1
|
El-Kattan N, Ibrahim MA, Emam AN, Metwally K, Youssef FS, Nassar NA, Mansour AS. Evaluation of the antimicrobial activity of chitosan- and curcumin-capped copper oxide nanostructures against multi-drug-resistant microorganisms. NANOSCALE ADVANCES 2025; 7:2988-3007. [PMID: 40182310 PMCID: PMC11962744 DOI: 10.1039/d4na00955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The emergence of multi-drug-resistant microorganisms presents a serious threat to infection control, for which new antimicrobial strategies are urgently needed. Herein, the antimicrobial activities of copper oxide nanoparticles capped with curcumin (Cur-CuO NPs) and copper oxide nanoparticles capped with chitosan (CS-CuO NPs) were investigated. They were prepared via the co-precipitation method. A total of 180 clinical ICU patients were found to have 70% Gram-negative and 30% Gram-positive isolates. Antimicrobial susceptibility testing indicated resistance of these isolates to 14 among the 21 tested antibiotics. Physicochemical properties of the curcumin-capped (Cur-CuO NPs) and chitosan-capped (CS-CuO NPs) copper oxide nanoparticles were identified using UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta-potential (ζ), and Fourier transform infrared (FT-IR) spectroscopy. Cur-CuO- and CS-CuO-NPs exhibited potent antimicrobial efficacy, wherein CS-CuO NPs were found to possess a lower minimum inhibitory concentration (MIC) (3.9-15.6 μg mL-1) than Cur-CuO NPs (14.5-31.2 μg mL-1). Biocompatibility assay showed that Cur-CuO NPs were safer with an IC50 dose of 74.17 μg mL-1 than CS-CuO NPs with an IC50 dose of 41.01 μg mL-1. Results revealed that the Cur-CuO- and CS-CuO-NPs have the potential to be safely used as effective antimicrobial agents in clinical applications at low concentrations (6.25-12.5 μg mL-1).
Collapse
Affiliation(s)
- Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes Giza Egypt
| | - Mostafa A Ibrahim
- Production and R&D Unit, NanoFab Technology Company 6th October City Giza Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre (NRC) El Bohouth St., Dokki 12622 Cairo Egypt
| | - Khaled Metwally
- Genetics Department, Faculty of Agriculture, Ain Shams University P.O. Box 68, Hadayek Shoubra 11241 Cairo Egypt
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University 12211 Giza Egypt
| | | | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Chemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University Cairo Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University Zayed City Giza Egypt
| |
Collapse
|
2
|
Kadir ML, Dageri A, Aslan TN. Insecticidal efficacy of green-synthesized copper nanoparticles and their impact on detoxification genes in the khapra beetle. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025:1-13. [PMID: 40358419 DOI: 10.1080/03601234.2025.2501355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
The khapra beetle, Trogoderma granarium (Everts) (Coleoptera: Dermestidae), is a highly destructive and quarantine-significant pest of numerous stored grain products. Despite increasing resistance, its management still heavily relies on chemical insecticides. Green nanoparticles (NPs) have recently been extensively studied as promising alternatives for pest control. In this study, ultra-small copper NPs (Cu NPs) (6.59 ± 0.57 nm) were synthesized using Origanum sp. extract. The insecticidal efficacy of Cu NPs was evaluated, and the 300 ppm concentration exhibited the highest mortality (93.3%) in T. granarium adults. The LC50 and LC90 values were 203.3 ppm and 268.3 ppm, respectively, at 144 h. Due to their roles in detoxifying reactive oxygen species (ROS) and neurotransmission, the genes Superoxide dismutase (TgSOD), Catalase (TgCAT), Glutathione Peroxidase (TgGPX), and Acetylcholinesterase (TgACHE) were identified in the cDNA library of T. granarium for gene expression analysis. Remarkable abundance of the four genes was detected at 200 ppm after 48 h, suggesting that their upregulation may be associated with oxidative stress induced by Cu NPs. It can be inferred that green-synthesized Cu NPs may have an insecticidal effect on T. granarium and can be considered an alternative pest management tool.
Collapse
Affiliation(s)
- Mohammed Lengichow Kadir
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey
| | - Tuğba Nur Aslan
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
3
|
Pricop A, Negrea A, Pascu B, Nemeş NS, Ciopec M, Negrea P, Ianăşi C, Svera P, Muntean D, Ivan A, Cristea IM. Copper Nanoparticles Synthesized by Chemical Reduction with Medical Applications. Int J Mol Sci 2025; 26:1628. [PMID: 40004090 PMCID: PMC11855514 DOI: 10.3390/ijms26041628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Copper nanoparticles (CuNPs) have attracted attention due to their low cost and high specific surface area. In this work, a simple and inexpensive two-step synthesis method was proposed to prepare highly stable and well-dispersed spherical CuNPs in solution with a particle size of approximately 37 nm. Synthesis of CuNPs was carried on in the presence of complexing agent trisodium citrate (TSC), while for the chemical reduction step, sodium borohydride (NaBH4) was used. Taking into account the potential of this type of nanoparticles, their synthesis and characterization represent a current and relevant topic in the field. The ability to control the size, shape and properties of CuNPs by adjusting the synthesis parameters (pH, precursor:stabilizer:reductant ratio, homogenization time, temperature) offers extraordinary flexibility in the development of these materials. The combination of characterization techniques such as SEM, EDX, UV-Vis, Raman, FT-IR and AFM provides a thorough understanding of the structure and properties of CuNPs, allowing the modulation of the properties of the obtained nanoparticles in the desired direction. Based on the studies, the copper reduction mechanism was proposed. For the theoretical verification of the size of the experimentally obtained spherical CuNPs, Mie theory was applied. A stability study of the synthesized CuNPs in optimal conditions was performed using UV-Vis analysis at specific time intervals (1, 3, 30 and 60 days), the sample being kept in the dark, inside a drawer at 25 °C. The CuNPs obtained after setting the optimal synthesis parameters (Cu(II):TSC:BH4+ = 1:1:0.2, pH = 5, homogenization time 60 min and temperature 25 °C) were then tested to highlight their antibacterial effect on some reference bacterial strains. The obtained CuNPs demonstrated very good antimicrobial efficacy compared to traditional antimicrobials, for both Gram-negative and Gram-positive bacteria. This may reduce the development of antimicrobial resistance, an urgent medical issue. After evaluating the cytotoxic effects of CuNPs on the SKBR3 cancer cell line, a significant decrease in cell proliferation was observed at the 0.5 mg/mL concentration, with a reduction of 89% after 60 h of cultivation. Higher concentrations of CuNPs induced a more rapid cytotoxic effect, leading to an accelerated decline in cell viability.
Collapse
Affiliation(s)
- Alexandra Pricop
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timişoara, Romania; (A.P.); (A.N.); (M.C.); (P.N.)
| | - Adina Negrea
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timişoara, Romania; (A.P.); (A.N.); (M.C.); (P.N.)
| | - Bogdan Pascu
- Research Institute for Renewable Energies—ICER, Politehnica University Timişoara, Gavril Musicescu Street, no. 138, 300774 Timisoara, Romania
| | - Nicoleta Sorina Nemeş
- Research Institute for Renewable Energies—ICER, Politehnica University Timişoara, Gavril Musicescu Street, no. 138, 300774 Timisoara, Romania
| | - Mihaela Ciopec
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timişoara, Romania; (A.P.); (A.N.); (M.C.); (P.N.)
| | - Petru Negrea
- Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timişoara, Victoriei Square, no. 2, 300006 Timişoara, Romania; (A.P.); (A.N.); (M.C.); (P.N.)
| | - Cătălin Ianăşi
- Coriolan Drăgulescu’ Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania;
| | - Paula Svera
- INCEMC—National Institute for Research and Development in Electrochemistry and Condensed Matter-Timisoara, No. 144 Dr. A. Paunescu Podeanu Street, 300569 Timisoara, Romania;
| | - Delia Muntean
- Multidisciplinary Research Centre on Antimicrobial Resistance, Department of Microbiology, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania;
| | - Alexandra Ivan
- Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
- OncoGen Centre, Clinical County Hospital “Pius Branzeu”, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania;
| | - Iustina Mirabela Cristea
- OncoGen Centre, Clinical County Hospital “Pius Branzeu”, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania;
| |
Collapse
|
4
|
El Dougdoug NK, Attia MS, Malash MN, Abdel-Maksoud MA, Malik A, Kiani BH, Fesal AA, Rizk SH, El-Sayyad GS, Harb N. Aspergillus fumigatus-induced biogenic silver nanoparticles' efficacy as antimicrobial and antibiofilm agents with potential anticancer activity: An in vitro investigation. Microb Pathog 2025; 199:106950. [PMID: 39303958 DOI: 10.1016/j.micpath.2024.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/18/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
A worldwide hazard to human health is posed by the growth of pathogenic bacteria that have contaminated fresh, processed, cereal, and seed products in storage facilities. As the number of multidrug-resistant (MDR) pathogenic microorganisms rises, we must find safe, and effective antimicrobials. The use of green synthesis of nanoparticles to combat microbial pathogens has gained a rising interest. The current study showed that Aspergillus fumigatus was applied as a promising biomass for the green synthesis of biogenic silver nanoparticles (Ag NPs). The UV-visible spectra of biosynthesized Ag NPs appeared characteristic surface plasmon absorption at 475 nm, round-shaped with sizes ranging from 17.11 to 75.54 nm and an average size of 50.37 ± 2.3 nm. In vitro tests were conducted to evaluate the antibacterial, antioxidant, and anticancer effects of various treatment procedures for Ag NP applications. The synthesized Ag NPs was revealed antimicrobial activity against Aspergillus flauvas, A. niger, Bacillus cereus, Candida albicans, Esherichia coli, Pseudomonas aerugonosa, and Staphylococcus aureus under optimum conditions. The tested bacteria were sensitive to low Ag NPs concentrations (5, 10, 11, 8, 7, 10, and 7 mg/mL) which was observed for the mentioned-before tested microorganisms, respectively. The tested bacterial pathogens experienced their biofilm formation effectively suppressed by Ag NPs at sub-inhibitory doses. Antibacterial reaction mechanism of Ag NPs were tested using scanning electron microscopy (SEM) to verify their antibacterial efficacy towards S. aureus and P. aeruginosa. These findings clearly show how harmful Ag NPs are to pathogenic bacteria. The synthesized Ag NPs showed antitumor activity with IC50 at 5 μg/mL against human HepG-2 and MCF-7 cellular carcinoma cells, while 50 mg/mL was required to induce 70 % of normal Vero cell mortality. These findings imply that green synthetic Ag NPs can be used on cancer cell lines in vitro for anticancer effect beside their potential as a lethal factor against some tested pathogenic microbes.
Collapse
Affiliation(s)
- Noha K El Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohamed N Malash
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bushra H Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Abeer A Fesal
- Higher Institute for Agriculture, Shoubra El-Kheima, Cairo, Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt; Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Nashwa Harb
- Department of Biology and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Daneshgar H, Fatahi Y, Salehi G, Bagherzadeh M, Rabiee N. Highly sensitive and selective detection of SARS-CoV-2 spike protein S1 using optically-active nanocomposite-coated melt-blown masks. Anal Chim Acta 2025; 1336:343534. [PMID: 39788686 DOI: 10.1016/j.aca.2024.343534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Detection of viruses, including coronavirus (SARS-CoV-2), via facile, fast, and optical methods is highly important to control pandemics. In this regard, optically-active nanomaterials and nanoparticles (NPs) are a wise choice due to their long-term stability, ease of functionalization, and modifications. In this work, a nanocomposite based on NiFe layered double hydroxide (LDH) and ZIF-67 metal-organic framework (MOF) was designed and synthesized, and decorated on the surface of the melt-blown mask. The developed nanocomposite has a fluorescence emission at 625 nm. The selectivity of the nanocomposite towards the SARS-CoV-2 spike protein S1 was increased by adding CuO NPs. The limit of detection (LOD) of 1.5 nM and 24.5 nM against SARS-CoV-2 spike protein S1 was recorded by NiFe LDH@ZIF-67@CuO nanocomposite, and NiFe LDH@ZIF-67@CuO decorated on the surface of melt-blown. Also, in the presence of potential competitors and other types of pathogens, including Influenza virus types A and B, Staphylococcus aureus bacteria, and even cations/macromolecules, the fluorescence intensity changes had more than 40 % difference.
Collapse
Affiliation(s)
- Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Ghazal Salehi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
6
|
Sadiq M, Sivasubramanian A, Karanath-Anilkumar A, Anjum-Musthafa S, Kamaraj C, Munuswamy-Ramanujam G. Zaluzanin-D enriched Vernonia arborea extract mediated copper oxide nanoparticles synthesis and their anti-oxidant, anti-inflammatory and DNA methylation altering properties. RSC Adv 2024; 14:33809-33819. [PMID: 39450058 PMCID: PMC11500681 DOI: 10.1039/d4ra04032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Metal oxide nanoparticles synthesized with the aid of medicinal plant extracts are showing potential as treatment options for inflammatory diseases. Two key benefits of this synthesis method is: the synthesis process is environmentally benign and the utilization of medicinal plant-derived extracts adds to the medicinal value of the synthesized nanoparticle. Earlier, sesquiterpene lactone zaluzanin-D (ZD) has been isolated from leaves of Vernonia arborea. ZD showed ability to reduce inflammation in activated monocytes. Copper oxide nanoparticles (bCuO-NPs) were synthesized using ZD-enriched leaf extract of V. arborea and characterized by UV-vis spectroscopy, FT-IR, XRD, particle size analyzer, and TEM. Synthesized bCuO-NPs did not show significant toxicity to human monocytic cell lines (THP-1) at the tested concentrations. The bCuO-NPs showed radical scavenging ability indicating anti-oxidant properties. Flow cytometry experiments proved the capability of bCuO-NPs to reduce intracellular ROS in peroxide-activated THP-1 cells. The NPs also showed a significant ability to reduce inflammatory adhesion in PMA-activated THP-1 cells. In the DNA methylation studies, bCuO-NPs behaved similarly to ZD and prevented DNA hypomethylation at the MMP-9 promoter region. These properties strongly indicate the ability of bCuO-NPs to reduce inflammation in the activated monocytes. Furthermore, in zebrafish (Danio rerio) embryos, the developmental toxicity of bCuO-NPs was assessed. The studies indicated the reduced toxicity and compatibility of the NPs with biological organisms. Based on the results, it can be concluded that the bCuO-NPs produced from ZD-enriched leaf extract have significant anti-oxidant capabilities and the ability to reduce inflammation in monocytic cell lines. Overall, reduced in vitro and in vivo toxicity, along with its antioxidant and anti-inflammatory properties, makes bCuO-NPs a potential candidate for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Muhammad Sadiq
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| | - Arvind Sivasubramanian
- Natural Products and Organic Synthesis Laboratory, Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University Thanjavur 613401-Tamil Nadu India
| | - Aswathy Karanath-Anilkumar
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology Chengalpattu-603203 Tamil Nadu India
| | - Shazia Anjum-Musthafa
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| | - Chinnaperumal Kamaraj
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| | - Ganesh Munuswamy-Ramanujam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
- Molecular Biology and Immunology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology Kattankulathur-603 203, Chengalpattu Tamil Nadu India
| |
Collapse
|
7
|
Mengesha SM, Abebe GM, Habtemariam TH. Biosynthesis of CuO nanoparticle using leaf extracts of Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal for antibacterial activity. Sci Rep 2024; 14:23870. [PMID: 39396068 PMCID: PMC11470964 DOI: 10.1038/s41598-024-75296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Nanotechnology is becoming a promise for scientific advancement nowadays in areas like medicine, consumer products, energy, materials, and manufacturing. Copper oxide nanoparticles (CuO NPs) were synthesized using Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal leaf extract via green synthetic pathway. The leaf of O. lamiifolium and W. somnifera were known to have strong antibiotic and antioxidant properties arising due to the presence of various secondary metabolites, including, flavonoids, alkaloids, saponins, tannins, cardiac glycosides, and phenolic compounds which serve as reducing, stabilizing, and capping agents for the CuO-Nanoparticles (NPs) synthesized. The biosynthesized CuO NPs were characterized based on Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and scanning electron microscopy. O. lamiifolium and W. somnifera leaf extract mediated synthesis could produce CuO NPs with average crystallite size of 15 nm and 19 nm, respectively. The biosynthesized CuO-NPs were further examined for antibacterial activity with Gram-positive (S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa). The GZDK-CuO NPs synthesized using W. somnifera leaf extract inhibited the growth of E. coli. and P. aeruginosa largely in comparison to S. aureus. Whereas the DMAZ-CuO NPs synthesized with the help of O. lamiifolium leaf extract showed higher bacterial inhibition on E. coli compared to S. aureus and P. aeruginosa. The minimum inhibitory concentration (MIC) values of both types of NPs are also assessed on all three pathogens. The newly biosynthesized nanoparticles, thus, were found to be optional materials for inhibiting the growth of drug- resistant bacterial pathogens.
Collapse
Affiliation(s)
| | - Gedif Meseret Abebe
- Department of Biology, Wolaita Sodo University, Wolaita Sodo, P.O.BoX. 138, Soddo, Ethiopia
| | | |
Collapse
|
8
|
Abdollahzadeh H, Pazhang Y, Zamani A, Sharafi Y. Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines. Sci Rep 2024; 14:20323. [PMID: 39223184 PMCID: PMC11369244 DOI: 10.1038/s41598-024-71234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Metal oxide nanoparticles(NPs) contain unique properties which have made them attractive agents in cancer treatment. The CuO nanoparticles were green synthesized using walnut shell powder in different calcination temperatures (400°, 500°, 700°, and 900 °C). The CuO nanoparticles are characterized by FTIR, XRD, BET, SEM and DLS analyses. SEM and DLS analyses showed that by increasing the required calcination temperature for synthesizing the NPs, their size was increased. DPPH analysis displayed no significant anti-oxidative properties of the CuO NPs. The MTT analysis showed that all synthesized CuO NPs exhibited cytotoxic effects on MCF-7, HCT-116, and HEK-293 cell lines. Among the CuO NPs, the CuO-900 NPs showed the least cytotoxic effect on the HEK-293 cell line (IC50 = 330.8 µg/ml). Hoechst staining and real-time analysis suggested that the CuO-900 NPs induced apoptosis by elevation of p53 and Bax genes expression levels. Also, the CuO-900 NPs increased the Nrf-2 gene expression level in MCF-7 cells, despite the HCT-116 cells. As can be concluded from the results, the CuO-900 NPs exerted promising cytotoxic effects on breast and colon cancer cells.
Collapse
Affiliation(s)
| | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Asghar Zamani
- Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Yousef Sharafi
- Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization(AREEO), Maragheh, Iran
| |
Collapse
|
9
|
Voloshyna IM, Netiaha YM, Nechaiuk YV, Khomenko VG, Shkotova LV. The influence of metal nanoparticles on plants. BIOPOLYMERS AND CELL 2024; 40:83-95. [DOI: 10.7124/bc.000aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | | | | | | | - L. V. Shkotova
- 'Institute of Molecular Biology and Genetics, NAS of Ukraine'
| |
Collapse
|
10
|
Gebreslassie YT, Gebremeskel FG. Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00828. [PMID: 38312482 PMCID: PMC10835232 DOI: 10.1016/j.btre.2024.e00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as novel therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an innovative approach for future therapeutic interventions against cancer and microbial infections.
Collapse
Affiliation(s)
- Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, P.O. Box 50, Adigrat, Ethiopia
| | - Fisseha Guesh Gebremeskel
- Department of Chemistry, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| |
Collapse
|
11
|
Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, Vijay H, Rahimi S. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. J Nanobiotechnology 2024; 22:71. [PMID: 38373982 PMCID: PMC10877787 DOI: 10.1186/s12951-024-02332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006, Republic of Korea.
| | - Johan Sukweenadhi
- Faculty of Biotechnology, University of Surabaya, Surabaya, 60293, Indonesia
| | - Sagnik Nag
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hari Vijay
- Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
12
|
Mubarak MF, Selim H, Hawash HB, Hemdan M. Flexible, durable, and anti-fouling maghemite copper oxide nanocomposite-based membrane with ultra-high flux and efficiency for oil-in-water emulsions separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2297-2313. [PMID: 38062214 PMCID: PMC10791961 DOI: 10.1007/s11356-023-31240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
In this study, we developed a novel nanocomposite-based membrane using maghemite copper oxide (MC) to enhance the separation efficiency of poly(vinyl chloride) (PVC) membranes for oil-in-water emulsions. The MC nanocomposite was synthesized using a co-precipitation method and incorporated into a PVC matrix by casting. The resulting nanocomposite-based membrane demonstrated a high degree of crystallinity and well-dispersed nanostructure, as confirmed by TEM, SEM, XRD, and FT-IR analyses. The performance of the membrane was evaluated in terms of water flux, solute rejection, and anti-fouling properties. The pinnacle of performance was unequivocally reached with a solution dosage of 50 mL, a solution concentration of 100 mg L-1, and a pump pressure of 2 bar, ensuring that every facet of the membrane's potential was fully harnessed. The new fabricated membrane exhibited superior efficiency for oil-water separation, with a rejection rate of 98% and an ultra-high flux of 0.102 L/m2 h compared to pure PVC membranes with about 90% rejection rate and an ultra-high flux of 0.085 L/m2 h. Furthermore, meticulous contact angle measurements revealed that the PMC nanocomposite membrane exhibited markedly lower contact angles (65° with water, 50° with ethanol, and 25° with hexane) compared to PVC membranes. This substantial reduction, transitioning from 85 to 65° with water, 65 to 50° with ethanol, and 45 to 25° with hexane for pure PVC membranes, underscores the profound enhancement in hydrophilicity attributed to the heightened nanoparticle content. Importantly, the rejection efficiency remained stable over five cycles, indicating excellent anti-fouling and cycling stability. The results highlight the potential of the maghemite copper oxide nanocomposite-based PVC membrane as a promising material for effective oil-in-water emulsion separation. This development opens up new possibilities for more flexible, durable, and anti-fouling membranes, making them ideal candidates for potential applications in separation technology. The presented findings provide valuable information for the advancement of membrane technology and its utilization in various industries, addressing the pressing challenge of oil-induced water pollution and promoting environmental sustainability.
Collapse
Affiliation(s)
- Mahmoud F Mubarak
- Department of Petroleum Application, Core Lab Analysis Center, Egyptian Petroleum Research Institute, P.B. 11727, Nasr City, Cairo, Egypt
| | - Hanaa Selim
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Hamada B Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| |
Collapse
|
13
|
Nassar ARA, Atta HM, Abdel-Rahman MA, El Naghy WS, Fouda A. Myco-synthesized copper oxide nanoparticles using harnessing metabolites of endophytic fungal strain Aspergillus terreus: an insight into antibacterial, anti-Candida, biocompatibility, anticancer, and antioxidant activities. BMC Complement Med Ther 2023; 23:261. [PMID: 37481531 PMCID: PMC10363295 DOI: 10.1186/s12906-023-04056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.
Collapse
Affiliation(s)
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
14
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
15
|
Asif N, Ahmad R, Fatima S, Shehzadi S, Siddiqui T, Zaki A, Fatma T. Toxicological assessment of Phormidium sp. derived copper oxide nanoparticles for its biomedical and environmental applications. Sci Rep 2023; 13:6246. [PMID: 37069201 PMCID: PMC10110551 DOI: 10.1038/s41598-023-33360-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Driven by the need to biosynthesized alternate biomedical agents to prevent and treat infection, copper oxide nanoparticles (CuONPs) have surfaced as a promising avenue. Cyanobacteria-derived synthesis of CuONPs is of substantive interest as it offers an eco-friendly, cost-effective, and biocompatible route. In the present study biosynthesized CuONPs were characterized and investigated regarding their toxicity. Morphological analysis using TEM, SEM and AFM showed the spherical particle size of 20.7 nm with 96% copper that confirmed the purity of CuONPs. Biogenic CuONPs with IC50 value of 64.6 µg ml-1 showed 90% scavenging of free radicals in superoxide radical scavenging assay. CuONPs showed enhanced anti-inflammatory activity by 86% of protein denaturation with IC50 value of 89.9 µg ml-1. Biogenic CuONPs exhibited significant toxicity against bacterial strains with lowest MIC value of 62.5 µg ml-1 for B. cereus and fungal strain with a MIC value of 125 µg ml-1 for C. albicans. In addition CuONPs demonstrated a high degree of synergistic interaction when combined with standard drugs. CuONPs exhibited significant cytotoxicity against non-small cell lung cancer with an IC50 value of 100.8 µg ml-1 for A549 and 88.3 µg ml-1 for the H1299 cell line with apoptotic activities. Furthermore, biogenic CuONPs was evaluated for their photocatalytic degradation potential against methylene blue dye and were able to removed 94% dye in 90 min. Free radical scavenging analysis suggested that CuONPs assisted dye degradation was mainly induced by hydroxide radicals. Biogenic CuONPs appears as an eco-friendly and cost effective photocatalyst for the treatment of wastewater contaminated with synthetic dyes that poses threat to aquatic biota and human health. The present study highlighted the blend of biomedical and photocatalytic potential of Phormidium derived CuONPs as an attractive approach for future applications in nanomedicine and bioremediation.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rakhshan Ahmad
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Samreen Fatima
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Shehzadi Shehzadi
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tabassum Siddiqui
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Almaz Zaki
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
16
|
Aasy NKA, El-Lakany SA, Masanga PM, Kamoun EA, EL-Moslamy SH, Abu-Serie M, Aly RG, Elgindy NA. Concurrent Tissue Engineering for Wound Healing in Diabetic Rats Utilizing Dual Actions of Green Synthesized CuO NPs Prepared from Two Plants Grown in Egypt. Int J Nanomedicine 2023; 18:1927-1947. [PMID: 37064292 PMCID: PMC10103783 DOI: 10.2147/ijn.s397045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
Purpose Diabetes mellitus is among the disrupting factors of orchestrated events in wound healing. This necessitates the urge for tailored medications, which are continually offered by nano-sized materials. Herein, we present greenly synthesized copper oxide nanoparticles (CuO NPs), obtained from either Punica granatum L. (PG) or Pisidium guajava L. (GV) extract, to function as potent bactericidal and fungicidal materials that promote regeneration and healing of the targeted diabetic wounded tissues. Methods PG or GV plant extracts were compared as source of reducing agents for CuO NPs synthesis process. The yield and photocatalytic degradation potential were compared. NPs obtained from the superior extract, PG, were characterized using particles size, zeta potential, XRD, TEM, SEM, and EDX. The antimicrobial effects were evaluated on multidrug-resistant human pathogens and then the percentage biofilm inhibitory concentration was determined. The cytotoxicity and wound scratch study were conducted on a normal human skin cell line. In-vivo wound healing activity in diabetic rats was assessed along with histopathological and immunohistochemical examination of CD45 and α-SMA. Results The greenly synthesized CuO NPs are spherical in shape having a diameter of 233nm. CuO NPs (250µg/mL) acted as promising biocontrol agent against a variety of multidrug-resistant human pathogens. They significantly exhibited 29.460±0.811% healing of the scratched wound compared to only 2.001±0.155% for the control. Wound healing experiments revealed the safety of a low CuO NPs concentration in a diabetic animal model as well as on human normal skin fibroblast cell line. The treated group with a dose of 2mg/cm2 showed superior results with a WC50 value of 7.2 days, and 92% wound contraction after 13-days. Immunohistochemical investigation of the same group demonstrated well-established fibrous tissue (5.7±3.7/HPF), and an amplified granulation tissue of recently developed blood vessels (70±1.5/HPF). Conclusion Green synthesized CuO NPs could overcome drug resistance and promote wound healing process effectively.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sarah A El-Lakany
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shahira H EL-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department (MBD), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-city), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nazik A Elgindy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Bordiwala RV. Green Synthesis and Applications of Metal Nanoparticles.- A Review article. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
18
|
Singh D, Jain D, Rajpurohit D, Jat G, Kushwaha HS, Singh A, Mohanty SR, Al-Sadoon MK, Zaman W, Upadhyay SK. Bacteria assisted green synthesis of copper oxide nanoparticles and their potential applications as antimicrobial agents and plant growth stimulants. Front Chem 2023; 11:1154128. [PMID: 37090246 PMCID: PMC10119401 DOI: 10.3389/fchem.2023.1154128] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) have piqued the interest of agricultural researchers due to their potential application as fungicides, insecticides, and fertilizers. The Serratia sp. ZTB29 strain, which has the NCBI accession number MK773873, was a novel isolate used in this investigation that produced CuO-NPs. This strain can survive concentrations of copper as high as 22.5 mM and can also remove copper by synthesizing pure CuO-NPs. UV-VIS spectroscopy, DLS, Zeta potential, FTIR, TEM, and XRD techniques were used to investigate the pure form of CuO-NPs. The synthesized CuO-NPs were crystalline in nature (average size of 22 nm) with a monoclinic phase according to the XRD pattern. CuO-NPs were found to be polydisperse, spherical, and agglomeration-free. According to TEM and DLS inspection, they ranged in size from 20 to 40 nm, with a typical particle size of 28 nm. CuO-NPs were extremely stable, as demonstrated by their zeta potential of -15.4 mV. The ester (C=O), carboxyl (C=O), amine (NH), thiol (S-H), hydroxyl (OH), alkyne (C-H), and aromatic amine (C-N) groups from bacterial secretion were primarily responsible for reduction and stabilization of CuO-NPs revealed in an FTIR analysis. CuO-NPs at concentrations of 50 μg mL-1 and 200 μg mL-1 displayed antibacterial and antifungal activity against the plant pathogenic bacteria Xanthomonas sp. and pathogenic fungus Alternaria sp., respectively. The results of this investigation support the claims that CuO-NPs can be used as an efficient antimicrobial agent and nano-fertilizer, since, compared to the control and higher concentrations of CuO-NPs (100 mg L-1) considerably improved the growth characteristics of maize plants.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
- *Correspondence: Devendra Jain, ,
| | - Deepak Rajpurohit
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Gajanand Jat
- Department of Soil Science and Agricultural Chemistry, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | | | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Santosh Ranjan Mohanty
- All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal, India
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V. B. S. Purvanchal University, Jaunpur, India
| |
Collapse
|
19
|
Sultana J, Dutta B, Mehra S, Rohman SS, Kumar A, Guha AK, Sarma D. SCuNPs‐Catalyzed Solventless Oxidative [3+2] Azide‐Olefin Cycloaddition: An Efficient Protocol For Di‐ And Trisubstituted 1,2,3‐Triazole Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202202914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jasmin Sultana
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | - Bidyutjyoti Dutta
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | - Sanjay Mehra
- Salt and Marine Chemicals Division CSIR-Central Salt and Marine Chemicals Research Institute 364002 Bhavnagar Gujarat India
| | - Shahnaz S. Rohman
- Department of Chemistry Cotton University Panbazar 781001 Guwahati Assam India
| | - Arvind Kumar
- Salt and Marine Chemicals Division CSIR-Central Salt and Marine Chemicals Research Institute 364002 Bhavnagar Gujarat India
| | - Ankur K. Guha
- Department of Chemistry Cotton University Panbazar 781001 Guwahati Assam India
| | - Diganta Sarma
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| |
Collapse
|
20
|
Mudigonda S, Dahms HU, Hwang JS, Li WP. Combined effects of copper oxide and nickel oxide coated chitosan nanoparticles adsorbed to styrofoam resin beads on hydrothermal vent bacteria. CHEMOSPHERE 2022; 308:136338. [PMID: 36108756 DOI: 10.1016/j.chemosphere.2022.136338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are potential carriers of harmful contaminants but their combined effects are largely unknown. It needs intensive monitoring in order to achieve a better understanding of metal-oxide nanoparticles and their dispersion via microplastics such as styrofoam in the aquatic environment. In the present study, an effort was made to provide a preferable perception about the toxic effects of engineered nanoparticles (NPs), namely, copper oxide (CuO NPs), nickel oxide (NiO NPs), copper oxide/chitosan (CuO/CS NPs) and nickel oxide/chitosan (NiO/CS NPs). Characterizations of synthesized NPs included their morphology (SEM and EDX), functional groups (FT-IR) and crystallinity (XRD). Their combined toxic effect after adsorption to styrofoam (SF) was monitored using the hydrothermal vent bacterium Jeotgalicoccus huakuii as a model. This was done by determining MIC (minimum inhibitory concentration) through a resazurin assay measuring ELISA, growth, biofilm inhibition and making a live and dead assay. Results revealed that at high concentrations (60 mg/10 mL) of CuO, CuO/CS NPs and 60 mg of SF adsorbed CuO and CuO/CS NPs inhibited the growth of J. huakuii. However, NPs rather than SF inhibited the growth of bacteria. The toxicity of NPs adsorbed on plain SF was found to be less compared to NPs alone. This study revealed new dimensions regarding the positive impacts of SF at low concentrations. Synthesized NPs applied separately were found to affect the growth of bacteria substantially more than if coated to SF resin beads.
Collapse
Affiliation(s)
- Sunaina Mudigonda
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan; Research Centre for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan; Centre of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| |
Collapse
|
21
|
Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Rabiee N, Akhavan O, Fatahi Y, Ghadiri AM, Kiani M, Makvandi P, Rabiee M, Nicknam MH, Saeb MR, Varma RS, Ashrafizadeh M, Zare EN, Sharifi E, Lima EC. CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. CHEMOSPHERE 2022; 306:135578. [PMID: 35798154 PMCID: PMC9251674 DOI: 10.1016/j.chemosphere.2022.135578] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 05/13/2023]
Abstract
Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
24
|
Bagherzadeh M, Safarkhani M, Ghadiri AM, Kiani M, Fatahi Y, Taghavimandi F, Daneshgar H, Abbariki N, Makvandi P, Varma RS, Rabiee N. Bioengineering of CuO porous (nano)particles: role of surface amination in biological, antibacterial, and photocatalytic activity. Sci Rep 2022; 12:15351. [PMID: 36097028 PMCID: PMC9467996 DOI: 10.1038/s41598-022-19553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.
Collapse
Affiliation(s)
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 15875-4413, Iran
| | | | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025, Pisa, Italy
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Slechtitel, ů 11, 783 71, Olomouc, Czech Republic
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
25
|
Rabiee N, Ghadiri AM, Alinezhad V, Sedaghat A, Ahmadi S, Fatahi Y, Makvandi P, Saeb MR, Bagherzadeh M, Asadnia M, Varma RS, Lima EC. Synthesis of green benzamide-decorated UiO-66-NH 2 for biomedical applications. CHEMOSPHERE 2022; 299:134359. [PMID: 35318020 DOI: 10.1016/j.chemosphere.2022.134359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | | | - Vida Alinezhad
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Anna Sedaghat
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| |
Collapse
|
26
|
Hasanin M, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hashem AH. Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Biol Trace Elem Res 2022; 200:2099-2112. [PMID: 34283366 DOI: 10.1007/s12011-021-02812-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
In recent years, polysaccharides-based nanocomposites have been used for biomedical applications. In the current study, a nanocomposite based on myco-synthesized copper nanoparticles (CuNPs) and starch was prepared. The prepared nanocomposite was fully characterized using UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, transmission electron microscope (TEM), and dynamic light scattering (DLS). Results revealed that this nanocomposite is characterized by nano spherical shape ranged around 200 nm as well as doped with CuNPs with size about 9 nm. Antimicrobial, antioxidant, and anticancer activities of the prepared nanocomposite were evaluated. Results revealed that CuNPs-based nanocomposite exhibited outstanding antibacterial and antifungal activity toward Escherichia coli ATCC25922, Bacillus subtilis ATCC605, Candida albicans ATCC90028, Cryptococcus neoformance ATCC 14,116, Aspergillus niger RCMB 02,724, A. terreus RCMB 02,574, and A. fumigatus RCMB 02,568. Moreover, CuNPs-based nanocomposite has a strong antioxidant activity as compared to ascorbic acid, where IC50 was 18 µg/mL. Cytotoxicity test of CuNPs-based nanocomposite revealed that this nanocomposite is safe in use, where IC50 was 185.1 µg/mL. Furthermore, CuNPs-based nanocomposite exhibited potential anticancer activity against MCF7 cancerous cell line where IC50 was 62.8 µg/mL which was better than CuNPs alone. In conclusion, the prepared CuNPs with starch-based nanocomposite is promising for different biomedical applications as antimicrobial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Mohamed A Al Abboud
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohamed M Alawlaqi
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Tarek M Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| |
Collapse
|
27
|
Ahmad A, Khan M, Khan S, Luque R, Abualnaja KM, Alduaij O, Yousef TA. Bio-Construction of CuO Nanoparticles Using Texas Sage Plant Extract for catalytical degradation of Methylene blue Via Photocatalysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Ramezani Farani M, Azarian M, Heydari Sheikh Hossein H, Abdolvahabi Z, Mohammadi Abgarmi Z, Moradi A, Mousavi SM, Ashrafizadeh M, Makvandi P, Saeb MR, Rabiee N. Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1305-1318. [PMID: 35201760 PMCID: PMC8941513 DOI: 10.1021/acsabm.1c01311] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The functionalized nanoparticles (10-20 nm) were less likely to aggregate compared to non-functionalized nanoparticles. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles were compared in drug loading procedures with curcumin. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles' maximal drug-loading capacities were determined to be 82 and 88%, respectively. HeLa cells and mouse L929 fibroblasts treated with nanoparticles took up more FA@HPG@Fe3O4 nanoparticles than HPG@Fe3O4 nanoparticles. The FA@HPG@Fe3O4 nanoparticles produced in the current investigation have potential as anticancer drug delivery systems. For the purpose of diagnosis, incubation of HeLa cells with nanoparticles decreased MRI signal enhancement's percentage and the largest alteration was observed after incubation with FA@HPG@Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology
and Diseases Group (TDG), Pharmaceutical Sciences Research Center
(PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Azarian
- Department
of Radiology, Charité - Universitätsmedizin
Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Hamid Heydari Sheikh Hossein
- Department
of Biotechnology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Zohreh Abdolvahabi
- Metabolic
Diseases Research Center, Research Institute for Prevention of Non-Communicable
Diseases, Qazvin University of Medical Sciences, Qazvin 241567, Iran
| | - Zahra Mohammadi Abgarmi
- Department
of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran 1668814811, P.O.
Box: 14115-331, Iran
| | - Arash Moradi
- Department
of Medical Biotechnology, National Institute
of Genetic Engineering and Biotechnology, Tehran 1668814811, P.O.
Box: 14956-161, Iran
| | | | - Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey,Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy,
| | - Mohammad Reza Saeb
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, 80-233, Poland
| | - Navid Rabiee
- Department
of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran,School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia,;
| |
Collapse
|
29
|
Al-Ruwaili M, Jarrar B, Jarrar Q, Al-Doaiss A, Alshehri M, Melhem W. Renal ultrastructural damage induced by chronic exposure to copper oxide nanomaterials: Electron microscopy study. Toxicol Ind Health 2022; 38:80-91. [PMID: 35209751 DOI: 10.1177/07482337211062674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Copper oxide nanomaterials are used in many biomedical, agricultural, environmental, and industrial sectors with potential risk to human health and the environment. The present study was conducted to determine the renal ultrastructural damage caused by 25 nm CuO nanoparticles in renal tissues. Adult healthy male Wister Albino rats (Rattus norvegicus) were administered 35 intraperitoneal injections of CuO nanoparticles (2 mg/kg). Ultrastructural changes were evaluated using transmission electron microscopy techniques. The renal tissues of rats with subchronic exposure to CuO nanoparticles demonstrated glomerular alterations that included hypertrophic endothelial cells, dilated capillaries and occlusions, podocyte hypertrophy, pedicle disorganization, mesangial cell hyperplasia, and crystalloid precipitation. Moreover, the treated renal cells exhibited mitochondrial swelling and crystolysis, cytoplasmic vacoulization, lysosomal hypertrophy, apoptotic activity, endoplasmic reticulum dilatation, nuclear deformity, chromatin dissolution, and basement membrane thickening. In addition, disruption and disorganization of the renal cells microvilli together with cystolic inclusions were also detected. It was concluded from the present findings that CuO nanoparticles could interact with the components of the renal tissues in ways that could cause ultrastructural injury, suggesting renal tissue pathophysiology. Additional studies are suggested for a better understanding the nanotoxicity of CuO nanomaterials.
Collapse
Affiliation(s)
- Meshref Al-Ruwaili
- College of Applied Medical Sciences, 248389Aljouf University, Saudi Arabia
| | - Bashir Jarrar
- Nanobiolgy Unit, College of Applied Medical Sciences, 123295Jerash University, Jordan
| | - Qais Jarrar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 108568Isra University, Amman, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Mohammed Alshehri
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Walid Melhem
- Electron Microscopy Unit, College of Medicine, 114800King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
30
|
Rabiee N, Fatahi Y, Asadnia M, Daneshgar H, Kiani M, Ghadiri AM, Atarod M, Mashhadzadeh AH, Akhavan O, Bagherzadeh M, Lima EC, Saeb MR. Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127130. [PMID: 34530276 DOI: 10.1016/j.jhazmat.2021.127130] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The 1,1,1-tris[[(2'-benzyl-amino-formyl)phenoxy]methyl]ethane (A), 4-amino-benzo-hydrazide (B), and 4-(2-(4-(3-carboxy-propan-amido)benzoyl)hydrazineyl)-4-oxobutanoic acid (B1) were synthesized to obtain green ligands based on 4-X-N-(…(Y(hydrazine-1-carbonyl)phenyl)benzamide, with X denoting fluoro (B2), methoxy (B3), nitro (B4), and phenyl-sulfonyl (B5) substitutes. The chemical structure of ligand-decorated adenosine triphosphate (ATP) molecules (S-ATP) was characterized by FTIR, XRD, AFM, FESEM, and TEM techniques. The cytotoxicity of the porous membrane was patterned by applying different cell lines, including HEK-293, PC12, MCF-7, HeLa, HepG2, and HT-29, to disclose their biological behavior. The morphology of cultured cells was monitored by confocal laser scanning microscopy. The sensitivity of S-ATP to different cations of Na+, Mg2+, K+, Ba2+, Zn2+, and Cd2+ was evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) in terms of extraction efficiency (η). For pH of 5.5, the η of A-based S-ATP followed the order Na+ (63.3%) > Mg2+ (62.1%) > Ba2+ (7.6%) > Ca2+ (5.5%); while for pH of 7.4, Na+ (37.0%) > Ca2+ (33.1%) > K+ (25.7%). The heat map of MTT and dose-dependent evaluations unveiled acceptable cell viability of more than 90%. The proposed green porous nanomembranes would pave the way to use multifunctional green porous nanomembranes in biological membranes.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Monireh Atarod
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317-51167, Iran
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | | | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
31
|
Lv Y, Xu Y, Sang X, Li C, Liu Y, Guo Q, Ramakrishna S, Wang C, Hu P, Nanda HS. PLLA-gelatin composite fiber membranes incorporated with functionalized CeNPs as a sustainable wound dressing substitute promoting skin regeneration and scar remodelling. J Mater Chem B 2022; 10:1116-1127. [DOI: 10.1039/d1tb02677a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The need of wound dressing material that can accelerate wound healing is increasing and will last a long time. In this study, Cerium Oxide Nanoparticles (CeNPs) incorporated poly-L-lactic acid (PLLA)-gelatin...
Collapse
|
32
|
Recent advances in copper oxide nanocatalyzed C C cross-coupling transformations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Biswas K, Mohanta YK, Mishra AK, Al-Sehemi AG, Pannipara M, Sett A, Bratovcic A, De D, Prasad Panda B, Kumar Avula S, Mohanta TK, Al-Harrasi A. Wet chemical development of CuO/GO nanocomposites: its augmented antimicrobial, antioxidant, and anticancerous activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:151. [PMID: 34894285 PMCID: PMC8665919 DOI: 10.1007/s10856-021-06612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 05/19/2023]
Abstract
This study employed a bottom-up technique to synthesize copper oxide (CuO) nanoparticles over hydrophilic graphene oxide (GO) nanosheets. The CuO/GO nanocomposite has been prepared using two selected precursors of copper nitrate and citric acid with an intermittent mixing of GO solutions. The synthesized Nanocomposites were characterized using different biophysical techniques like FT-IR, NMR, FE-SEM, and HR-TEM analyses. FT-IR analyses confirm the nanocomposites' successful formation, which is evident from the functional groups of C=C, C-O, and Cu-C stretching vibrations. Morphological analyses reveal the depositions of CuO nanoparticles over the planar rough GO sheets, which has been elucidated from the FE-SEM and HR-TEM analyses supported by respective EDAX analyses. The antimicrobial activities have been evident from the surface roughness and damages seen from the FE-SEM analyses. The CuO/GO sheets were tested against Gram-positive (e.g., Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa). It is evident that the intrinsic antibacterial activity of CuO/GO sheets, when combined in equal proportions, elicited a robust antibacterial activity when tested over Gram -ve representative bacteria Escherichia coli. The antioxidant behaviour of synthesized CuO/GO nanocomposite was evaluated by scavenging the free radicals of DPPH and ABTS. Moreover, the cytotoxic activity was also studied against epidermoid carcinoma cell line A-431. A brief mathematical formulation has been proposed in this study to uncover the possibilities of using the nanocomposites as potential drug candidates in theranostic applications in disease treatment and diagnosis. This study would help uncover the electronic properties that play in the nano-scaled system at the material-bio interface, which would aid in designing a sensitive nano-electromechanical device bearing both the therapeutic and diagnostic attributes heralding a new horizon in the health care systems.
Collapse
Affiliation(s)
- Kunal Biswas
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, 793101, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | | | | | - Avik Sett
- Department of Electronics and Electrical Communication Engineering, IIT Kharagpur, Kharagpur, 721302, India
| | - Amra Bratovcic
- Department of Physical Chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Univerzitetska 8, 75000, Tuzla, Bosnia and Herzegovina
| | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Bibhu Prasad Panda
- Centre for Environmental Sciences, Siksha O Anusandhan University, Bhubaneswar, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
34
|
Rabiee N, Rabiee M, Sojdeh S, Fatahi Y, Dinarvand R, Safarkhani M, Ahmadi S, Daneshgar H, Radmanesh F, Maghsoudi S, Bagherzadeh M, Varma RS, Mostafavi E. Porphyrin Molecules Decorated on Metal-Organic Frameworks for Multi-Functional Biomedical Applications. Biomolecules 2021; 11:1714. [PMID: 34827712 PMCID: PMC8615380 DOI: 10.3390/biom11111714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran;
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran;
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran; (Y.F.); (R.D.)
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran; (Y.F.); (R.D.)
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran; (M.S.); (H.D.); (M.B.)
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran; (M.S.); (H.D.); (M.B.)
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran 14197-33141, Iran;
| | - Saeid Maghsoudi
- Faculty of Medicine, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 0G1, Canada;
| | - Mojtaba Bagherzadeh
- Department of Chemistry, Sharif University of Technology, Tehran 11155-3516, Iran; (M.S.); (H.D.); (M.B.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Selvanathan V, Aminuzzaman M, Tey LH, Razali SA, Althubeiti K, Alkhammash HI, Guha SK, Ogawa S, Watanabe A, Shahiduzzaman M, Akhtaruzzaman M. Muntingia calabura Leaves Mediated Green Synthesis of CuO Nanorods: Exploiting Phytochemicals for Unique Morphology. MATERIALS 2021; 14:ma14216379. [PMID: 34771914 PMCID: PMC8585435 DOI: 10.3390/ma14216379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
In this study, phytochemical assisted nanoparticle synthesis was performed using Muntingia calabura leaf extracts to produce copper oxide nanoparticles (CuO NPs) with interesting morphology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of the biosynthesized CuO NPs reveal formation of distinct, homogeneous, and uniform sized CuO nanorods structure with thickness and length of around 23 nm and 79 nm, respectively. Based on Fourier-transform infrared (FTIR) analysis, the unique combinations of secondary metabolites such as flavonoid and polyphenols in the plant extract are deduced to be effective capping agents to produce nanoparticles with unique morphologies similar to conventional chemical synthesis. X-ray diffraction (XRD) analysis verified the monoclinical, crystalline structure of the CuO NPs. The phase purity and chemical identity of the product was consolidated via X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopic data which indicate the formation of a single phase CuO without the presence of other impurities. The direct and indirect optical band gap energies of the CuO nanorods were recorded to be 3.65 eV and 1.42 eV.
Collapse
Affiliation(s)
- Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
| | - Mohammod Aminuzzaman
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
- Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia
- Correspondence: (M.A.); (M.A.)
| | - Lai-Hock Tey
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Perak Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia;
| | - Syaza Amira Razali
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hend Ibraheem Alkhammash
- Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia;
| | - Samar Kumar Guha
- Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology, 141-142, Love Road, Tejgaon I/A, Dhaka 1208, Bangladesh;
| | - Sayaka Ogawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; (S.O.); (A.W.)
| | - Akira Watanabe
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan; (S.O.); (A.W.)
| | - Md. Shahiduzzaman
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Md. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (V.S.); (S.A.R.)
- Correspondence: (M.A.); (M.A.)
| |
Collapse
|
36
|
Ali M, Ijaz M, Ikram M, Ul-Hamid A, Avais M, Anjum AA. Biogenic Synthesis, Characterization and Antibacterial Potential Evaluation of Copper Oxide Nanoparticles Against Escherichia coli. NANOSCALE RESEARCH LETTERS 2021; 16:148. [PMID: 34542713 PMCID: PMC8452814 DOI: 10.1186/s11671-021-03605-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/12/2021] [Indexed: 05/09/2023]
Abstract
The development of resistance against antibiotics used to treat bacterial infections along with the prevalence of medication residues presents significant public health problems globally. Antibiotic-resistant germs result in infections that are difficult or impossible to treat. Decreasing antibiotic effectiveness calls for rapid development of alternative antimicrobials. In this respect, nanoparticles (NPs) of copper oxide (CuO) manifest a latent and flexible inorganic nanostructure with noteworthy antimicrobial impact. Green synthesis of CuO NPs was performed in the current study, which was then doped with varying amounts of ginger (Zingiber officinale, ZO) and garlic (Allium sativum, AS) extracts. In low and high doses, the synthesized compound was used to measure the antimicrobial effectiveness against pathogenic Escherichia coli. The present research successfully demonstrated a renewable, eco-friendly synthesis technique with natural materials that is equally applicable to other green metal oxide NPs.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan.
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab, 54000, Pakistan.
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Avais
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| |
Collapse
|
37
|
Saeb MR, Rabiee N, Seidi F, Farasati Far B, Bagherzadeh M, Lima EC, Rabiee M. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
39
|
Studies on phytomolecules mediated synthesis of copper oxide nanoparticles for biomedical and environmental applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Shawky AM, El-Tohamy MF. Highly Functionalized Modified Metal Oxides Polymeric Sensors for Potentiometric Determination of Letrozole in Commercial Oral Tablets and Biosamples. Polymers (Basel) 2021; 13:1384. [PMID: 33922800 PMCID: PMC8123036 DOI: 10.3390/polym13091384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The advanced and high-functional activities of magnesium oxide and copper oxide nanoparticles encourage the extensive use of these metal oxides as remarkable electroactive materials in electrochemical and sensing detections. The current study described a comparative sensing activity and selectivity of modified coated wire membrane sensors enriched with magnesium oxide and copper oxide nanoparticles for quantifying the breast cancer medication letrozole (LTZ) in its pharmaceutical form and human plasma. The fabricated sensors were based on the incorporation of LTZ with phosphomolybdic acid (PMA) to form the electroactive complex letrozole-phosphomolybate (LTZ-PM) in the presence of o-nitrophenyloctyl ether (o-NPOE) as a solvent mediator. Under optimum conditions, the modified sensors LTZ-PM-MgONPs and LTZ-PM-CuONPs demonstrated linear relationships of 1.0 × 10-8-1.0 × 10-2 and 1.0 × 10-10-1.0 × 10-2 mol L-1, respectively. Least square equations were calculated as EmV = (56.4 ± 0.7) log [LTZ] + 569.6 and EmV = (58.7 ± 0.3) log [LTZ] + 692.6 for LTZ-PM-MgONPs and LTZ-PM-CuONPs, respectively. The conventional type LTZ-PM showed a potential response EmV = (53.3 ± 0.5) log [LTZ] + 451.4 over concentration range of 1.0 × 10-6-1.0 × 10-2 mol L-1. The suggested sensors were successfully used to determine LTZ in pharmaceutical formulations and biosamples. Method validation ensured the suitability of the suggested potentiometric sensors.
Collapse
Affiliation(s)
- Ahmed Mahmoud Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Maha Farouk El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
41
|
Badawy AA, Abdelfattah NAH, Salem SS, Awad MF, Fouda A. Efficacy Assessment of Biosynthesized Copper Oxide Nanoparticles (CuO-NPs) on Stored Grain Insects and Their Impacts on Morphological and Physiological Traits of Wheat ( Triticum aestivum L.) Plant. BIOLOGY 2021; 10:biology10030233. [PMID: 33802973 PMCID: PMC8002698 DOI: 10.3390/biology10030233] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Herein, CuO-NPs were fabricated by harnessing metabolites of Aspergillus niger strain (G3-1) and characterized using UV-vis spectroscopy, XRD, TEM, SEM-EDX, FT-IR, and XPS. Spherical, crystallographic CuO-NPs were synthesized in sizes ranging from 14.0 to 47.4 nm, as indicated by TEM and XRD. EDX and XPS confirmed the presence of Cu and O with weight percentages of 62.96% and 22.93%, respectively, at varied bending energies. FT-IR spectra identified functional groups of metabolites that could act as reducing, capping, and stabilizing agents to the CuO-NPs. The insecticidal activity of CuO-NPs against wheat grain insects Sitophilus granarius and Rhyzopertha dominica was dose- and time-dependent. The mortality percentages due to NP treatment were 55-94.4% (S. granarius) and 70-90% (R. dominica). A botanical experiment was done in a randomized block design. Low CuO-NP concentration (50 ppm) caused significant increases in growth characteristics (shoot and root length, fresh and dry weight of shoot and root, and leaves number), photosynthetic pigments (total chlorophylls and carotenoids), and antioxidant enzymes of wheat plants. There was no significant change in carbohydrate or protein content. The use of CuO-NPs is a promising tool to control grain insects and enhance wheat growth performance.
Collapse
Affiliation(s)
- Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (S.S.S.)
| | | | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (S.S.S.)
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (S.S.S.)
- Correspondence: ; Tel.: +20-111-3351244
| |
Collapse
|
42
|
Beyene AM, Moniruzzaman M, Karthikeyan A, Min T. Curcumin Nanoformulations with Metal Oxide Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:460. [PMID: 33670161 PMCID: PMC7916858 DOI: 10.3390/nano11020460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
In the past few decades, curcumin, a natural polyphenolic phytochemical, has been studied for treating a wide variety of diseases. It has shown promising results as a potential curative agent for a variety of diseases. However, its inherent limitations, such as poor aqueous solubility, poor absorbability, fast metabolic rate, and quick elimination from the body, have limited its application beyond preclinical studies. A huge number of studies have been made to address the issues of curcumin and to maximally utilize its potentials. Many review articles have tried to assess and summarize different nanocarriers, especially organic nanocarriers, for nanoformulations with curcumin. Nevertheless, few exclusive reviews on the progress in nanoformulation of curcumin with inorganic nanomaterials have been made. In this review, we present an exclusive summary of the progress in nanoformulation of curcumin with metal oxide nanoparticles. The beneficial feature of the metal oxide nanoparticles used in the curcumin nanoformulation, the different approaches followed in formulating curcumin with the metal oxides, and the corresponding results, protective effect of curcumin from different metal oxide caused toxicities, and concluding remarks are presented in the review.
Collapse
Affiliation(s)
- Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
- School of Chemical and Bioengineering, Addis Ababa Institute of Technology (AAiT), King George VI St., Addis Ababa 1000, Ethiopia
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (A.M.B.); (M.M.)
| |
Collapse
|
43
|
Rabiee N, Ahmadi S, Fatahi Y, Rabiee M, Bagherzadeh M, Dinarvand R, Bagheri B, Zarrintaj P, Saeb MR, Webster TJ. Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine (Lond) 2021; 16:237-258. [PMID: 33501839 DOI: 10.2217/nnm-2020-0353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next generation of nanomaterial-based microfluidic systems, the latest in their commercialization success and failure and highlight the value of these devices both in industry and in the laboratory.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Bagheri
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
44
|
Barman K, Dutta P, Chowdhury D, Baruah PK. Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00826-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Ananda Murthy H, Zeleke TD, Tan K, Ghotekar S, Alam MW, Balachandran R, Chan KY, Sanaulla P, Anil Kumar M, Ravikumar C. Enhanced multifunctionality of CuO nanoparticles synthesized using aqueous leaf extract of Vernonia amygdalina plant. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Ruddaraju LK, Veerla SC, Kolapalli VRM, Pallela PNVK, Padavala VS, Pammi SVN. Green-synthesized copper oxide nanostructures for potential multifaceted biomedical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01509e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The novelty of the present work is the in-vitro and in vivo nano-antibitoic combinational therapy along with in vitro anti-cancer and biocompatibility activities of green synthesized CuO NLs.
Collapse
Affiliation(s)
- Lakshmi Kalyani Ruddaraju
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram – 534202, Andhra Pradesh, India
| | - Sarath Chandra Veerla
- Nanomaterials for Photovoltaics and Biomaterials Laboratory (NPBL), Department of Humanities and Basic Sciences (Physics), Godavari Institute of Engineering and Technology (Autonomous), Rajahmundry – 533296, Andhra Pradesh, India
| | | | | | - Veerabhadra Swamy Padavala
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram – 534202, Andhra Pradesh, India
| | - S. V. N. Pammi
- Department of Basic Sciences & Humanities, GMR Institute of Technology (GMRIT), GMR Nagar, Rajam – 532 127, Srikakulam District, Andhra Pradesh, India
| |
Collapse
|
47
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. Improved green biosynthesis of chitosan decorated Ag- and Co 3O 4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102331. [PMID: 33181272 DOI: 10.1016/j.nano.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and Co3O4-NPs@Chitosan, respectively. FESEM results showed differences in particle sizes (32 ± 3.0 nm for the AgNPs and 41 ± 3.0 nm for the Co3O4NPs) but AFM results showed lower roughness of the AgNPs@Chitosan (7.639 ± 0.85 nm) compared to Co3O4NPs@Chitosan (9.218 ± 0.93 nm), which resulted in potential biomedical applications.
Collapse
Affiliation(s)
- Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
48
|
Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Zhang K, Jin Z, Ramakrishna S, Shokouhimehr M. High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abac4d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|