1
|
Bekale RB, Maphasa RE, D'Souza S, Hsu NJ, Walters A, Okugbeni N, Kinnear C, Jacobs M, Sampson SL, Meyer M, Morse GD, Dube A. Immunomodulatory Nanoparticles Induce Autophagy in Macrophages and Reduce Mycobacterium tuberculosis Burden in the Lungs of Mice. ACS Infect Dis 2025; 11:610-625. [PMID: 39995313 PMCID: PMC11915374 DOI: 10.1021/acsinfecdis.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Tuberculosis (TB) is the leading cause of death from infectious disease. Macrophages are the primary immune responders and become the primary host cells for the causative agent Mycobacterium tuberculosis. Following the uptake of M. tuberculosis, the inherent antimicrobial action of macrophages is dampened, enabling the bacterium to reside within these cells and multiply. Rising resistance of M. tuberculosis to antibiotics has led to the investigation of novel approaches for the treatment of TB. Here, we report a host-directed approach, employing biomimetic Curdlan poly(lactic-co-glycolic acid) (C-PLGA) nanoparticles (NPs), and examine autophagy induction in infected macrophages, eradication of M. tuberculosis and immune modulation in a mouse model. We demonstrate that the NPs induce autophagy in M. tuberculosis-infected macrophages. Treatment of H37Rv infected C57BL/6 mice with these NPs reduced M. tuberculosis burden in the lungs of mice and modulated cytokines and chemokines and this work demonstrates that these immunomodulatory NPs are a potential treatment approach for TB.
Collapse
Affiliation(s)
- Raymonde B Bekale
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa
| | - Retsepile E Maphasa
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa
| | - Sarah D'Souza
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa
| | - Nai Jen Hsu
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7701, South Africa
- National Health Laboratory Service, Cape Town 8005, South Africa
- Neuroscience Institute, University of Cape Town, Observatory 7925, South Africa
| | - Avril Walters
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7701, South Africa
- National Health Laboratory Service, Cape Town 8005, South Africa
- Neuroscience Institute, University of Cape Town, Observatory 7925, South Africa
| | - Naomi Okugbeni
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, Cape Town 7501, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, Cape Town 7501, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7701, South Africa
- National Health Laboratory Service, Cape Town 8005, South Africa
- Neuroscience Institute, University of Cape Town, Observatory 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Samantha L Sampson
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town 7535, South Africa
| | - Gene D Morse
- Center for Integrated Global Biomedical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14215, United States
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
2
|
Kuru Cİ, Ulucan-Karnak F, Dayıoğlu B, Şahinler M, Şendemir A, Akgöl S. Affinity-Based Magnetic Nanoparticle Development for Cancer Stem Cell Isolation. Polymers (Basel) 2024; 16:196. [PMID: 38256995 PMCID: PMC10818538 DOI: 10.3390/polym16020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer is still the leading cause of death in the world despite the developing research and treatment opportunities. Failure of these treatments is generally associated with cancer stem cells (CSCs), which cause metastasis and are defined by their resistance to radio- and chemotherapy. Although known stem cell isolation methods are not sufficient for CSC isolation, they also bring a burden in terms of cost. The aim of this study is to develop a high-efficiency, low-cost, specific method for cancer stem cell isolation with magnetic functional nanoparticles. This study, unlike the stem cell isolation techniques (MACS, FACS) used today, was aimed to isolate cancer stem cells (separation of CD133+ cells) with nanoparticles with specific affinity and modification properties. For this purpose, affinity-based magnetic nanoparticles were synthesized and characterized by providing surface activity and chemical reactivity, as well as making surface modifications necessary for both lectin affinity and metal affinity interactions. In the other part of the study, synthesized and characterized functional polymeric magnetic nanoparticles were used for the isolation of CSC from the human osteosarcoma cancer cell line (SAOS-2) with a cancer stem cell subpopulation bearing the CD133 surface marker. The success and efficiency of separation after stem cell isolation were evaluated via the MACS and FACS methods. As a result, when the His-graft-mg-p(HEMA) nanoparticle was used at a concentration of 0.1 µg/mL for 106 and 108 cells, superior separation efficiency to commercial microbeads was obtained.
Collapse
Affiliation(s)
- Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Fulden Ulucan-Karnak
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| | - Büşra Dayıoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Mert Şahinler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Aylin Şendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Turkey; (B.D.); (M.Ş.); (A.Ş.)
| | - Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Turkey; (C.İ.K.); (S.A.)
| |
Collapse
|
3
|
Schötz S, Griepe AK, Goerisch BB, Kortam S, Vainer YS, Dimde M, Koeppe H, Wedepohl S, Quaas E, Achazi K, Schroeder A, Haag R. Esterase-Responsive Polyglycerol-Based Nanogels for Intracellular Drug Delivery in Rare Gastrointestinal Stromal Tumors. Pharmaceuticals (Basel) 2023; 16:1618. [PMID: 38004483 PMCID: PMC10675119 DOI: 10.3390/ph16111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Rare gastrointestinal stromal tumors (GISTs) are caused by mutations in the KIT and PDGFRA genes. Avapritinib (BLU-285) is a targeted selective inhibitor for mutated KIT and PDGFRA receptors that can be used to treat these tumors. However, there are subtypes of GISTs that exhibit resistance against BLU-285 and thus require other treatment strategies. This can be addressed by employing a drug delivery system that transports a combination of drugs with distinct cell targets. In this work, we present the synthesis of esterase-responsive polyglycerol-based nanogels (NGs) to overcome drug resistance in rare GISTs. Using inverse nanoprecipitation mediated with inverse electron-demand Diels-Alder cyclizations (iEDDA) between dPG-methyl tetrazine and dPG-norbornene, multi-drug-loaded NGs were formed based on a surfactant-free encapsulation protocol. The obtained NGs displayed great stability in the presence of fetal bovine serum (FBS) and did not trigger hemolysis in red blood cells over a period of 24 h. Exposing the NGs to Candida Antarctica Lipase B (CALB) led to the degradation of the NG network, indicating the capability of targeted drug release. The bioactivity of the loaded NGs was tested in vitro on various cell lines of the GIST-T1 family, which exhibit different drug resistances. Cell internalization with comparable uptake kinetics of the NGs could be confirmed by confocal laser scanning microscopy (CLSM) and flow cytometry for all cell lines. Cell viability and live cell imaging studies revealed that the loaded NGs are capable of intracellular drug release by showing similar IC50 values to those of the free drugs. Furthermore, multi-drug-loaded NGs were capable of overcoming BLU-285 resistance in T1-α-D842V + G680R cells, demonstrating the utility of this carrier system.
Collapse
Affiliation(s)
- Sebastian Schötz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Adele K. Griepe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Björn B. Goerisch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Sally Kortam
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Yael Shammai Vainer
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Haifa 32000, Israel;
| | - Mathias Dimde
- Research Center of Electron Microscopy, Freie Universität Berlin, Fabeckstr, 36A, 14195 Berlin, Germany;
| | - Hanna Koeppe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Stefanie Wedepohl
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Elisa Quaas
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Katharina Achazi
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Haifa 32000, Israel;
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| |
Collapse
|
4
|
Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells. Acta Biomater 2023; 155:507-520. [PMID: 36371002 DOI: 10.1016/j.actbio.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Targeted drug delivery requires -among others- specific interaction of nanocarriers with cell surface receptors enabling efficient internalization into the targeted cells. Thus, identification of receptors allowing efficient nanocarrier uptake is essential to improve the design of targeted nanomedicines. Here we used methods based on cell surface biotinylation to identify cell surface receptors mediating nanoparticle uptake by cells. We used human brain and liver endothelial cells as representative examples of cells typically showing very low and very high nanoparticle uptake, respectively. Amino-modified and carboxylated silica were used as model nanoparticles usually associated with high and low uptake into cells, respectively, and carrying different coronas after exposure in full human plasma. Using cell surface biotinylation of live cells and receptor pull-down assays, we compared the receptors internalized in control untreated cells and those internalized upon exposure to nanoparticles. In this way, we identified receptors associated with (high) nanoparticle uptake. The candidate receptors were further validated by decorating the nanoparticles with an artificial corona consisting of the respective receptor ligands. We found that a vitronectin corona can be used to target integrin receptors and strongly enhances nanoparticle uptake in brain and liver endothelial cells. The increased uptake was maintained in the presence of serum, suggesting that the vitronectin-corona could resist interaction and competition with serum. Furthermore, plasminogen-coated nanoparticles promoted uptake in endothelial cells of the liver, but not of the brain. The presented approach using reversible biotinylation of cell surface receptors in live cells allows for receptor-based targeting of nanocarriers that are instrumental in nanoparticle uptake, which can be exploited for targeted drug delivery. STATEMENT OF SIGNIFICANCE: In order to deliver drugs to their site of action, drug-loaded nanocarriers can be targeted to cell receptors enabling efficient uptake into target cells. Thus, methods to identify nanocarrier receptors are invaluable. Here we used reversible biotinylation of live cells and receptor pull-down approaches for receptor identification. By comparative analysis of the individual receptors internalized in untreated cells and cells exposed to nanoparticles, we identified receptors enabling high nanoparticle uptake into liver and brain endothelial cells. Their role was confirmed by decorating nanoparticles with an artificial corona composed of the receptor ligands. In conclusion, live cell reversible biotinylation of cell surface proteins is a powerful tool for the identification of potential receptors for receptor-based targeting of nanocarriers.
Collapse
|
5
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
6
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Disruption of Membrane Integrity as a Molecular Initiating Event Determines the Toxicity of Polyhexamethylene Guanidine Phosphate Depending on the Routes of Exposure. Int J Mol Sci 2022; 23:ijms23063289. [PMID: 35328708 PMCID: PMC8955148 DOI: 10.3390/ijms23063289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polyhexamethylene guanidine phosphate (PHMG-P), a cationic biocide, is widely used in household products due to its strong bactericidal activity and low toxicity. However, it causes fatal lung damage when inhaled. In this study, we investigated why PHMG-P causes fatal lung injury when inhaled, and demonstrated that the disruption of membrane integrity through ionic interaction—a molecular initiating event of PHMG-P—determines toxicity. Mice were injected intravenously with 0.9 or 7.2 mg/kg PHMG-P (IV group), or instilled intratracheally with 0.9 mg/kg PHMG-P (ITI group); they were euthanatized at 4 h and on days 1 and 7 after treatment. Increased total BAL cell count and proinflammatory cytokine production, along with fibrotic changes in the lungs, were detected in the ITI group only. Levels of hepatic enzymes and hepatic serum amyloid A mRNA expression were markedly upregulated in the 7.2 mg/kg IV and ITI groups at 4 h or day 1 after treatment, but returned to baseline. No pathological findings were detected in the heart, liver, or kidneys. To simulate the IV injection, A549, THP-1, and HepG2 cells were treated with PHMG-P in cell culture media supplemented with different serum concentrations. Increased serum concentration was associated with an increase in cell viability. These results support the idea that direct contact between PHMG-P and cell membranes is necessary for PHMG-induced toxicity.
Collapse
|
8
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1282-1295. [DOI: 10.1093/jpp/rgac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022]
|
9
|
Li J, Men K, Gao Y, Wu J, Lei S, Yang Y, Pan H. Single Micelle Vectors based on Lipid/Block Copolymer Compositions as mRNA Formulations for Efficient Cancer Immunogene Therapy. Mol Pharm 2021; 18:4029-4045. [PMID: 34559545 DOI: 10.1021/acs.molpharmaceut.1c00461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunogene therapy provides a new strategy for the treatment of colorectal cancer. Compared to plasmid DNA, mRNA possesses several advantages as a therapeutic nucleic acid material and shows high potential in cancer therapy. Although efforts have been made to conquer the limited efficiency of mRNA delivery, most of the current mRNA vectors possess complex structures or compositions, which introduces additional toxicity and hinders their further clinical application. Hence, it is highly necessary to develop potent mRNA delivery systems with simple structures. Here, we report efficient mRNA delivery using the biodegradable micelle delivery system of DMP (DOTAP-mPEG-PCL). Biodegradable DMP micelles were simply prepared by the self-assembly of cationic lipid DOTAP and the diblock polymer monomethoxy poly(ethylene glycol)-poly(ε-caprolactone). With an average size of only 30 nm, we proved that these single-structured cationic micelles are highly potent in condensing and protecting mRNA molecules, with a delivery efficiency of 60.59% on C26 mouse colon cancer cells. The micelles triggered specific internalization pathways and were fully degraded in vivo. After binding with IL-22BP (interleukin-22 binding protein)-encoding mRNA, a strongly elevated IL-22BP mRNA level was detected in C26 cells. After intraperitoneal and intratumoral injection of the DMP/mIL-22BP complex, strong inhibition effects on C26 colon cancer models were observed, with high therapeutic efficiency and safety when systemically administrated. These data suggest that the DMP micelle is an advanced single-structured mRNA delivery system with high safety.
Collapse
Affiliation(s)
- Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Haixia Pan
- Oncology Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| |
Collapse
|
10
|
Chugh G, Singh BR, Adholeya A, Barrow CJ. Role of proteins in the biosynthesis and functioning of metallic nanoparticles. Crit Rev Biotechnol 2021; 42:1045-1060. [PMID: 34719294 DOI: 10.1080/07388551.2021.1985957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proteins are known to play important roles in the biosynthesis of metallic nanoparticles (NPs), which are biological substitutes for conventionally used chemical capping and stabilizing agents. When a pristine nanoparticle comes in contact with a biological media or system, a bimolecular layer is formed on the surface of the nanoparticle and is primarily composed of proteins. The role of proteins in the biosynthesis and further uptake, translocation, and bio-recognition of nanoparticles is documented in the literature. But, a complete understanding has not been achieved concerning the mechanism for protein-mediated nanoparticle biosynthesis and the role proteins play in the interaction and recognition of nanoparticles, aiding its uptake and assimilation into the biological system. This review critically evaluates the knowledge and gaps in the protein-mediated biosynthesis of nanoparticles. In particular, we review the role of proteins in multiple facets of metallic nanoparticle biosynthesis, the interaction of proteins with metallic nanoparticles for recognition and interaction with cells, and the toxic potential of protein-nanoparticle complexes when presented to the cell.
Collapse
Affiliation(s)
- Gaurav Chugh
- Discipline of Microbiology, School of Natural Sciences, and The Ryan Institute, National University of Ireland Galway, Galway, Ireland.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Braj Raj Singh
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Haryana, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
11
|
Jones S, Joshi H, Terry SJ, Burns JR, Aksimentiev A, Eggert US, Howorka S. Hydrophobic Interactions between DNA Duplexes and Synthetic and Biological Membranes. J Am Chem Soc 2021; 143:8305-8313. [PMID: 34015219 PMCID: PMC8193631 DOI: 10.1021/jacs.0c13235] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Equipping DNA with hydrophobic anchors enables targeted interaction with lipid bilayers for applications in biophysics, cell biology, and synthetic biology. Understanding DNA-membrane interactions is crucial for rationally designing functional DNA. Here we study the interactions of hydrophobically tagged DNA with synthetic and cell membranes using a combination of experiments and atomistic molecular dynamics (MD) simulations. The DNA duplexes are rendered hydrophobic by conjugation to a terminal cholesterol anchor or by chemical synthesis of a charge-neutralized alkyl-phosphorothioate (PPT) belt. Cholesterol-DNA tethers to lipid vesicles of different lipid compositions and charges, while PPT DNA binding strongly depends on alkyl length, belt position, and headgroup charge. Divalent cations in the buffer can also influence binding. Our MD simulations directly reveal the complex structure and energetics of PPT DNA within a lipid membrane, demonstrating that longer alkyl-PPT chains provide the most stable membrane anchoring but may disrupt DNA base paring in solution. When tested on cells, cholesterol-DNA is homogeneously distributed on the cell surface, while alkyl-PPT DNA accumulates in clustered structures on the plasma membrane. DNA tethered to the outside of the cell membrane is distinguished from DNA spanning the membrane by nuclease and sphingomyelinase digestion assays. The gained fundamental insight on DNA-bilayer interactions will guide the rational design of membrane-targeting nanostructures.
Collapse
Affiliation(s)
- Sioned
F. Jones
- Department
of Chemistry, Institute of Structural and Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
- Randall
Centre for Cell and Molecular Biophysics, School of Basic and Medical
Biosciences, and Department of Chemistry, King’s College London, London SE1 1UL, United Kingdom
| | - Himanshu Joshi
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stephen J. Terry
- Randall
Centre for Cell and Molecular Biophysics, School of Basic and Medical
Biosciences, and Department of Chemistry, King’s College London, London SE1 1UL, United Kingdom
- UCL
Ear Institute, London WC1X 8EE, United Kingdom
| | - Jonathan R. Burns
- Department
of Chemistry, Institute of Structural and Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | - Aleksei Aksimentiev
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ulrike S. Eggert
- Randall
Centre for Cell and Molecular Biophysics, School of Basic and Medical
Biosciences, and Department of Chemistry, King’s College London, London SE1 1UL, United Kingdom
| | - Stefan Howorka
- Department
of Chemistry, Institute of Structural and Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
12
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021; 60:3882-3904. [PMID: 32589355 PMCID: PMC7894192 DOI: 10.1002/anie.202006457] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
Collapse
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- IRIS AdlershofHumboldt Universität zu BerlinZum Grossen Windkanal 612489BerlinGermany
| | - Jens Dernedde
- Charité-Universitätsmedizin BerlinInstitute of Laboratory MedicineClinical Chemistry, and PathobiochemistryCVK Augustenburger Platz 113353BerlinGermany
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood ResearchDepartment of Pathology and Laboratory MedicineLife Science InstituteDepartment of ChemistrySchool of Biomedical EngineeringUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| | - Gerd Multhaup
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| |
Collapse
|
13
|
Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. SUSTAINABILITY 2021. [DOI: 10.3390/su13041781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanobiotechnology in agriculture is a driver for modern-day smart, efficient agricultural practices. Nanoparticles have been shown to stimulate plant growth and disease resistance. The goal of sustainable farming can be accomplished by developing and sustainably exploiting the fruits of nanobiotechnology to balance the advantages nanotechnology provides in tackling environmental challenges. This review aims to advance our understanding of nanobiotechnology in relevant areas, encourage interactions within the research community for broader application, and benefit society through innovation to realize sustainable agricultural practices. This review critically evaluates what is and is not known in the domain of nano-enabled agriculture. It provides a holistic view of the role of nanobiotechnology in multiple facets of agriculture, from the synthesis of nanoparticles to controlled and targeted delivery, uptake, translocation, recognition, interaction with plant cells, and the toxicity potential of nanoparticle complexes when presented to plant cells.
Collapse
|
14
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
15
|
Aliyandi A, Zuhorn IS, Salvati A. Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines. Front Bioeng Biotechnol 2020; 8:599454. [PMID: 33363128 PMCID: PMC7758247 DOI: 10.3389/fbioe.2020.599454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are promising tools for nanomedicine in a wide array of therapeutic and diagnostic applications. Yet, despite the advances in the biomedical applications of nanomaterials, relatively few nanomedicines made it to the clinics. The formation of the biomolecular corona on the surface of nanoparticles has been known as one of the challenges toward successful targeting of nanomedicines. This adsorbed protein layer can mask targeting moieties and creates a new biological identity that critically affects the subsequent biological interactions of nanomedicines with cells. Extensive studies have been directed toward understanding the characteristics of this layer of biomolecules and its implications for nanomedicine outcomes at cell and organism levels, yet several aspects are still poorly understood. One aspect that still requires further insights is how the biomolecular corona interacts with and is “read” by the cellular machinery. Within this context, this review is focused on the current understanding of the interactions of the biomolecular corona with cell receptors. First, we address the importance and the role of receptors in the uptake of nanoparticles. Second, we discuss the recent advances and techniques in characterizing and identifying biomolecular corona-receptor interactions. Additionally, we present how we can exploit the knowledge of corona-cell receptor interactions to discover novel receptors for targeting of nanocarriers. Finally, we conclude this review with an outlook on possible future perspectives in the field. A better understanding of the first interactions of nanomaterials with cells, and -in particular -the receptors interacting with the biomolecular corona and involved in nanoparticle uptake, will help for the successful design of nanomedicines for targeted delivery.
Collapse
Affiliation(s)
- Aldy Aliyandi
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Kuznetsova OV, Rubio GMDM, Keppler BK, Chin JM, Reithofer MR, Timerbaev AR. An ICP-MS-based assay for characterization of gold nanoparticles with potential biomedical use. Anal Biochem 2020; 611:114003. [PMID: 33159847 DOI: 10.1016/j.ab.2020.114003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/01/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Most of potential diagnostic and therapeutic nanoparticles fail to reach clinical trials because assessment of their 'drug-like' properties is often overlooked during the discovery stage. This compromises the results of cell culture and animal experiments, making them insufficient to evaluate the lead candidates for testing on patients. In this study, we demonstrate the potential of high-resolution inductively coupled plasma mass spectrometry (ICP-MS) as a nanoparticle qualification tool. Using novel gold nanoparticles stabilized by N-heterocyclic carbenes as test nanoparticles, it was shown that important prerequisites for biomedical applications, such as resistance to the action of human serum milieu or reactivity toward serum biomolecules, can be reliably assessed by recording the signals of gold or sulfur isotopes. Implemented during the screening stage, the method would provide benefits in shortening timelines and reducing cost for selection and initial testing of medicinal nanoparticle candidates.
Collapse
Affiliation(s)
- Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, 119991, Moscow, Russian Federation
| | | | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Jia Min Chin
- Institute of Physical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Andrei R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, 119991, Moscow, Russian Federation.
| |
Collapse
|
17
|
Kose O, Stalet M, Leclerc L, Forest V. Influence of the physicochemical features of TiO 2 nanoparticles on the formation of a protein corona and impact on cytotoxicity. RSC Adv 2020; 10:43950-43959. [PMID: 35517183 PMCID: PMC9058407 DOI: 10.1039/d0ra08429h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Due to their unique properties TiO2 nanoparticles are widely used. The adverse effects they may elicit are usually studied in relation to their physicochemical features. However, a factor is often neglected: the influence of the protein corona formed around nanoparticles upon contact with biological media. Indeed, although it is acknowledged that it can strongly influence nanoparticle toxicity, it is not systematically considered. The aim of this study was to characterize the formation of the protein corona of TiO2 nanoparticles as a function of the main nanoparticle properties and investigate potential relationship with the cytotoxicity nanoparticles induce in vitro in human lung cells. To that purpose, five TiO2 nanoparticles differing in size, shape, agglomeration state and surface charge were incubated in cell culture media (DMEM or RPMI supplemented with 10% fetal bovine serum) and the amount and profile of adsorbed proteins on each type of nanoparticle were compared to their toxicological profile. While nanoparticle size and surface charge were found to be determinant factors for protein corona formation, no clear impact of the shape and agglomeration state was observed. Furthermore, no clear relationship was evidenced between the protein corona of the nanoparticles and the adverse effect they elicited.
Collapse
Affiliation(s)
- Ozge Kose
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| | - Marion Stalet
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose Centre CIS F-42023 Saint-Etienne Cedex 2 France
| |
Collapse
|
18
|
The influence of shape and charge on protein corona composition in common gold nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111270. [DOI: 10.1016/j.msec.2020.111270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
|
19
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
- IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 6 12489 Berlin Deutschland
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie CVK Augustenburger Platz 1 13353 Berlin Deutschland
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research Department of Pathology and Laboratory Medicine Life Science Institute Department of Chemistry School of Biomedical Engineering University of British Columbia Vancouver V6T 1Z3 Kanada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| | - Gerd Multhaup
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| |
Collapse
|
20
|
Aliyandi A, Satchell S, Unger RE, Bartosch B, Parent R, Zuhorn IS, Salvati A. Effect of endothelial cell heterogeneity on nanoparticle uptake. Int J Pharm 2020; 587:119699. [PMID: 32736019 DOI: 10.1016/j.ijpharm.2020.119699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Endothelial cells exhibit distinct properties in morphology and functions in different organs that can be exploited for nanomedicine targeting. In this work, endothelial cells from different organs, i.e. brain, lung, liver, and kidney, were exposed to plain, carboxylated, and amino-modified silica. As expected, different protein coronas were formed on the different nanoparticle types and these changed when foetal bovine serum (FBS) or human serum were used. Uptake efficiencies differed strongly in the different endothelia, confirming that the cells retained some of their organ-specific differences. However, all endothelia showed higher uptake for the amino-modified silica in FBS, but, interestingly, this changed to the carboxylated silica when human serum was used, confirming that differences in the protein corona affect uptake preferences by cells. Thus, uptake rates of fluid phase markers and transferrin were determined in liver and brain endothelium to compare their endocytic activity. Overall, our results showed that endothelial cells of different organs have very different nanoparticle uptake efficiency, likely due to differences in receptor expression, affinity, and activity. A thorough characterization of phenotypic differences in the endothelia lining different organs is key to the development of targeted nanomedicine.
Collapse
Affiliation(s)
- Aldy Aliyandi
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | - Simon Satchell
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, BS1 3NY Bristol, England, United Kingdom.
| | - Ronald E Unger
- Institute of Pathology, REPAIR-Lab, Johannes Gutenberg University, Langenbeckstr. 1, 55101 Mainz, Germany.
| | - Birke Bartosch
- INSERM, Lyon Cancer Research Center, 28 Rue Laennec, 69008 Lyon, France.
| | - Romain Parent
- INSERM, Lyon Cancer Research Center, 28 Rue Laennec, 69008 Lyon, France.
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
| |
Collapse
|
21
|
Chen X, Zhu S, Hu X, Sun D, Yang J, Yang C, Wu W, Li Y, Gu X, Li M, Liu B, Ge L, Gu Z, Xu H. Toxicity and mechanism of mesoporous silica nanoparticles in eyes. NANOSCALE 2020; 12:13637-13653. [PMID: 32567638 DOI: 10.1039/d0nr03208e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study on the safety of nanomaterials in eyes is still in its early stages. In this study, we put our focus on the effect of one important nanoparticle feature - large surface area - to assess eye safety. To this end, mesoporous silica nanoparticles (MSiNPs) were for the first time employed as a model to evaluate their toxicity in eyes. The porosity of the MSiNPs endows them with a large surface area and the ability to attach to surrounding chemical or biological molecules, further enhancing their surface reactivity and toxic effects. Therefore, to better mimic MSiNP exposure in real environments, we also introduced other hazardous substances such as silver ions (Ag+) to the system and then investigated their synergistic nanotoxicity. Our results showed that the exposure to MSiNPs-Ag+ and even Ag+ at a safe dose, resulted in more significant toxicity than the MSiNPs alone, as evidenced from cell viability, apoptosis, reactive oxygen species (ROS) production, and DNA damage experiments. RNA-Sequencing analysis revealed that the mRNA surveillance signalling pathway plays a unique role in regulating MSiNPs-Ag+-induced cytotoxicity. Besides this, severe corneal damage and dry eye were observed in rat models upon exposure to MSiNPs-Ag+ compared to MSiNPs. Most importantly, we also proposed a protein corona-based therapy to treat MSiNP-induced corneal disease, where the corneal damage could be rescued by fetal bovine serum (FBS) treatment.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China and Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xisu Hu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Dayu Sun
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Wei Wu
- Institute of Orbital Disease, 3rd Medical Center of the Chinese PLA General Hospital, Beijing 100039, China
| | - Yijian Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xianliang Gu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Minghui Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Bo Liu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China. and College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. and Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| |
Collapse
|
22
|
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS NANO 2020; 14:2248-2264. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Virginia Wycisk
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Katharina Achazi
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Sergey Kapishnikov
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Ana Joaquina Pérez-Berná
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Antje Cossmer
- Division 1.1 - Inorganic Trace Analysis , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Helge Ewers
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Chemistry and Biochemisty, Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Thielallee 63 , 14195 Berlin , Germany
| | - Matthias Ballauff
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - James G McNally
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| |
Collapse
|
23
|
Bochenek M, Oleszko-Torbus N, Wałach W, Lipowska-Kur D, Dworak A, Utrata-Wesołek A. Polyglycidol of Linear or Branched Architecture Immobilized on a Solid Support for Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1720233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marcelina Bochenek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | | - Wojciech Wałach
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | | |
Collapse
|
24
|
Qian X, Shi Z, Qi H, Zhao M, Huang K, Han D, Zhou J, Liu C, Liu Y, Lu Y, Yuan X, Zhao J, Kang C. A novel Granzyme B nanoparticle delivery system simulates immune cell functions for suppression of solid tumors. Am J Cancer Res 2019; 9:7616-7627. [PMID: 31695790 PMCID: PMC6831455 DOI: 10.7150/thno.35900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cell-based immunotherapy for the treatment of hematologic malignancies, such as leukemia and lymphoma, has seen much success and played an increasingly important role in clinical studies. Nevertheless, the efficacy of immunotherapy in solid tumors still needs improvements due to the immunosuppressive properties of tumor cells and the microenvironment. To overcome these limitations, we prepared a novel tumor-targeting delivery system based on the underlying mechanism of immune-targeted cell death that encapsulated granzyme B protein within a porous polymeric nanocapsule. Methods: A cell-penetrating peptide TAT was attached onto granzyme B (GrB) to enhance its transmembrane transport efficiency and potency to induce cell apoptosis. The endocytosis and internalization pathways of GrB-TAT (GrB-T) were analyzed in comparison with perforin by confocal microscopy and flow cytometry. Furthermore, the positively charged GrB-T was wrapped into nanoparticles by p-2-methacryloyloxy ethyl phosphorylcholine (PMPC)-modified HA (hyaluronic acid). The nanoparticles (called TCiGNPs) were characterized in terms of zeta potential and by transmission electron microscopy (TEM). The in vitro anti-tumor effects of GrB-T were examined by cell apoptosis assay and Western blotting analysis. The in vivo anti-tumor therapeutic efficacy of TCiGNPs was evaluated in a mouse tumor model. Results: The TAT peptide could play a role similar to perforin to mediate direct transmembrane transfer of GrB and improve GrB-induced cell apoptosis. The TCiGNPs were successfully synthesized and accumulated in the solid tumor through enhanced permeability and retention (EPR) effect. In the tumor microenvironment, TCiGNPs could be degraded by hyaluronidase and triggered the release of GrB-T. The TAT peptide enabled the translocation of GrB across the plasma membrane to induce tumor cell apoptosis in vivo. Conclusion: We successfully developed a granzyme B delivery system with a GrB-T core and a PMPC/HA shell that simulated CTL/NK cell-mediated cancer immunotherapy mechanism. The GrB delivery system holds great promise for cancer treatment analogous to the CTL/NK cell-induced immunotherapy.
Collapse
|
25
|
Zhang X, Men K, Zhang Y, Zhang R, Yang L, Duan X. Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy. Int J Nanomedicine 2019; 14:2733-2751. [PMID: 31118608 PMCID: PMC6503337 DOI: 10.2147/ijn.s198747] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Background: In vitro transcribed (IVT) mRNA has been applied as an alternative therapeutic molecule to plasmid DNA in the field of cancer therapy and biomedical research studies. mRNA-based therapy has demonstrated several advantages over its DNA counterparts. However, its further therapeutic application is largely restricted by delivery method. Methods: In this work, a liposome-protamine lipoplex (CLPP) was prepared to deliver IVT mRNA encoding survivin-T34A gene, forming a novel core-shell structured nanoparticle formulation (CLPP/mSur-T34A). Results: The prepared CLPP/mSur-T34A particle had an average size of 186.1±3.1 nm, displaying high mRNA transfecting and expression efficiency on C26 tumor cells through lipid rafts-mediated endocytosis. CLPP/mSur-T34A mRNA formulation demonstrated obvious therapeutic effects on various models of C26 colon cancer both in vitro and in vivo. Particularly, local and systemic administration of CLPP/mSur-T34A particle exhibited superior antitumor effect regarding its DNA plasmid counterpart with high safety. Conclusion: Our results indicated the high delivery capacity of liposome-protamine lipoplex and further suggested CLPP/mSur-T34A mRNA formulation to be a potential candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuanfa Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy and Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| |
Collapse
|
26
|
Danner A, Schöttler S, Alexandrino E, Hammer S, Landfester K, Mailänder V, Morsbach S, Frey H, Wurm FR. Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol‐Modified Nanocarriers. Macromol Biosci 2019; 19:e1800468. [DOI: 10.1002/mabi.201800468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/04/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Ann‐Kathrin Danner
- Institut für Organische ChemieJohannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| | - Susanne Schöttler
- Max‐Planck‐Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Evandro Alexandrino
- Max‐Planck‐Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Sophie Hammer
- Institut für Organische ChemieJohannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Germany
| | | | - Volker Mailänder
- Max‐Planck‐Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - Svenja Morsbach
- Max‐Planck‐Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Holger Frey
- Institut für Organische ChemieJohannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Frederik R. Wurm
- Max‐Planck‐Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
27
|
Whitehouse WL, Noble JE, Ryadnov MG, Howorka S. Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures. Bioconjug Chem 2019; 30:1836-1844. [PMID: 30821443 DOI: 10.1021/acs.bioconjchem.9b00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA nanostructures constitute a rapidly advancing tool-set for exploring cell-membrane functions and intracellular sensing or advancing delivery of biomolecular cargo into cells. Chemical conjugation with lipid anchors can mediate binding of DNA nanostructures to synthetic lipid bilayers, yet how such structures interact with biological membranes and internalize cells has not been shown. Here, an archetypal 6-duplex nanobundle is used to investigate how lipid conjugation influences DNA cell binding and internalization kinetics. Cellular interactions of DNA nanobundles modified with one and three cholesterol anchors were assessed using flow cytometry and confocal microscopy. Nuclease digestion was used to distinguish surface-bound DNA, which is nuclease accessible, from internalized DNA. Three cholesterol anchors were found to enhance cellular association by up to 10-fold when compared with unmodified DNA. The bundles were endocytosed efficiently within 24 h. The results can help design controlled DNA binding and trafficking into cells.
Collapse
Affiliation(s)
- William L Whitehouse
- Department of Chemistry, Institute of Structural and Molecular Biology , University College London , London WC1H 0AJ , United Kingdom
| | - James E Noble
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| | - Stefan Howorka
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , United Kingdom
| |
Collapse
|
28
|
Singh AV, Laux P, Luch A, Sudrik C, Wiehr S, Wild AM, Santomauro G, Bill J, Sitti M. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicol Mech Methods 2019; 29:378-387. [DOI: 10.1080/15376516.2019.1566425] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ajay Vikram Singh
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Chaitanya Sudrik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefan Wiehr
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Giulia Santomauro
- Institute for Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
29
|
Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm 2019; 557:374-389. [DOI: 10.1016/j.ijpharm.2018.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
|
30
|
Wang J, Wang L, Li Y, Wang X, Tu P. Apically targeted oral micelles exhibit highly efficient intestinal uptake and oral absorption. Int J Nanomedicine 2018; 13:7997-8012. [PMID: 30538473 PMCID: PMC6263247 DOI: 10.2147/ijn.s183796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction Polymeric micelles (PMs) hold promise for improving solubility and oral absorption of poorly soluble drugs. Unfortunately, the oral absorption of PMs is also limited by intestinal epithelium. To improve the oral delivery efficiency of micelles, transporter-mediated micelles could enhance the transport efficiency across the epithelial barrier, and they have attracted more attention. Methods Peptide transporter 1 (PepT1)-mediated micelles (Val-PMs/Phe-PMs) were designed by grafting valine (or phenylalanine) onto the surface of curcumin (Cur)-loaded-D-α-tocopheryl polyethylene glycol 1000 succinate micelles (TP-PMs). The oral absorption mechanism and oral bioavailability were further investigated in vitro and in vivo. Results The cellular study showed that Val-PMs/Phe-PMs had a high PepT1 affinity, resulting in a higher drug uptake and transcellular transport than TP-PMs. In rats, Val-PMs/Phe-PMs exhibited higher intestinal accumulation in the apical side of the intestinal epithelium than TP-PMs, promoting drug diffusion across epithelial barrier. The oral bioavailability of Cur was significantly improved by Val-PMs/Phe-PMs, which was about 10.50- and 3.40-fold greater than that of Cur-Sol and TP-PMs, respectively. Conclusion PepT-1-mediated micelles, using PepT1 as a target on intestinal epithelium, have unique functions with intestine and prove promising for oral delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Jinling Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Lifang Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Ying Li
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Xiaohui Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Pengfei Tu
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| |
Collapse
|
31
|
Ferraro M, Silberreis K, Mohammadifar E, Neumann F, Dernedde J, Haag R. Biodegradable Polyglycerol Sulfates Exhibit Promising Features for Anti-inflammatory Applications. Biomacromolecules 2018; 19:4524-4533. [DOI: 10.1021/acs.biomac.8b01100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kim Silberreis
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
32
|
Stöbener DD, Paulus F, Welle A, Wöll C, Haag R. Dynamic Protein Adsorption onto Dendritic Polyglycerol Sulfate Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10302-10308. [PMID: 30103603 DOI: 10.1021/acs.langmuir.8b00961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomaterial surfaces that are in contact with blood are often prone to unspecific protein adsorption and the activation of the blood clotting cascade. Hence, such materials usually must be functionalized with low-fouling or anticoagulant polymer coatings to increase their performance and durability with respect to various applications, for example as implants or in biomedical devices. Many coatings are based on anionic polymers, such as heparin, and are known to have pronounced anticoagulant effects. To assess the ability of a surface to prevent biofouling and to get further insight into its underlying mechanism, studies of the protein adsorption on self-assembled monolayers (SAMs) are often used as a predictive tool. In this article, we synthesized thioctic acid-functionalized dendritic polyglycerol sulfate (dPGS), which is a well-known synthetic heparin mimetic, and immobilized it onto gold model surfaces. The anionic dPGS SAMs were characterized via contact angle measurements and ellipsometry and compared to their neutral dendritic polyglycerol (dPG) counterparts with respect to their single protein adsorption of the two most abundant blood proteins albumin (Alb) and fibrinogen (Fib). In addition, we used QCM-D and ToF-SIMS as complementary techniques to investigate the dynamic, mixed, and sequential adsorption of Alb and Fib. Our results clearly demonstrate an incomplete Vroman effect and indicate the rearrangement of the adsorbed protein layers, which is presumably drive by ionic interactions between the two proteins and the anionic dPGS surface.
Collapse
Affiliation(s)
- Daniel David Stöbener
- Institute of Chemistry and Biochemistry , Freie Universitaet Berlin , 14195 Berlin , Germany
| | - Florian Paulus
- Institute of Chemistry and Biochemistry , Freie Universitaet Berlin , 14195 Berlin , Germany
| | - Alexander Welle
- Institute of Functional Interfaces (IFG) , Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen , Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) , Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen , Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry , Freie Universitaet Berlin , 14195 Berlin , Germany
| |
Collapse
|
33
|
Kang MK, Mao W, Yoo HS. Surface-initiated atom transfer radical polymerization of cationic corona on iron oxide nanoparticles for magnetic sorting of macrophages. Biomater Sci 2018; 6:2248-2260. [PMID: 29972152 DOI: 10.1039/c8bm00418h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ovalbumin-incorporated antigen carriers were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of iron oxide nanoparticles for magnetic sorting of antigen-presenting cells. Iron oxide nanoparticles were surface-decorated with cationic shells by SI-ATRP, and the primary amines on the surface were further tri-methylated. Surface decoration of the nanoparticles was characterized by Fourier transform infrared spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and transmission electron microscopy with energy-dispersive spectrometry. Ovalbumin-loaded nanoparticles showed higher incorporation in comparison to non-decorated nanoparticles, and the loaded ovalbumin was released faster at low pH than at neutral pH. Ovalbumin-loaded nanoparticles were endocytosed by macrophages, and macrophages with nanoparticles were easily harvested by magnetic separation. Magnetically sorted macrophages showed higher release of cytokines including TNF-α, MIP-1α, and IL-1β than unsorted macrophages. These results suggest that ovalbumin-loaded nanoparticles can potentially increase the efficiency of immune therapy during the antigen-presenting pathway.
Collapse
Affiliation(s)
- Myun Koo Kang
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | | | | |
Collapse
|
34
|
Simon J, Wolf T, Klein K, Landfester K, Wurm FR, Mailänder V. Hydrophilicity Regulates the Stealth Properties of Polyphosphoester-Coated Nanocarriers. Angew Chem Int Ed Engl 2018; 57:5548-5553. [PMID: 29479798 DOI: 10.1002/anie.201800272] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 12/27/2022]
Abstract
Increasing the plasma half-life is an important goal in the development of drug carriers, and can be effectively achieved through the attachment of polymers, in particular poly(ethylene glycol) (PEG). While the increased plasma half-life has been suggested to be a result of decreased overall protein adsorption on the hydrophilic surface in combination with the adsorption of specific proteins, the molecular reasons for the success of PEG and other hydrophilic polymers are still widely unknown. We prepared polyphosphoester-coated nanocarriers with defined hydrophilicity to control the stealth properties of the polymer shell. We found that the log P value of the copolymer controls the composition of the protein corona and the cell interaction. Upon a significant change in hydrophilicity, the overall amount of blood proteins adsorbed on the nanocarrier remained unchanged, while the protein composition varied. This result underlines the importance of the protein type for the protein corona and cellular uptake.
Collapse
Affiliation(s)
- Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Wolf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katja Klein
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
35
|
Simon J, Wolf T, Klein K, Landfester K, Wurm FR, Mailänder V. Hydrophilie als bestimmender Faktor des Stealth-Effekts von Polyphosphoester-funktionalisierten Nanoträgern. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Johanna Simon
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Hautklinik; Langenbeckstraße 1 55131 Mainz Deutschland
| | - Thomas Wolf
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Katja Klein
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Volker Mailänder
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Hautklinik; Langenbeckstraße 1 55131 Mainz Deutschland
| |
Collapse
|
36
|
SiO 2 nanoparticles modulate the electrical activity of neuroendocrine cells without exerting genomic effects. Sci Rep 2018; 8:2760. [PMID: 29426889 PMCID: PMC5807366 DOI: 10.1038/s41598-018-21157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/15/2018] [Indexed: 01/21/2023] Open
Abstract
Engineered silica nanoparticles (NPs) have attracted increasing interest in several applications, and particularly in the field of nanomedicine, thanks to the high biocompatibility of this material. For their optimal and controlled use, the understanding of the mechanisms elicited by their interaction with the biological target is a prerequisite, especially when dealing with cells particularly vulnerable to environmental stimuli like neurons. Here we have combined different electrophysiological approaches (both at the single cell and at the population level) with a genomic screening in order to analyze, in GT1-7 neuroendocrine cells, the impact of SiO2 NPs (50 ± 3 nm in diameter) on electrical activity and gene expression, providing a detailed analysis of the impact of a nanoparticle on neuronal excitability. We find that 20 µg mL−1 NPs induce depolarization of the membrane potential, with a modulation of the firing of action potentials. Recordings of electrical activity with multielectrode arrays provide further evidence that the NPs evoke a temporary increase in firing frequency, without affecting the functional behavior on a time scale of hours. Finally, NPs incubation up to 24 hours does not induce any change in gene expression.
Collapse
|
37
|
Yin J, Hou Y, Yin Y, Song X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int J Nanomedicine 2017; 12:8671-8680. [PMID: 29263662 PMCID: PMC5724418 DOI: 10.2147/ijn.s144615] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University
| | - Yantao Hou
- Henan Vocational College of Applied Technology, Kaifeng
| | - Yuyun Yin
- Henan Provincial Institute of Food and Drug Control, Zhengzhou, People's Republic of China
| | - Xiaoyong Song
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University
| |
Collapse
|
38
|
CE Separation and ICP-MS Detection of Gold Nanoparticles and Their Protein Conjugates. Chromatographia 2017; 80:1695-1700. [PMID: 29170563 PMCID: PMC5681605 DOI: 10.1007/s10337-017-3387-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/25/2022]
Abstract
A full understanding and mediation of nanoparticle-serum protein interactions is key to design nanoparticles with vivid functions within the body, and to solve this problem one needs to differentiate and characterize individual nano-protein conjugates. In this paper, the authors applied capillary electrophoresis combined with inductively coupled plasma mass spectrometry detection to study the behavior of gold nanoparticles of different geometry, size and surface functionalization upon interacting with serum proteins and their mixtures. Due to high-resolution and -sensitivity benefits of this combined technique baseline separations were attained for free nanoparticles (at real-life doses) and different protein conjugates, and the conversion into the protein-bound form was scrutinized in terms of reaction time.
Collapse
|