1
|
Wang Q, Yang J, Xing M, Li B. Antimicrobial Peptide Identified via Machine Learning Presents Both Potent Antibacterial Properties and Low Toxicity toward Human Cells. Microorganisms 2024; 12:1682. [PMID: 39203524 PMCID: PMC11356914 DOI: 10.3390/microorganisms12081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Preventing infection is a critical clinical challenge; however, the extensive use of antibiotics has resulted in remarkably increased antibiotic resistance. A variety of antibiotic alternatives including antimicrobial peptides (AMPs) have been studied. Unfortunately, like most conventional antibiotics, most current AMPs have shown significantly high toxicity toward the host, and therefore induce compromised host responses that may lead to negative clinical outcomes such as delayed wound healing. In this study, one of the AMPs with a short length of nine amino acids was first identified via machine learning to present potentially low cytotoxicity, and then synthesized and validated in vitro against both bacteria and mammalian cells. It was found that this short AMP presented strong and fast-acting antimicrobial properties against bacteria like Staphylococcus aureus, one of the most common bacteria clinically, and it targeted and depolarized bacterial membranes. This AMP also demonstrated significantly lower (e.g., 30%) toxicity toward mammalian cells like osteoblasts, which are important cells for new bone formation, compared to conventional antibiotics like gentamicin, vancomycin, rifampin, cefazolin, and fusidic acid at short treatment times (e.g., 2 h). In addition, this short AMP demonstrated relatively low toxicity, similar to osteoblasts, toward an epithelial cell line like BEAS-2B cells.
Collapse
Affiliation(s)
- Qifei Wang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Junlin Yang
- Spine Center, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China;
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T2N2, Canada;
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
2
|
Barrera-Chimal J, Henley N, Grant MP, Cenatus S, Geraldes P, Pichette V, Gerarduzzi C. Tungsten toxicity on kidney tubular epithelial cells induces renal inflammation and M1-macrophage polarization. Cell Biol Toxicol 2023; 39:3061-3075. [PMID: 37368165 DOI: 10.1007/s10565-023-09817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Tungsten is widely used in medical, industrial, and military applications. The environmental exposure to tungsten has increased over the past several years, and few studies have addressed its potential toxicity. In this study, we evaluated the effects of chronic oral tungsten exposure (100 ppm) on renal inflammation in male mice. We found that 30- or 90-day tungsten exposure led to the accumulation of LAMP1-positive lysosomes in renal tubular epithelial cells. In addition, the kidneys of mice exposed to tungsten showed interstitial infiltration of leukocytes, myeloid cells, and macrophages together with increased levels of proinflammatory cytokines and p50/p65-NFkB subunits. In proximal tubule epithelial cells (HK-2) in vitro, tungsten induced a similar inflammatory status characterized by increased mRNA levels of CSF1, IL34, CXCL2, and CXCL10 and NFkB activation. Moreover, tungsten exposure reduced HK-2 cell viability and enhanced reactive oxygen species generation. Conditioned media from HK-2 cells treated with tungsten induced an M1-proinflammatory polarization of RAW macrophages as evidenced by increased levels of iNOS and interleukin-6 and decreased levels of the M2-antiinflammatory marker CD206. These effects were not observed when RAW cells were exposed to conditioned media from HK-2 cells treated with tungsten and supplemented with the antioxidant N-acetylcysteine (NAC). Similarly, direct tungsten exposure induced M1-proinflammatory polarization of RAW cells that was prevented by NAC co-treatment. Altogether, our data suggest that prolonged tungsten exposure leads to oxidative injury in the kidney ultimately leading to chronic renal inflammation characterized by a proinflammatory status in kidney tubular epithelial cells and immune cell infiltration.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Nathalie Henley
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Michael Philip Grant
- Department of Orthopaedics, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Schrodinger Cenatus
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
| | - Pedro Geraldes
- Research Center, Centre Hospitalier, Université de Sherbrooke, Quebec, Canada
| | - Vincent Pichette
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Casimiro Gerarduzzi
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montreal, Quebec, Canada.
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells 2023; 12:1427. [PMID: 37408263 DOI: 10.3390/cells12101427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm2. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.
Collapse
Affiliation(s)
- Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sanya Thara
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puretat Saetan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wanwiwa Tumnoi
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
4
|
Kopru S, Cadir M, Soylak M. Investigation of Trace Elements in Vegan Foods by ICP-MS After Microwave Digestion. Biol Trace Elem Res 2022; 200:5298-5306. [PMID: 35006553 DOI: 10.1007/s12011-022-03106-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Veganism is gaining popularity around the world day by day. Vegan nutrition is a diet in which not all animal foods are used. A vegan diet does not contain meat, fish, milk and dairy products, and eggs and consists of vegetables, fruits, grains, legumes, and nuts. Vegan diets maintain energy balances in a wide variety of plant foods. So, health problems can be seen due to nutrient and mineral deficiencies in the long-term continuation of the vegan diet. Due to insufficient intake of vitamins and minerals such as vitamin D, vitamin B12, calcium, iron, and zinc, energy and protein balance in the body may not be achieved by vegan individuals. The contents of aluminum, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, mercury, cadmium, and lead have been analyzed by inductively coupled plasma mass spectrometer (ICP-MS) in 10 different vegan foods purchased from Turkey. Certified reference material (1547 peach leaves) was used for validating the digestion procedure. Dry, wet, and microwave processes were compared, and it was found that the microwave digestion method was the best. Element levels in the analyzed samples were found below the legal limits. The purpose of this work is to investigate the trace element content of various foods used in vegan nutrition.
Collapse
Affiliation(s)
- Semiha Kopru
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mehmet Cadir
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey.
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Yokel RA, Ensor ML, Vekaria HJ, Sullivan PG, Feola DJ, Stromberg A, Tseng MT, Harrison DA. Cerium dioxide, a Jekyll and Hyde nanomaterial, can increase basal and decrease elevated inflammation and oxidative stress. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102565. [PMID: 35595014 DOI: 10.1016/j.nano.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
It was hypothesized that the catalyst nanoceria can increase inflammation/oxidative stress from the basal and reduce it from the elevated state. Macrophages clear nanoceria. To test the hypothesis, M0 (non-polarized), M1- (classically activated, pro-inflammatory), and M2-like (alternatively activated, regulatory phenotype) RAW 264.7 macrophages were nanoceria exposed. Inflammatory responses were quantified by IL-1β level, arginase activity, and RT-qPCR and metabolic changes and oxidative stress by the mito and glycolysis stress tests (MST and GST). Morphology was determined by light microscopy, macrophage phenotype marker expression, and a novel three-dimensional immunohistochemical method. Nanoceria blocked IL-1β and arginase effects, increased M0 cell OCR and GST toward the M2 phenotype and altered multiple M1- and M2-like cell endpoints toward the M0 level. M1-like cells had greater volume and less circularity/roundness. M2-like cells had greater volume than M0 macrophages. The results are overall consistent with the hypothesis.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, USA; Neuroscience, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David J Feola
- Pharmacy Practice and Science, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Arnold Stromberg
- Statistics, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Michael T Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
6
|
Hedbrant A, Eklund D, Andersson L, Bryngelsson IL, Persson A, Westberg H, Särndahl E. Effects on white blood cell counts and the NLRP3 inflammasome due to dust and cobalt exposure in the hard metal industry. Biomarkers 2021; 27:60-70. [PMID: 34872432 DOI: 10.1080/1354750x.2021.2013538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION In light of potential negative health effects of cobalt exposure, a characterization of inflammatory mechanisms in exposed individuals is warranted. The current study investigated cobalt exposure in the Swedish hard metal industry and its relationship to inflammatory markers, including NLRP3 inflammasome activation and white blood cell (WBC) counts. MATERIALS AND METHODS Inhalable cobalt and dust exposures, and systemic cobalt levels, were determined for 72 workers in the hard metal industry and linear regression models were applied to correlate exposure to markers of inflammasome activation and WBC counts. RESULTS Mean exposures to inhalable dust (0.11 mg/m3) and cobalt (0.0034 mg/m3) were below the Swedish occupational exposure limits, and these low exposures did not correlate with any investigated outcomes. Instead, cobalt blood levels significantly correlated with a ca 10% decrease in IL-18 plasma levels per 10 nM cobalt increase. Furthermore, pre-shift cobalt blood and/or urine levels significantly correlated with some WBC measures, including decreased neutrophil-to-lymphocyte ratio, increased lymphocyte-to-monocyte ratio, and lymphocyte counts. CONCLUSION The low inhalable particle exposures had no impact on WBC counts and inflammasome activation. Instead, systemic cobalt levels, which also include skin exposure, demonstrated possible suppressive effects on inflammatory responses in cobalt-exposed individuals in the hard metal industry.
Collapse
Affiliation(s)
- Alexander Hedbrant
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Lena Andersson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden.,Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden
| | - Alexander Persson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Håkan Westberg
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden.,Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden
| | - Eva Särndahl
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
7
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
8
|
Bijukumar DR, Salunkhe S, Zheng G, Barba M, Hall DJ, Pourzal R, Mathew MT. Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces. Acta Biomater 2020; 101:586-597. [PMID: 31678260 DOI: 10.1016/j.actbio.2019.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Evidence that macrophages can play a role in accelerating corrosion in CoCrMo alloy in total hip replacement (THR) interfaces leads to questions regarding the underlying cellular mechanisms and immunological responses. Hence, we evaluated the role of macrophages in corrosion processes using the cell culture supernatant from different conditions and the effect of wear particles on macrophage dynamics. Monocytes were exposed to CoCrMo wear particles and their effect on macrophage differentiation was investigated by comparisons with M1 and M2 macrophage differentiation. Corrosion associated macrophages (MCA macrophages) exhibited upregulation of TNF-α, iNOS, STAT-6, and PPARG and down-regulation of CD86 and ARG, when compared to M1 and M2 macrophages. MCA cells also secreted higher levels of IL-8, IL-1β, IL-6, IL-10, TNF-α, and IL-12p70 than M1 macrophages and/or M2 macrophages. Our findings revealed variation in macrophage phenotype (MCA) induced by CoCrMo wear particles in generating a chemical environment that induces cell-accelerated corrosion of CoCrMo alloy at THR modular interfaces. STATEMENT OF SIGNIFICANCE: Fretting wear and corrosion within the implant's modular taper junction are prominent causes of implant failure, as they promote the release of corrosion products and subsequent development of adverse local tissue reactions. Being a multifactorial process, several in vitro models have been developed to recreate the in vivo corrosion process, often summarized as mechanically-assisted crevice corrosion. Considering the excellent corrosion properties of CoCrMo alloy, the severity of chemically-generated damage observed at the modular interface has been surprising and poorly understood. The aim of the current study is to provide a better understanding of macrophages and their plasticity at the THR taper interface when they encounter wear debris from CoCrMo alloy. This is a preliminary study along the path towards determining the mechanism(s) of CAC.
Collapse
|
9
|
Mei N, Hedberg J, Odnevall Wallinder I, Blomberg E. Influence of Biocorona Formation on the Transformation and Dissolution of Cobalt Nanoparticles under Physiological Conditions. ACS OMEGA 2019; 4:21778-21791. [PMID: 31891055 PMCID: PMC6933593 DOI: 10.1021/acsomega.9b02641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Cobalt (Co) nanoparticles (NPs) are produced in different applications and unintentionally generated at several occupational and traffic settings. Their diffuse dispersion may lead to interactions with humans and aquatic organisms via different exposure routes that include their transformation/dissolution in biological media. This paper has investigated the particle stability and reactivity of Co NPs (dispersed by sonication prior to exposure) interacting with selected individual biomolecules (amino acids, polypeptides, and proteins) in phosphate-buffered saline (PBS). No or minor adsorption of amino acids (glutamine, glutamic acid, lysine, and cysteine) was observed on the Co NPs, independent of the functional group and charge. Instead, phosphate adsorption resulted in the formation of a surface layer (a corona) of Co phosphate. The adsorption of larger biomolecules (polyglutamic acid, polylysine, lysozyme, and mucin) was evident in parallel with the formation of Co phosphate. The dissolution of the Co NPs was rapid as 35-55% of the particle mass was dissolved within the first hour of exposure. The larger biomolecules suppressed the dissolution initially compared to exposure in PBS only, whereas the dissolution was essentially unaffected by the presence of amino acids, with cysteine as an exception. The formation of Co phosphate on the NP surface reduced the protective properties of the surface oxide of the Co NPs, as seen from the increased levels of the released Co when compared with the nonphosphate-containing saline. The results underline the diversity of possible outcomes with respect to surface characteristics and dissolution of Co NPs in biological media and emphasize the importance of surface interactions with phosphate on the NP characteristics and reactivity.
Collapse
Affiliation(s)
- Nanxuan Mei
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm 114 28, Sweden
| | - Jonas Hedberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm 114 28, Sweden
| | - Inger Odnevall Wallinder
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm 114 28, Sweden
| | - Eva Blomberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm 114 28, Sweden
- Division
Bioscience and Materials, RISE Research
Institutes of Sweden, Stockholm 111 21, Sweden
| |
Collapse
|
10
|
Kanehira Y, Togami K, Ishizawa K, Sato S, Tada H, Chono S. Intratumoral delivery and therapeutic efficacy of nanoparticle-encapsulated anti-tumor siRNA following intrapulmonary administration for potential treatment of lung cancer. Pharm Dev Technol 2019; 24:1095-1103. [DOI: 10.1080/10837450.2019.1633345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yukimune Kanehira
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Kohei Togami
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Hokkaido University of Science, Sapporo, Japan
| | - Kiyomi Ishizawa
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Hokkaido University of Science, Sapporo, Japan
| | - Shingo Sato
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hitoshi Tada
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Hokkaido University of Science, Sapporo, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Hokkaido University of Science, Sapporo, Japan
| |
Collapse
|
11
|
Reichel D, Tripathi M, Perez JM. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019; 3:66-88. [PMID: 30662824 PMCID: PMC6328304 DOI: 10.7150/ntno.30052] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Biological interactions between tumor-associated macrophages (TAMs), cancer cells and other cells within the tumor microenvironment contribute to tumorigenesis, tumor growth, metastasis and therapeutic resistance. TAMs can remodel the tumor microenvironment to reduce growth barriers such as the dense extracellular matrix and shift tumors towards an immunosuppressive microenvironment that protects cancer cells from targeted immune responses. Nanoparticles can interrupt these biological interactions within tumors by altering TAM phenotypes through a process called polarization. Macrophage polarization within tumors can shift TAMs from a growth-promoting phenotype towards a cancer cell-killing phenotype that predicts treatment efficacy. Because many types of nanoparticles have been shown to preferentially accumulate within macrophages following systemic administration, there is considerable interest in identifying nanoparticle effects on TAM polarization, evaluating nanoparticle-induced TAM polarization effects on cancer treatment using drug-loaded nanoparticles and identifying beneficial types of nanoparticles for effective cancer treatment. In this review, the macrophage polarization effects of nanoparticles will be described based on their primary chemical composition. Because of their strong macrophage-polarizing and antitumor effects compared to other types of nanoparticles, the effects of iron oxide nanoparticles on macrophages will be discussed in detail. By comparing the macrophage polarization effects of various nanoparticle treatments reported in the literature, this review aims to both elucidate nanoparticle material effects on macrophage polarization and to provide insight into engineering nanoparticles with more beneficial immunological responses for cancer treatment.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Current Address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
12
|
Ribeiro MJ, Maria VL, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in Enchytraeus crypticus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11394-11401. [PMID: 30193070 DOI: 10.1021/acs.est.8b02537] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tungsten carbide cobalt (WCCo) nanoparticles (NPs) are widely used in hard metal industries. Pulmonary diseases and risk of cancer are associated with occupational exposure, but knowledge about the environmental fate and effects is virtually absent. In this study, the fate and effects of crystalline WCCo NPs, WC, and Co2+ were assessed in the soil model Enchytraeus crypticus, following the standard Enchytraeid Reproduction Test (ERT). An additional 28 day exposure period compared to the ERT (i.e., a total of 56 days) was performed to assess longer-term effects. WCCo NPs affected reproduction at a concentration higher than the corresponding Co based (EC50 = 1500 mg WCCo/kg, equivalent to 128 mg Co/kg). WC showed no negative effect up to 1000 mg W/kg. Maximum uptake of Co was 10-fold higher for CoCl2 compared to WCCo exposed organisms. Overall toxicity seems to be due to a combined effect between WC and Co. This is supported by the soil bioavailable fraction and biological tissue measurements. Last, results highlight the need to consider longer exposure period of NPs for comparable methods standardized for conventional chemicals.
Collapse
Affiliation(s)
- Maria J Ribeiro
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Vera L Maria
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Amadeu M V M Soares
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience , Aarhus University , Vejlsovej 25 , PO BOX 314, DK-8600 Silkeborg , Denmark
| | - Mónica J B Amorim
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| |
Collapse
|
13
|
|
14
|
Cha BH, Shin SR, Leijten J, Li YC, Singh S, Liu JC, Annabi N, Abdi R, Dokmeci MR, Vrana NE, Ghaemmaghami AM, Khademhosseini A. Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700289. [PMID: 28782184 PMCID: PMC5677560 DOI: 10.1002/adhm.201700289] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/17/2017] [Indexed: 12/23/2022]
Abstract
Adverse immune reactions prevent clinical translation of numerous implantable devices and materials. Although inflammation is an essential part of tissue regeneration, chronic inflammation ultimately leads to implant failure. In particular, macrophage polarity steers the microenvironment toward inflammation or wound healing via the induction of M1 and M2 macrophages, respectively. Here, this paper demonstrates that macrophage polarity within biomaterials can be controlled through integrin-mediated interactions between human monocytic THP-1 cells and collagen-derived matrix. Surface marker, gene expression, biochemical, and cytokine profiling consistently indicate that THP-1 cells within a biomaterial lacking cell attachment motifs yield proinflammatory M1 macrophages, whereas biomaterials with attachment sites in the presence of interleukin-4 (IL-4) induce an anti-inflammatory M2-like phenotype and propagate the effect of IL-4 in induction of M2-like macrophages. Importantly, integrin α2β1 plays a pivotal role as its inhibition blocks the induction of M2 macrophages. The influence of the microenvironment of the biomaterial over macrophage polarity is further confirmed by its ability to modulate the effect of IL-4 and lipopolysaccharide, which are potent inducers of M2 or M1 phenotypes, respectively. Thus, this study represents a novel, versatile, and effective strategy to steer macrophage polarity through integrin-mediated 3D microenvironment for biomaterial-based programming.
Collapse
Affiliation(s)
- Byung-Hyun Cha
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500, AE, Enschede, The Netherlands
| | - Yi-Chen Li
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sonali Singh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Julie C Liu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Davidson School of Chemical Engineering and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Reza Abdi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Transplant Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital, Boston, MA, 02115, USA
| | - Mehmet R Dokmeci
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Nihal Engin Vrana
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Fundamental Research Unit, Protip Medical, 8 Place de l'Hôpital, 67000, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1121, "Biomatériaux et Bioingénierie", 11 rue Humann, 67085, Strasbourg Cedex, France
| | - Amir M Ghaemmaghami
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
- Nanotechnology Center, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
15
|
Armstead AL, Li B. Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6421-6433. [PMID: 27942214 PMCID: PMC5138053 DOI: 10.2147/ijn.s121238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the number of commercial and consumer products containing engineered nanomaterials (ENMs) continually rises, the increased use and production of these ENMs presents an important toxicological concern. Although ENMs offer a number of advantages over traditional materials, their extremely small size and associated characteristics may also greatly enhance their toxic potentials. ENM exposure can occur in various consumer and industrial settings through inhalation, ingestion, or dermal routes. Although the importance of accurate ENM characterization, effective dosage metrics, and selection of appropriate cell or animal-based models are universally agreed upon as important factors in ENM research, at present, there is no “standardized” approach used to assess ENM toxicity in the research community. Of particular interest is occupational exposure to tungsten carbide cobalt (WC-Co) “dusts,” composed of nano- and micro-sized particles, in hard metal manufacturing facilities and mining and drilling industries. Inhalation of WC-Co dust is known to cause “hard metal lung disease” and an increased risk of lung cancer; however, the mechanisms underlying WC-Co toxicity, the inflammatory disease state and progression to cancer are poorly understood. Herein, a discussion of ENM toxicity is followed by a review of the known literature regarding the effects of WC-Co particle exposure. The risk of WC-Co exposure in occupational settings and the updates of in vitro and in vivo studies of both micro- and nano-WC-Co particles are discussed.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|