1
|
Umekita S, Kiyozawa D, Honma H, Kohashi K, Taniguchi Y, Kawatoko S, Sasaki T, Ihara E, Oki E, Nakamura M, Ogawa Y, Oda Y. Clinicopathological significance of JAK2, STAT3, and STAT4 expression in patients with gastric solid-type poorly differentiated adenocarcinoma: a retrospective study. Gastric Cancer 2025; 28:455-464. [PMID: 39961990 DOI: 10.1007/s10120-025-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND The role of janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling remains unclear in gastric solid-type poorly differentiated adenocarcinoma. The present study investigates the clinicopathological significance of JAK2, STAT3, and STAT4 expression in solid-type poorly differentiated adenocarcinoma. METHODS We retrospectively enrolled 102 participants with primary solid-type poorly differentiated adenocarcinoma. We categorized participants according to deficient or proficient mismatch repair status (46 and 56 participants, respectively). Expression of phosphorylated JAK2 (pJAK2), phosphorylated STAT3 (pSTAT3), and STAT4 were analyzed via immunohistochemistry. We analyzed differences in protein expression in relation to mismatch repair status, and associations of high/low protein expression with clinicopathological characteristics and prognoses. RESULTS Deficient mismatch repair was found to be associated with high pJAK2 (p = 0.038) and STAT4 (p = 0.023) expression in contrast to proficient mismatch repair. Log-rank analysis revealed high pSTAT3 and low STAT4 expression to be significantly correlated with reduced overall survival (p = 0.001). Multivariate analysis revealed high pSTAT3 and low STAT4 expression to be independent indicators of unfavorable prognosis (hazard ratio = 2.751, p = 0.030), as was proficient mismatch repair status (hazard ratio = 3.819, p = 0.012). CONCLUSIONS High expression of pJAK2 and STAT4 is more frequent in deficient compared with proficient mismatch repair in solid-type poorly differentiated adenocarcinoma. High pSTAT3 and low STAT4 expression could be a useful prognostic indicator in solid-type poorly differentiated adenocarcinoma.
Collapse
Affiliation(s)
- Shinya Umekita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hitoshi Honma
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiaki Taniguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shinichiro Kawatoko
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taisuke Sasaki
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Iliev P, McCutcheon C, Admas TH, Reithmeier A, Lopez McDonald M, van Outryve A, Hanke D, Brown JI, Haraldsson M, Toillon RA, Frank DA, Page BDG. Challenging the "Undruggable"─Targeting STAT3 but Identifying Potent TrkA-Targeted Inhibitors. J Med Chem 2025. [PMID: 40245441 DOI: 10.1021/acs.jmedchem.5c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a promising yet challenging anticancer drug target due to its complex signaling and limited "druggability". To this end, we herein highlight a target engagement-focused screening and optimization pipeline pursuing the discovery of novel STAT3 inhibitors. From a STAT3 differential scanning fluorimetry high-throughput screen, we identified compounds that appeared to stabilize STAT3 toward thermal aggregation and moderately inhibited cellular STAT3 activity. Subsequent evaluation using complementary and orthogonal assays revealed their high affinity for tropomyosin receptor kinase A (TrkA). Applying a similar target engagement-inspired approach, we refined inhibitor binding and selectivity toward TrkA, showing efficacy in cellular TrkA cancer models. Top compound, PI-15, demonstrated successful target engagement in a cellular thermal shift assay and potently inhibited TrkA activity in cancer cells. These approaches highlight the importance of prioritizing rigorous target engagement validation early in the drug discovery pipeline, resulting in promising new inhibitors.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Conall McCutcheon
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Tizita H Admas
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Anja Reithmeier
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Melanie Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Alexandre van Outryve
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille F-59000, France
| | - Danielle Hanke
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Robert-Alain Toillon
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille F-59000, France
| | - David A Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| |
Collapse
|
3
|
Cheng Y, Wu Y, Xu L. Effects of anesthetics on development of gynecological cancer. Front Cell Dev Biol 2025; 13:1587548. [PMID: 40309242 PMCID: PMC12041078 DOI: 10.3389/fcell.2025.1587548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Gynecological cancers remain a leading cause of cancer among female patients, and surgery continues to be the primary therapeutic approach. Anesthesia is an indispensable component of perioperative period. In recent years, the influence of anesthesia drugs on cancer has become one of the focuses of anesthesiologists. Anesthetic drugs may influence cancer metabolic reprogramming and modulate immune function through the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). Emerging evidence suggests that the choice of anesthetic agents could affect the prognosis of gynecological cancers. This review explores the relationship between anesthetic drugs and gynecological cancers (cervical cancer, ovarian cancer, and endometrial cancer), elucidating their effects on cancer prognosis through cellular pathways, metabolic regulation, and immune mechanisms. The findings aim to guide clinical decision-making and evaluate optimal perioperative anesthetic management strategies for gynecological cancer patients.
Collapse
Affiliation(s)
- Yingxiang Cheng
- Department of Anesthesiology, Zhenjiang Fourth People’s Hospital, Zhenjiang, China
| | - Yunzhi Wu
- Department of Thoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Lingzhong Xu
- Department of Anesthesiology, Zhenjiang Fourth People’s Hospital, Zhenjiang, China
| |
Collapse
|
4
|
Zhang J, Xu Q, Sun G. Lipocalin-2 promotes NSCLC progression by activating the JAK2/STAT3 signaling pathway. J Transl Med 2025; 23:419. [PMID: 40211270 PMCID: PMC11987316 DOI: 10.1186/s12967-025-06418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Lipocalin-2 (LCN2), a pleiotropic protein implicated in tumorigenesis and cancer progression, has been associated with multiple malignancies. However, its precise role in NSCLC and the underlying molecular mechanisms remain incompletely understood. This study aimed to elucidate the function of LCN2 in NSCLC, with a particular focus on its involvement in the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. METHODS LCN2 expression in NSCLC tissues was comprehensively analyzed using bioinformatics tools, including the Universal Analysis of Cancer (UALCAN), The Cancer Genome Atlas (TCGA), UCSC-XENA, and Gene Expression Omnibus (GEO) databases. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were employed to assess LCN2 expression levels in NSCLC cell lines. The functional impact of LCN2 on NSCLC cells, including proliferation, apoptosis, and metastasis, were assessed through a series of in vitro assays, such as Cell Counting Kit-8 (CCK-8), EdU, wound healing, and transwell migration and invasion assays. An in vivo xenograft model was established to investigate the effects of LCN2 on tumor growth and metastasis. Additionally, the involvement of the JAK2/STAT3 signaling pathway was examined using western blotting and pharmacological inhibition with AG490. RESULTS LCN2 was significantly upregulated in NSCLC tissues and cell lines, and its elevated expression correlated with poor prognosis. Functional analyses demonstrated that LCN2 knockdown suppressed NSCLC cell proliferation, migration, and invasion while promoting apoptosis. Mechanistically, LCN2 was found to activate the JAK2/STAT3 pathway by interacting with SOCS3, and pharmacological blockade of this pathway effectively abrogated the oncogenic effects of LCN2 overexpression. CONCLUSIONS This study identifies LCN2 as a potential oncogene in NSCLC, driving tumor progression through activation of the JAK2/STAT3 signaling pathway. These findings suggest that targeting LCN2 or its downstream signaling components may represent a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Province, 230022, Hefei, China
| | - Qin Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Province, 230022, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Province, 230022, Hefei, China.
| |
Collapse
|
5
|
Li Q, Bai Y, Cavender SM, Miao Y, Nguele Meke F, Lasse-Opsahl EL, Zhu P, Doody GM, Tao WA, Zhang ZY. The PRL2 phosphatase up-regulates miR-21 through activation of the JAK2/STAT3 pathway to down-regulate the PTEN tumor suppressor. Biochem J 2025; 482:341-356. [PMID: 39665584 DOI: 10.1042/bcj20240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
The phosphatases of regenerating liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally down-regulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here, we report that PRLs can also reduce PTEN expression by up-regulating microRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors. We observe a broad correlation between PRL and miR-21 levels in multiple human cancers. Mechanistically, PRL2, the most abundant and ubiquitously expressed PRL family member, promotes the JAK2/STAT3 pathway-mediated miR-21 expression by directly dephosphorylating JAK2 at Tyr570. Finally, we confirm that the PRL2-mediated miR-21 expression contributes to its oncogenic potential in breast cancer cells. Our study defines a new functional role of PRL2 in PTEN regulation through a miR-21-dependent post-transcriptional mechanism, in addition to our previously reported NEDD4-dependent post-translational PTEN regulation. Together, these studies further establish the PRLs as negative regulators of PTEN.
Collapse
Affiliation(s)
- Qinglin Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Current address: Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Sarah M Cavender
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Frederick Nguele Meke
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Emily L Lasse-Opsahl
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, U.K
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
6
|
Zhang T, Xiaohan C. Unveiling the Role of JAK2/STAT3 signaling in chemoresistance of gynecological cancers: From mechanisms to therapeutic implications. Crit Rev Oncol Hematol 2025; 211:104712. [PMID: 40187711 DOI: 10.1016/j.critrevonc.2025.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Gynecological cancers, encompassing ovarian, cervical, endometrial, vulvar, and vaginal cancers, present a significant global health burden due to high incidence rates and associated mortality. Among these, ovarian, cervical, and endometrial cancers are particularly challenging, characterized by late-stage diagnoses, distinct pathological features, and significant resistance to chemotherapy. A major contributor to treatment failure is chemoresistance, driven by multifactorial mechanisms such as dysregulation of apoptosis, DNA repair, metabolic reprogramming, and the tumor microenvironment. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a pivotal role in promoting chemoresistance, enhancing tumor cell survival, stemness, and immune evasion through the transcriptional regulation of anti-apoptotic and multidrug resistance genes. Persistent activation of this pathway not only sustains tumor progression but also limits the efficacy of standard chemotherapeutics, such as paclitaxel, cisplatin, and platinum-based agents. This review comprehensively examines the molecular mechanisms underlying JAK2/STAT3-mediated chemoresistance in gynecological cancers, highlighting its interactions with critical regulatory networks, including non-coding RNAs, cytokine signaling, hypoxia, and extracellular vesicles. We further explore therapeutic interventions targeting the JAK2/STAT3 axis, encompassing small molecule inhibitors, monoclonal antibodies, nanoparticles, and oncolytic viruses. Natural products and synthetic compounds targeting this pathway demonstrate significant potential in overcoming resistance and improving chemotherapy response. The findings underscore the critical role of JAK2/STAT3 signaling in the persistence and progression of chemoresistant gynecological cancers and advocate for the integration of pathway-targeted therapies into current treatment paradigms. By disrupting this axis, emerging therapies offer a promising strategy to enhance drug sensitivity and improve patient outcomes, paving the way for more effective and personalized approaches in gynecological oncology.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Chang Xiaohan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Mielcarska S, Kot A, Kula A, Dawidowicz M, Sobków P, Kłaczka D, Waniczek D, Świętochowska E. B7H3 in Gastrointestinal Tumors: Role in Immune Modulation and Cancer Progression: A Review of the Literature. Cells 2025; 14:530. [PMID: 40214484 PMCID: PMC11988818 DOI: 10.3390/cells14070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
B7-H3 (CD276), a member of the B7 immune checkpoint family, plays a critical role in modulating immune responses and has emerged as a promising target in cancer therapy. It is highly expressed in various malignancies, where it promotes tumor evasion from T cell surveillance and contributes to cancer progression, metastasis, and therapeutic resistance, showing a correlation with the poor prognosis of patients. Although its receptors were not fully identified, B7-H3 signaling involves key intracellular pathways, including JAK/STAT, NF-κB, PI3K/Akt, and MAPK, driving processes crucial for supporting tumor growth such as cell proliferation, invasion, and apoptosis inhibition. Beyond immune modulation, B7-H3 influences cancer cell metabolism, angiogenesis, and epithelial-to-mesenchymal transition, further exacerbating tumor aggressiveness. The development of B7-H3-targeting therapies, including monoclonal antibodies, antibody-drug conjugates, and CAR-T cells, offers promising avenues for treatment. This review provides an up-to-date summary of the B7H3 mechanisms of action, putative receptors, and ongoing clinical trials evaluating therapies targeting B7H3, focusing on the molecule's role in gastrointestinal tumors.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Piotr Sobków
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Daria Kłaczka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-514 Katowice, Poland; (A.K.); (M.D.); (D.W.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.K.); (P.S.); (D.K.)
| |
Collapse
|
8
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
9
|
Zhu Y, Huang F, Liu X, Hou Y, Huang Y. Phillyrin regulates the JAK2/STAT3 signaling pathway by inhibiting TOP2A expression to accelerate ferroptosis in hepatocellular carcinoma. Oncol Rep 2025; 53:43. [PMID: 39950325 PMCID: PMC11843411 DOI: 10.3892/or.2025.8876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/23/2025] Open
Abstract
Despite advancements and refinements in the therapeutic approaches for hepatic malignancies, liver cancer remains a prevalent and deadly form of cancer, with its grim outlook posing as a significant clinical challenge. Phillyrin (PHN) has been reported to have anticancer effects, but the anticancer mechanism in liver cancer is ominous. By searching the potential target of PHN in the online database and liver cancer disease database, it was found that there is only one overlap gene, and DNA topoisomerase II alpha (TOP2A) is abnormally expressed in liver cancer tissues. TOP2A overexpression and downregulated hepatocellular carcinoma cell lines were then constructed in vitro, and it was examined whether PHN treatment induced ferroptosis in hepatocellular carcinoma by regulating TOP2A's inhibition of Janus kinase 2/Signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway through phenotypic assay, western blot assay, reverse transcription‑quantitative PCR assay and electron microscopy. The results showed that PHN could inhibit the expression of TOP2A protein and JAK2/STAT3 signaling pathway in hepatoma cells. PHN could also downregulate glutathione peroxidase 4 by suppressing the expression of TOP2A protein. PHN impeded the activity of factor inhibiting hypoxia‑inducible factor 1 alpha, thereby augmenting the synthesis of iron‑dependent apoptosis‑related proteins including cytochrome c oxidase subunit II, long‑chain acyl‑CoA synthetase family member 4 and NADPH oxidase 1, thus facilitating an increase in Fe2+ concentration and accelerating oxidative harm within hepatocellular carcinoma cells, culminating in the induction of ferroptotic cell death in these liver malignancy cells.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fenghe Huang
- Hebei Yiling Medical Research Institute Co., LTDS, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunlong Hou
- Hebei Yiling Medical Research Institute Co., LTDS, Shijiazhuang, Hebei 050000, P.R. China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Wang K, Li Y, Wang L. Chaetocin inhibits the progression of neuroblastoma by targeting JAK2/STAT3 signaling pathway in SH-SY5Y cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4237-4246. [PMID: 39446152 DOI: 10.1007/s00210-024-03426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2024] [Indexed: 10/25/2024]
Abstract
Chaetocin is a fungal mycotoxin that extensively found in various natural products and has anticancer and anti‑inflammatory activities. Herein, the anticancer effects of chaetocin against the progression of neuroblastoma were studied with SHSY-5Y human neuroblastoma cells and examined the underlying molecular mechanisms. The effects of chaetocin on cellular viability, apoptosis, cell migration, and invasion were investigated. The underlying mechanism of anticancer effects of chaetocin was found to mediate via activating JAK2/STAT3 signaling pathway. Furthermore, when SHSY-5Y cells were exposed to a higher concentration of chaetocin, the induction of cell apoptosis significantly increased by enhancing the expression of pro-apoptotic protein Bcl-2, resulting in anticancer activity against neuroblastoma. In addition, chaetocin significantly decreased the SHSY-5Y cell invasion and migration at 50 μM treatment. Moreover, it was shown that increasing chaetocin treatments greatly decreased the activity of proteins connected to the JAK2/STAT3 signaling pathway. In conclusion, chaetocin exhibits a diverse range of actions on neuroblastoma cells, including the inhibition of proliferation, induction of apoptosis, perturbation of cellular morphology, and modulation of critical signaling pathways, with a specific focus on the JAK/STAT3 pathway. These results contribute valuable insights that underscore the potential therapeutic utility of chaetocin in the context of neuroblastoma treatment, suggesting its multifaceted impact on key cellular processes involved in cancer progression.
Collapse
Affiliation(s)
- Ke Wang
- Department of Neurosurgery, 3201 Hospital, Hanzhong, 723000, China
| | - Ye Li
- Department of Oncology, Kunming Children's Hospital, Kunming, 650000, China
| | - Linlin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, 710038, PR China.
| |
Collapse
|
11
|
Huang G, Chen S, Han B, Zhang G, Bao M, Paka Lubamba G, Hua Y, Li H, Liu W, Shen J, Wang L, Lin J, Tang PMK, Ding Z, Li C. Apolipoprotein D is crucial for promoting perineural invasion in salivary adenoid cystic carcinoma. Br J Cancer 2025; 132:599-610. [PMID: 39962257 PMCID: PMC11962118 DOI: 10.1038/s41416-025-02946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Perineural invasion (PNI) is a prevalent phenomenon in salivary adenoid cystic carcinoma (SACC). Nevertheless, the regulatory mechanism of PNI is largely elusive. METHODS We detected Apolipoprotein D (ApoD) expression and further determined its role in SACC progression. Subsequently, the contributions of SACC-derived ApoD on neurite outgrowth of dorsal root ganglions (DRGs) cells were explored. Moreover, a series of in vivo assays were conducted to elucidate the role of ApoD in the SACC PNI process. RESULTS We observed a dramatic up-regulation of ApoD in the SACC associated with an enhancement of PNI in patient biopsies. We found that SACC-derived ApoD elevated cancer cell migration and invasion. In addition, ApoD could facilitate the neurite outgrowth of cultured DRG cells in a CXCR4-dependent manner in vitro, as well as innervation, angiogenesis, and invasion along peripheral nerves of SACC in vivo. More importantly, by advanced bioinformatic analysis, we unexpectedly revealed a novel phenomenon 'tumour cell to neuron-like cell transition' in the ApoD-rich microenvironment in vivo, contributing to the neurogenesis in the SACC tumour. CONCLUSION we discovered a novel role of cancer-derived ApoD in the pathogenesis of PNI, which may represent an effective therapeutic target for SACC in clinics.
Collapse
Affiliation(s)
- Guangzhao Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Su Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Gaowei Zhang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mingzhe Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Grace Paka Lubamba
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yufei Hua
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- Department of Dentistry, The Second People's Hospital of Tibet Autonomous Region, Xizang, 850030, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Anesthesiology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Xiong J, Wu Y, Luo L, Shen X, Zeng Y, Meng X, Zhang H. Network pharmacology integrated with experimental validation reveals the mechanism of Xanthii Fructus against allergic rhinitis via JAK2/STAT3/HIF-1α signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119461. [PMID: 39923957 DOI: 10.1016/j.jep.2025.119461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a natural medicine, Xanthii Fructus (XF) is widely used in traditional Chinese medicine (TCM) and Tibetan medicine. It has been demonstrated to alleviate allergic rhinitis (AR) in modern research. However, the specific molecular mechanism underlying its treatment of AR is still unclear. AIM OF STUDY To elucidate the effect and mechanism of XF in treating AR through network pharmacology and experimental validation. METHODS In the present study, blood-entry components of XF were analyzed using UPLC-Orbitrap-HRMS. Then, we conducted pharmacodynamic studies in vitro and vivo. In vitro study, Human IL-4 was used to treat HNEpCs cells to establish a vitro model. Subsequently, HNEpCs cells were administrated with XF extracts (0.5, 1, 2 mg/ml). And ovalbumin (OVA) was employed to establish an allergic rhinitis model, and different doses of XF (8, 16, 32 mg/kg) were administered by gavage to BABL/c mice for in vivo experiments. Next, the Swiss Target Prediction database was employed to acquire blood-entry components targets. Meanwhile, from OMIM and GeneCards databases, AR-related targets were obtained. A protein-protein interaction (PPI) network was established through the STRING database, and potential pathways of XF were identified through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In the end, the results of network pharmacology were experimental validation in vivo and vitro experiments. RESULTS Fifteen compounds were identified, most of which were phenolic acids. In pharmacodynamic studies, the vitro study revealed that XF-treated gave rise to a significant decline of iNOS and COX2 protein expression in inflammatory conditions, as evidenced by Western blot results, and there was a sharp decline in the mRNA levels of TNF-α, IL-1β and IL-6. Meanwhile, the vivo studies demonstrated that XF exhibited favorable therapeutic efficacy against AR, as evidenced by a decrease in IgE, TNF-α, IL-4, and IL-6 levels in mice serum, an improvement in nasal mucosal injury pathology. Based on these findings, through network pharmacology, we identified 14 core AR-related targets, including HIF-1α, STAT3, TLR4. Using KEGG pathway analysis, it has been revealed that XF can alleviate AR through JAK2/STAT3/HIF-1α signaling pathway. Therefore, further experiments were conducted to verify the molecular mechanism of the anti-AR effect of XF. A decline of the phosphorylation of JAK2, STAT3 and HIF-1α proteins was observed, which resulted in the suppression of JAK2/STAT3/HIF-1α signaling pathway. These findings were corroborated by the same results obtained through IF. The results were verified by RT-qPCR, which demonstrated that XF was capable of downregulating the mRNA levels of TSLP and CCL11. Then, the conclusions were further reinforced with the introduction of WP1066. It could be observed that XF inhibited the STAT3 nuclear translocation. Finally, a restoration of p-JAK2, p-STAT3, HIF-1α expression levels to normal levels in AR mice. CONCLUSION The combined findings led to the conclusion that XF play its therapeutic role in AR by suppressing the JAK2/STAT3/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Jinrui Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
13
|
Hua H, Yang X, Meng D, Gan R, Chen N, He L, Wang D, Jiang W, Si D, Wang X, Zhang X, Wei X, Wang Y, Li B, Zhang H, Gao C. CTSG restraines the proliferation and metastasis of head and neck squamous cell carcinoma by blocking the JAK2/STAT3 pathway. Cell Signal 2025; 127:111562. [PMID: 39672353 DOI: 10.1016/j.cellsig.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) is recognized as the sixth most prevalent cancer globally, with around 900,000 new cases diagnosed each year. The management of HNSC poses significant challenges due to its rising incidence and suboptimal treatment outcomes in many patients. Thus, understanding the underlying molecular mechanisms that drive the onset and advancement of HNSC is crucial in order to steer the creation of novel treatment strategies. Previous researches have suggested that Cathepsin G (CTSG), a serine protease, may play a role in tumorigenesis, but its exact function in HNSC is still unknown. METHODS The TCGA and GTEx datasets were utilized to examine the expression and potential role of CTSG in pancancer. CTSG expression in HNSC tissues and normal tissues was analyzed using qRT-PCR, Western blot and immunohistochemistry techniques. The effects of altering CTSG expression on proliferation, migration, and apoptosis of HNSC cells were evaluated using various tests such as MTT assays, colony formation assays, wound-healing assays, transwell assays, flow cytometry, and xenograft tumor growth models. The functionality of CTSG on the JAK2/STAT3 pathway was validated using activators and inhibitors of this pathway after comfirming that CTSG could regulate this pathway. RESULTS In our study, we indicated that CTSG expression in HNSC tumor tissues was significantly lower than in adjacent normal tissues and CTSG gene level was positively correlated with patient prognosis. Additionally, we observed a decrease in tumor proliferation and migration, as well as an increase in apoptosis, following CTSG overexpression. Conversely, opposite effects were noted upon CTSG knockdown. Mechanistically, CTSG overexpression inhibited JAK2/STAT3 signaling, while CTSG knockdown activated it. This was confirmed by using IL-6 and JAK2 inhibitor. CONCLUSION CTSG impedes the proliferation and metastasis of HNSC in vivo and in vitro. CTSG is potential to act as a cancer suppressor in HNSC by focusing on the JAK2/STAT3 signaling pathway, indicating its possible use as a diagnostic marker and treatment target for HNSC.
Collapse
Affiliation(s)
- Hongting Hua
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaonan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Dongdong Meng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Ruijia Gan
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Nuo Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lanqiaofeng He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Dong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Wanjin Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Dongyu Si
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaomin Zhang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xiang Wei
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yiming Wang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Bao Li
- Synthetic Laboratory of School of Basic Medicine Sciences, Anhui Medical University, Hefei 230032, China
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Chaobing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| |
Collapse
|
14
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
15
|
Cai W, Li Z, Wang W, Liu S, Li Y, Sun X, Sutton R, Deng L, Liu T, Xia Q, Huang W. Resveratrol in animal models of pancreatitis and pancreatic cancer: A systematic review with machine learning. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156538. [PMID: 40037107 DOI: 10.1016/j.phymed.2025.156538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Resveratrol (RES), a common type of plant polyphenols, has demonstrated promising therapeutic efficacy and safety in animal models of pancreatitis and pancreatic cancer. However, a comprehensive analysis of these data is currently unavailable. This study aimed to systematically review the preclinical evidence regarding RES's effects on animal models of pancreatitis and pancreatic cancer via meta-analyses and optimised machine learning techniques. METHODS Animal studies published from inception until June 30th 2024, were systematically retrieved and manually filtrated across databases including PubMed, EMBASE, Web of Science, Ovid MEDLINE, Scopus, and Cochrane Library. Methodological quality of the included studies was evaluated following the SYRCLE's RoB tool. Predefined outcomes included histopathology and relevant biochemical parameters for acute pancreatitis, and tumour weight/tumour volume for pancreatic cancer, comparing treatment and model groups. Pooled effect sizes of the outcomes were calculated using STATA 17.0 software. Machine learning techniques were employed to predict the optimal usage and dosage of RES in pancreatitis models. RESULTS A total of 50 studies comprising 33 for acute pancreatitis, 1 chronic pancreatitis, and 16 for pancreatic cancer were included for data synthesis after screening 996 records. RES demonstrated significant improvements on pancreatic histopathology score, pancreatic function parameters (serum amylase and lipase), inflammatory markers (TNF-α, IL-1β, IL-6, and pancreatic myeloperoxidase), oxidative biomarkers (malondialdehyde and superoxide dismutase), and lung injury (lung histopathology and myeloperoxidase) in acute pancreatitis models. In pancreatic cancer models, RES notably reduced tumour weight and volume. Machine learning highlighted tree-structured Parzen estimator-optimised gradient boosted decision tree model as achieving the best performance, identifying course after disease induction, total dosage, single dosage, and total number of doses as critical factors for improving pancreatic histology. Optimal single dosage was 20-105 mg/kg with 3 to 9 doses. CONCLUSION This study comprehensively demonstrates the therapeutic effects of RES in mitigating pancreatitis and pancreatic cancer in animal models. Anti-inflammatory, anti-oxidative, and anti-tumour growth properties are potential mechanisms of action for RES.
Collapse
Affiliation(s)
- Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyu Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Wang
- Chinese Evidence-based Medicine and Cochrane China Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuying Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Sun
- Chinese Evidence-based Medicine and Cochrane China Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Lihui Deng
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Zhan XZ, Bo YW, Zhang Y, Zhang HD, Shang ZH, Yu H, Chen XL, Kong XT, Zhao WZ, Teimonen T, Liu T, Lu MY, Yang Y, Sun SL, Ni HW. Luteolin inhibits diffuse large B-cell lymphoma cell growth through the JAK2/STAT3 signaling pathway. Front Pharmacol 2025; 16:1545779. [PMID: 40051568 PMCID: PMC11882856 DOI: 10.3389/fphar.2025.1545779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Luteolin, a flavonoid present in botanical drugs, plants, and dietary sources, has demonstrated anticancer properties against various tumors, yet its role in diffuse large B-cell lymphoma (DLBCL) remains unclear. This study aimed to uncover the molecular mechanism of luteolin in DLBCL treatment using a combination of in vitro and in vivo experiments and computational analysis. Human DLBCL cell lines U2932 and OCI-LY10 were utilized to assess luteolin's impact on cell growth, apoptosis, cell cycle progression, and the modulation of JAK2/STAT3 pathway proteins. In vivo, a U2932 tumor-bearing nude mice model was employed to evaluate luteolin's antitumor efficacy and its effects on JAK2/STAT3 pathway protein expression. Additionally, molecular dynamics simulations were conducted to explore the interaction between luteolin and JAK2. The findings revealed that luteolin significantly suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase in both cell lines. In the mouse model, luteolin effectively inhibited tumor growth and downregulated the expression of phosphorylated JAK2 and STAT3 without altering the total protein levels of JAK2 and STAT3. Computational analysis indicated stable binding of luteolin to JAK2. Collectively, these results suggest that luteolin's anti-DLBCL activity may be mediated through the regulation of the JAK2/STAT3 signaling pathway, positioning it as a potential therapeutic agent for DLBCL.
Collapse
Affiliation(s)
- Xin-Zhuo Zhan
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Wen Bo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Zhang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Dong Zhang
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Hao Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Yu
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Li Chen
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang-Tu Kong
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wan-Zhou Zhao
- The Nanjing Han & Zaenker Cancer Institute (NHZCI), OG Pharmaceuticals, Nanjing, Jiangsu, China
| | | | - Tao Liu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hai-Wen Ni
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Hosseini F, Ahmadi A, Sarvi ZN, Iranshahi M, Rassouli FB. 7-Geranyloxycoumarin modulated metastatic potential of osteosarcoma cells via interaction with MMPs and JAK1/2. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03847-z. [PMID: 39954065 DOI: 10.1007/s00210-025-03847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
Osteosarcoma (OS) is a highly aggressive bone cancer that primarily affects young adults. The tumor microenvironment and molecular mediators, including Janus kinases (JAKs) and matrix metalloproteinases (MMPs), significantly influence OS metastasis; activation of the JAK/STAT pathway enhances MMP expression and activity, promoting OS metastasis. 7-Geranyloxycoumarin, a natural agent found in various edible fruits and vegetables, possesses valuable pharmaceutical activities. This study aimed to investigate the effects of 7-geranyloxycoumarin on the metastasis of OS cells for the first time. To achieve this, a protein-protein interaction (PPI) network was constructed from the potential molecular and pathogenic targets associated with 7-geranyloxycoumarin and OS to identify overlapping targets. Subsequently, GO and KEGG pathway enrichment analyses were conducted. Molecular docking and dynamic simulations were also performed to elucidate the binding affinity of 7-geranyloxycoumarin with JAK1 and JAK2. For in vitro studies, 7-geranyloxycoumarin was first extracted from Ferula szowitsiana using thin-layer chromatography. The cells were then treated and evaluated for viability, apoptosis, migration, invasion, adhesion, and MMPs activity. The study identified 50 shared targets and revealed MMP-2, MMP-9, JAK1, and JAK2 as hub genes, confirmed through enrichment analyses. Molecular docking revealed strong interactions between 7-geranyloxycoumarin and JAK1 and JAK2 proteins, and molecular dynamics simulations indicated both conformational flexibility and binding stability of the ligand-protein complex. Moreover, experimental studies demonstrated that 7-geranyloxycoumarin did not induce apoptosis but significantly altered the migration, invasion, and adhesion of OS cells by inhibiting the activity of MMPs. In conclusion, 7-geranyloxycoumarin is proposed as a promising therapeutic agent for targeting metastasis in OS cells.
Collapse
Affiliation(s)
- Fatemehsadat Hosseini
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdolreza Ahmadi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Nasiri Sarvi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
18
|
Sun D, Li Y, Cao Z. Gastric-type endocervical adenocarcinoma, superficial myofibroblastoma, sex cord-stromal tumors, and HSIL in Peutz-Jeghers syndrome: a rare case report, genetic characterization, and review of literature. Front Oncol 2025; 15:1472017. [PMID: 40018404 PMCID: PMC11865206 DOI: 10.3389/fonc.2025.1472017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Peutz-Jeghers syndrome (PJS) is characterized by an increased risk of gynecologic tumors. Gastric-type endocervical adenocarcinoma (GEA) is a rare non-human papillomavirus (HPV)-related tumor. We reported an uncommon case of a 39-year-old woman with PJS who developed GEA, superficial cervical vaginal myofibroblastoma, sex cord-stromal tumors with annular tubules of the ovaries, and cervical and vaginal high-grade squamous interepithelial neoplasia (HSIL). Before being verified GEA, the patient had been experiencing suspicious symptoms for over 9 years, with nabothian cysts and vaginitis being misdiagnosed. HSIL displayed widespread p16 immunostaining, and HPV DNA screening confirmed HPV-18 infection, although GEA was negative. Further, we verified TP53 mutation and HER2 amplification of GEA by fluorescence in situ hybridization (FISH). TP53 was the most commonly mutated gene. The therapy with the anti-HER2 antibody trastuzumab was suggested based on HER2 amplification. We also analyzed the somatic mutations of GEA by whole genome sequencing (WES). There were 157 single nucleotide variations (SNVs) and 215 indels, with all of them being heterozygotes. Nonsynonymous and frameshift insertions were the most common kinds of mutations. The germine STK11 gene mutation was found, which may play an important role in tumor development. According to gene function enrichment analyses, the genomic changes primarily implicated general transcription or expression pathways and cell cycle pathways. In addition, the JAK2/STAT3 pathway could be a major focus of targeted therapy for GEA patients with PJS. Our findings show that the patient with PJS can have a variety of unusual gynecologic tumors. Patients with PJS must have routine gynecological, ultrasonographic, and cytological examinations to detect precursor or early-stage lesions. The patient's abnormal symptoms must be treated early with caution. A comprehensive genomic study reveals the potential causative genetic factors, therapeutic targets, and chemotherapy resistance of GEA. Further research will focus on the main driving genes, molecular mechanisms, and molecular target therapy in more patients.
Collapse
Affiliation(s)
- Dongjin Sun
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yumei Li
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhixing Cao
- Department of Pathology, Zhuhai People’s Hospital, Zhuhai/Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
19
|
Bayır EN, Han Ü, Bayır Ö, Işık S, Saylam G, Yazılıtaş D, Cengiz M, Korkmaz MH. STAT3 Expression in Organ-Preserved Laryngeal Carcinomas: Correlation with Treatment Resistance and Conventional Parameters. Head Neck Pathol 2025; 19:16. [PMID: 39907870 PMCID: PMC11799471 DOI: 10.1007/s12105-024-01748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND One of the major challenges in the treatment of laryngeal squamous cell carcinoma (LSCC) with organ-preserving therapies is the emergence of treatment resistance. The JAK/STAT pathway has been increasingly implicated in this resistance, particularly through the overexpression or persistent activation of STAT3. Increased STAT3 expression is thought to be associated with resistance to radiotherapy and/or chemotherapy, and STAT3 inhibitors have been proposed as potential targeted treatments. OBJECTIVES The primary objective of this study is to investigate the relationship between STAT3 expression and treatment resistance in patients with LSCC undergoing organ-preserving therapy and to evaluate the association between STAT3 expression and clinical/histopathologic prognostic parameters. A secondary objective is to evaluate STAT3 expression in diagnostic biopsies and laryngectomy specimens from treatment-resistant patients to investigate the potential predictability of treatment resistance from initial biopsy specimens. METHODOLOGY The study included 123 patients diagnosed with LSCC between 2008 and 2022, all of whom received nonsurgical treatment. Patients were divided into two groups based on their response to treatment: treatment-sensitive patient group (TSPG) and treatment-resistant patient group (TRPG). Immunohistochemical staining for p-STAT3 was performed on a diagnostic biopsy for each TSPG patient and on both pre- and post-treatment biopsies for each TRPG patient. STAT3 expression levels were scored and their association with treatment resistance, clinical and pathological parameters was analysed. RESULTS No statistically significant difference in p-STAT3 expression was found between the two groups. TSPG patients were significantly older at diagnosis (p = 0.038), and tumor location differed between groups (p = 0.001). No significant differences in histopathologic or clinical prognostic parameters were observed between patients with high and low STAT3 expression. In addition, no significant difference in STAT3 staining was found between diagnostic biopsies and laryngectomy specimens in TRPG patients. CONCLUSION STAT3 expression was not associated with treatment resistance in LSCC, and its expression level did not correlate with prognostic parameters or survival outcomes. Therefore, STAT3 does not appear to be a useful biomarker for predicting treatment resistance or prognosis in LSCC.
Collapse
Affiliation(s)
- Esra Nur Bayır
- Ankara Etlik City Hospital, Department of Pathology, Ankara, Türkiye.
- Department of Pathology, Ankara Etlik City Hospital, Varlık Neighborhood, Halil Sezai Erkut Str, Yenimahalle, Ankara, 06170, Turkey.
| | - Ünsal Han
- Ankara Etlik City Hospital, Department of Pathology, Ankara, Türkiye
| | - Ömer Bayır
- Ankara Etlik City Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Ankara, Türkiye
| | - Seda Işık
- Çankırı State Hospital, Otolaryngology Clinic, Çankırı, Türkiye
| | - Güleser Saylam
- Lokman Hekim Unıversıty, Faculty of Medicine, Department of Otolaryngology And Head And Neck Surgery, Ankara, Türkiye
| | - Doğan Yazılıtaş
- Department of Medical Oncology, Ankara Etlik City Hospital, Ankara, Türkiye
| | - Mustafa Cengiz
- Faculty of Medicine, Department of Radiation Oncology, Hacettepe University, Ankara, Türkiye
| | | |
Collapse
|
20
|
Mamidi MK, Sinha S, Mendez MT, Sanyal T, Mahmud H, Kay NE, Gupta M, Xu C, Vesely SK, Mukherjee P, Chakrabarty JH, Ghosh AK. Aberrantly Expressed Mitochondrial Lipid Kinase, AGK, Activates JAK2-Histone H3 Axis and BCR Signal: A Mechanistic Study with Implication in CLL Therapy. Clin Cancer Res 2025; 31:588-602. [PMID: 39636206 PMCID: PMC11790368 DOI: 10.1158/1078-0432.ccr-24-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Although the B-cell receptor (BCR) signal plays a critical role in chronic lymphocytic leukemia (CLL) cell survival and a target of current therapies (ibrutinib targets Bruton's tyrosine kinase; idelalisib targets PI3Kδ), contribution of the cytokine-driven JAK2 pathway to the "CLL cell-survival signaling network" is largely undefined. EXPERIMENTAL DESIGN Patients with CLL were enrolled to investigate expression/activation of JAK2 and acylglycerol kinase (AGK), and their functional implication in primary CLL cell survival. A series of biochemical and molecular biology assays were employed to uncover the underlying mechanism. RESULTS We detected that compared with normal B cells, CLL cells aberrantly express constitutively active JAK2. Mechanistically, HSP90 forms a chaperoning complex with JAK2, resulting in its aberrant accumulation in CLL cells. We also discovered aberrant upregulation of a novel mitochondrial lipid kinase, AGK, which remains complexed with HSP90 in CLL cells activating JAK2. Although AGK is typically mitochondrial, we detected its nuclear localization in association with JAK2 in some CLL cells. Functionally, JAK2 phosphorylates its noncanonical substrate, histone H3(Y41), but not STAT3, activating transcription of diverse sets of genes in a patient-specific manner. Additionally, JAK2 activates the BCR signal in CLL cells via LYN/Bruton's tyrosine kinase axis. Targeted inhibition of JAK2 as monotherapy, or in combination with the BCR inhibitors or venetoclax (a BCL2 inhibitor), induced apoptosis synergistically in CLL cells. CONCLUSIONS These findings suggest that aberrantly expressed AGK activates JAK2, independent of cytokine, leading to activation of diverse sets of gene transcription in CLL cells. Combined targeting of JAK2 and BCR signals or BCL2 may be effective in some patients with CLL.
Collapse
MESH Headings
- Humans
- Janus Kinase 2/metabolism
- Janus Kinase 2/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Signal Transduction/drug effects
- Histones/metabolism
- Histones/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Mitochondria/genetics
- Cell Line, Tumor
Collapse
Affiliation(s)
- Murali K. Mamidi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sutapa Sinha
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mariana T. Mendez
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Tapojyoti Sanyal
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, George Washington University, Washington DC
| | - Chao Xu
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Priyabrata Mukherjee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Asish K. Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
21
|
Zhou R, Zhang Y, Xu L, Sun Y. Stigmasterol Attenuates Triple-negative Breast Cancer Stem Cell Properties by Inhibiting JAK3. J Cancer 2025; 16:1618-1630. [PMID: 39991585 PMCID: PMC11843247 DOI: 10.7150/jca.94822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/05/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Breast cancer stem-like cells (BCSCs) are considered a source of tumor origins, metastasis and drug resistance, thereby limiting current treatment regimens. Stigmasterol has been reported to inhibit various cancer processes, but its effects and mechanisms in BCSCs have not been investigated. Methods: To generate spheroids, we enriched parental and SUM159 cells with BCSCs in a serum-free medium. The effects on the stemness, metastasis and drug resistance of CSC-enriched SUM159 cells were detected for the first time by in vivo and in vitro experiments. Results: CSC-enriched SUM159 and 4T1 cells demonstrated higher potential for tumorigenesis and metastasis. Stigmasterol suppresses BCSCs' spheroid formation, cell viability, and migration ability and promotes cell apoptosis. Stigmasterol also inhibited BCSCs-originated cancer formation in rat models. Stigmasterol also attenuated the growth of TNBC organoids from human breast cancer tissues. These data revealed the inhibitory effects of stigmasterol on BCSC traits. In the meantime, we found that JAK3 was upregulated in BCSCs, and Stigmasterol could effectively inhibit its expression. In addition, JAK3 was evidenced to negatively regulate BCSC activity and stemness both in vitro and in vivo. More importantly, the results indicated that Stigmasterol suppresses BCSC activity by inhibiting JAK3 expression. Conclusion: This study is the first to demonstrate that Stigmasterol inhibited metastasis and stemness of BCSCs by downregulating JAK3, which might provide a new method for the clinical application of Stigmasterol in breast cancer.
Collapse
Affiliation(s)
- Ruijuan Zhou
- Department of Chest and Breast Surgery, Xiamen Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Xiamen, China
| | - Yuzhu Zhang
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leqin Xu
- Department of Chest and Breast Surgery, Xiamen Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Xiamen, China
| | - Yang Sun
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Xiong Y, Liu YF, Yang ZH, Huang CG. Impact of miRNAs involved in the STAT3 signaling pathway on esophageal cancer (Review). Oncol Rep 2025; 53:27. [PMID: 39749694 DOI: 10.3892/or.2024.8860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Esophageal cancer (ESCA) is a common tumor noted in the digestive tract, which is highly malignant due to unclear early symptoms and poor last‑stage treatment effects; its mortality rate is relatively high. MicroRNA (miR) and signal transducer and activator of transcription 3 (STAT3) are key components of cellular signaling pathways; their interaction forms a complex and intricate information network that controls several types of biological behaviors in the cells. In the tumor cell, these signal transduction pathways are abnormally active, indicating that the STAT3 signaling pathway mediated by miRs is involved in the progression of various cancer types. The present review introduces the biological characteristics of miR and STAT3 and their relationship with ESCA. It summarizes the regulation of ESCA by the miR and STAT3 signaling pathways and analyzes the effects of these pathways on proliferation, apoptosis, invasion, metastasis and immune escape of cancer cells, as well as the impact on patient survival and prognosis. The purpose of the present review is to assess the miR/STAT3 signaling pathway in ESCA, improve the understanding of the pathogenesis of ESCA and facilitate the identification of therapeutic targets for ESCA.
Collapse
Affiliation(s)
- Ying Xiong
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi-Fan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi-Hui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cong-Gai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
23
|
Maebashi M, Miyake K, Yamamoto J, Sahara K, Akiyama T, Kimura Y, Endo I. Methionine restriction inhibits pancreatic cancer proliferation while suppressing JAK2/STAT3 pathway. Pancreatology 2025; 25:108-117. [PMID: 39668011 DOI: 10.1016/j.pan.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Methionine restriction (MR) has been demonstrated to exhibit anti-tumor effects in various types of cancer, including pancreatic cancer (PC). However, the detailed mechanism induced by MR remains still unclear. This study aims to reveal the underlying mechanism of MR on PC by proteomic analysis. MATERIAL & METHODS Human PC cell lines were cultured in both standard and MR media to evaluate the effect of MR. The differences in protein expression were evaluated through proteomic analysis. Ingenuity Pathway Analysis (IPA) was performed to identify proteins potentially associated with tumor growth in vitro. The proteins associated with the anti-tumor effect were validated using western blotting, real-time PCR, and ELISA. An experimental model involving subcutaneous PC mice was established for the assessment of the effectiveness of the MR diet and the expression of target proteins through immunohistochemical staining. RESULTS Cell proliferation was suppressed in the MR media compared to the standard media. IPA analysis showed that STAT3 was decreased in the Apoptotic Pathway of Pancreatic Cancer Cell lines in the MR group. Western blotting showed MR decreased STAT3 expression. Real-time PCR showed that MR decreased JAK2 and STAT3 mRNA expression in Panc-1 and Mia-PaCa 2, but not in Capan-1. ELISA revealed that NF-kB expression was decreased in the MR group. In the in vivo study, the final estimated tumor volume in the MR group was significantly lower than the control group (p < 0.01). Immunostaining of resected specimens showed that STAT3 expression was suppressed in the MR group. CONCLUSION MR suppressed the JAK2/STAT3 pathway and decreased NF-kB in some PC cell lines.
Collapse
Affiliation(s)
- Manabu Maebashi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jun Yamamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Sahara
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Wang Y, Yang L, Li X, Yang Q, Ma R, Wu Z. Expression of DDX49 in breast cancer and its mechanism regulating the proliferation and metastasis of breast cancer cells. Growth Factors 2025; 43:45-55. [PMID: 40178930 DOI: 10.1080/08977194.2025.2484007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
DEAD-box RNA helicase (DDX) is linked to the invasion, drug resistance, proliferation, and epithelial-mesenchymal transition of tumour cells. This study examined the potential mechanisms of DDX49 in breast cancer. The expression of DDX49 in breast cancer tissues and cells was evaluated. The effects of DDX49 on proliferation, invasion, migration and apoptosis of breast cancer cells were evaluated. The expression of proteins associated with the JAK/STAT pathway was examined. A xenograft tumour model was established. DDX49 expression is elevated in breast cancer tissues and cell lines. shDDX49 suppressed the ability of breast cancer cells to proliferate, invade, and migrate, but promoted apoptosis. Conversely, overexpression of DDX49 exerted an opposite effect. The activation of the JAK-STAT signalling pathway is inhibited by the shDDX49. shDDX49 efficiently inhibits tumour growth in mice with breast cancer. shDDX49 may hinder the growth and spread of breast cancer cells by inhibiting the JAK-STAT pathway.
Collapse
Affiliation(s)
- Yuanbin Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Yang
- Department of Chemotherapy Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangli Li
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruimin Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Thuya WL, Cao Y, Ho PCL, Wong ALA, Wang L, Zhou J, Nicot C, Goh BC. Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00003-6. [PMID: 39893129 DOI: 10.1016/j.cytogfr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.
Collapse
Affiliation(s)
- Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Yang Cao
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Laboratory Medicine, Lequn Brance, The First Hospital of Jilin University, Changchun, Jilin 130031, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Jalan Lagoon, Selangor Darul Ehsan 47500, Malaysia
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, National University Health System, 119074, Singapore
| |
Collapse
|
26
|
YektaKooshali MH, SobhZahedi M, Razavi Tousi SMT, Hamidi M, Modiri L. Astaxanthin-loaded PLGA nanoparticles inhibit survival of MKN-45 gastric cancer cell line by modulating JAK2/STAT3/mTOR/PI3K pathway. BMC Cancer 2025; 25:44. [PMID: 39780129 PMCID: PMC11715247 DOI: 10.1186/s12885-024-13401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/AIMS Gastric cancer (GC) is a significant global health issue with high incidence rates and poor prognoses, ranking among the top prevalent cancers worldwide. Due to undesirable side effects and drug resistance, there is a pressing need for the development of novel therapeutic strategies. Understanding the interconnectedness of the JAK2/STAT3/mTOR/PI3K pathway in tumorigenesis and the role of Astaxanthin (ASX), a red ketocarotenoid member of xanthophylls and potent antioxidant and anti-tumor activity, can be effective for cancer treatments. This study aimed to investigate the effect of ASX-loaded nanoparticles on the survival of MKN-45 GC cells and the expression of JAK2/STAT3/mTOR/PI3K, offering insights into potential targeted therapies for GC. METHODS The growth status and survival rate of MKN-45 GC cell lines were determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT) assay, and the optimal IC50 concentration of ASX, PLGA, and ASX + PLGA was estimated. Also, the clonogenic assay was performed to determine the reproductive power and colony formation of under-treatment cells. Apoptosis and necroptosis of cells were evaluated using acridine orange (AO) staining. The western blot assessed the protein's level of expression and intensity (JAK2/STAT3/mTOR/PI3K). SPSS version 16 software was used for statistical analysis, P-value was considered lower than 0.05. RESULTS Based on the results, increasing concentrations of ASX and ASX + PLGA led to a decrease in the viability of MKN-45 cells compared to the control group (P < 0.001). This value was lower for cells treated with ASX + PLGA (P = 0.003). The IC50 values for each of the studied groups (ASX, ASX + PLGA, and PLGA) were 81.45 µg/ml, 51.45 µg/ml, and 3.383 mg/ml, respectively. The levels of expression and intensity of JAK2, STAT3, and mTOR proteins in the Western blotting analysis under ASX + PLGA treatment increased compared to the control group. Conversely, the levels of expression and intensity of P-JAK2, P-STAT3, and P-mTOR proteins in the ASX + PLGA treatment group decreased by 41%, 34%, 37%, and 43%, respectively, compared to the control group. Protein expression levels and intensities of JAK2, STAT3, and mTOR significantly increased when treated with PLGA, ASX, and ASX + PLGA compared to the control group (P < 0.001). CONCLUSIONS The encapsulation of ASX in PLGA nanoparticles enhances drug stability, enables targeted delivery, and allows for sustained release. This study highlights the therapeutic potential of ASX-loaded nanoparticles in targeting JAK2/STAT3/mTOR/PI3K pathways in GC treatment. Further research is needed to understand the mechanisms and clinical applications of this novel immunotherapy strategy.
Collapse
Affiliation(s)
- Mohammad Hossein YektaKooshali
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Cellular and Molecular Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mahdieh SobhZahedi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | | | - Masoud Hamidi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Leila Modiri
- Department of Cellular and Molecular Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| |
Collapse
|
27
|
Ding R, Kan Q, Wang T, Xiao R, Song Y, Li D. Ginsenoside Rh2 regulates triple-negative breast cancer proliferation and apoptosis via the IL-6/JAK2/STAT3 pathway. Front Pharmacol 2025; 15:1483896. [PMID: 39845783 PMCID: PMC11751231 DOI: 10.3389/fphar.2024.1483896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential. Methods Network analysis and transcriptome sequencing were utilized to explore the potential mechanisms of ginsenoside Rh2 in treating TNBC. In vivo imaging and immunohistochemistry were employed to examine the effects of ginsenoside Rh2 in a TNBC mouse model. Functional assays were conducted to assess the impact of ginsenoside Rh2 on TNBC cell behavior. Additionally, ELISA, Western blot, and quantitative real-time PCR were used to further investigate the mechanisms of ginsenoside Rh2-induced apoptosis in TNBC cells. Results Through network analysis, 47 common targets were identified, and Gene Ontology (GO) enrichment analysis suggested that ginsenoside Rh2 may exert therapeutic effects in TNBC by influencing apoptosis, cell proliferation, and protein kinase activity. Both transcriptomic analysis and network analysis revealed the JAK/STAT signaling pathway as a key mechanism. Ginsenoside Rh2 inhibited tumor growth in TNBC mice and reduced the expression of IL- 6, IL-6R, STAT3, Bcl-2, and Bcl-xL in tumor tissues. The ability of ginsenoside Rh2 to inhibit TNBC cell proliferation was further confirmed by attenuating the activation of the IL-6/JAK2/STAT3 apoptosis pathway and reducing the expression of protein kinases AMPK-α1 and PKA-Cα. Conclusion Based on network analysis and experimental validation, our findings demonstrate that ginsenoside Rh2 regulates TNBC proliferation and apoptosis through suppression of the IL-6/JAK2/STAT3 pathway, both in vitro and in vivo. This comprehensive approach represents a significant advancement in understanding the therapeutic potential of ginsenoside Rh2 in treating TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Su J, Liu X, Zhao X, Ma H, Jiang Y, Wang X, Wang P, Zhao M, Hu X. Curcumin Inhibits the Growth of Hepatocellular Carcinoma via the MARCH1-mediated Modulation of JAK2/STAT3 Signaling. Recent Pat Anticancer Drug Discov 2025; 20:145-157. [PMID: 38243928 DOI: 10.2174/0115748928261490231124055059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Curcumin has been reported to have anti-hepatocellular carcinoma (HCC) effects, but the underlying mechanism is not well known. OBJECTIVES To investigate whether membrane-associated RING-CH 1 (MARCH1) is involved in the curcumin-induced growth suppression in HCC and its underlying molecular mechanism. A few recent patents for curcumin for cancer are also reviewed in this article. METHODS The effect of curcumin on growth inhibition of HCC cells was analyzed through in vitro and in vivo experiments, and the expression levels of MARCH1, Bcl-2, VEGF, cyclin B1, cyclin D1, and JAK2/STAT3 signaling molecules were measured in HCC cells and the xenograft tumors in nude mice. Cell transfection with MARCH1 siRNAs or expression plasmid was used to explore the role of MARCH1 in the curcumin-induced growth inhibition of HCC cells. RESULTS Curcumin inhibited cell proliferation, promoted apoptosis, and arrested the cell cycle at the G2/M phase in HCC cells with the decrease of Bcl-2, VEGF, cyclin B1, and cyclin D1 expression as well as JAK2 and STAT3 phosphorylation, resulting in the growth suppression of HCC cells. MARCH1 is highly expressed in HCC cells, and its expression was downregulated after curcumin treatment in a dose-dependent manner. The knockdown of MARCH1 by siRNA decreased the phosphorylation levels of JAK2 and STAT3 and inhibited the growth of HCC cells. In contrast, opposite results were observed when HCC cells overexpressed MARCH1. A xenograft tumor model in nude mice also showed that curcumin downregulated MARCH1 expression and decelerated the growth of transplanted HCC with the downregulation of JAK2/STAT3 signaling and functional molecules. The ADC value of MRI analysis showed that curcumin slowed down the progression of HCC. CONCLUSION Our results demonstrated that curcumin may inhibit the activation of JAK2/STAT3 signaling pathway by downregulating MARCH1 expression, resulting in the growth suppression of HCC. MARCH1 may be a novel target of curcumin in HCC treatment.
Collapse
Affiliation(s)
- Jiaqi Su
- Department of Imaging, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoyue Zhao
- Department of Clinical Psychology, Yantai Affiliated Hospital of Binzhou Medial University, Yantai, 264100, Shandong, China
| | - Hongjie Ma
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xu Wang
- Department of Imaging, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Peiyuan Wang
- Department of Imaging, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Mingdong Zhao
- Department of Imaging, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, China
| |
Collapse
|
29
|
Razipour M, Jamali Z, Khorsand M, Zargar M, Maghsudlu M, Ghadami E, Shakoori A. Circular RNAs in laryngeal cancer. Clin Chim Acta 2025; 564:119916. [PMID: 39153653 DOI: 10.1016/j.cca.2024.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Laryngeal cancer remains a significant global health concern, with poor prognosis for advanced-stage disease highlighting the need for novel diagnostic, prognostic, and therapeutic approaches. Circular RNAs (circRNAs), a class of covalently closed non-coding RNAs, have emerged as important regulators of gene expression and cellular processes in various cancers, including laryngeal cancer. This review summarizes the current understanding of circRNAs in laryngeal cancer, covering their biogenesis, regulatory mechanisms, and potential clinical applications. We explore the diverse functions of circRNAs, including their roles as miRNA sponges, protein interactors, and direct mRNA regulators, and their influence on key cellular processes such as proliferation, invasion, and metastasis. The review highlights promising circRNAs as diagnostic and prognostic biomarkers, as well as potential therapeutic targets. We also outline current strategies for circRNA modulation, including suppression techniques like RNA interference and CRISPR/Cas systems, and overexpression methods using vectors and synthetic circRNAs.
Collapse
Affiliation(s)
- Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Zargar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Chen Y, Xue G, Hu Y, Da M. Exploring the role of NAT10 in regulating EMT and JAK2/STAT3 pathway activation in cervical cancer progression. Asian J Surg 2024:S1015-9584(24)02836-7. [PMID: 39676018 DOI: 10.1016/j.asjsur.2024.11.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Yawen Chen
- Gansu University of Chinese Medicine, Lanzhou, 730000, China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gaimei Xue
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yonghua Hu
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Mingxu Da
- Gansu University of Chinese Medicine, Lanzhou, 730000, China; Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Fan Y, Guo X, Tian Y, Li J, Xi H. Botulinum toxin type A inhibits the formation of hypertrophic scar through the JAK2/STAT3 pathway. BIOMOLECULES & BIOMEDICINE 2024; 25:249-258. [PMID: 39132968 PMCID: PMC11647250 DOI: 10.17305/bb.2024.10906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Hypertrophic scar (HS) is a fibrous proliferative disorder that occurs in the dermis after skin injury. Studies have confirmed that Botulinum toxin type A (BTA) is effective in scar prevention and treatment. However, the specific mechanism remains uncertain. Hypertrophic scar fibroblasts (HSFs) and normal skin fibroblasts (NSFs) from the skin tissues of HS patients were isolated and cultured. Western blot analysis was conducted to measure the expression of JAK2/STAT3 pathway-related proteins. HSFs were treated with the JAK2 inhibitor (AG490) or agonist (C-A1). The CCK-8 assay, EdU staining, scratch-wound assay and transwell assay were used to examine the biological properties of HSFs. Western blot, immunofluorescence, and Sirius red staining were used to assess the fibrosis of HSFs. Additionally, a mouse full-thickness wound model was constructed to investigate the role of BTA in wound healing. The results showed that the JAK2 and STAT3 phosphorylation levels were markedly increased in HS tissues and HSFs. AG490 treatment reduced cell viability, proliferation and migration capacity, and inhibited the fibrosis of HSFs, whereas C-A1 treatment had the opposite effect. BTA treatment inhibited the JAK2/STAT3 pathway. BTA reduced cell viability, proliferation and migration ability, and inhibited the fibrosis of HSFs, while C-A1 intervention weakened the impact of BTA. Meanwhile, BTA promoted wound healing and reduced collagen deposition in vivo. In conclusion, BTA inhibited the JAK2/STAT3 pathway, which in turn hindered the proliferation, migration and fibrosis of HSFs, and promoted wound healing in mice.
Collapse
Affiliation(s)
- Yan Fan
- Department of Paediatrics, Shanxi Medical University, Shanxi, China
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Xuesong Guo
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Yu Tian
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Jie Li
- Department of Orthopedics, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Hongwei Xi
- Department of General Surgery, Children’s Hospital Affiliated to Shanxi Medical University, Shanxi, China
| |
Collapse
|
32
|
Muñoz-Moreno L, Román ID, Bajo AM. GHRH and the prostate. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09922-9. [PMID: 39505776 DOI: 10.1007/s11154-024-09922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
In the late 1960s and early 1970s, hypothalamic regulatory hormones were isolated, characterized and sequenced. Later, it was demonstrated hypothalamic and ectopic production of growth hormone-releasing hormone (GHRH) in normal and tumor tissues, of both humans and animals. Pituitary-type GHRH receptors (pGHRH-R) had been demonstrated to be expressed predominantly in the anterior pituitary gland but also found in other somatic cells, and significantly present in various human cancers; in addition, the expression of splice variants (SVs) of GHRH receptor (GHRH-R) has been found not only in the pituitary but in extrapituitary tissues, including human neoplasms. In relation to the prostate, besides the pGHRH-R, it has been detected the presence of truncated splice variants of GHRH-R (SV1-SV4) in normal human prostate and human prostate cancer (PCa) specimens; lastly, a novel SV of GHRH-R has been detected in human PCa. Signaling pathways activated by GHRH include AC/cAMP/PKA, Ras/Raf/ERK, PI3K/Akt/mTOR and JAK2/STAT3, which are involved in processes such as cell survival, proliferation and cytokine secretion. The neuropeptide GHRH can also transactivate the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER)-2. Thus, GHRH-Rs have become drug targets for several types of clinical conditions, including prostate-related conditions such as prostatitis, benign hyperplasia and cancer. Over the last fifty years, the development of GHRH-R receptor antagonists has been unstoppable, improving their potency, stability and affinity for the receptor. The last series of GHRH-R antagonists, AVR, exhibits superior anticancer and anti-inflammatory activities in both in vivo and in vitro assays.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Irene D Román
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
33
|
Zhang H, Li C, Li W, Xin W, Qin T. Research Advances in Adenomyosis-Related Signaling Pathways and Promising Targets. Biomolecules 2024; 14:1402. [PMID: 39595579 PMCID: PMC11591984 DOI: 10.3390/biom14111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Adenomyosis is a benign gynecological condition characterized by the proliferation of the endometrial stroma and glands into the myometrium, uterine volume enlargement, and peripheral smooth muscle hypertrophy. The typical clinical symptoms include chronic pelvic pain, abnormal uterine bleeding, and subfertility, all of which significantly impact quality of life. There are no effective prevention or treatment strategies for adenomyosis, partly due to a limited understanding of the pathological mechanisms underlying the initiation and progression of the disease. Given that signaling pathways play a crucial role in the development of adenomyosis, a better understanding of these signaling pathways is essential for identifying therapeutic targets and advancing drug development. The occurrence and progression of adenomyosis are closely linked to various underlying pathophysiological mechanisms, including proliferation, migration, invasion, fibrosis, angiogenesis, inflammation, oxidative stress, immune response, and epigenetic changes. This review summarizes the signaling pathways and targets associated with the pathogenesis of adenomyosis, including CXCL/CXCR, NLRP3, NF-κB, TGF-β/smad, VEGF, Hippo/YAP, PI3K/Akt/mTOR, JAK/STAT, and other relevant pathways. In addition, it identifies promising future targets for the development of adenomyosis treatment, such as m6A, GSK3β, sphks, etc.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Chaoming Li
- Departmemt of Urology, The First People’s Hospital of Longnan, Longnan 742500, China
| | - Wenyan Li
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Wenhu Xin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Tiansheng Qin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Matsuoka T, Yashiro M. Molecular Mechanism for Malignant Progression of Gastric Cancer Within the Tumor Microenvironment. Int J Mol Sci 2024; 25:11735. [PMID: 39519285 PMCID: PMC11546171 DOI: 10.3390/ijms252111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. Most patients are diagnosed at the progressive stage of GC, and progress in the development of effective anti-GC drugs has been insufficient. The tumor microenvironment (TME) regulates various functions of tumor cells, and interactions between the cellular and molecular components of the TME-e.g., inflammatory cells, fibroblasts, vasculature cells, and innate and adaptive immune cells-promote the aggressiveness of cancer cells and dissemination to distant organs. This review summarizes the roles of various TME cells and molecules in regulating the malignant progression and metastasis of GC. We also address the important roles of signaling pathways in mediating the interaction between cancer cells and the different components of the GC TME. Finally, we discuss the implications of these molecular mechanisms for developing novel and effective therapies targeting molecular and cellular components of the GC TME to control the malignant progression of GC.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan;
- Institute of Medical Genetics, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 5458585, Japan
| |
Collapse
|
35
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
36
|
Yoon C, Kim HK, Ham YS, Gil WJ, Mun SJ, Cho E, Yuk JM, Yang CS. Toxoplasma gondii macrophage migration inhibitory factor shows anti- Mycobacterium tuberculosis potential via AZIN1/STAT1 interaction. SCIENCE ADVANCES 2024; 10:eadq0101. [PMID: 39453997 PMCID: PMC11506136 DOI: 10.1126/sciadv.adq0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogenic bacterium, belonging to the family Mycobacteriaceae, that causes tuberculosis (TB). Toxoplasma gondii macrophage migration inhibitory factor (TgMIF), a protein homolog of macrophage migration inhibitory factor, has been explored for its potential to modulate immune responses during MTB infections. We observed that TgMIF that interacts with CD74, antizyme inhibitor 1 (AZIN1), and signal transducer and activator of transcription 1 (STAT1) modulates endocytosis, restoration of mitochondrial function, and macrophage polarization, respectively. These interactions promote therapeutic efficacy in mice infected with MTB, thereby presenting a potential route to host-directed therapy development. Furthermore, TgMIF, in combination with first-line TB drugs, significantly inhibited drug-resistant MTB strains, including multidrug-resistant TB. These results demonstrate that TgMIF is potentially a multifaceted therapeutic agent against TB, acting through immune modulation, enhancement of mitochondrial function, and dependent on STAT1 and AZIN1 pathways.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588, South Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Jae-Min Yuk
- Department of Infection Biology and Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan 15588, South Korea
| |
Collapse
|
37
|
Nathan S, Wang Y, D'ambrosio M, Paul R, Lyu H, Delic D, Bretschneider T, Falana K, Li L, Vijayaraj P. Comparative transcriptomic analysis validates iPSC derived in-vitro progressive fibrosis model as a screening tool for drug discovery and development in systemic sclerosis. Sci Rep 2024; 14:24428. [PMID: 39424619 PMCID: PMC11489818 DOI: 10.1038/s41598-024-74610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune dysregulation, and systemic fibrosis. Research on SSc has been hindered largely by lack of relevant models to study the progressive nature of the disease and to recapitulate the cell plasticity that is observed in this disease context. Generation of models for fibrotic disease using pluripotent stem cells is important for recapitulating the heterogeneity of the fibrotic tissue and are a potential platform for screening anti-fibrotic drugs. We previously reported a novel in-vitro model for fibrosis using induced pluripotent stem cell-derived mesenchymal cells (iSCAR). Here we report the generation of a "scar-like phenotype" when iPSC derived mesenchymal cells are cultured on hydrogel that mimicks a wound healing/scarring response (iSCAR). First, we performed RNA sequencing (RNA-seq) based transcriptome profiling of iSCAR culture at 48 h and 13 days to characterize early and latestage scarring phenotypes. The next generation RNA-seq of these iSCAR culture at different timepoints detected expression 92% of early "scar associated" genes and 85% late "scar associated" genes, respectively. Comparative transcriptomic analysis of a gene level SSc compendium matrix to the iSCAR wound associated model revealed genes common in both data sets. Early scar formation genes showed biological processes of hypoxia (27.5%), vascular development (13.7%) and glycolysis (27.5), while late scar formation showed genes associated with senescence (22.6%). Next we show the effects of two different antifibrotic compounds to validate the utility of the model as a screening tool to study early and late-stagelate-stage fibrosis. An autotaxin inhibitor was used to validate the iSCAR late stage fibrotic model (iSCAR-T) and an antifibrotic tool screening compound of unknown mechanism (EX00015097) was used to study and validate both early (iSCAR-P) and late-stage (iSCAR-T) fibrosis in the iSCAR model.
Collapse
Affiliation(s)
- Shyam Nathan
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Yifei Wang
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Matthew D'ambrosio
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Reeba Paul
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Huimin Lyu
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Denis Delic
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kimberly Falana
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Li Li
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Preethi Vijayaraj
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| |
Collapse
|
38
|
Jiang Y, Li L, Li W, Liu K, Wu Y, Wang Z. NFS1 inhibits ferroptosis in gastric cancer by regulating the STAT3 pathway. J Bioenerg Biomembr 2024; 56:573-587. [PMID: 39254861 DOI: 10.1007/s10863-024-10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Cysteine desulfurase (NFS1) is highly expressed in a variety of tumors, which is closely related to ferroptosis of tumor cells and affects prognosis. The relationship between NFS1 and the development of gastric cancer (GC) remains unknown. Here we showed that NFS1 expression was significantly higher in GC tissues compared to adjacent normal tissues. Patients with high expression of NFS1 in GC tissues had a lower overall survival rate than those with low expression. NFS1 was highly expressed in cultured GC cells compared to normal gastric cells. Knockdown of NFS1 expression reduced the viability, migration and invasion of GC cells. In cultured GC cells, NFS1 deficiency promoted ferroptosis. Mechanistically, NFS1 inhibited ferroptosis by upregulating the signal transduction and activator of transcription 3 (STAT3) signaling pathway in cultured GC cells. NFS1 knockdown using siRNA inhibited the STAT3 pathway, reduced the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and elevated intracellular levels of reactive oxygen species (ROS), ferrous ion (Fe2+), and malondialdehyde (MDA) in cultured GC cells. A specific STAT3 activator significantly reversed the inhibitory effect of NFS1 deficiency on ferroptosis in cultured GC cells. These in vitro results were further confirmed by experiments in vivo using a mouse xenograft tumor model. Collectively, THESE RESULTS INDICATE THAT NFS1 is overexpressed in human GC tissues and correlated with prognosis. NFS1 inhibits ferroptosis by activating the STAT3 pathway in GC cells. These results suggest that NFS1 may be a potential prognostic biomarker and therapeutic target to treat GC.
Collapse
Affiliation(s)
- You Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Liqiang Li
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Wenbo Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Kun Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, P.R. China
| | - Yuee Wu
- Department of Electrocardiogram Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei, 230060, Anhui, P.R. China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230022, Anhui Province, P.R. China.
| |
Collapse
|
39
|
A-Elgadir TME, Shati AA, Alqahtani SA, Ebrahim HA, Almohaimeed HM, ShamsEldeeen AM, Haidara MA, Kamar SS, Dawood AF, El-Bidawy MH. Mesenchymal stem cells improve cardiac function in diabetic rats by reducing cardiac injury biomarkers and downregulating JAK/STAT/iNOS and iNOS/Apoptosis signaling pathways. Mol Cell Endocrinol 2024; 591:112280. [PMID: 38797354 DOI: 10.1016/j.mce.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular complications are prevalent manifestations of type 2 diabetes mellitus (T2DM) and are usually the main cause of death. This study aims to show the underlying mechanisms of the potential therapeutic effect of mesenchymal stem cells (MSCs) on diabetic cardiac dysfunction. Twenty-four male Wistar rats were randomly assigned to one of three groups The control group received standard laboratory chow, and the groups with T2DM received a single dose of 45 mg/kg body weight of streptozotocin (STZ) after 3 weeks of pretreatment with a high-fat diet (HFD). Eight weeks after the diagnosis of T2DM, rats were divided into two groups: the T2DM model group and the T2DM + MSCs group. BM-MSCs were administered systemically at 2 × 106 cells/rat doses. A Significant amelioration in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and dyslipidemia was noted 2 weeks post-administration of MSCs. Administration of MSCs improved dyslipidemia, the altered cardiac injury biomarkers (p ≤ 0.0001), downregulated Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3)/inducible Nitric oxide synthase (iNOS) and iNOS/Apoptosis signaling pathways. This was associated with improved cardiac dysfunction (impaired left ventricular performance and decreased contractility index). Our results show that MSCs ameliorate cardiac dysfunction associated with diabetic cardiomyopathy by lowering dyslipidemia and insulin resistance, inhibiting oxidative stress, and inflammation, downregulating JAK2/STAT3/iNOS and iNOS/Apoptosis signaling pathways.
Collapse
Affiliation(s)
| | - Ayed A Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saif Aboud Alqahtani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Asmaa M ShamsEldeeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa S Kamar
- Department of Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Histology, Armed Forces College of Medicine
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Mahmoud H El-Bidawy
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of BMS, Physiology Division, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
40
|
Zhang X, An Y, Mai D, Huang W, Zeng W. Modulation of esophageal squamous cell carcinoma progression: the impact of CCR7 on JAK2/STAT3 signaling pathway. Discov Oncol 2024; 15:421. [PMID: 39254762 PMCID: PMC11387284 DOI: 10.1007/s12672-024-01289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Existing studies have already revealed the involvement of C-C chemokine receptor type 7 (CCR7) in diverse human cancers, including esophageal cell squamous carcinoma (ESCA). Our current study, aims to explore the relevant mechanisms implicated. METHODS ESCA cell lines were collected for CCR7 expression quantification using western blot. Following the transfection, the viability, migration and invasion of ESCA cells were evaluated via cell counting kit-8 and Transwell assays. The specific molecular mechanisms underlying the effects of CCR7 in ESCA cells were explored via calculating the expressions of proteins related to metastasis and Janus kinase 2/signal transduction and transcription activation 3 (JAK2/STAT3) signaling pathway via western blot. The correlation between CCR7 and metastasis-related proteins was explored via Pearson's correlation test. RESULTS CCR7 was high-expressed in ESCA cells and CCR7 knockdown repressed the viability, migration and invasion of ESCA cells, concurrent with the increased expression of E-cadherin (E-cad, which was also known as CDH1 and lowly expressed in ESCA cells) and the decreased expressions of vimentin (Vim, which was highly expressed in ESCA cells) and matrix metalloproteinase-9 (MMP-9, which was also highly expressed in ESCA cells). Meanwhile, CCR7 was positively correlated with Vim and MMP-9 yet negatively correlated with E-cad in ESCA cells, which indicated that CCR7 has a role in promoting tumor progression in ESCA cells. Besides, the phosphorylation of STAT3 and JAK2 in ESCA cells was elevated, which was diminished following CCR7 knockdown. CONCLUSION This study proves the modulation of CCR7 on ESCA in vitro, which was achieved via JAK2/STAT3 signaling pathway. Our discovery will provide new therapeutic basis and insights for ESCA.
Collapse
Affiliation(s)
- Xuewen Zhang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuji An
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Five Wards of Oncology Department, The Third Affiliated Hospital of Shandong First Medical University, Jinan, 250031, China
| | - Dongmei Mai
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wan Huang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
41
|
Sim SJ, Jang JH, Choi JS, Chun KS. Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells. Biomol Ther (Seoul) 2024; 32:568-576. [PMID: 38914471 PMCID: PMC11392662 DOI: 10.4062/biomolther.2024.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase- 3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways, respectively. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.
Collapse
Affiliation(s)
- So Jin Sim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
42
|
Li P, Zhang H, Chen T, Zhou Y, Yang J, Zhou J. Cancer-associated fibroblasts promote proliferation, angiogenesis, metastasis and immunosuppression in gastric cancer. Matrix Biol 2024; 132:59-71. [PMID: 38936680 DOI: 10.1016/j.matbio.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Despite advances in surgery, radiotherapy and immunotherapy, the mortality rate for gastric cancer remains one of the highest in the world. A large body of evidence has demonstrated that cancer-associated fibroblasts (CAFs), as core members of the stroma, can secrete cytokines, proteins and exosomes to create a tumour microenvironment that is conducive to cancer cell survival. CAFs can also interact with cancer cells to form a complex signalling network, enabling cancer cells to more easily metastasise to other organs and tissues in the body and develop metastatic foci. In this review, we provide an overview of the CAFs concept and activators. We focus on elucidating their effects on immune cells, intratumoural vasculature, extracellular matrix, as well as cancer cell activity, metastatic power and metabolism, and on enhancing the metastatic ability of cancer cells through activation of JAK/STAT, NF/κB and CXCL12/CXCR4. Various therapeutic agents targeting CAFs are also under development and are expected to improve the prognosis of gastric cancer in combination with existing treatment options.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Huan Zhang
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Tao Chen
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Yajing Zhou
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jiaoyang Yang
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jin Zhou
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China.
| |
Collapse
|
43
|
Wang W, Huang S, Li S, Li X, Ling Y, Wang X, Zhang S, Zhou D, Yin W. Rosa sterilis Juice Alleviated Breast Cancer by Triggering the Mitochondrial Apoptosis Pathway and Suppressing the Jak2/Stat3 Pathway. Nutrients 2024; 16:2784. [PMID: 39203920 PMCID: PMC11357216 DOI: 10.3390/nu16162784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Rosa sterilis (RS) is a characteristic fruit in southwestern China that has numerous health benefits; however, its pharmacological effect needs further clarification, especially with respect to the exploration of its potential anti-breast-cancer effect, as there are still knowledge gaps in this regard. This study was designed to investigate the protective effects of Rosa sterilis juice (RSJ) on breast cancer (BC) through in vitro cellular experiments and by establishing mouse 4T1 breast xenograft tumors. This study also had the aim of elucidating RSJ's underlying mechanisms. RSJ can inhibit cell proliferation, affect cell morphology, and impact the clone formation ability of BC; furthermore, it can promote apoptosis by triggering the mitochondrial apoptosis pathway. In mouse 4T1 breast xenograft tumors, RSJ markedly inhibited tumor growth, relieved the pathological lesions, lowered the expression of Ki67, and regulated the expression of the apoptosis-associated protein. Moreover, we observed that RSJ can inhibit the Jak2/Stat3 signaling pathway both in vivo and in vitro. Overall, our research reveals that RSJ can alleviate BC by triggering the mitochondrial apoptosis pathway and suppressing the Jak2/Stat3 pathway, providing new dietary intervention strategies for BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dingzi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu 610041, China; (W.W.); (S.H.); (S.L.); (X.L.); (Y.L.); (X.W.); (S.Z.)
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 17# 3rd Section, Ren Min South Road, Chengdu 610041, China; (W.W.); (S.H.); (S.L.); (X.L.); (Y.L.); (X.W.); (S.Z.)
| |
Collapse
|
44
|
Zhao J, Bai J, Yu X, Zhang W, Zhao C, Ye J, Wei P, He K, Zou J. Synthesis, biological activities and mechanistic studies of C 20-ketone pachysandra alkaloids as anti-hepatocellular carcinoma agents. Mol Divers 2024:10.1007/s11030-024-10961-2. [PMID: 39158620 DOI: 10.1007/s11030-024-10961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
The pachysandra alkaloids found in Sarcococca ruscifolia demonstrate notable anti-hepatocellular carcinoma activity. Despite their efficacy, the structural diversity of these compounds remains limited, and their precise antitumor mechanism is still unclear. In pursuit of identifying novel lead compounds with high efficacy and low toxicity for combating hepatocellular carcinoma, twenty-three compounds of C20-ketone pachysandra alkaloid derivatives were designed and synthesized by using 3-dimethylamine pachysandra alkaloids as scaffolds. Subsequent in vitro anticancer activity experiments showed that synthetic pachysandra alkaloids had a stronger effect on HepG2 cells than did their natural counterparts, with low toxicity and high selectivity. The most potent derivative, 6k, had an IC50 value of 0.75 μM, demonstrating 25.7-fold greater anticancer activity than sarcovagine D against HepG2 cells. Through network pharmacology and molecular docking analysis, it was revealed that synthetic pachysandra alkaloids may exert their effects by inhibiting the JAK2/STAT3 pathway, thereby preventing the proliferation of liver cancer cells. Further research through scratch tests, immunofluorescence experiments, and Western blot analysis revealed that compound 6k effectively inhibited the migration of HepG2 cells and induced mitochondria-mediated intrinsic apoptosis of HepG2 cells by regulating the JAK2/STAT3 signaling pathway. The aforementioned results indicate that compound 6k could be developed as a potential candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- JinFeng Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jing Bai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - WenWen Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, China
| | - ChenLiang Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - JiangHai Ye
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Peng Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Kang He
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Juan Zou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
45
|
Li Y, Dong Y. TTI-101 targets STAT3/c-Myc signaling pathway to suppress cervical cancer progression: an integrated experimental and computational analysis. Cancer Cell Int 2024; 24:286. [PMID: 39135042 PMCID: PMC11320917 DOI: 10.1186/s12935-024-03463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Cervical cancer (CC) is a significant global health concern, demanding the consideration of novel therapeutic strategies. The signal transducer and activator of transcription 3 (STAT3) pathway has been implicated in cancer progression and is a potential target for therapeutic intervention. This study aimed to explore the therapeutic potential of TTI-101, a small molecule STAT3 inhibitor, in CC and investigate its underlying mechanisms. METHODS Molecular docking studies and molecular dynamics simulations were performed to explore the binding interaction between TTI-101 and STAT3 and assess the stability of the STAT3-TTI-101 complex. Cell viability assays, wound healing assays, colony formation assays, flow cytometry analysis, and gene expression analysis were conducted. In vivo xenograft models were used to assess the antitumor efficacy of TTI-101. RESULTS The in silico analysis shows a stable binding interaction between TTI-101 and STAT3. TTI-101 treatment inhibits cell viability, clonogenic ability, and cell migration in CC cells. Furthermore, TTI-101 induces apoptosis and cell cycle arrest. Analysis of apoptosis-related markers demonstrated dysregulation of Bax, Bcl-2, and Caspase-3 upon TTI-101 treatment. Moreover, TTI-101 caused G2/M phase arrest accompanied by a decrease in CDK1 and Cyclin B1 at mRNA levels. In the xenograft model, TTI-101 significantly inhibited tumor growth without adverse effects on body weight. CONCLUSION TTI-101 exhibited anticancer effects by targeting the STAT3/c-Myc signaling pathway, inducing cell cycle arrest, and promoting apoptosis in CC cells. These findings provide valuable insights into the development of novel therapeutic strategies for cervical cancer. Further investigation is warranted to validate the clinical application of TTI-101.
Collapse
Affiliation(s)
- Yi Li
- Department of Gynaecology, Shandong Provincial Third Hospital, Shandong University, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan, 250031, Shandong, People's Republic of China
| | - Yuyan Dong
- Department of Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, 238 Jingshi East Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
46
|
Du H, Wang F, Zhang R, Yan X, Zheng J, Zhou T, Wang X, Zhang G, Zhang Z. Rolling Circle Amplification-Based Self-Assembly to Form a "GPS-Nanoconveyor" for In Vitro Targeted Imaging and Enhanced Gene/Chemo (CRISPR/DOX) Synergistic Therapy. Biomacromolecules 2024; 25:4991-5007. [PMID: 39087761 DOI: 10.1021/acs.biomac.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The GPS-Nanoconveyor (MA-NV@DOX-Cas13a) is a targeted nanoplatform designed for the imaging and gene/chemotherapy synergistic treatment of melanoma. It utilizes rolling circle amplification (RCA) products as a scaffold to construct a DNA "Nanoconveyor" (NV), which incorporates a multivalent aptamer (MA) as a "GPS", encapsulates doxorubicin (DOX) in the transporter, and equips it with CRISPR/Cas13a ribonucleoproteins (Cas13a RNP). Carrying MA enhances the ability to recognize the overexpressed receptor nucleolin on B16 cells, enabling targeted imaging and precise delivery of MA-NV@DOX-Cas13a through receptor-mediated endocytosis. The activation of signal transducer and activator of transcription 3 (STAT3) in cancer cells triggers cis-cleavage of CRISPR/Cas13a, initiating its trans-cleavage function. Additionally, deoxyribonuclease I (DNase I) degrades MA-NV, releasing DOX for intracellular imaging and as a chemotherapeutic agent. Experiments demonstrate the superior capabilities of this versatile nanoplatform for cellular imaging and co-treatment while highlighting the advantages of these nanodrug delivery systems in mitigating DOX side effects.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyan Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinfeng Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
47
|
Shim KS, Song HK, Park M, Kim HJ, Jang S, Kim T, Kim KM. Reynoutria japonica consisted of emodin-8-β-D-glucoside ameliorates Dermatophagoides farinae extract-induced atopic dermatitis-like skin inflammation in mice by inhibiting JAK/STAT signaling. Biomed Pharmacother 2024; 176:116765. [PMID: 38788600 DOI: 10.1016/j.biopha.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction and chronic inflammatory responses. Reynoutria japonica, known as Huzhang in traditional Chinese Medicine, can enhance blood circulation to eliminate wind pathogens and terminate coughing. Despite pharmacological evidence supporting the efficacy of R. japonica in suppressing edema-induced skin inflammation or connective tissue diseases, its pharmaceutical potential for treating AD-like skin inflammation remains unexplored. This study investigated the possible effects of R. japonica ethanol extract (RJE) on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation in NC/Nga mice. To elucidate the underlying mechanisms by which RJE inhibits skin inflammation, we examined the effect of RJE on IFN-γ/TNF-α-induced signal transducer and activator of transcription (STAT) signaling in human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Our findings revealed that RJE mitigates DfE-induced AD-like symptoms and skin barrier disruptions in mouse skin lesions. Moreover, RJE attenuated DfE-induced mast cell infiltration and serum levels of inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-23, IFN-γ, TNF-α, and GM-CSF). RJE also inhibited IFN-γ/TNF-α-induced chemokine levels and STAT3 phosphorylation in HEKs and HDFs. Virtual binding analysis of the RJE components suggested that emodin-8-β-D-glucoside binds to Janus kinase (JAK) 1/2, thereby suppressing STAT signaling, which was confirmed by Western blot analysis. In conclusion, our results suggest that RJE may alleviate DfE-induced skin barrier dysfunction by inhibiting JAK/STAT signaling and the proinflammatory immune response through the suppression of inflammatory mediators in AD-like skin disease. These findings suggest that RJE has potential as an effective therapy for AD management.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Gohadoan-gil 99, Mokpo, Jeollanam-do 58762, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea.
| |
Collapse
|
48
|
Zhao W, Hu X, Chen Z, Li X. Major Facilitator Superfamily Domain Containing 12 Is Overexpressed in Lung Cancer and Exhibits an Oncogenic Role in Lung Adenocarcinoma Cells. DNA Cell Biol 2024; 43:331-340. [PMID: 38687351 DOI: 10.1089/dna.2023.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Major facilitator superfamily domain containing 12 (MFSD12) regulates lysosomal cysteine import and promotes the proliferation and survival of melanoma cells. However, the expression and function of MFSD12 in other cancers, particularly in lung cancer, remain unclear. The expression of MFSD12 across various types of cancers and corresponding control tissues was examined using TIMER. MFSD12 expression in lung adenocarcinoma (LUAD) and its correlation with distinct clinicopathological features of LUAD patients were analyzed with UALCAN. The correlation between MFSD12 expression and survival of LUAD patients was assessed using the R package, survival, and the relationship between MFSD12 expression and immune infiltration status in LUAD was investigated using CIBERSORT. In addition, MFSD12 expression was knocked down in PC9 LUAD cells and their proliferation, capacity for expansion, cell cycle, apoptosis, and migration/invasion were evaluated through CCK-8 assays, colony formation assays, 7-AAD staining, Annexin V/PI staining, and Transwell assays, respectively. The stemness of these PC9 cells was determined through Western blotting, flow cytometry, and tumor sphere formation assays. MFSD12 mRNA levels were significantly elevated in multiple types of cancers, including LUAD. MFSD12 expression was also positively correlated with cancer stage, nodal metastasis, and infiltration of various immune cells in LUAD, and high MFSD12 levels predicted poor survival among LUAD patients. Knockdown of MFSD12 in PC9 cells resulted in decreased proliferation, attenuated colony formation capacity, cell cycle arrest, elevated apoptosis, impaired migration/invasion, and reduced stemness in PC9 cells. MFSD12 is an oncogene in LUAD.
Collapse
Affiliation(s)
- Weijun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xilin Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zixuan Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xinjian Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
49
|
Sun Y, Tong H, Chu X, Li Y, Zhang J, Ding Y, Zhang S, Gui X, Chen C, Xu M, Li Z, Gardiner EE, Andrews RK, Zeng L, Xu K, Qiao J. Notch1 regulates hepatic thrombopoietin production. Blood 2024; 143:2778-2790. [PMID: 38603632 DOI: 10.1182/blood.2023023559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.
Collapse
Affiliation(s)
- Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chong Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
50
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|