1
|
Trzaskowska M, Vivcharenko V, Benko A, Franus W, Goryczka T, Barylski A, Palka K, Przekora A. Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications. Sci Rep 2024; 14:28137. [PMID: 39548237 PMCID: PMC11568164 DOI: 10.1038/s41598-024-79822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m2/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability. HA granules of high microporosity and SSA can be produced by applying low sintering temperatures (below 900 °C). Nevertheless, although HA sintered at low temperatures shows significantly higher SSA (10-60 m2/g) and improved bioabsorbability, it also exhibits high ion reactivity and cytotoxicity under in vitro conditions. The latter is due to the presence of reaction by-products. Thus, the aim of this study was to fabricate novel biomaterials in the form of granules, composed of hydroxyapatite nanopowder sintered at a high temperature (1100 °C) and a biopolymer matrix: chitosan/agarose or chitosan/β-1,3-glucan (curdlan). It was hypothesized that appropriately selected ingredients would ensure high biocompatibility and microstructural properties comparable to HA sintered at low temperatures. Synthesized granules were subjected to the evaluation of their biological, microstructural, physicochemical, and mechanical properties. The obtained results showed that the developed nanocomposite granules were characterized by a lack of cytotoxicity towards both mouse preosteoblasts and normal human fetal osteoblasts, and supported cell adhesion to their surface. Moreover, produced biomaterials had the ability to induce precipitation of apatite crystals after immersion in simulated body fluid, which, combined with high biocompatibility, should ensure good osseointegration after implantation. Additionally, nanocomposite granules possessed microstructural parameters similar to HA sintered at a low temperature (porosity approx. 50%, SSA approx. 30 m²/g), Young's modulus (5-8 GPa) comparable to cancellous bone, and high fluid absorption capacity. Moreover, the nanocomposites were prone to biodegradation under the influence of enzymatic solution and in an acidic environment. Additionally, it was noted that the hydroxyapatite nanoparticles remaining after the physicochemical dissolution of the biomaterial were easily phagocytosed by mouse macrophages, mouse preosteoblasts, and normal human fetal osteoblasts (in vitro studies). The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability. The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Vladyslav Vivcharenko
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Krzysztof Palka
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20- 618, Lublin, Poland
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
2
|
Zalewska J, Vivcharenko V, Belcarz A. Gypsum-Related Impact on Antibiotic-Loaded Composite Based on Highly Porous Hydroxyapatite-Advantages and Disadvantages. Int J Mol Sci 2023; 24:17178. [PMID: 38139007 PMCID: PMC10742761 DOI: 10.3390/ijms242417178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Highly porous hydroxyapatite is sometimes considered toxic and useless as a biomaterial for bone tissue regeneration because of the high adsorption of calcium and phosphate ions from cell culture media. This negatively affects the osteoblast's growth in such ion-deprived media and suggests "false cytotoxicity" of tested hydroxyapatite. In our recent study, we showed that a small addition of calcium sulfate dihydrate (CSD) may compensate for this adsorption without a negative effect on other properties of hydroxyapatite-based biomaterials. This study was designed to verify whether such CSD-supplemented biomaterials may serve as antibiotic carriers. FTIR, roughness, mechanical strength analysis, drug release, hemocompatibility, cytotoxicity against human osteoblasts, and antibacterial activity were evaluated to characterize tested biomaterials. The results showed that the addition of 1.75% gypsum and gentamicin caused short-term calcium ion compensation in media incubated with the composite. The combination of both additives also increased antibacterial activity against bacteria representative of bone infections without affecting osteoblast proliferation, hemocompatibility, and mechanical parameters. Thus, gypsum and antibiotic supplementation may provide advanced functionality for bone-regeneration materials based on hydroxyapatite of a high surface area and increasingly high Ca2+ sorption capacity.
Collapse
Affiliation(s)
- Justyna Zalewska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
3
|
Korowash SI, Keskin-Erdogan Z, Hemdan BA, Barrios Silva LV, Ibrahim DM, Chau DYS. Selenium- and/or copper-substituted hydroxyapatite: A bioceramic substrate for biomedical applications. J Biomater Appl 2023; 38:351-360. [PMID: 37604458 PMCID: PMC10494480 DOI: 10.1177/08853282231198726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Atomic substitution or doping of a bioceramic material hydroxyapatite (HA) with specific ions is an appealing approach for improving its biocompatibility and activity, as well as imparting antibacterial properties. In this study, selenium- and/or copper-substituted hydroxyapatite powders were synthesized by an aqueous precipitation method and using the freeze-drying technique. The molar concentrations of constituents were calculated based on the proposed mechanism whereby selenium (Se4+) ions partially substitute phosphorus (P5+) sites, and copper (Cu2+) ions partially substitute (Ca2+) sites in the HA lattice. Dried precipitated samples were characterized using Inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). Accordingly, substitution of Se4+ and/or Cu2+ ions took place in the crystal lattice of HA without the formation of any impurities. The presence of sulphur (S2-) ions in the hydroxyapatite was detected by ICP-OES in all samples with copper substituted in the lattice. The cytotoxicity of the powders on osteoblastic (MC3T3-E1) cells was evaluated in vitro. Selenium substituted hydroxyapatite (SeHA), at the concentration (200 μg/mL), demonstrated higher populations of the live cells than that of control (cells without powders), suggesting that selenium may stimulate the proliferation of these cells. In addition, the copper substituted hydroxyapatite (CuHA) and the selenium and copper substituted hydroxyapatite (SeCuHA) at the concentrations (200 and 300 μg/mL) and (200 μg/mL), respectively demonstrated better results than the unsubstituted HA. Antimicrobial activity was assessed using a well-diffusion method against Streptococcus mutans and Candida albicans, and superior results has obtained with SeCuHA samples. Presented findings imply that selenium and/or copper substituted modified hydroxyapatite nanoparticles, may be an attractive antimicrobial and cytocompatible substrate to be considered for use in a range of translational applications.
Collapse
Affiliation(s)
- Sara I Korowash
- Department of Refractories, Ceramics and Building Materials, National Research Centre, Cairo, Egypt
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
- Chemical Engineering Department, Imperial College London, London, UK
| | - Bahaa A Hemdan
- Department of Water Pollution Research, National Research Centre, Cairo, Egypt
| | - Lady V Barrios Silva
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
| | - Doreya M Ibrahim
- Department of Refractories, Ceramics and Building Materials, National Research Centre, Cairo, Egypt
| | - David YS Chau
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, UCL, London, UK
| |
Collapse
|
4
|
Hydroxyapatite or Fluorapatite—Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?—A Comprehensive Comparative Study. Int J Mol Sci 2023; 24:ijms24065576. [PMID: 36982648 PMCID: PMC10059826 DOI: 10.3390/ijms24065576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Hydroxyapatite (HAP) is the most common calcium phosphate ceramic that is used in biomedical applications, e.g., as an inorganic component of bone scaffolds. Nevertheless, fluorapatite (FAP) has gained great attention in the area of bone tissue engineering in recent times. The aim of this study was a comprehensive comparative evaluation of the biomedical potential of fabricated HAP- and FAP-based bone scaffolds, to assess which bioceramic is better for regenerative medicine applications. It was demonstrated that both biomaterials had a macroporous microstructure, with interconnected porosity, and were prone to slow and gradual degradation in a physiological environment and in acidified conditions mimicking the osteoclast-mediated bone resorption process. Surprisingly, FAP-based biomaterial revealed a significantly higher degree of biodegradation than biomaterial containing HAP, which indicated its higher bioabsorbability. Importantly, the biomaterials showed a similar level of biocompatibility and osteoconductivity regardless of the bioceramic type. Both scaffolds had the ability to induce apatite formation on their surfaces, proving their bioactive property, that is crucial for good implant osseointegration. In turn, performed biological experiments showed that tested bone scaffolds were non-toxic and their surfaces promoted cell proliferation and osteogenic differentiation. Moreover, the biomaterials did not exert a stimulatory effect on immune cells, since they did not generate excessive amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS), indicating a low risk of inflammatory response after implantation. In conclusion, based on the obtained results, both FAP- and HAP-based scaffolds have an appropriate microstructure and high biocompatibility, being promising biomaterials for bone regeneration applications. However, FAP-based biomaterial has higher bioabsorbability than the HAP-based scaffold, which is a very important property from the clinical point of view, because it enables a progressive replacement of the bone scaffold with newly formed bone tissue.
Collapse
|
5
|
Peng H, Shi S, Lu Z, Liu L, Peng S, Wei P, Yi T. HOCl-Activated Reactive Organic Selenium Delivery Platform for Alleviation of Inflammation. Bioconjug Chem 2022; 33:1602-1608. [PMID: 36018225 DOI: 10.1021/acs.bioconjchem.2c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenium plays an important role in the biological system and can be used to treat various types of diseases. However, the current selenium delivery systems face the problems of low activity of released Se-containing compounds or nonspecific toxicity of reactive organic selenium donors in living systems. In response to these problems, we constructed a reactive organic selenium delivery platform by the activation of HOCl. Compared with prodrugs without activation capability, the hypochloroselenoite derivatives released from the present platform after activation displayed higher reactivity and could react with various nucleophiles to participate in specific life processes. Taking the selected compound (DHU-Se1) as an example, we found that it could alleviate the process of inflammation by blocking the polarization of macrophages from M0 to M1. Therefore, the development of this system is of great significance for expanding the application of selenium-containing compounds and treating related diseases.
Collapse
Affiliation(s)
- Hongying Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shi Shi
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lingyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuxin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Kazimierczak P, Golus J, Kolmas J, Wojcik M, Kolodynska D, Przekora A. Noncytotoxic zinc-doped nanohydroxyapatite-based bone scaffolds with strong bactericidal, bacteriostatic, and antibiofilm activity. BIOMATERIALS ADVANCES 2022; 139:213011. [PMID: 35882155 DOI: 10.1016/j.bioadv.2022.213011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Development of bone scaffolds that are nontoxic to eukaryotic cells, while revealing bactericidal activity still remains a huge challenge for the scientific community. It should be noted that only bacteriostatic (the ability of the biomaterial to inhibit the growth of bacteria) and bactericidal (the ability to kill >99.9 % bacteria) activities have clinical importance. Unfortunately, many material scientists are confused with the microbiological definition of antibacterial action and consider biomaterials causing reduction in colony-forming units (CFUs) by 50-80 % as promising antibacterial implants. The aim of this study was to synthesize three variants of Zn-doped hydroxyapatite (HA) nanopowder, which were characterized by different content of Zn2+ and served as a powder phase for the production of novel macroporous chitosan/agarose/nanoHA biomaterials with high antibacterial activity. Within this study, it was proven that the scaffold with a low zinc content (doping level 0.03 mol for 1 mol of HA; 0.2 wt%) revealed the gradual and slow release of the Zn2+ ions, preventing against accumulation of high and toxic concentration of therapeutic agents and providing prolonged antibacterial activity. Moreover, developed biomaterial was nontoxic to human osteoblasts and showed anti-biofilm properties, bactericidal activity (> 99.9 % of bacteria killed) against Staphylococcus epidermidis and Escherichia coli, significant antibacterial activity against Staphylococcus aureus (98.5 % of bacteria killed), and also bacteriostatic activity against Pseudomonas aeruginosa. Thus, the developed Zn-doped HA-based bone scaffold has excellent antibacterial properties without toxicity against eukaryotic cells, being a promising biomaterial for biomedical applications to repair bone defects and prevent post-surgery infections.
Collapse
Affiliation(s)
- Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | - Joanna Golus
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Joanna Kolmas
- Department of Analytical Chemistry, Chair of Analytical Chemistry and Biomaterials, University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Michal Wojcik
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Dorota Kolodynska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Laskus-Zakrzewska A, Kazimierczak P, Kolmas J. Porous Composite Granules with Potential Function of Bone Substitute and Simvastatin Releasing System: A Preliminary Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5068. [PMID: 34501158 PMCID: PMC8434560 DOI: 10.3390/ma14175068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022]
Abstract
In this work, 3D porous granules based on Zn and Se-containing calcium phosphates (CaPs) were fabricated using a droplet-extrusion technique. The composite beads varied in composition and contained two different natural polymers: sodium alginate (SA) and gelatin (GEL). To analyse and compare their physicochemical properties, such as porosity and morphology, different techniques were applied, including scanning electron microscopy (SEM), sorption of N2 and mercury porosimetry. Prior to the fabrication of the granules, the properties of CaPs materials, (the bioceramic base of the beads), selenium (IV)-substituted hydroxyapatite (Se-HA) and zinc-substituted dicalcium phosphate dihydrate (Zn-DCPD), were also investigated. The results of cell viability assessment showed that Se-HA powder was non-toxic to human osteoblasts (hFOB 1.19) and simultaneously exhibited high toxicity to tumour cells (Saos-2). Once the cytotoxicity assay was completed, Se-HA and Zn-DCPD were used to prepare 3D materials. The prepared porous granules were used as matrices to deliver simvastatin to bones. Simvastatin was applied in either the lipophilic form or hydrophilic form. The release kinetics of simvastatin from granules of different composition was then assessed and compared.
Collapse
Affiliation(s)
- Aleksandra Laskus-Zakrzewska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | - Joanna Kolmas
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
8
|
Gao J, Huang J, Shi R, Wei J, Lei X, Dou Y, Li Y, Zuo Y, Li J. Loading and Releasing Behavior of Selenium and Doxorubicin Hydrochloride in Hydroxyapatite with Different Morphologies. ACS OMEGA 2021; 6:8365-8375. [PMID: 33817497 PMCID: PMC8015115 DOI: 10.1021/acsomega.1c00092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023]
Abstract
![]()
Doxorubicin (Dox)-loaded
or selenium-substituted hydroxyapatite
(HA) has been developed to achieve anti-osteosarcoma or bone regeneration
in a number of studies. However, currently, there is a lack of studies
on the combination of Dox and selenium loading in/on HA and comparative
research studies on which form and size of HA are more suitable for
drug loading and release in the treatment osteogenesis after osteosarcoma
resection. Herein, selenium-doped rod-shaped nano-HA (n-HA) and spherical
mesoporous HA (m-HA) were successfully prepared. The doping efficiency
of selenium and the Dox loading capacity of selenium-doped HA with
different morphologies were studied. The release kinetics of Dox and
the selenium element in phosphate-buffered saline with different pH
values was also comparatively investigated. The drug loading results
showed that n-HA exhibited 3 times higher selenium doping amount than
m-HA, and the Dox entrapment efficiency of selenium-doped n-HA (0.1Se-n-HA)
presented 20% higher than that of selenium-doped m-HA (0.1Se-m-HA).
The Dox release behaviors of HA in two different morphologies showed
similar release kinetics, with almost the same Dox releasing ratio
but slightly more Dox releasing amount in selenium-doped HA than in
HA without selenium. The selenium release from selenium-doped n-HA-D
(0.1Se-n-HA-D) particles was 2 times as much as that of selenium-doped
m-HA-D (0.1Se-m-HA) particles. Our study indicated that n-HA loaded
with Dox and selenium may be a promising drug delivery strategy for
inhibition of osteosarcoma recurrence and promoting osteogenesis simultaneously.
Collapse
Affiliation(s)
- Jing Gao
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Jinhui Huang
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Rui Shi
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jiawei Wei
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yichen Dou
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
9
|
Bartmański M, Pawłowski Ł, Belcarz A, Przekora A, Ginalska G, Strugała G, Cieślik BM, Pałubicka A, Zieliński A. The Chemical and Biological Properties of Nanohydroxyapatite Coatings with Antibacterial Nanometals, Obtained in the Electrophoretic Process on the Ti13Zr13Nb Alloy. Int J Mol Sci 2021; 22:ijms22063172. [PMID: 33804677 PMCID: PMC8003631 DOI: 10.3390/ijms22063172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
The risk of an early inflammation after implantation surgery of titanium implants has caused the development of different antimicrobial measures. The present research is aimed at characterizing the effects of nanosilver and nanocopper dispersed in the nanohydroxyapatite coatings, deposited on the Ti13Zr13Nb alloy, and on the chemical and biological properties of the coatings. The one-stage deposition process was performed by the electrophoretic method at different contents of nanomaterials in suspension. The surface topography of the coatings was examined with scanning electron microscopy. The wettability was expressed as the water contact angle. The corrosion behavior was characterized by the potentiodynamic technique. The release rate of copper and silver into the simulated body fluid was investigated by atomic absorption spectrometry. The antibacterial efficiency was evaluated as the survivability and adhesion of the bacteria and the growth of the biofilm. The cytotoxicity was assessed for osteoblasts. The results demonstrate that silver and copper increase the corrosion resistance and hydrophilicity. Both elements together effectively kill bacteria and inhibit biofilm growth but appear to be toxic for osteoblasts. The obtained results show that the nanohydroxyapatite coatings doped with nanosilver and nanocopper in a one-stage electrophoretic process can be valuable for antibacterial coatings.
Collapse
Affiliation(s)
- Michał Bartmański
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdansk, Poland; (Ł.P.); (G.S.); (A.Z.)
- Correspondence: ; Tel.: +48-500-034-220; Fax: +48-58-347-18-15
| | - Łukasz Pawłowski
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdansk, Poland; (Ł.P.); (G.S.); (A.Z.)
| | - Anna Belcarz
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.P.); (G.G.)
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.P.); (G.G.)
| | - Grazyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.P.); (G.G.)
| | - Gabriel Strugała
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdansk, Poland; (Ł.P.); (G.S.); (A.Z.)
| | - Bartłomiej Michał Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland;
- Department of Oncological Surgery, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Andrzej Zieliński
- Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdansk, Poland; (Ł.P.); (G.S.); (A.Z.)
| |
Collapse
|
10
|
Mg,Si-Co-Substituted Hydroxyapatite/Alginate Composite Beads Loaded with Raloxifene for Potential Use in Bone Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22062933. [PMID: 33805785 PMCID: PMC7999305 DOI: 10.3390/ijms22062933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis is a worldwide chronic disease characterized by increasing bone fragility and fracture likelihood. In the treatment of bone defects, materials based on calcium phosphates (CaPs) are used due to their high resemblance to bone mineral, their non-toxicity, and their affinity to ionic modifications and increasing osteogenic properties. Moreover, CaPs, especially hydroxyapatite (HA), can be successfully used as a vehicle for local drug delivery. Therefore, the aim of this work was to fabricate hydroxyapatite-based composite beads for potential use as local carriers for raloxifene. HA powder, modified with magnesium and silicon ions (Mg,Si-HA) (both of which play beneficial roles in bone formation), was used to prepare composite beads. As an organic matrix, sodium alginate with chondroitin sulphate and/or keratin was applied. Cross-linking of beads containing raloxifene hydrochloride (RAL) was carried out with Mg ions in order to additionally increase the concentration of this element on the material surface. The morphology and porosity of three different types of beads obtained in this work were characterized by scanning electron microscopy (SEM) and mercury intrusion porosimetry, respectively. The Mg and Si released from the Mg,Si-HA powder and from the beads were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). In vitro RAL release profiles were investigated for 12 weeks and studied using UV/Vis spectroscopy. The beads were also subjected to in vitro biological tests on osteoblast and osteosarcoma cell lines. All the obtained beads revealed a spherical shape with a rough, porous surface. The beads based on chondroitin sulphate and keratin (CS/KER-RAL) with the lowest porosity resulted in the highest resistance to crushing. Results revealed that these beads possessed the most sustained drug release and no burst release effect. Based on the results, it was possible to select the optimal bead composition, consisting of a mixture of chondroitin sulphate and keratin.
Collapse
|
11
|
Zocchi MR, Tosetti F, Benelli R, Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel) 2020; 12:cancers12071886. [PMID: 32668783 PMCID: PMC7409190 DOI: 10.3390/cancers12071886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Both natural and synthetic nanoparticles have been proposed as drug carriers in cancer treatment, since they can increase drug accumulation in target tissues, optimizing the therapeutic effect. As an example, extracellular vesicles (EV), including exosomes (Exo), can become drug vehicles through endogenous or exogenous loading, amplifying the anticancer effects at the tumor site. In turn, synthetic nanoparticles (NP) can carry therapeutic molecules inside their core, improving solubility and stability, preventing degradation, and controlling their release. In this review, we summarize the recent advances in nanotechnology applied for theranostic use, distinguishing between passive and active targeting of these vehicles. In addition, examples of these models are reported: EV as transporters of conventional anticancer drugs; Exo or NP as carriers of small molecules that induce an anti-tumor immune response. Finally, we focus on two types of nanoparticles used to stimulate an anticancer immune response: Exo carried with A Disintegrin And Metalloprotease-10 inhibitors and NP loaded with aminobisphosphonates. The former would reduce the release of decoy ligands that impair tumor cell recognition, while the latter would activate the peculiar anti-tumor response exerted by γδ T cells, creating a bridge between innate and adaptive immunity.
Collapse
Affiliation(s)
- Maria Raffaella Zocchi
- Division of Immunology Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.T.); (R.B.)
- Correspondence:
| |
Collapse
|
12
|
Borkowski L, Przekora A, Belcarz A, Palka K, Jozefaciuk G, Lübek T, Jojczuk M, Nogalski A, Ginalska G. Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111211. [PMID: 32806239 DOI: 10.1016/j.msec.2020.111211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Calcium phosphates, due to their similarity to the inorganic fraction of mineralized tissues, are of great importance in treatment of bone defects. In order to improve the biological activity of hydroxyapatite (HAP), its fluoride-substituted modification (FAP) was synthesized using the sol-gel method and calcined at three different temperatures in the range of 800-1200 °C. Physicochemical and biological properties were evaluated to indicate which material would support bone regeneration the best. X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR) revealed that fluoride ions were incorporated into the apatite lattice structure. In studies it was found that fluorapatite sintered at the highest temperature had the lowest porosity, no internal pores and the highest density. In vitro ion reactivity assessments showed that during the 28-day immersion of the samples in the simulated body fluid, the uptake of calcium and phosphorus ions was inversely correlated to the calcination temperature. All tested materials were non-toxic since the cytotoxicity MTT assay demonstrated that the viability of preosteoblast cells incubated with sample extracts was high. Fluorapatite sintered at 800 °C was determined to be of optimal porosity and fluoride release capacity and then used in cell proliferation studies. The results showed that it significantly shortened the doubling time and thus enhanced the proliferation of osteogenic cells, as compared to the fluoride solutions and control group. Therefore, this material is proposed for the use in orthopedic applications and bone tissue engineering.
Collapse
Affiliation(s)
- Leszek Borkowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Krzysztof Palka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Grzegorz Jozefaciuk
- Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
| | - Tomasz Lübek
- Chair and Department of Traumatology and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Mariusz Jojczuk
- Chair and Department of Traumatology and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Adam Nogalski
- Chair and Department of Traumatology and Emergency Medicine, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
13
|
Improved Fracture Toughness and Conversion Degree of Resin-Based Dental Composites after Modification with Liquid Rubber. MATERIALS 2020; 13:ma13122704. [PMID: 32545845 PMCID: PMC7344604 DOI: 10.3390/ma13122704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022]
Abstract
There are many methods widely applied in the engineering of biomaterials to improve the mechanical properties of the dental composites. The aim of this study was to assess the effect of modification of dental composites with liquid rubber on their mechanical properties, degree of conversion, viscosity, and cytotoxicity. Both flow and packable composite consisted of a mixture of Bis-GMA, TEGDMA, UDMA, and EBADMA resins reinforced with 60 and 78 wt.% ceramic filler, respectively. It was demonstrated that liquid rubber addition significantly increased the fracture toughness by 9% for flow type and 8% for condensable composite. The influence of liquid rubber on flexural strength was not statistically significant. The addition of the toughening agent significantly reduced Young’s modulus by 7% and 9%, respectively, while increasing deformation at breakage. Scanning electron microscopy (SEM) observations allowed to determine the mechanisms of toughening the composites reinforced with ceramic particles. These mechanisms included bridging the crack edges, blocking the crack tip by particles and dissipation of fracture energy by deflection of the cracks on larger particles. The degree of conversion increased after modification, mainly due to a decrease in the matrix resin viscosity. It was also shown that all dental materials were nontoxic according to ISO 10993-5, indicating that modified materials have great potential for commercialization and clinical applications.
Collapse
|
14
|
Pang KL, Chin KY. Emerging Anticancer Potentials of Selenium on Osteosarcoma. Int J Mol Sci 2019; 20:E5318. [PMID: 31731474 PMCID: PMC6862058 DOI: 10.3390/ijms20215318] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to humans and forms complexes with proteins, which exert physiological functions in the body. In vitro studies suggested that selenium possesses anticancer effects and may be effective against osteosarcoma. This review aims to summarise current evidence on the anticancer activity of inorganic and organic selenium on osteosarcoma. Cellular studies revealed that inorganic and organic selenium shows cytotoxicity, anti-proliferative and pro-apoptotic effects on various osteosarcoma cell lines. These actions may be mediated by oxidative stress induced by selenium compounds, leading to the activation of p53, proapoptotic proteins and caspases. Inorganic selenium is selective towards cancer cells, but can cause non-selective cell death at a high dose. This condition challenges the controlled release of selenium from biomaterials. Selenium treatment in animals inoculated with osteosarcoma reduced the tumour size, but did not eliminate the incidence of osteosarcoma. Only one study investigated the relationship between selenium and osteosarcoma in humans, but the results were inconclusive. In summary, although selenium may exert anticancer properties on osteosarcoma in experimental model systems, its effects in humans require further investigation.
Collapse
Affiliation(s)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
15
|
Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Int J Mol Sci 2019; 20:ijms20153835. [PMID: 31390753 PMCID: PMC6695631 DOI: 10.3390/ijms20153835] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 01/20/2023] Open
Abstract
Modification of implantable scaffolds with magnesium and zinc for improvement of bone regeneration is a growing trend in the engineering of biomaterials. The aim of this study was to synthesize nano-hydroxyapatite substituted with magnesium (Mg2+) (HA-Mg) and zinc (Zn2+) (HA-Zn) ions in order to fabricate chitosan-agarose-hydroxyapatite (HA) scaffolds (chit/aga/HA) with improved biocompatibility. Fabricated biomaterials containing Mg2+ or Zn2+ were tested using osteoblasts and mesenchymal stem cells to determine the effect of incorporated metal ions on cell adhesion, spreading, proliferation, and osteogenic differentiation. The study was conducted in direct contact with the scaffolds (cells were seeded onto the biomaterials) and using fluid extracts of the materials. It demonstrated that incorporation of Mg2+ ions into chit/aga/HA structure increased spreading of the osteoblasts, promoted cell proliferation on the scaffold surface, and enhanced osteocalcin production by mesenchymal stem cells. Although biomaterial containing Zn2+ did not improve cell proliferation, it did enhance type I collagen production by mesenchymal stem cells and extracellular matrix mineralization as compared to cells cultured in a polystyrene well. Nevertheless, scaffolds made of pure HA gave better results than material with Zn2+. Results of the experiments clearly showed that modification of the chit/aga/HA scaffold with Zn2+ did not have any positive impact on cell behavior, whereas, incorporation of Mg2+ ions into its structure may significantly improve biocompatibility of the resultant material, increasing its potential in biomedical applications.
Collapse
|
16
|
Xie Y, Sun W, Yan F, Liu H, Deng Z, Cai L. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Int J Nanomedicine 2019; 14:6019-6033. [PMID: 31534334 PMCID: PMC6682326 DOI: 10.2147/ijn.s203859] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Icariin (IC) promotes osteogenic differentiation, and it may be a potential small molecule drug for local application in bone regeneration. Icariin-loaded hydroxyapatite/alginate (IC/HAA) porous composite scaffolds were designed in this study for the potential application of the sustainable release of icariin and subsequent bone regeneration. Methods An icariin-loaded hydroxyapatite/alginate porous composite scaffold was prepared and characterized by SEM and HPLC for morphology and release behavior, respectively. The mechanical properties, degradation in PBS and cytotoxicity on BMSCs were also evaluated by MTT assay, compression strength and calculation of weight remaining ratio, respectively. Rabbit BMSCs were cocultured with IC/HAA scaffolds, and ALP activity and Alizarin Red staining were performed to evaluate osteogenic differentiation induction. The mRNA and protein expression level of an osteogenic gene was detected by RT-PCR and Western blotting, respectively. In vivo animal models of critical bone defects in the radius of rabbit were used. Four and 12 weeks after the implantation of IC/HAA scaffolds in the bone defect, radiographic images of the radius were obtained and scored by using the Lane and Sandhu X-ray scoring system. Tissue samples were also evaluated using H&E and Masson staining, and an osteogenic gene and Wnt signaling pathway genes were detected. Results A hydroxyapatite/alginate (HAA) porous composite scaffold-loaded icariin was fabricated using a freeze-drying method. Our data indicated that the icariin was loaded in alginate scaffold without compromising the macro/microstructure or mechanical properties of the scaffold. Notably, the IC/HAA promoted the proliferation of rBMSCs without exerting cytotoxicity on rBMSCs. In vivo, rabbit radius bone defect experiments demonstrated that the IC/HAA scaffold exhibited better capacity for bone regeneration than HAA, and IC/HAA upregulated the relative expression levels of an osteogenic gene and the Wnt signaling pathway genes. Most notably, the IC/HAA scaffold also inhibited osteoclast activity in vivo. Conclusion Our data suggests a promising application for the use of HAA scaffolds to load icariin and promote bone regeneration in situ through mediation of the coupling processes of osteogenesis induction and osteoclast activity inhibition.
Collapse
Affiliation(s)
- Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Wenchao Sun
- Department of Pain Management, Wuhan Fourth Hospital, Wuhan City, Hubei Province, People's Republic of China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Huowen Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| |
Collapse
|
17
|
Tan HW, Mo HY, Lau ATY, Xu YM. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci 2018; 20:ijms20010075. [PMID: 30585189 PMCID: PMC6337524 DOI: 10.3390/ijms20010075] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Selenium (Se) acts as an essential trace element in the human body due to its unique biological functions, particularly in the oxidation-reduction system. Although several clinical trials indicated no significant benefit of Se in preventing cancer, researchers reported that some Se species exhibit superior anticancer properties. Therefore, a reassessment of the status of Se and Se compounds is necessary in order to provide clearer insights into the potentiality of Se in cancer prevention and therapy. In this review, we organize relevant forms of Se species based on the three main categories of Se-inorganic, organic, and Se-containing nanoparticles (SeNPs)-and overview their potential functions and applications in oncology. Here, we specifically focus on the SeNPs as they have tremendous potential in oncology and other fields. In general, to make better use of Se compounds in cancer prevention and therapy, extensive further study is still required to understand the underlying mechanisms of the Se compounds.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
18
|
Sawicki R, Golus J, Przekora A, Ludwiczuk A, Sieniawska E, Ginalska G. Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules 2018; 23:molecules23092381. [PMID: 30231479 PMCID: PMC6225461 DOI: 10.3390/molecules23092381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 01/30/2023] Open
Abstract
The purpose of the study was to evaluate the antimycobacterial activity and the possible action mode of cinnamon bark essential oil and its main constituent-cinnamaldehyde-against the Mycobacterium tuberculosis ATCC 25177 strain. Cinnamaldehyde was proved to be the main bioactive compound responsible for mycobacterial growth inhibition and bactericidal effects. The antimycobacterial activity of cinnamaldehyde was found to be comparable with that of ethambutol, one of the first-line anti-TB antibiotics. The selectivity index determined using cell culture studies in vitro showed a high biological potential of cinnamaldehyde. In M. tuberculosis cells exposed to cinnamaldehyde the cell membrane stress sensing and envelope preserving system are activated. Overexpression of clgR gene indicates a threat to the stability of the cell membrane and suggests a possible mechanism of action. No synergism was detected with the basic set of antibiotics used in tuberculosis treatment: ethambutol, isoniazid, streptomycin, rifampicin, and ciprofloxacin.
Collapse
Affiliation(s)
- Rafal Sawicki
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Joanna Golus
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Agnieszka Ludwiczuk
- Medical Plant Unit, Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Elwira Sieniawska
- Medical Plant Unit, Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, PL-20093 Lublin, Poland.
| |
Collapse
|
19
|
Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance. CRYSTALS 2018. [DOI: 10.3390/cryst8050188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Augustynowicz-Kopec E. The Effect of Combining Natural Terpenes and Antituberculous Agents against Reference and Clinical Mycobacterium tuberculosis Strains. Molecules 2018; 23:E176. [PMID: 29342972 PMCID: PMC6017631 DOI: 10.3390/molecules23010176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/28/2017] [Accepted: 01/06/2018] [Indexed: 11/17/2022] Open
Abstract
Background: On account of emergence of multi- and extensively drug-resistant Mycobacterium tuberculosis (Mtb) strains, combinations of drugs with natural compounds were tested to search for antibiotic activity enhancers. In this work we studied terpenes (α-pinene, bisabolol, β-elemene, (R)-limonene, (S)-limonene, myrcene, sabinene), which are the main constituents of essential oil obtained from Mutellina purpurea L., a plant with described antitubercular activity, to investigate their interactions with antibiotics against reference Mtb strains and multidrug-resistant clinical isolates. Methods: The serial dilution method was used to evaluate the minimal inhibitory concentration (MIC) of tested compounds, while the fractional inhibitory concentration index (FICI) was calculated for characterization of interactions. Moreover, IC50 values of tested compounds were determined using monkey kidney epithelial cell line (GMK). Results: The combinations of all studied terpenes with ethambutol or rifampicin resulted in a synergistic interaction. Bisabolol and (R)-limonene decreased the MIC for rifampicin at least two-fold for all tested strains, however no synergistic action was observed against virulent strains. The tested terpenes showed slight (bisabolol) or no cytotoxic effect against normal eukaryotic cells in vitro. Conclusions: The obtained enhanced activity (FICI < 0.5) of ethambutol and rifampicin against H37Ra strain under the influence of the studied terpenes may be correlated to the capability of essential oil constituents to modify bacterial resistance mechanisms in general. The observed differences in avirulent and virulent bacteria susceptibility to terpenes tested separately and in combinations with antibiotics can be correlated with the differences in the cell wall structure between H37Ra mutant and all virulent strains.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Rafal Sawicki
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Marta Swatko-Ossor
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Agnieszka Napiorkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland.
| | - Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Grazyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Ewa Augustynowicz-Kopec
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland.
| |
Collapse
|