmol AAE/mmol. This is the first scientific report to be carried out on alpha-glucosidase inhibitory activities and antioxidant capacities of H. cymosum constituents and a first report on the isolation and identification of methoxyflavanoids from H. pandurifolium. Our findings suggest that these compounds are promising candidates to inhibit alpha-glucosidase as well as oxidative stress related to diabetes. Results from molecular docking provided insight into the observed in vitro alpha-glucosidase inhibitory activities for 5, 7, 10, and 11. It is envisaged that the isolated phytochemicals from these plants may contribute to the development of hypoglycemic lead compounds with anti-diabetic potential.
Collapse
|
11
|
Itou da Silva FS, Veiga Bizerra PF, Mito MS, Constantin RP, Klosowski EM, Lima de Souza BT, Moreira da Costa Menezes PV, Alves Bueno PS, Nanami LF, Marchiosi R, Dantas Dos Santos W, Ferrarese-Filho O, Ishii-Iwamoto EL, Constantin RP. The metabolic and toxic acute effects of phloretin in the rat liver. Chem Biol Interact 2022; 364:110054. [PMID: 35872042 DOI: 10.1016/j.cbi.2022.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.
Collapse
Affiliation(s)
- Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | | | | | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
12
|
Development and Functional Analysis of Lithocarpus polystachyus (wall.) Rehd Black Tea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined the development conditions and functional properties of a novel compound tea Lithocarpus polystachyus (wall.) Rehd (L. polystachyus, LPR) black tea (LPRBT). The compound tea was developed by fermentation using fresh leaves (Camellia sinensis cv. Qianmei 601) as the main raw material with LPR powder as an additive. Based on the single factor and orthogonal tests with sensory scores as indicators, a withered leaves–LPR powder mass ratio of 9:1 with a 6 h fermentation time was determined to be the production condition of LPRBT with a sensory score of 89.09. In addition, phlorizin content, anti-oxidation function, hypoglycemic function, and tumor suppressor effect of LPRBT were measured. The results demonstrated that LPRBT phlorizin content was significantly higher than apple. It also showed that the equivalent 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical clearance rate with Vitamin C (Vc) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical clearance rate was 81% of Vc. Both hydroxyl and superoxide anion radical clearance increased with the increase in LPRBT amount. LPRBT also showed a good inhibitory effect on α-glucosidase and α-amylase, indicating certain hypoglycemic activity. Moreover, it inhibited the growth of HeLa and A549 cancer cells showing tumor suppressor activity. This study provides a reference for the development and application of LPR food products.
Collapse
|
13
|
Pomegranate peel polyphenols alleviate insulin resistance through the promotion of insulin signaling pathway in skeletal muscle of metabolic syndrome rats. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Liu J, Sun M, Xia Y, Cui X, Jiang J. Phloretin ameliorates diabetic nephropathy by inhibiting nephrin and podocin reduction through a non-hypoglycemic effect. Food Funct 2022; 13:6613-6622. [PMID: 35622066 DOI: 10.1039/d2fo00570k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phloretin is a dihydrochalcone flavonoid from natural plants, which has protective activities against oxidative stress and inflammation. To date, its effect on diabetic nephropathy (DN) has not been investigated. In this study, we examined the potential role of phloretin in diabetes-induced renal damage and associated mechanisms in a type 2 diabetes mellitus (T2DM) model induced by streptozotocin (STZ) and high-fat diet (HFD) in Apolipoprotein E knockout (ApoE-/-) mice. We found that daily treatment with a low dose (20 mg kg-1) of phloretin, as a dietary supplement, significantly alleviated polyuria, proteinuria, and glomerular histopathological changes in the T2DM mice, indicating a protective effect of phloretin on diabetic renal dysfunction. In the phloretin-treated T2DM mice, major metabolic parameters, including blood glucose levels, were not altered significantly, suggesting that the observed beneficial effects of phloretin may be due to a mechanism independent of blood glucose control. Further experiments revealed that phloretin had a protective effect on glomerular podocytes as indicated by ameliorated glomerular basement membrane (GBM) thickening and podocyte foot process effacement. Moreover, phloretin treatment restored levels of nephrin and podocin, two podocyte slit diaphragm proteins that were decreased in T2DM mice. Our results indicate that low-dose phloretin treatment has a protective effect on podocytes in DN via a non-hypoglycemic mechanism in preserving nephrin and podocin expression levels. These data suggest that phloretin may be exploited as a novel therapeutic agent for DN.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Mingcheng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Yong Xia
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jingjing Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
15
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
16
|
Anti-aging effect of phlorizin on D-galactose-induced aging in mice through antioxidant and anti-inflammatory activity, prevention of apoptosis, and regulation of the gut microbiota. Exp Gerontol 2022; 163:111769. [PMID: 35337894 DOI: 10.1016/j.exger.2022.111769] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Aging is an inevitable and complicated process involving many physiological changes. Screening of natural biologically active anti-aging substances is a current research hotspot. Phlorizin (PZ), an important dihydrochalcone phytoconstituent, has been demonstrated to have antioxidant and anti-tumor effects. In this paper, different doses of PZ (20 and 40 mg/kg) were used to research the protective effect on D-galactose (D-gal)-induced aging mice. Following hematoxylin and eosin staining and by observing the hippocampus, we found that PZ alleviated the damage caused by D-gal in neuronal cells, while PZ enhanced the learning and memory abilities of aging mice in a radical eight-arm maze. In order to explain the reasons for these anti-aging effects, we tested the antioxidant enzyme activity and malonic dialdehyde concentration in mouse serum, liver, and brain tissue. The contents of proteins related to anti-inflammation and apoptosis in brain tissue were analyzed, and the gut microbiota was also analyzed. The results indicated that PZ improved antioxidant enzyme activity while significantly reducing the malonic dialdehyde content. Western blotting analysis suggested that PZ effectively alleviated neuro-apoptosis via regulating the expressions of Bax, Bcl-2, and caspase-3. PZ also exerted anti-inflammation effects by regulating the interleukin-1β/inhibitor of nuclear factor kappa B alpha/nuclear factor kappa-light-chain-enhancer of activated B-cells signaling pathways in brain tissues. Importantly, PZ improved the structure and diversity of the gut microbiota, and the microbiota-gut-brain axis may hold a key role in PZ-induced anti-aging effects. In conclusion, PZ can be used as a potential drug candidate to combat aging.
Collapse
|
17
|
Aitipamula S, Shan LP, Gupta KM. Polymorphism and distinct physicochemical properties of the phloretin–nicotinamide cocrystal. CrystEngComm 2022. [DOI: 10.1039/d1ce01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel polymorphs of a cocrystal involving phloretin and nicotinamide were identified and found where the polymorphs show distinct crystal structures, photoluminescence, and dissolution rates.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Formulated Products, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Loke Pei Shan
- Formulated Products, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Krishna M. Gupta
- Formulated Products, Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| |
Collapse
|
18
|
Yanti S, Wu ZW, Agrawal DC, Chien WJ. Interaction between phloretin and insulin: a spectroscopic study. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00284-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractDiabetes is among the top ten deadly diseases in the world. It occurs either when the pancreas does not produce enough insulin (INS) or when the body cannot effectively use the insulin it produces. Phloretin (PHL) has a biological effect that can treat diabetes. A spectroscopic study was carried out to explore the interaction between phloretin and insulin. UV/Vis spectroscopy, fluorescence spectroscopy, and circular dichroism spectropolarimeter were used in the study. UV/Vis spectra showed that the interaction between PHL and INS produced strong absorption at a wavelength of 282 nm. The fluorescence analysis results showed that the excitation and emission occurred at 280-nm and 305-nm wavelengths, respectively. Temperature changes did not affect INS emissions. However, the interaction of PHL–INS caused a redshift at 305 to 317 nm. Temperature affected the binding constant (Ka) and the binding site (n). Ka decreased with increasing temperature and increased the binding site. The thermodynamic parameters such as enthalpy (ΔH0) and entropy (ΔS0) each had a value of − 16,514 kJ/mol and 22.65 J/mol·K. PHL and INS interaction formed hydrogen bonds and hydrophobic interaction. The free energy (ΔG0) recorded was negative. PHL and INS interactions took place spontaneously. The quenching effect was dynamic and static. KD values were greater than KS. The higher the temperature, the less was KD and KS. The appearance of two negative signals on circular dichroism (CD) spectropolarimeter implies that phloretin could induce regional configuration changes in insulin. The addition of PHL has revealed that the proportion of α-helix in the insulin stabilizes its structure. Phloretin’s stabilization and enhancement of the α-helix structural configuration in insulin indicate that phloretin can improve insulin resistance.
Collapse
|
19
|
Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells 2021; 10:cells10061474. [PMID: 34208379 PMCID: PMC8231211 DOI: 10.3390/cells10061474] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are relevant worldwide chronic diseases. A common complication in both pathologies is the dysregulation of the insulin-signaling pathway that is crucial to maintain an accurate glucose homeostasis. Flavonoids are naturally occurring phenolic compounds abundant in fruits, vegetables and seeds. Rising evidence supports a role for the flavonoids against T2D and obesity, and at present, these compounds are considered as important potential chemopreventive agents. This review summarizes in vitro and in vivo studies providing data related to the effects of flavonoids and flavonoid-rich foods on the modulation of the insulin route during T2D and obesity. Notably, few human studies have evaluated the regulatory effect of these phenolic compounds at molecular level on the insulin pathway. In this context, it is also important to note that the mechanism of action for the flavonoids is not fully characterized and that a proper dosage to obtain a beneficial effect on health has not been defined yet. Further investigations will contribute to solve all these critical challenges and will enable the use of flavonoids to prevent, delay or support the treatment of T2D and obesity.
Collapse
|
20
|
Jiang Y, Fang Z, Leonard W, Zhang P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104340] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Kamdi SP, Raval A, Nakhate KT. Phloridzin attenuates lipopolysaccharide-induced cognitive impairment via antioxidant, anti-inflammatory and neuromodulatory activities. Cytokine 2021; 139:155408. [PMID: 33476914 DOI: 10.1016/j.cyto.2020.155408] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) is known to produce neuroinflammation and memory impairment. Although phloridzin (a phenolic phytoconstituent) shows antioxidant- and anti-inflammatory activities, its ameliorative potential in LPS-mediated neuroinflammation and memory dysfunction remains unexplored. OBJECTIVES To investigate the protective effect of phloridzin against LPS-mediated memory impairment and neuroinflammation in mice. METHODS Different groups of mice were treated with LPS (250 μg/kg) via intraperitoneal (ip) route to induce cognitive impairments. The animals were administered with phloridzin (10-20 mg/kg, oral) or donepezil (1 mg/kg, intraperitoneal), and memory functions were evaluated by Morris water maze (MWM) and Y-maze. At the end of the behavioral experiments, the animals were sacrificed and different biochemical parameters like acetylcholinesterase (AChE), brain derived neurotropic factor (BDNF), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD) and glutathione (GSH) concentration in the hippocampus and the cerebral cortex were estimated. RESULTS While LPS administered animals showed significantly decreased memory retention in both MWM and Y maze, a significant reversal in all the parameters were observed following treatment with phloridzin. LPS-treated animals showed significantly decreased level of antioxidants (SOD and GSH), neurotropic factor (BDNF) and cholinergic transmission (increased AChE) and increased levels of inflammatory/oxidative markers (TNF-α, IL-6 and MDA) in hippocampus and cortex. These changes were alleviated after the treatment with phloridzin. CONCLUSIONS Phloridzin may have neuroprotective role against LPS-induced neuroinflammation and memory impairment by virtue of its antioxidant, anti-inflammatory, and enhanced cholinergic signalling activity in the hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- Sandesh P Kamdi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, India.
| | - Amit Raval
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, India
| | - Kartik T Nakhate
- National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park, Industrial Area, Hajipur, Dist: Vaishali 844102, Bihar, India
| |
Collapse
|
22
|
Patle D, Vyas M, Khatik GL. A Review on Natural Products and Herbs Used in the Management of Diabetes. Curr Diabetes Rev 2021; 17:186-197. [PMID: 32268866 DOI: 10.2174/1573399816666200408090058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
AIM We aimed to review the importance of the natural products and herbs used in the management of diabetes mellitus (DM) as medicinal agents. BACKGROUND Naturally occuring phytoactive compounds and herbs are very important because they are found to be effective against several diseases. DM is a commonly occurring endocrinological disorder, with the incidences increased four times in the last 34 years. There are several oral hypoglycemic agents available in the market, which in the long term, may lead to a high risk of secondary failure rate. OBJECTIVES This review focuses on natural products and herbs application for effective management of diabetic conditions, and natural products that can be utilized as alternative therapy. METHODS We searched the various online databases (PubMed, Bentham, ScienceDirect) and scientific publications from the library using a qualitative systematic review. The criteria of the review were based on natural products and herbs application for possessing medicinal value against diabetes and the literature of previous thirty years has been searched. The inclusion criteria of materials were based on the quality and relevancy with our aim. RESULTS We observed that owing to the potential of natural products and herbs, different research groups are searching for the potent natural antidiabetic agents with minimal side effects. Recent research showed that there is a decline in a number of new molecules that fail in clinical trials because of toxicity thus, natural products and herbs are considered as the alternative. Currently, some of the natural products and herbs like coixol, andrographolide, Tinospora cordifolia, polypeptide p, charantin, Annona squamosa, and Nigella are being explored for their potential to be used successfully for the management of type 2 diabetes. CONCLUSION The significance of natural products and herbs in the anticipation of diabetes and allied complications are being described herein. We observed that a huge amount of work is being done to explore the natural products and herbs to manage the diabetes and this review gives the highlights of them.
Collapse
Affiliation(s)
- Deepshikha Patle
- Faculty of Pharmaceutical Sciences - PCTE Group of Institutes, Jhande, VPO Baddowal, Ludhiana, Punjab, 142021, India
| | - Manish Vyas
- Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Gopal L Khatik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
23
|
Shang A, Liu HY, Luo M, Xia Y, Yang X, Li HY, Wu DT, Sun Q, Geng F, Li HB, Gan RY. Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Crit Rev Food Sci Nutr 2020; 62:917-934. [DOI: 10.1080/10408398.2020.1830363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ao Shang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Yan Liu
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yu Xia
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Yang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
24
|
Phloretin Modulates Human Th17/Treg Cell Differentiation In Vitro via AMPK Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6267924. [PMID: 32802861 PMCID: PMC7411462 DOI: 10.1155/2020/6267924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
Objective We conducted studies to explore the effect of phloretin on glucose uptake, proliferation, and differentiation of human peripheral blood CD4+ T cells and investigated the mechanism of phloretin on inducing Th17/Treg development. Methods Naïve CD4+ T cells were purified from peripheral blood of healthy volunteers, stimulated with anti-CD3/CD28 antibodies, and polarized in vitro to generate Th17 or Treg cells. Glucose uptake, proliferation, cell cycle, protein expression (phospho-Stat3, phospho-Stat5), and Th17 and Treg cell numbers were analyzed by flow cytometry. AMP-activated protein kinase (AMPK) signaling was analyzed by western blot. Results and Discussion. Phloretin could inhibit the glucose uptake and proliferation of activated CD4+ T cells. The proliferation inhibition was due to the G0/G1 phase arrest. Phloretin decreased Th17 cell generation and phospho-Stat3 expression as well as increased Treg cell generation and phospho-Stat5 expression in the process of inducing Th17/Treg differentiation. The phosphorylation level of AMPK was significantly enhanced, while the phosphorylation level of mTOR was significantly decreased in activated CD4+ T cells under phloretin treatment. The AMPK signaling inhibitor compound C (Com C) could neutralize the effect of phloretin, while the agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could impact the Th17/Treg balance similar to phloretin during Th17/Treg induction. Conclusion Our results suggest that phloretin can mediate the Th17/Treg balance by regulating metabolism via the AMPK signal pathway.
Collapse
|
25
|
Xia Y, Feng H, Li ZW, Tang KX, Gao HQ, Wang WL, Cui XP, Li XL. Low-dose phloretin alleviates diabetic atherosclerosis through endothelial KLF2 restoration. Biosci Biotechnol Biochem 2020; 84:815-823. [PMID: 31791197 DOI: 10.1080/09168451.2019.1699396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT
We investigated whether low-dose phloretin served as daily dietary supplements could ameliorate diabetic atherosclerosis and the role of kruppel-like factor 2 (KLF2). HUVECs cultured in high glucose medium were treated with different concentrations of phloretin and KLF2 mRNA, and protein level was detected. Diabetes was induced using streptozotocin in Apoe−/- mice after which they were fed a high-cholesterol diet for 8 weeks. Diabetic mice injected with KLF2 shRNA-lentivirus or control virus were treated with 20 mg/kg phloretin. Glucose, lipid profile, aortic atheroma, and endothelial nitric oxide synthase (eNOS) expression were detected. Phloretin retained endothelial function by KLF2-eNOS activation under hyperglycemia. Low-dose phloretin helped with lipid metabolism, and blocked the acceleration of atherosclerosis in STZ-induced diabetic mice since the early stage, which was diminished by KLF2 knockdown. Low-dose phloretin exhibited athero-protective effect in diabetic Apoe−/- mice dependent on KLF2 activation. This finding makes phloretin for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Yong Xia
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Feng
- Department of Digestive Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhen-Wei Li
- Department of Gastroenterology, Mengyin People’s Hospital, Mengyin, China
| | - Kuan-Xiao Tang
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Qing Gao
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Ling Wang
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Pei Cui
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Li Li
- Department of Drug Purchase and Supply, Qi-Lu Hospital of Shandong University, Jinan, China
| |
Collapse
|
26
|
Shen X, Wang L, Zhou N, Gai S, Liu X, Zhang S. Beneficial effects of combination therapy of phloretin and metformin in streptozotocin-induced diabetic rats and improved insulin sensitivity in vitro. Food Funct 2020; 11:392-403. [PMID: 31821397 DOI: 10.1039/c9fo01326a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phloretin combined with metformin ameliorates glucose and lipid metabolism in STZ-induced T2D rats via AKT/GLUT4 signaling pathways.
Collapse
Affiliation(s)
- Xin Shen
- Department of Medicinal Chemistry
- School of Pharmacy
- The Air Force Medical University
- Xi'an
- China
| | - Libin Wang
- Department of Medicinal Chemistry
- School of Pharmacy
- The Air Force Medical University
- Xi'an
- China
| | - Nan Zhou
- Department of Pharmacy
- Qingdao Women and Children's Hospital
- Qingdao
- China
| | - Shouchang Gai
- Department of Pharmacy
- Hospital of 79 Group Army
- Liaoyang
- China
| | - Xueying Liu
- Department of Medicinal Chemistry
- School of Pharmacy
- The Air Force Medical University
- Xi'an
- China
| | - Shengyong Zhang
- Department of Medicinal Chemistry
- School of Pharmacy
- The Air Force Medical University
- Xi'an
- China
| |
Collapse
|
27
|
Mariadoss AVA, Vinyagam R, Rajamanickam V, Sankaran V, Venkatesan S, David E. Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review. Mini Rev Med Chem 2019; 19:1060-1067. [PMID: 30864525 DOI: 10.2174/1389557519666190311154425] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/18/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Over the past two decades, many researchers have concluded that a diet rich in polyphenolic compounds plays an important therapeutic role in reducing the risk of cancer, cardiovascular disease, inflammation, diabetes, and other degenerative diseases. Polyphenolic compounds have been reported to be involved in neutralization of reactive oxygen species and charged radicals, and have anticarcinogenic effects, hepatoprotective effects, low-glycaemic response, and other benefits. The benefits of fruits and vegetables may be partly attributable to polyphenolic compounds, which have antioxidant and free radical scavenging properties. Fruits such as apples contain a variety of phytochemicals, including (+)-catechin and (-)-epicatechin, phlorizin, phloretin quercetin, cyanidin-3-Ogalactoside, chlorogenic acid, and p-coumaric acid, all of which are strong antioxidants. Phloretin, a natural phenolic compound, is a dihydrochalcone, which is present in the apple. It exhibits a wide variety of activities such as antioxidative, anti-inflammatory, anti-microbial, anti-allergic, anticarcinogenic, anti-thrombotic, and hepatoprotective, besides being involved in the activation of apoptotic associated gene expression and signal transduction in molecular pathways. Despite a multitude of clinical studies, new efforts are needed in clinical research to determine the complete therapeutic potential of phloretin.
Collapse
Affiliation(s)
- Arokia V A Mariadoss
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ramachandran Vinyagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vijayalakshmi Sankaran
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Sathish Venkatesan
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| |
Collapse
|
28
|
Antonowski T, Osowski A, Lahuta L, Górecki R, Rynkiewicz A, Wojtkiewicz J. Health-Promoting Properties of Selected Cyclitols for Metabolic Syndrome and Diabetes. Nutrients 2019; 11:E2314. [PMID: 31574903 PMCID: PMC6835238 DOI: 10.3390/nu11102314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Cyclitols play a particularly important role in cell functioning because they are involved in ion channel physiology, phosphate storage, signal transduction, cell wall formation, membrane biogenesis, osmoregulation and they have antioxidant activity. They are involved in the cell membranes as a phosphatidyl myo-inositol, an inositol triphosphate precursor, which acts as a transmitter that regulates the activity of several hormones, such as follicle-stimulating hormone, thyrotropin, and insulin. The aim of this paper is to characterize the selected cyclitols: myo-inositol, D-chiro-inositol, and D-pinitol in type-2 metabolic syndrome and diabetes treatment. Results and discussion: Cyclitols have certain clinical applications in the treatment of metabolic syndromes and are considered to be an option as a dietary supplement for the treatment or prevention of gestational diabetes mellitus and type-2 diabetes. Improved metabolic parameters observed after using cyclitols, like myo-inositol, in the treatment of polycystic ovary syndrome and type-2 diabetes suggest that they may have a protective effect on the cardiovascular system. Pinitol, together with myo-inositol,maybe responsible for improving lipid profiles by reducing serum triglyceride and total cholesterol. Pinitol is also well-researched and documented for insulin-like effects. Myo-inositol, D-chiro-inositol, and D-pinitol indicate a number of therapeutic and health-promoting properties.
Collapse
Affiliation(s)
- Tomasz Antonowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| | - Lesław Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Andrzej Rynkiewicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
- Department of Cardiology and Cardiosurgery, School of Medicine, Collegium Medicum University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
| |
Collapse
|
29
|
Xu X, Chen X, Huang Z, Chen D, Yu B, Chen H, Zheng P, Luo Y, Yu J. An effect of dietary phloretin supplementation on feed intake in mice. Food Funct 2019; 10:5752-5758. [DOI: 10.1039/c9fo00815b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary phloretin supplementation promotes feed intake in mice.
Collapse
Affiliation(s)
- Xiaojiao Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Hong Chen
- College of Food Science
- Sichuan Agricultural University
- Yaan
- P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu
- P. R. China
| |
Collapse
|
30
|
Li M, Fang H, Hu J. Apelin‑13 ameliorates metabolic and cardiovascular disorders in a rat model of type 2 diabetes with a high‑fat diet. Mol Med Rep 2018; 18:5784-5790. [PMID: 30387843 DOI: 10.3892/mmr.2018.9607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Meng Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huijuan Fang
- Department of Cadre Ward, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jian Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
Dang F, Jiang Y, Pan R, Zhou Y, Wu S, Wang R, Zhuang K, Zhang W, Li T, Man C. Administration of Lactobacillus paracasei ameliorates type 2 diabetes in mice. Food Funct 2018; 9:3630-3639. [PMID: 29961787 DOI: 10.1039/c8fo00081f] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Probiotics have been proposed as an option for the prevention of type 2 diabetes mellitus (T2DM). The objective of this study was to evaluate the hypoglycemic effects of Lactobacillus paracasei on diabetic mice and explore the possible underlying molecular mechanism. The α-glucosidase inhibitory activities of eight L. paracasei strains were assessed in vitro. L. paracasei TD062 with high α-glucosidase inhibitory activity (31.9%) showed an excellent antidiabetic ability and it could survive in simulated gastrointestinal juices. To investigate the beneficial effects of L. paracasei TD062, diabetic mice were treated with the strain at 109, 108 and 107 CFU ml-1. The results indicated that the administration of L. paracasei TD062 could regulate the levels of fasting blood glucose (FBG), postprandial blood glucose (PBG), glucose tolerance, hepatic glycogen and lipid metabolism. In addition, the antioxidant capacity was also improved by oral administration of L. paracasei TD062. And the hypoglycemic effects exhibited dose dependence to some extent. Furthermore, it was revealed that L. paracasei TD062 had a positive effect on the expression levels of genes related to glucose metabolism and the PI3K/Akt pathway. These results demonstrated that L. paracasei TD062 played an important role in preventing the development of T2DM and might be applied as a new type of hypoglycemic agent in functional foods.
Collapse
Affiliation(s)
- Fangfang Dang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells. Int J Mol Sci 2018; 19:ijms19061772. [PMID: 29904032 PMCID: PMC6032296 DOI: 10.3390/ijms19061772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Phloretin, a glucose transporter (GLUT) inhibitor, has pleiotropic effects. The present study examined the effects of phloretin on the commitment of marrow stromal cells to adipocytes, using the mouse marrow stromal cell line ST2. Oil red O staining showed that treatment with phloretin 10–100 µM promoted lipid accumulation. Real-time PCR showed that phloretin significantly increased the expression of adipogenic markers, including PPARγ, C/EBPα, fatty acid synthase, fatty acid-binding protein 4, and adiponectin. Western blotting showed that phloretin inhibited ERK1/2 and JNK but activated p38 MAPK. Treatment with a MAPK/ERK kinase inhibitor and a JNK inhibitor enhanced adipogenesis, similar to phloretin. In contrast, a p38 MAPK inhibitor suppressed phloretin-induced adipogenesis. Although phloretin phosphorylated AMP-activated protein kinase (AMPK), co-incubation with an AMPK inhibitor did not block phloretin-induced adipogenesis. The 2-deoxyglucose colorimetric assay showed that phloretin and siRNA silencing of GLUT1 decreased glucose uptake. However, unlike phloretin treatment, GLUT1 silencing inhibited adipogenesis. In addition, phloretin enhanced adipogenesis in GLUT1 knocked-down cells. Taken together, phloretin induced adipogenesis of marrow stromal cells by inhibiting ERK1/2 and JNK and by activating p38 MAPK. The adipogenic effects of phloretin were independent of glucose uptake inhibition. Phloretin may affect energy metabolism by influencing adipogenesis and adiponectin expression.
Collapse
|
33
|
Balaha M, Kandeel S, Kabel A. Phloretin either alone or in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats. Biomed Pharmacother 2018; 101:821-832. [PMID: 29635891 DOI: 10.1016/j.biopha.2018.02.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetic neuropathy (DN) is one of most disabling disorder complicating diabetes mellites (DM), which affects more than 50% of the all diabetic patients during the disease course. Duloxetine (DX) is one of the first-line medication that approved by FDA for management of DN, nevertheless, it is too costly and has many adverse effects. Recently, phloretin (PH) exhibited powerful euglycemic, antihyperlipidemic, antioxidant, and anti-inflammatory activities. Therefore, we investigated the in vivo possible antineuropathic activity of phloretin, besides, its modulating effects on duloxetine potency, in a rat model of DN. Twelve-week-old male Wistar rats received a single intraperitoneal injection of 55 mg/kg STZ to induce DM. Either DX (30 or 15 mg/kg dissolved in distilled water), PH (50 0r 25 mg/kg dissolved in 0.5% DMSO) or a combination of 15 mg/kg DX and 25 mg/kg PH, used daily orally for 4 weeks to treat DN, starting from the end of the 4th week of DM development, when DN confirmed. Our finding showed that both DX and PH dose-dependently improved behavioral parameters (with the superiority of DX), sciatic nerve tissue antioxidant state, and suppressed tissue inflammatory cytokine, besides, they abrogated the tissue histopathological changes (with the superiority of PH). Moreover, DX augmented the DM metabolic disturbance and hepatic dysfunction, however, PH effectively amended these disorders. Furthermore, the low-dose combination of both, had the merits of both medications, with the alleviation of their disadvantages. Therefore, phloretin could be a promising agent in the management of DN either alone or in combination with duloxetine.
Collapse
Affiliation(s)
- Mohamed Balaha
- Pharmacology Department, Faculty of Medicine, Tanta University, Postal No. 31527, El-Gish Street, Tanta, Egypt.
| | - Samah Kandeel
- Histology Department, Faculty of Medicine, Tanta University, Postal No. 31527, El-Gish Street, Tanta, Egypt
| | - Ahmed Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Postal No. 31527, El-Gish Street, Tanta, Egypt
| |
Collapse
|
34
|
Wang C, Deng Y, Yue Y, Chen W, Zhang Y, Shi G, Wu Z. Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway. Med Sci Monit 2018; 24:1241-1250. [PMID: 29491345 PMCID: PMC5842660 DOI: 10.12659/msm.909011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Diabetes mellitus (DM) is characterized by a decreased blood level of glutamine (Gln), which may contribute to the disturbance in the effect of insulin on skeletal muscle. Therefore, it is crucial to study how to improve the effect of insulin on skeletal muscle by increasing Gln. In the present study, we investigated the effect of Gln on the hypoglycemic action of insulin in skeletal muscle L6 cells at high glucose levels through the insulin signaling pathway and glycogen synthesis pathway. Material/Methods The L6 cells were cultured in and stimulated by Gln and insulin. The glutamine analogue, L-Gamma-Glutamyl-p-nitroanilide (GPNA), was used for verifying the effect of Gln. The expression of insulin signaling molecules, including phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (AKT), protein kinase C zeta (PKCζ), and glucose transporter 4 (GLUT4), were detected by real-time PCR and Western blot analysis, GLUT4 translocation was observed by immunofluorescence staining, glycogen synthase kinase (GSK) was analyzed by Western blotting, and glucose uptake was measured by glucose oxidase method (GOD). Results The results demonstrated that Gln combined with insulin remarkably up-regulated PI3K and PDK1 and also increased AKT and PKCζ phosphorylation. The present study shows that Gln enhanced the impact of insulin on GLUT4 and its translocation. The results of glucose uptake and GSK phosphorylation further confirmed the hypoglycemic effect of Gln accompanied with insulin. The hypoglycemic effect of Gln was reversed by GPNA. Conclusions These findings suggest that Gln enhances the hypoglycemic role of insulin through the PI3K/AKT/GLUT4 signaling pathway and glycogen synthesis pathway.
Collapse
Affiliation(s)
- Caijuan Wang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yujiao Deng
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yenan Yue
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Wenting Chen
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Guifang Shi
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Zhongming Wu
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
35
|
Yingying X, Caijuan W, Yenan Y, Yuqin T, Xueqin C, Zhongming W. The Effect of SIN1 and Microtubules on Insulin Induced PKC ζ Activation. Med Sci Monit 2017; 23:3666-3672. [PMID: 28751630 PMCID: PMC5545627 DOI: 10.12659/msm.905555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Protein kinase C zeta (PKC ζ) plays an important role in insulin induced glycometabolism and insulin receptor (IR) associated signaling pathways. The full activation of PKC ζ depends on its translocation from cytosol to membrane and phosphorylation at Thr410. However, the mechanism of PKC ζ activation remains elusive. In this study, the effect of SIN1 and microtubules on insulin-induced PKC ζ activation was investigated. Material/Methods HepG2 cells were stimulated with insulin for co-immunoprecipitation (co-IP) assay. The immunocomplex was captured by using anti-PKC ζ, anti-SIN1 or anti-FLAG antibodies and was subjected to western blotting analysis for detecting PKC ζ, SIN1, and β-tubulin protein expression level. The cells were intervened by small interfering RNA (siRNA) that targeted exon regions of SIN1. Then the glucose uptake ratio after cells were stimulated by insulin was measured. The PKC ζ insulin receptor levels in the membranes were analyzed. Cells stained with anti-PKC ζ, anti-SIN1 antibodies and probed with molecular probes were observed by immunofluorescence confocal microscopy. Results SIN1 interacted and co-located with PKC ζ by pleckstrin homology (PH) domain. Downregulation of SIN1 severely impaired PKC ζ translocation and phosphorylation induced by insulin. PKC ζ co-immunoprecipitated with β-tubulin at different intervals upon insulin stimulus, and the activation of PKC ζ was affected by paclitaxel and nocodazole. Conclusions PKC ζ translocated from cytosol to membrane depending on SIN1, which suggested that PKC ζ may be activated directly by PI3K and the reaction probably carried out on microtubules in HepG2 cells.
Collapse
Affiliation(s)
- Xiang Yingying
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Wang Caijuan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yue Yenan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Tang Yuqin
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Cai Xueqin
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Wu Zhongming
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|