1
|
Nguyen NPU, Dang NT, Doan L, Nguyen TTH. Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes (Basel) 2023; 11:2617. [DOI: 10.3390/pr11092617] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Silver nanoparticles, also known as AgNPs, have been extensively researched due to their one-of-a-kind characteristics, including their optical, antibacterial, and electrical capabilities. In the era of the antibiotics crisis, with an increase in antimicrobial resistance (AMR) and a decrease in newly developed drugs, AgNPs are potential candidates because of their substantial antimicrobial activity, limited resistance development, and extensive synergistic effect when combined with other drugs. The effect of AgNPs depends on the delivery system, compound combination, and their own properties, such as shape and size, which are heavily influenced by the synthesis process. Reduction using chemicals or light, irradiation using gamma ray, laser, electron beams or microwave and biological synthesis or a combination of these techniques are notable examples of AgNP synthesis methods. In this work, updated AgNP synthesis methods together with their strength and shortcomings are reviewed. Further, factors affecting the synthesis process are discussed. Finally, recent advances and challenges are considered.
Collapse
Affiliation(s)
- Ngoc Phuong Uyen Nguyen
- School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Tung Dang
- School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Linh Doan
- School of Chemical and Environmental Engineering, International University, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Nanomaterials Engineering Research & Development (NERD) Laboratory, International University, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thi Thu Hoai Nguyen
- School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Research Center for Infectious Diseases, International University, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
2
|
Fathil MAM, Katas H. Antibacterial, Anti-Biofilm and Pro-Migratory Effects of Double Layered Hydrogels Packaged with Lactoferrin-DsiRNA-Silver Nanoparticles for Chronic Wound Therapy. Pharmaceutics 2023; 15:pharmaceutics15030991. [PMID: 36986852 PMCID: PMC10054788 DOI: 10.3390/pharmaceutics15030991] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Antimicrobial resistance and biofilm formation in diabetic foot infections worsened during the COVID-19 pandemic, resulting in more severe infections and increased amputations. Therefore, this study aimed to develop a dressing that could effectively aid in the wound healing process and prevent bacterial infections by exerting both antibacterial and anti-biofilm effects. Silver nanoparticles (AgNPs) and lactoferrin (LTF) have been investigated as alternative antimicrobial and anti-biofilm agents, respectively, while dicer-substrate short interfering RNA (DsiRNA) has also been studied for its wound healing effect in diabetic wounds. In this study, AgNPs were complexed with LTF and DsiRNA via simple complexation before packaging in gelatin hydrogels. The formed hydrogels exhibited 1668% maximum swellability, with a 46.67 ± 10.33 µm average pore size. The hydrogels demonstrated positive antibacterial and anti-biofilm effects toward the selected Gram-positive and Gram-negative bacteria. The hydrogel containing AgLTF at 125 µg/mL was also non-cytotoxic on HaCaT cells for up to 72 h of incubation. The hydrogels containing DsiRNA and LTF demonstrated superior pro-migratory effects compared to the control group. In conclusion, the AgLTF-DsiRNA-loaded hydrogel possessed antibacterial, anti-biofilm, and pro-migratory activities. These findings provide a further understanding and knowledge on forming multipronged AgNPs consisting of DsiRNA and LTF for chronic wound therapy.
Collapse
|
3
|
Chircov C, Bîrcă AC, Vasile BS, Oprea OC, Huang KS, Grumezescu AM. Microfluidic Synthesis of -NH 2- and -COOH-Functionalized Magnetite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3160. [PMID: 36144948 PMCID: PMC9503789 DOI: 10.3390/nano12183160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics has emerged as a promising alternative for the synthesis of nanoparticles, which ensures precise control over the synthesis parameters, high uniformity, reproducibility, and ease of integration. Therefore, the present study investigated a one-step synthesis and functionalization of magnetite nanoparticles (MNPs) using sulfanilic acid (SA) and 4-sulfobenzoic acid (SBA). The flows of both the precursor and precipitating/functionalization solutions were varied in order to ensure the optimal parameters. The obtained nanoparticles were characterized through dynamic light scattering (DLS) and zeta potential, X-ray diffraction (XRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM). The results demonstrated the successful synthesis of magnetite as the unique mineralogical phase, as well as the functionalization of the nanoparticles. Furthermore, the possibility to control the crystallinity, size, shape, and functionalization degree by varying the synthesis parameters was further confirmed. In this manner, this study validated the potential of the microfluidic platform to develop functionalized MNPs, which are suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840301, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050045 Bucharest, Romania
| |
Collapse
|
4
|
Rugaie OA, Abdellatif AAH, El-Mokhtar MA, Sabet MA, Abdelfattah A, Alsharidah M, Aldubaib M, Barakat H, Abudoleh SM, Al-Regaiey KA, Tawfeek HM. Retardation of Bacterial Biofilm Formation by Coating Urinary Catheters with Metal Nanoparticle-Stabilized Polymers. Microorganisms 2022; 10:1297. [PMID: 35889016 PMCID: PMC9319761 DOI: 10.3390/microorganisms10071297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Urinary catheter infections remain an issue for many patients and can complicate their health status, especially for individuals who require long-term catheterization. Catheters can be colonized by biofilm-forming bacteria resistant to the administered antibiotics. Therefore, this study aimed to investigate the efficacy of silver nanoparticles (AgNPs) stabilized with different polymeric materials generated via a one-step simple coating technique for their ability to inhibit biofilm formation on urinary catheters. AgNPs were prepared and characterized to confirm their formation and determine their size, charge, morphology, and physical stability. Screening of the antimicrobial activity of nanoparticle formulations and determining minimal inhibitory concentration (MIC) and their cytotoxicity against PC3 cells were performed. Moreover, the antibiofilm activity and efficacy of the AgNPs coated on the urinary catheters under static and flowing conditions were examined against a clinical isolate of Escherichia coli. The results showed that the investigated polymers could form physically stable AgNPs, especially those prepared using polyvinyl pyrrolidone (PVP) and ethyl cellulose (EC). Preliminary screening and MIC determinations suggested that the AgNPs-EC and AgNPs-PVP had superior antibacterial effects against E. coli. AgNPs-EC and AgNPs-PVP inhibited biofilm formation to 58.2% and 50.8% compared with AgNPs-PEG, silver nitrate solution and control samples. In addition, coating urinary catheters with AgNPs-EC and AgNPs-PVP at concentrations lower than the determined IC50 values significantly (p < 0.05; t-test) inhibited bacterial biofilm formation compared with noncoated catheters under both static and static and flowing conditions using two different types of commercial Foley urinary catheters. The data obtained in this study provide evidence that AgNP-coated EC and PVP could be useful as potential antibacterial and antibiofilm catheter coating agents to prevent the development of urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah 51911, Saudi Arabia
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt;
| | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Musaed Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51911, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman 11622, Jordan;
| | - Khalid A. Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| |
Collapse
|
5
|
Samodelova MV, Kapitanova OO, Evdokimov PV, Eremina OE, Goodilin EA, Veselova IA. Plasmonic features of free-standing chitosan nanocomposite film with silver and graphene oxide for SERS applications. NANOTECHNOLOGY 2022; 33:335501. [PMID: 35508104 DOI: 10.1088/1361-6528/ac6c98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
A scalable procedure of SERS substrates design was developed using a novel plasmonic structure based on a freestanding chitosan film, silver nanoparticles, and graphene oxide. Chitosan provides a uniform distribution of silver nanoparticles from a colloidal suspension and, therefore, a reproducible Raman signal from local areas of measurements of several tens of microns. The addition of graphene oxide (GO) to the colloidal solution of silver nanoparticles suppresses the tortuous background fluorescence signal from the analyte and leads to an increase in the signal-to-fluorescence background intensity ratio by up to 6 times as compared to structures without GO. The manufactured plasmonic polymer nanocomposite provides a detection limit of down to 100 pM for R6G using a laser wavelength of 532 nm through a portable ×10 objective. The high colloidal stability of GO in water and the use of an aqueous colloid of silver nanoparticles simplify the procedure for creating a substrate by applying the GO-silver composite on the surface of a chitosan film without a need to form a GO film. Therefore, our approach paves a promising avenue to provide more sensitive detection even for the fluorescent analytes with short-wavelength lasers (532, 633 nm) instead of IR (785, 1024 nm) and foster the practical application of the developed plasmonic composites on portable Raman spectrometers.
Collapse
Affiliation(s)
- Mariia V Samodelova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| | - Olesya O Kapitanova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
- Center for photonics and 2D materials, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Pavel V Evdokimov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii prospect 31, Moscow, 119991, Russia
| | - Olga E Eremina
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| | - Eugene A Goodilin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| |
Collapse
|
6
|
Improvement in the Blood Urea Nitrogen and Serum Creatinine Using New Cultivation of Cordyceps militaris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4321298. [PMID: 35368765 PMCID: PMC8967507 DOI: 10.1155/2022/4321298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Background Chronic kidney disease (CKD) is a critical public health issue with a huge financial burden for both patients and society worldwide. Unfortunately, there are currently no efficacious therapies to prevent or delay the progression of end-stage renal disease (ESRD). Traditional Chinese medicine practices have shown that Cordyceps militaris (C. militaris) mycelia have a variety of pharmacologically useful properties, including antitumor, immunomodulation, and hepatoprotection. However, the effect of mycelial C. militaris on CKD remains unclear. Methods Here, we investigated the effects of C. militaris mycelia on mice with CKD using four types of media: HKS, HKS with vitamin A (HKS + A), CM, and CM with vitamin A (CM + A). Results The results at day 10 revealed that the levels of blood urea nitrogen (BUN) were significantly lower in the HKS (41%), HKS + A (41%), and CM + A (34%) groups compared with those in the corresponding control groups (nephrectomic mice). The level of serum creatinine in the HKS + A group decreased by 35% at day 10, whereas the levels in the HKS and CM + A groups decreased only by 14% and 13%, respectively, on day 30. Taken together, this is the first report using four new media (HKS, HKS + A, CM, and CM + A medium) for C. militaris mycelia. Each medium of mycelial C. militaris on CKD exhibits specific effect on BUN, serum creatinine, body weight, total protein, and uric acid. Conclusions Taken together, this is the first report using four new media (HKS, HKS + A, CM, and CM + A medium) for C. militaris mycelia. Each medium of mycelial C. militaris on CKD exhibits specific effects on BUN, serum creatinine, body weight, total protein, and uric acid. We concluded that treatment with C. militaris mycelia cultured in HKS or CM + A medium could potentially prevent the deterioration of kidney function in mice with CKD.
Collapse
|
7
|
Development of Chitosan Silver Nanocomposites: Its Characteristic Study and Toxicity Effect against 3T3-L1 Cell Line. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanocomposite from the natural source is opened a wide area for the researchers to find a natural remedy to replace the chemicals or harmful products in all the fields of agricultural, food and medical fields. Here the biopolymer (chitosan) was extracted from the two white rot fungi of Pleurotus floridanus and Pleurotus djamor, and biologically synthesized with 1mM AgNO3 solution. Synthesized chitosan nanocomposite was characterized with UV-Visible study, FTIR, FESEM, XRD, EDAS for the confirmation based upon the peaks, functional group, crystalline nature, size, morphology and the percentage of elements respectively. Toxicity study was carried out using 3T3 L1 (Mouse embryo fibroblast Cell Line) normal Cell Line to find out the cytotoxicity effect of the chitosan nanocomposite and found that the nanocomposites were non toxic to the Cell Line.
Collapse
|
8
|
Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities. Polymers (Basel) 2021; 13:polym13223990. [PMID: 34833288 PMCID: PMC8620293 DOI: 10.3390/polym13223990] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Synthesis of silver nanoparticles–chitosan composite particles sphere (AgNPs-chi-spheres) has been completed and its characterization was fulfilled by UV–vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and zetasizer nano. UV–vis spectroscopy characterization showed that AgNPs-chi-spheres gave optimum absorption at a wavelength of 410 nm. The XRD spectra showed that the structure of AgNPs-chi-spheres were crystalline and spherical. Characterization by SEM showed that AgNPs-chi-spheres, with the addition of 20% of NaOH, resulted in the lowest average particle sizes of 46.91 nm. EDX analysis also showed that AgNPs-chi-spheres, with the addition of a 20% NaOH concentration, produced particles with regular spheres, a smooth and relatively nonporous structure. The analysis using zetasizer nano showed that the zeta potential value and the polydispersity index value of the AgNPs-chi-sphere tended to increase with an increased NaOH concentration. The results of the microbial activity screening showed that the AgNP-chi-Spheres with highest concentration of NaOH, produced the highest inhibition zone diameters against S. aureus, E. coli, and C. albicans, with inhibition zone diameters of 19.5, 18.56, and 12.25 nm, respectively.
Collapse
|
9
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
10
|
Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1687. [PMID: 34199123 PMCID: PMC8306300 DOI: 10.3390/nano11071687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs).
Collapse
Affiliation(s)
- Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
11
|
Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci Rep 2021; 11:10500. [PMID: 34006995 PMCID: PMC8131587 DOI: 10.1038/s41598-021-90016-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials have significantly contributed in the field of nanomedicine as this subject matter has combined the usefulness of natural macromolecules with organic and inorganic nanomaterials. In this respect, various types of nanocomposites are increasingly being explored in order to discover an effective approach in controlling high morbidity and mortality rate that had triggered by the evolution and emergence of multidrug resistant microorganisms. Current research is focused towards the production of biogenic silver nanoparticles for the fabrication of antimicrobial metallic-polymer-based non-cytotoxic nanocomposite system. An ecofriendly approach was adapted for the production of silver nanoparticles using fungal biomass (Aspergillus fumigatus KIBGE-IB33). The biologically synthesized nanoparticles were further layered with a biodegradable macromolecule (chitosan) to improve and augment the properties of the developed nanocomposite system. Both nanostructures were characterized using different spectrographic analyses including UV–visible and scanning electron microscopy, energy dispersive X-ray analysis, dynamic light scattering, and Fourier transform infrared spectroscopic technique. The biologically mediated approach adapted in this study resulted in the formation of highly dispersed silver nanoparticles that exhibited an average nano size and zeta potential value of 05 nm (77.0%) and − 22.1 mV, respectively with a polydispersity index of 0.4. Correspondingly, fabricated silver–chitosan nanocomposites revealed a size of 941 nm with a zeta potential and polydispersity index of + 63.2 mV and 0.57, respectively. The successful capping of chitosan on silver nanoparticles prevented the agglomeration of nanomaterial and also facilitated the stabilization of the nano system. Both nanoscopic entities exhibited antimicrobial potential against some pathogenic bacterial species but did not displayed any antifungal activity. The lowest minimal inhibitory concentration of nanocomposite system (1.56 µg ml−1) was noticed against Enterococcus faecalis ATCC 29212. Fractional inhibitory concentration index of the developed nanocomposite system confirmed its improved synergistic behavior against various bacterial species with no cytotoxic effect on NIH/3T3 cell lines. Both nanostructures, developed in the present study, could be utilized in the form of nanomedicines or nanocarrier system after some quantifiable trials as both of them are nonhazardous and have substantial antibacterial properties.
Collapse
|
12
|
Hassanen EI, Morsy EA, Hussien AM, Farroh KY, Ali ME. Comparative assessment of the bactericidal effect of nanoparticles of copper oxide, silver, and chitosan-silver against Escherichia coli infection in broilers. Biosci Rep 2021; 41:BSR20204091. [PMID: 33786574 PMCID: PMC8056002 DOI: 10.1042/bsr20204091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli infection is considered one of the most economically important multi-systemic diseases in poultry farms. Several nanoparticles such as silver, chitosan, and copper oxide are known to be highly toxic to several microbes. However, there are no data concerning their success against in vivo experimental E. coli infection in broilers. Therefore, the present study was designed to investigate the bactericidal effect of low doses of CuO-NPs (5 mg/kg bwt), Ag-NPs (0.5 mg/kg bwt), and Ch-Ag NPs (0.5 mg/kg bwt) against E. coli experimental infection in broilers. One hundred chicks were divided into five groups as follows: (1) control; (2) E. coli (4 × 108 CFU/ml) challenged; (3) E. coli +CuO-NPs; (4) E. coli +Ag-NPs; (5) E. coli +Ch-Ag NPs. The challenged untreated group, not NPs treated groups, recorded the lowest weight gain as well as the highest bacterial count and lesion score in all examined organs. The highest liver content of silver was observed in Ag-NPs treated group compared with the Ch-Ag NPs treated group. Our results concluded that Ch-Ag NPs not only had the best antibacterial effects but also acted as a growth promoter in broilers without leaving any residues in edible organs. We recommend using Ch-Ag NPs in broiler farms instead of antibiotics or probiotics.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Cairo, Egypt
| | - Eman A. Morsy
- Poultry Disease Department, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Cairo, Egypt
| | - Ahmed M. Hussien
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Cairo, Egypt
| | - Khaled Y. Farroh
- Nanotechnology Department, Agricultural Research Center, Giza 12619, Cairo, Egypt
| | - Merhan E. Ali
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Cairo, Egypt
| |
Collapse
|
13
|
New Textile for Personal Protective Equipment—Plasma Chitosan/Silver Nanoparticles Nylon Fabric. FIBERS 2021. [DOI: 10.3390/fib9010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fabric structures are prone to contamination with microorganisms, as their morphology and ability to retain moisture creates a proper environment for their growth. In this work, a novel, easily processed and cheap coating for a nylon fabric with antimicrobial characteristics was developed. After plasma treatment, made to render the fabric surface more reactive sites, the fabric was impregnated with chitosan and silver nanoparticles by simply dipping it into a mixture of different concentrations of both components. Silver nanoparticles were previously synthesized using the Lee–Meisel method, and their successful obtention was proven by UV–Vis, showing the presence of the surface plasmon resonance band at 410 nm. Nanoparticles with 25 nm average diameter observed by STEM were stable, mainly in the presence of chitosan, which acted as a surfactant for silver nanoparticles, avoiding their aggregation. The impregnated fabric possessed bactericidal activity higher for Gram-positive Staphylococcus aureus than for Gram-negative Pseudomonas aeruginosa bacteria for all combinations. The percentage of live S. aureus and P. aeruginosa CFU was reduced to less than 20% and 60%, respectively, when exposed to each of the coating combinations. The effect was more pronounced when both chitosan and silver were present in the coating, suggesting an effective synergy between these components. After a washing process, the antimicrobial effect was highly reduced, suggesting that the coating is unstable after washing, being almost completely removed from the fabric. Nevertheless, the new-coated fabric can be successfully used in single-use face masks. To our knowledge, the coating of nylon fabrics intended for face-mask material with both agents has never been reported.
Collapse
|
14
|
Antifungal Efficacy of Chitosan-Stabilized Biogenic Silver Nanoparticles against Pathogenic Candida spp. Isolated from Human. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00781-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Quintero-Quiroz C, Botero LE, Zárate-Triviño D, Acevedo-Yepes N, Escobar JS, Pérez VZ, Cruz Riano LJ. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater Res 2020; 24:13. [PMID: 32817803 PMCID: PMC7425163 DOI: 10.1186/s40824-020-00191-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 01/24/2023] Open
Abstract
Background The presence of skin problems in patients using external lower limb prosthesis is recurrent. This has generated the need to develop interfaces for prosthesis with the ability to control microbial growth. Silver nanoparticles (AgNPs) have been implemented in the development of biomaterials because of their high antimicrobial activity. This article discusses the development of an AgNP-containing polymer composite with antimicrobial activity for developing prosthetic liners. Methods AgNPs were synthesized using a photochemical method and certain physicochemical properties were characterized. Furthermore, the antimicrobial activity of AgNPs against Staphylococcus aureus ATCC 25923 and methicillin-resistant Staphylococcus aureus (MRSA), was assessed on the basis of their minimum inhibitory concentrations (MICs). AgNPs were incorporated into a silicon elastomer to assess certain physicomechanical properties, antimicrobial activity and cytotoxic effect of the material. Results The maximum antimicrobial activity of the material against Staphylococcus aureus ATCC 25923 and MRSA was 41.58% ±2.97% at AgNP concentration of 32.98 μg/mL and 14.85% ±5.94% at AgNP concentration of 16.49 μg/mL, respectively. Additionally, the material exhibited tensile yield strength, rupture tensile strength, and tensile modulus of elasticity of 0.70 - 1.10 MPa, 0.71–1.06 MPa, and 0.20 - 0.30 MPa, respectively. The mechanical characteristics of the material were within the acceptable range for use in external lower limb prosthetic and orthotic interfaces. Conclusions It was possible to incorporate the AgNPs in a silicone elastomer, finding that the composite developed presented antimicrobial activity against Staphylococcus aureus ATCC 25923 and MRSA when compared to non-AgNP material samples.
Collapse
Affiliation(s)
- Catalina Quintero-Quiroz
- Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Luz E Botero
- Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Diana Zárate-Triviño
- Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N Ciudad Universitaria San Nicolás de los Garza, Monterrey, 64450 México
| | - Natalia Acevedo-Yepes
- Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Jorge Saldarriaga Escobar
- Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031 Colombia
| | - Vera Z Pérez
- Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia.,Facultad de Ingeniería Eléctrica y Electrónica, Cq.1 No. 70-01, Medellín, 050031 Colombia
| | - Luis Javier Cruz Riano
- Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031 Colombia
| |
Collapse
|
16
|
Demir D, Ceylan S, Atakav Y, Bölgen N. Synthesis of silver nanoflakes on chitosan hydrogel beads and their antimicrobial potential. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1801293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Didem Demir
- Chemical Engineering Department, Mersin University, Mersin, Turkey
| | - Seda Ceylan
- Bioengineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Yağmur Atakav
- Bioengineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Nimet Bölgen
- Chemical Engineering Department, Mersin University, Mersin, Turkey
| |
Collapse
|
17
|
Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 2019; 14:4723-4739. [PMID: 31308655 PMCID: PMC6614591 DOI: 10.2147/ijn.s207644] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/23/2019] [Indexed: 11/23/2022] Open
Abstract
Background Much consideration has been paid to the toxicological assessment of nanoparticles prior to clinical and biological applications. While in vitro studies have been expanding continually, in vivo investigations of nanoparticles have not developed a cohesive structure. This study aimed to assess the acute toxicity of different concentrations of chitosan-coated silver nanoparticles (Ch-AgNPs) in main organs, including liver, kidneys, and spleen. Materials and methods Twenty-eight male albino rats were used and divided into 4 groups (n=7). Group 1 was kept as a negative control group. Groups 2, 3, and 4 were treated intraperitoneally with Ch-AgNPs each day for 14 days at doses of 50, 25, and 10 mg/kg body weight (bwt) respectively. Histopathological, morphometric and immunohistochemical studies were performed as well as oxidative stress evaluations, and specific functional examinations for each organ were elucidated. Results It was revealed that Ch-AgNPs induced dose-dependent toxicity, and the repeated dosing of rats with 50 mg/kg Ch-AgNPs induced severe toxicities. Histopathological examination showed congestion, hemorrhage, cellular degeneration, apoptosis and necrosis in hepatic and renal tissue as well as lymphocytic depletion with increasing tangible macrophages in the spleen. The highest levels of malondialdehyde, alanine aminotransferase, aspartate aminotransferase (MDA, ALT, AST) and the lowest levels of reduced glutathione, immunoglobulin G, M and total protein (GSH, IgG, IgM, TP) were observed in this group. On the other hand, repeated dosing with 25 mg/kg induced mild to moderate disturbance in the previous parameters, while there was no significant difference in results of pathological examination and biochemical tests between the control group and those treated with 10 mg/kg bwt Ch-AgNPs. Conclusion Chitosan-coated silver nanoparticles induce dose-dependent adverse effects on rats.
Collapse
Affiliation(s)
- Eman Ibrahim Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdelazeem Ali Khalaf
- Department of Toxicology & Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel Fathy Tohamy
- Department of Toxicology & Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Ragab Mohammed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology & Advanced Materials Central Laboratory, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
18
|
Chitosan-Based Coatings to Prevent the Decay of Populus spp. Wood Caused by Trametes Versicolor. COATINGS 2018. [DOI: 10.3390/coatings8120415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chitosan and chitosan oligomers are receiving increasing attention due to their antimicrobial properties. In the present study, they were assayed as a preventive treatment against white-rot decay of Populus wood (very important in economic and environmental terms), caused by Trametes versicolor fungus. Their capacity to incorporate different chemical species into the polymer structure with a view to improving their anti-fungal activity was also assessed by mixing oligo-chitosan with propolis and silver nanoparticles. The minimum inhibitory concentration of medium-molecular weight chitosan (MMWC), chitosan oligomers (CO), propolis (P), nanosilver (nAg), and their binary and ternary composites against T. versicolor was determined in vitro. Although all products exhibited anti-fungal properties, composites showed an enhanced effect as compared to the individual products: 100% mycelial growth inhibition was attained for concentrations of 2.0 and 0.2 mg·mL−1 for the CO-P binary mixture, respectively; and 2 µg·mL−1 for nAg in the ternary mixture. Subsequently, MMWC, CO, CO-P and CO-P-nAg composites were tested on poplar wood blocks as surface protectors. Wood decay caused by the fungus was monitored by microscopy and vibrational spectroscopy, evidencing the limitations of the CO-based coatings in comparison with MMWC, which has a higher viscosity and better adhesion properties. The usage of MMWC holds promise for poplar wood protection, with potential industrial applications.
Collapse
|
19
|
Antimicrobial Potential of Silver Nanoparticles Synthesized Using Medicinal Herb Coptidis rhizome. Molecules 2018; 23:molecules23092268. [PMID: 30189672 PMCID: PMC6225489 DOI: 10.3390/molecules23092268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Coptidis rhizome contains several alkaloids that are bioactive agents of therapeutic value. We propose an eco-friendly method to synthesize biocompatible silver nanoparticles (AgNPs) using the aqueous extract of Coptidis rhizome. Silver ions were reduced to AgNPs using the aqueous extract of Coptidis rhizome, indicating that Coptidis rhizome can be used for the biosynthesis of AgNPs. The time and the concentration required for conversion of silver ions into AgNPs was optimized using UV-absorbance spectroscopy and inductively coupled plasma spectroscopy (ICP). Biosynthesized AgNPs showed a distinct UV-Visible absorption peak at 420 nm. ICP analysis showed that the time required for the completion of biosynthesis was around 20 min. Microscopic images showed that nanoparticles synthesized were of spherical shape and the average diameter of biosynthesized AgNPs was less than 30 nm. XRD analysis also confirmed the size of AgNps and revealed their crystalline nature. The interaction of AgNPs with phytochemicals present in Coptidis rhizome extract was observed in FTIR analysis. The antimicrobial property of AgNPs was evaluated using turbidity measurements. Coptidis rhizome-mediated biosynthesized AgNPs showed significant anti-bacterial activities against Escherichia coli and Staphylococcus aureus that are commonly involved in various types of infections, indicating their potential as an effective anti-bacterial agent.
Collapse
|
20
|
Matei PM, Martín-Gil J, Michaela Iacomi B, Pérez-Lebeña E, Barrio-Arredondo MT, Martín-Ramos P. Silver Nanoparticles and Polyphenol Inclusion Compounds Composites for Phytophthora cinnamomi Mycelial Growth Inhibition. Antibiotics (Basel) 2018; 7:antibiotics7030076. [PMID: 30115899 PMCID: PMC6163761 DOI: 10.3390/antibiotics7030076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Phytophthora cinnamomi, responsible for "root rot" or "dieback" plant disease, causes a significant amount of economic and environmental impact. In this work, the fungicide action of nanocomposites based on silver nanoparticles and polyphenol inclusion compounds, which feature enhanced bioavailability and water solubility, was assayed for the control of this soil-borne water mold. Inclusion compounds were prepared by an aqueous two-phase system separation method through extraction, either in an hydroalcoholic solution with chitosan oligomers (COS) or in a choline chloride:urea:glycerol deep eutectic solvent (DES). The new inclusion compounds were synthesized from stevioside and various polyphenols (gallic acid, silymarin, ferulic acid and curcumin), in a [6:1] ratio in the COS medium and in a [3:1] ratio in the DES medium, respectively. Their in vitro response against Phytophthora cinnamomi isolate MYC43 (at concentrations of 125, 250 and 500 µg·mL-1) was tested, which found a significant mycelial growth inhibition, particularly high for the composites prepared using DES. Therefore, these nanocomposites hold promise as an alternative to fosetyl-Al and metalaxyl conventional systemic fungicides.
Collapse
Affiliation(s)
- Petruta Mihaela Matei
- Department of Bioengineering of Horticultural and Viticultural Systems, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bulevardul Mărăști 59, București 011464, Romania.
- Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - Jesús Martín-Gil
- Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - Beatrice Michaela Iacomi
- Department of Bioengineering of Horticultural and Viticultural Systems, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bulevardul Mărăști 59, București 011464, Romania.
| | - Eduardo Pérez-Lebeña
- Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.
| | - María Teresa Barrio-Arredondo
- Centro de Salud Barrio España, Sanidad de Castilla y León (SACYL), Calle de la Costa Brava, 4, 47010 Valladolid, Spain.
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales (IUCA), University of Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain.
| |
Collapse
|
21
|
Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Kyzioł A, Stochel G. Development of noncytotoxic silver-chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv 2017; 7:52398-52413. [PMID: 29308194 PMCID: PMC5735359 DOI: 10.1039/c7ra08359a] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/02/2017] [Indexed: 01/05/2023] Open
Abstract
Severe bacterial and fungal infections have become a major clinical and public health concern. Nowadays, additional efforts are needed to develop effective antimicrobial materials that are not harmful to human cells. This work describes the synthesis and characterization of chitosan-ascorbic acid-silver nanocomposites as films exhibiting high antimicrobial activity and non-cytotoxicity towards human cells. The reductive and stabilizing activity of both the biocompatible polymer chitosan and ascorbic acid were used in the synthesis of silver nanoparticles (AgNPs). Herein, we propose an improved composite synthesis based on medium average molecular weight chitosan with a high deacetylation degree, that together with ascorbic acid gave films with a uniform distribution of small AgNPs (<10 nm) exhibiting high antimicrobial activity against biofilm forming bacterial and fungal strains of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. At the same time, the resulting solid nanocomposites showed, at the same doses, reduced or totally excluded cytotoxicity on mammalian somatic and tumoral cells. Data obtained in the present study suggest that adequately designed chitosan-silver nanocomposites are powerful and promising materials for reducing pathogenic microorganism-associated infections without harmful effects towards mammalian cells.
Collapse
Affiliation(s)
- Anna Regiel-Futyra
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland. ;
| | - Małgorzata Kus-Liśkiewicz
- Faculty of Biotechnology, Biotechnology Centre for Applied and Fundamental Sciences, University of Rzeszów, Sokołowska 26, Kolbuszowa, 36-100, Poland
| | - Victor Sebastian
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland. ;
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland. ;
| |
Collapse
|
22
|
Huang S, Yu Z, Zhang Y, Qi C, Zhang S. In situ green synthesis of antimicrobial carboxymethyl chitosan-nanosilver hybrids with controlled silver release. Int J Nanomedicine 2017; 12:3181-3191. [PMID: 28458539 PMCID: PMC5402912 DOI: 10.2147/ijn.s130397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In order to fabricate antimicrobial carboxymethyl chitosan-nanosilver (CMC-Ag) hybrids with controlled silver release, this study demonstrated comparable formation via three synthetic protocols: 1) carboxymethyl chitosan (CMC) and glucose (adding glucose after AgNO3), 2) CMC and glucose (adding glucose before AgNO3), and 3) CMC only. Under principles of green chemistry, the synthesis was conducted in an aqueous medium exposed to microwave irradiation for 10 minutes with nontoxic chemicals. The structure and formation mechanisms of the three CMC-Ag hybrids were explored using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and Fourier-transform infrared analyses. Additionally, antimicrobial activity and in vitro silver release of the three synthesized hybrids were investigated in detail. The results revealed that a large number of stable, uniform, and small silver nanoparticles (AgNPs) were synthesized in situ on CMC chains via protocol 1. AgNPs were well dispersed with narrow size distribution in the range of 6-20 nm, with mean diameter only 12.22±2.57 nm. The addition of glucose resulted in greater AgNP synthesis. The order of addition of glucose and AgNO3 significantly affected particle size and size distribution of AgNPs. Compared to CMC alone and commercially available AgNPs, the antimicrobial activities of three hybrids were significantly improved. Of the three hybrids, CMC-Ag1 synthesized via protocol 1 exhibited better antimicrobial activity than CMC-Ag2 and CMC-Ag3, and showed more effective inhibition of Staphylococcus aureus than Escherichia coli. Due to strong coordination and electrostatic interactions between CMC and silver and good steric protection provided by CMC, CMC-Ag1 displayed stable and continuous silver release and better performance in retaining silver for prolonged periods than CMC-Ag2 and CMC-Ag3.
Collapse
Affiliation(s)
- Siqi Huang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
| | - Zhiming Yu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
| | - Yang Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
| | - Chusheng Qi
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Garcia Peña LV, Petkova P, Margalef-Marti R, Vives M, Aguilar L, Gallegos A, Francesko A, Perelshtein I, Gedanken A, Mendoza E, Casas-Zapata JC, Morató J, Tzanov T. Hybrid Chitosan–Silver Nanoparticles Enzymatically Embedded on Cork Filter Material for Water Disinfection. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lina Vanesa Garcia Peña
- AQUASOST
Group - UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, 08022 Barcelona, Spain
| | - Petya Petkova
- Grup de Biotecnologia Molecular
i Industrial, Departament d’Enginyeria
Química, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Rosanna Margalef-Marti
- AQUASOST
Group - UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, 08022 Barcelona, Spain
| | - Marc Vives
- AQUASOST
Group - UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, 08022 Barcelona, Spain
| | - Lorena Aguilar
- AQUASOST
Group - UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, 08022 Barcelona, Spain
| | - Angel Gallegos
- AQUASOST
Group - UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, 08022 Barcelona, Spain
| | - Antonio Francesko
- Grup de Biotecnologia Molecular
i Industrial, Departament d’Enginyeria
Química, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | - Ilana Perelshtein
- Department
of Chemistry, Kanbar Laboratory
for Nanomaterials, Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- Department
of Chemistry, Kanbar Laboratory
for Nanomaterials, Institute
of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ernest Mendoza
- Grup
de Nanomaterials Aplicats. Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain
| | - Juan Carlos Casas-Zapata
- Grupo de Investigación
Ciencia e Ingeniería
en Sistemas Ambientales (GCISA), Facultad de Ingeniería Civil, Departamento de Ing. Ambiental, Universidad del Cauca, calle 5 No. 4-70, Popayán Cauca, Colombia
| | - Jordi Morató
- AQUASOST
Group - UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, 08022 Barcelona, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular
i Industrial, Departament d’Enginyeria
Química, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| |
Collapse
|
24
|
Peng Y, Song C, Yang C, Guo Q, Yao M. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int J Nanomedicine 2017; 12:295-304. [PMID: 28115847 PMCID: PMC5221798 DOI: 10.2147/ijn.s122357] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silver nanoparticles (AgNPs) are being widely applied as topical wound materials; however, accumulated deposition of silver in the liver, spleen, and other main organs may lead to organ damage and dysfunction. We report here that low molecular weight chitosan-coated silver nanoparticles (LMWC-AgNPs) are effective against methicillin-resistant Staphylococcus aureus (MRSA), have better biocompatibility, and have lower body absorption characteristics when compared with polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) and silver nanoparticles without surface stabilizer (uncoated-AgNPs) in a dorsal MRSA wound infection mouse model. LMWC-AgNPs were synthesized by reducing silver nitrate with low molecular weight chitosan as a stabilizer and reducing agent, while PVP-AgNPs were synthesized using polyvinylpyrrolidone as a stabilizer and ethanol as a reducing agent. AgNPs with different surface stabilizers were identified by UV-visible absorption spectrometry, and particle size was determined by transmission electron microscopy. UV-visible absorption spectra of LMWC-AgNPs, PVP-AgNPs and uncoated-AgNPs were similar and their sizes were in the range of 10–30 nm. In vitro experiments showed that the three types of AgNPs had similar MRSA-killing effects, with obvious effect at 4 μg/mL and 100% effect at 8 μg/mL. Bacteriostatic annulus experiments also showed that all the three types of AgNPs had similar antibacterial inhibitory effect at 10 μg/mL. Cell counting kit-8 assay and Hoechst/propidium iodide (PI) staining showed that LMWC-AgNPs were significantly less toxic to human fibroblasts than PVP-AgNPs and uncoated-AgNPs. Treatment of mice with MRSA wound infection demonstrated that the three types of AgNPs effectively controlled MRSA wound infection and promoted wound healing. After continuous application for 14 days, LMWC-AgNPs-treated mice showed significantly reduced liver dysfunction as demonstrated by the reduced alanine aminotransferase and aspartate aminotransferase levels and liver deposition of silver, in comparison to mice treated with uncoated-AgNPs or PVP-AgNPs. Our results demonstrated that LMWC-AgNPs had good anti-MRSA effects, while harboring a better biocompatibility and lowering the body’s absorption characteristics.
Collapse
Affiliation(s)
- Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chenlu Song
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuanfeng Yang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qige Guo
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Min Yao
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Fadeeva TV, Sosedova LM, Prozorova GF. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. Int J Nanomedicine 2016; 11:1295-304. [PMID: 27099492 PMCID: PMC4821373 DOI: 10.2147/ijn.s98995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
New nontoxic hydrophilic nanocomposites containing metallic silver nanoparticles (AgNPs) in a polymer matrix were synthesized by the chemical reduction of silver ions in an aqueous medium. A new nontoxic water soluble copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone synthesized by free radical-initiated polymerization was used as a stabilizing agent. Transmission electron microscopy, scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, atomic absorption, and thermogravimetric analysis were used to characterize polymeric AgNPs nanocomposites. The results showed that the diameter of the synthesized AgNPs ranged from 2 to 6 nm. The toxicity of the initial copolymer of 1-vinyl-1,2,4-triazole and N-vinylpyrrolidone and its nanocomposite with AgNPs was found to be more than 5,000 mg/kg. The synthesized AgNP polymeric nanocomposite showed significant antimicrobial activity against different strains of Gram-negative and -positive bacteria. The minimum inhibitory concentrations suppressing the growth of the microorganisms ranged from 0.5 to 8 µg/mL and the minimum bactericidal concentrations ranged from 0.5 to 16 µg/mL. The fabricated AgNP nanocomposites are promising materials for the design of novel nontoxic hydrophilic antiseptics and antimicrobial components for medical purposes.
Collapse
Affiliation(s)
- Alexander S Pozdnyakov
- AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Artem I Emel’yanov
- AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Nadezhda P Kuznetsova
- AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Tamara G Ermakova
- AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Tat’yana V Fadeeva
- Federal State Budgetary Scientific Institution Irkutsk Scientific Center of Surgery and Traumatology, Laboratory of Functional Genomics and Interspecific Interactions of Microorganisms, Irkutsk, Russia
| | - Larisa M Sosedova
- East-Siberian Institute of Medical & Ecological Science, Department of Biomodeling & Translational Investigation, Angarsk, Russia
| | - Galina F Prozorova
- AE Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
26
|
Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar Drugs 2015; 13:5156-86. [PMID: 26287217 PMCID: PMC4557018 DOI: 10.3390/md13085156] [Citation(s) in RCA: 689] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 01/20/2023] Open
Abstract
Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|