1
|
Zortea JM, Baggio DF, da Luz FMR, Lejeune VBP, Spagnol FJ, Chichorro JG. Comparative study of the effects of ibuprofen, acetaminophen, and codeine in a model of orofacial postoperative pain in male and female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9887-9895. [PMID: 38935129 DOI: 10.1007/s00210-024-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Pain management is a primary goal after oral surgeries, but little is known about sex differences in the sensitivity to analgesics. This study aimed to compare the efficacy of three drugs with analgesic potential on heat and mechanical hyperalgesia, spontaneous pain and locomotion on male and female rats subjected to a model of orofacial postoperative pain. Male and female Wistar rats were submitted to intraoral incision or sham surgery, and on postoperative day 3, the effect of the ibuprofen (30 and 100 mg/kg), acetaminophen (100 and 300 mg/kg) and codeine (3 and 10 mg/kg) was assessed on responses to heat and mechanical facial stimulation, facial grooming, and locomotion. Ibuprofen reduced heat and mechanical hyperalgesia and grooming behavior in male and female rats in a non-sedative dose; acetaminophen dose-dependently reduced the mechanical hyperalgesia and abolished the heat hyperalgesia and the grooming behavior but caused sedation in both sexes; codeine dose-dependently reduced the mechanical hyperalgesia in male and female rats, and reduced the heat hyperalgesia, but females were less sensitive than males. It reduced spontaneous facial grooming in both sexes, but induced hyperlocomotion in females. Ibuprofen presented the most favorable profile, since it reduced over 50% heat and mechanical hyperalgesia in male and female rats, and significantly reduced spontaneous pain, without causing sedation or affecting locomotion. The identification of sex differences in the sensitivity and safety profile of frequently used analgesics can help guide the choice of more effective individualized therapies for pain control.
Collapse
Affiliation(s)
- Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Fernanddo José Spagnol
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
2
|
Pușcașu C, Chiriță C, Negreș S, Blebea NM. Exploring the Therapeutic Potential of N-Methyl-D-Aspartate Receptor Antagonists in Neuropathic Pain Management. Int J Mol Sci 2024; 25:11111. [PMID: 39456894 PMCID: PMC11507561 DOI: 10.3390/ijms252011111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Neuropathic pain (NeP) is a complex and debilitating condition that impacts millions of people globally. Although various treatment options exist, their effectiveness is often limited, and they can be accompanied by significant side effects. In recent years, there has been increasing interest in targeting the N-methyl-D-aspartate receptor (NMDAR) as a potential therapeutic approach to alleviate different types of neuropathic pain. This narrative review aims to provide a comprehensive examination of NMDAR antagonists, specifically ketamine, memantine, methadone, amantadine, carbamazepine, valproic acid, phenytoin, dextromethorphan, riluzole, and levorphanol, in the management of NeP. By analyzing and summarizing current preclinical and clinical studies, this review seeks to evaluate the efficacy of these pharmacologic agents in providing adequate relief for NeP.
Collapse
Affiliation(s)
- Ciprian Pușcașu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Cornel Chiriță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Simona Negreș
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.)
| | - Nicoleta Mirela Blebea
- Faculty of Pharmacy, “Ovidius” University of Constanța, Căpitan Aviator Al. Şerbănescu 6, 900470 Constanța, Romania;
| |
Collapse
|
3
|
Mohos V, Harmat M, Kun J, Aczél T, Zsidó BZ, Kitka T, Farkas S, Pintér E, Helyes Z. Topiramate inhibits adjuvant-induced chronic orofacial inflammatory allodynia in the rat. Front Pharmacol 2024; 15:1461355. [PMID: 39221150 PMCID: PMC11361966 DOI: 10.3389/fphar.2024.1461355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic orofacial pain disorders are common debilitating conditions, affecting the trigeminal system. Its underlying pathophysiological mechanisms are still unclear and the therapy is often unsatisfactory, therefore, preclinical models are crucial to identify the key mediators and novel treatment options. Complete Freund's adjuvant (CFA)-induced orofacial inflammatory allodynia/hyperalgesia is commonly used in rodents, but it has not been validated with currently used drugs. Here we tested the effects of the adjuvant analgesic/antiepileptic voltage-gated Na+ channel blocker complex mechanism of action topiramate in comparison with the gold standard antimigraine serotonin 5-HT1B/D receptor agonist sumatriptan in this model. CFA was injected subcutaneously into the right whisker pad of male Sprague-Dawley rats (250-300 g), then mechanonociceptive threshold values were investigated with von Frey filaments (3, 5, and 7 days after CFA injection). Effects of topiramate (30 mg/kg per os) and sumatriptan (1 mg/kg subcutaneous) on the adjuvant-induced chronic inflammatory orofacial allodynia were investigated 60, 120, and 180 min after the treatments each day. To determine the optimal concentration for drug effect analysis, we tested the effects of two different CFA-concentrations (1 and 0.5 mg/mL) on mechanonociceptive thresholds. Both concentrations of CFA induced a chronic orofacial allodynia in 60% of all rats. Although, higher CFA concentration induced greater allodynia, much more stable threshold reduction was observed with the lower CFA concentration: on day 3 the thresholds decreased from 18.30 g to approximately 11 g (low) and 5 g (high), respectively, however a slight increase was observed in the case of higher CFA concentration (on days 5, 7, and 11). In all investigation days, topiramate showed significant anti-allodynic effect comparing the pre and post drug dose and comparing the vehicle treated to the drug treated groups. Sumatriptan also caused a significant threshold increase compared to pre dose thresholds (day 3) and also showed a slight anti-allodynic effect compared to the vehicle-treated group (day 3 and 5). In the present study CFA-induced chronic orofacial allodynia was reversed by topiramate in rats validating the model with the adjuvant analgesic. Other than establishing a validated orofacial pain-related syndrome model in rats, new ways are opened for the repurposing of topiramate.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Máté Harmat
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Jozsef Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Tímea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kitka
- Uzsoki Cardiovascular Center Ltd., Budapest, Hungary
| | - Sándor Farkas
- Uzsoki Cardiovascular Center Ltd., Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Pain Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Pain Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
4
|
Alexandre C, Miracca G, Holanda VD, Sharma A, Kourbanova K, Ferreira A, Bicca MA, Zeng X, Nassar VA, Lee S, Kaur S, Sarma SV, Sacré P, Scammell TE, Woolf CJ, Latremoliere A. Nociceptor spontaneous activity is responsible for fragmenting non-rapid eye movement sleep in mouse models of neuropathic pain. Sci Transl Med 2024; 16:eadg3036. [PMID: 38630850 PMCID: PMC11106840 DOI: 10.1126/scitranslmed.adg3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.
Collapse
Affiliation(s)
- Chloe Alexandre
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Giulia Miracca
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Duarte Holanda
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Sharma
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kamila Kourbanova
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Ferreira
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maíra A. Bicca
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xiangsunze Zeng
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria A. Nassar
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Lee
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Satvinder Kaur
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sridevi V. Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, School of Engineering, University of Liège, Liège, Belgium
| | - Thomas E. Scammell
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Baggio DF, da Luz FMR, Zortea JM, Lejeune VBP, Chichorro JG. Sex differences in carbamazepine effects in a rat model of trigeminal neuropathic pain. Eur J Pharmacol 2024; 967:176386. [PMID: 38311280 DOI: 10.1016/j.ejphar.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Carbamazepine (CBZ) represents the first-line treatment for trigeminal neuralgia, a condition of facial pain that affects mainly women. The chronic constriction of the infraorbital nerve (CCI-ION) is a widely used model to study this condition, but most studies do not include females. Thus, this study aimed to characterize sensory and affective changes in female rats after CCI-ION and compare the effect of CBZ in both sexes. Mechanical allodynia was assessed 15 days after CCI-ION surgery in rats treated with CBZ (10 and 30 mg/kg, i.p.) or vehicle, together with the open-field test. Independent groups were tested on the Conditioned Place Preference (CPP) paradigm and ultrasonic vocalization (USV) analysis. Blood samples were collected for dosage of the main CBZ metabolite. CBZ at 30 mg/kg impaired locomotion of CCI-ION male and sham and CCI-ION female rats and resulted in significantly higher plasma concentrations of 10-11-EPX-CBZ in the latter. Only male CCI-ION rats showed increased facial grooming which was significantly reduced by CBZ at 10 mg/kg. CBZ at 10 mg/kg significantly reduced mechanical allodynia and induced CPP only in female CCI-ION rats. Also, female CCI-ION showed reduced emission of appetitive USV but did not show anxiety-like behavior. In conclusion, male and female CCI-ION rats presented differences in the expression of the affective-motivational pain component and CBZ was more effective in females than males. Further studies using both sexes in trigeminal neuropathic pain models are warranted for a better understanding of potential differences in the pathophysiological mechanisms and efficacy of pharmacological treatments.
Collapse
Affiliation(s)
- Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Xu X, Chen R, Yu Y, Yang J, Lin C, Liu R. Pulsed radiofrequency on DRG inhibits hippocampal neuroinflammation by regulating spinal GRK2/p38 expression and enhances spinal autophagy to reduce pain and depression in male rats with spared nerve injury. Int Immunopharmacol 2024; 127:111419. [PMID: 38141406 DOI: 10.1016/j.intimp.2023.111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Evidence indicates that microglial G protein-coupled receptor kinase 2 (GRK2) is a key regulator of the transition from acute to chronic pain mediated by microglial products via the p38 mitogen-activated protein kinase (MAPK) pathway in the spinal cord dorsal horn (SCDH). Increasing studies have shown that autophagic dysfunction in the SCDH and neuroinflammation in the hippocampus underlie NeP. However, whether GRK2/p38MAPK and autophagic flux in the SCDH and hippocampal neuroinflammation are involved in NeP and depression comorbidity has not been determined. Here, we explored the effects of high-voltage pulsed radiofrequency (PRF) (85 V-PRF; HV-PRF) to the dorsal root ganglion (DRG) on pain phenotypes in Wistar male rats with spared nerve injury (SNI) and the underlying mechanisms. The exacerbation of pain phenotypes was markedly relieved by PRF-DRG. The SNI-induced reduction in GRK2 expression, elevation of p-p38 MAPK levels in the SCDH, and increase in IL-1β and TNF-α levels in the hippocampus were reversed by PRF, which was accompanied by an increase in autophagic flux in spinal microglia. The beneficial effect of 85 V-PRF was superior to that of 45 V-PRF. In addition, the improvements elicited by 85 V-PRF were reversed by intrathecal injection of GRK2 antisense oligonucleotide, and these changes were accompanied by GRK2 downregulation and p-p38 upregulation in the SCDH, increased pro-inflammatory factor levels in the hippocampus, and excessive autophagy in spinal microglia. In conclusion, our data indicate that the application of HV-PRF to the DRG could serve as an excellent therapeutic technique for regulating neuroimmunity and neuroinflammation to relieve pain phenotypes.
Collapse
Affiliation(s)
- Xueru Xu
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Ri Chen
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Youfen Yu
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Jing Yang
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Chun Lin
- Institute of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou City, Fujian Province, China
| | - Rongguo Liu
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China.
| |
Collapse
|
7
|
Finamor F, Scarabelot VL, Medeiros LF, Stein DJ, da Silva MD, Callai E, Caumo W, de Souza A, Torres ILS. Involvement of GABAergic, glutamatergic, opioidergic, and brain-derived neurotrophic factor systems in the trigeminal neuropathic pain process. Neurosci Lett 2023; 793:136970. [PMID: 36402255 DOI: 10.1016/j.neulet.2022.136970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Trigeminal neuropathic pain (TNP) is an intense pain condition characterized by hyperalgesia and allodynia; however, its neural mechanisms are not completely understood. Its management is complex, and studies that investigate its biochemical mechanisms are important for improving clinical approaches. This study aimed to evaluate the involvement of GABAergic, glutamatergic, and opioidergic systems and brain-derived neurotrophic factor (BDNF) levels in the TNP process in rats. TNP is induced by chronic constriction injury of the infraorbital nerve (CCI-ION). Nociceptive responses were evaluated using the facial von Frey test before and after the administration of GABAergic and opioidergic agonists and glutamatergic antagonists. The rats were divided into vehicle-treated control (C), sham-surgery (SS), and CCI-ION groups, and then subdivided into the vehicle (V)-treated SS-V and CCI-ION-V groups, SS-MK801 and CCI-ION-MK801, treated with the N-methyl-d-aspartate receptor selective antagonist MK801; SS-PB and CCI-ION-PB, treated with phenobarbital; SS-BZD and CCI-ION-BZD, treated with diazepam; SS-MOR and CCI-ION-MOR, treated with morphine. BDNF levels were evaluated in the cerebral cortex, brainstem, trigeminal ganglion, infraorbital branch of the trigeminal nerve, and serum. CCI-ION induced facial mechanical hyperalgesia. Phenobarbital and morphine reversed the hyperalgesia induced by CCI-ION, and the CCI-BZD group had an increased nociceptive threshold until 60 min. CCI-ION-GLU increased the nociceptive threshold at 60 min. Cerebral cortex and brainstem BDNF levels increased in the CCI-ION and SS groups. Only the CCI group presented high levels of BDNF in the trigeminal ganglion. Our data suggest the involvement of GABAergic, glutamatergic, and opioidergic systems and peripheral BDNF in the TNP process.
Collapse
Affiliation(s)
- Fabrício Finamor
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Vanessa Leal Scarabelot
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; Universidade La Salle, Canoas, RS, Brazil
| | - Dirson João Stein
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Morgana Duarte da Silva
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Etiane Callai
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Nucleus of Pain Pharmacology and Neuromodulation. Hospital de Clínicas de Porto Alegre, RS, Brazil; School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Huang X, Li Z, Ma J, Huang D, Yan X, Zhou H. A novel implantable device for sensory and affective assessment of orofacial pain in rats. Front Vet Sci 2022; 9:1028147. [DOI: 10.3389/fvets.2022.1028147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectiveOrofacial pain, in particular, chronic orofacial pain remains a great challenge in clinical practice. To better understand the underlying mechanism of disease, it is essential to apply a feasible and stable preclinical measurement of facial pain. Here, we introduced a novel electrical noxious stimulator in freely behavioral rodents and examined its validation in both naïve and chronic orofacial pain animals.MethodsOne subcutaneous device of electrical stimulator was implanted in the facial region for delivery of the nociceptive input. The sensory component of orofacial pain was assessed by response scoring tool, and conditioned place aversion (CPA) paradigm for pain affect respectively. To confirm its usage in chronic pain state, the chronic constriction injury of the infraorbital nerve (ION-CCI) model was then applied.ResultsWe found that responsive scores increased with stimulation intensity, and acted in a dosage-dependent manner, which can be attenuated by the administration of morphine intraperitoneally. Naïve rats displayed significant aversive reaction to the noxious electrical stimulation (25V) in the CPA testing. In addition, an obvious sensory hypersensitivity to electrical stimulation was confirmed by the increased response scores in ION-CCI rats. Furthermore, ION-CCI animal showed significant avoidance to electrical stimulation at relatively low intensity (10V), which was innoxious to naïve rats.ConclusionOur findings may provide an alternative pre-clinical measurement of orofacial pain, to quantitively assess both sensory and affective component of orofacial pain.
Collapse
|
9
|
Wilkerson JL, Hiranita T, Koek W, McMahon LR. The discriminative stimulus effects of baclofen and gamma hydroxybutyrate in C57BL/6J mice. Behav Pharmacol 2022; 33:427-434. [PMID: 35947069 PMCID: PMC9373713 DOI: 10.1097/fbp.0000000000000691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Baclofen and γ-hydroxybutyrate (GHB) exert γ-aminobutyric acid (GABA)B receptor agonism and have therapeutic utility but possess different pharmacological activities. We examined whether separate groups of mice could be trained to discriminate either baclofen or GHB, and the contribution of GABAB receptors to discriminative stimulus effects. Male C57BL/6J mice were trained to discriminate either baclofen (3.2 mg/kg, intraperitoneal) or GHB (178 mg/kg, intraperitoneal) from saline under a fixed-ratio 10 schedule. The GABAB antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP 35348) was used to pharmacologically assess GABAB receptor involvement. The selectivity of the resulting discriminations was assessed with the opioid agonist morphine and the benzodiazepine midazolam. In baclofen-trained mice, both baclofen and GHB were readily discriminated. Baclofen produced a maximum of 86% baclofen-appropriate responding. CGP 35348 (320 mg/kg, i.p.) produced a 4.7-fold rightward shift in the dose-effect function. GHB produced a maximum of 85.8% baclofen-appropriate responding. In GHB-trained mice, both GHB and baclofen were readily discriminated. In GHB-trained mice, GHB produced a maximum of 85.3% drug-appropriate responding; CGP 35348 (320 mg/kg, i.p.) produced a 1.8-fold rightward shift in the GHB discrimination dose-effect function. Baclofen produced up to 70.0% GHB-appropriate responding. CGP 35348 (320 mg/kg, i.p.) significantly antagonized baclofen discrimination and baclofen produced up to 37% GHB-appropriate responding up to doses that disrupted operant responding. Morphine did not produce substitution for either baclofen or GHB. Midazolam produced partial substitution for both. GHB and baclofen discrimination assays in mice provide a useful approach for examining different receptor types mediating the effects of these two drugs.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Wouter Koek
- Departments of Pharmacology
- Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
- Departments of Pharmacology
| |
Collapse
|
10
|
Han A, Montgomery C, Zamora A, Winder E, Kaye A, Carroll C, Aquino A, Kakazu J, Kaye AD. Glossopharyngeal Neuralgia: Epidemiology, Risk factors, Pathophysiology, Differential diagnosis, and Treatment Options. Health Psychol Res 2022; 10:36042. [PMID: 35774913 PMCID: PMC9239365 DOI: 10.52965/001c.36042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose of Review This is a comprehensive review of the most recent literature on glossopharyngeal neuralgia (GPN), a relatively rare form of neuropathic facial pain. It covers the epidemiology, risk factors, pathophysiology, and differential diagnosis given that glossopharyngeal neuralgia can often be confused with other facial pain syndromes. Finally, we extensively review recent findings regarding medical or conservative measures, minimally invasive, and surgical options for potentially treating and managing glossopharyngeal neuralgia. Recent Findings An in-depth analysis of the recent literature indicates that glossopharyngeal neuralgia is not only rare but its etiology and pathophysiology are complex and are often secondary to other disease processes. Regardless, current management options are shown to be effective in controlling pain. Conservatively, first-line management of GPN is carbamazepine, but gabapentin and eslicarbazepine acetate are suitable alternatives. In terms of current minimally invasive pain management techniques, pulsed radiofrequency ablation, nerve blocks, or percutaneous radiofrequency thermocoagulation are effective. Finally, surgical management involves microvascular decompression and rhizotomy. Summary While there are currently many viable options for addressing glossopharyngeal neuralgia pain ranging from conservative to surgical management, the complex nature of GPN etiology, pathophysiology, and involved anatomical structures prompts further research for more effective ways to treat the disease.
Collapse
Affiliation(s)
- Andrew Han
- School of Medicine Georgetown University School of Medicine
| | | | | | | | - Adam Kaye
- Pharmacy and Health Sciences Thomas J. Long School of Pharmacy and Health Sciences
| | | | | | - Juyeon Kakazu
- School of Medicine Georgetown University School of Medicine
| | | |
Collapse
|
11
|
Mechanisms Underlying the Selective Therapeutic Efficacy of Carbamazepine for Attenuation of Trigeminal Nerve Injury Pain. J Neurosci 2021; 41:8991-9007. [PMID: 34446571 DOI: 10.1523/jneurosci.0547-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Different peripheral nerve injuries cause neuropathic pain through distinct mechanisms. Even the site of injury may impact underlying mechanisms, as indicated by the clinical finding that the antiseizure drug carbamazepine (CBZ) relieves pain because of compression injuries of trigeminal but not somatic nerves. We leveraged this observation in the present study hypothesizing that because CBZ blocks voltage-gated sodium channels (VGSCs), its therapeutic selectivity reflects differences between trigeminal and somatic nerves with respect to injury-induced changes in VGSCs. CBZ diminished ongoing and evoked pain behavior in rats with chronic constriction injury (CCI) to the infraorbital nerve (ION) but had minimal effect in rats with sciatic nerve CCI. This difference in behavior was associated with a selective increase in the potency of CBZ-induced inhibition of compound action potentials in the ION, an effect mirrored in human trigeminal versus somatic nerves. The increase in potency was associated with a selective increase in the efficacy of the NaV1.1 channel blocker ICA-121431 and NaV1.1 protein in the ION, but no change in NaV1.1 mRNA in trigeminal ganglia. Importantly, local ICA-121431 administration reversed ION CCI-induced hypersensitivity. Our results suggest a novel therapeutic target for the treatment of trigeminal neuropathic pain.SIGNIFICANCE STATEMENT This study is based on evidence of differences in pain and its treatment depending on whether the pain is above (trigeminal) or below (somatic) the neck, as well as evidence that voltage-gated sodium channels (VGSCs) may contribute to these differences. The focus of the present study was on channels underlying action potential propagation in peripheral nerves. There were differences between somatic and trigeminal nerves in VGSC subtypes underlying action potential propagation both in the absence and presence of injury. Importantly, because the local block of NaV1.1 in the trigeminal nerve reverses nerve injury-induced mechanical hypersensitivity, the selective upregulation of NaV1.1 in trigeminal nerves suggests a novel therapeutic target for the treatment of pain associated with trigeminal nerve injury.
Collapse
|
12
|
Bomba FDT, Nguelefack TB, Matharasala G, Mishra RK, Battu MB, Sriram D, Kamanyi A, Yogeeswari P. Antihypernociceptive effects of Petersianthus macrocarpus stem bark on neuropathic pain induced by chronic constriction injury in rats. Inflammopharmacology 2021; 29:1241-1253. [PMID: 34081248 DOI: 10.1007/s10787-021-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
Petersianthus macrocarpus (Lecythidaceae) stem bark is traditionally used in West and Central Africa for the treatment of boils and pain. The present study examined the chemical composition of the aqueous and methanolic stem bark extracts of P. macrocarpus by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) . Their antinociceptive effect was evaluated using chronic constriction injury (CCI)-induced neuropathic pain in a rat model. On the ninth day post-surgery, the pain perception (allodynia and hyperalgesia) of the animals was assessed after the administration of aqueous and methanolic extracts at the doses of 100 and 200 mg/kg. In addition, the effect of the extracts was evaluated on nitric oxide activity and on the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and NF-κB). The LC-ESI-MS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts at the employed doses (100 and 200 mg/kg), significantly (p < 0.01 and p < 0.001) reduced the spontaneous pain, tactile and cold allodynia, and mechanical hyperalgesia. The methanolic extract used at the dose of 200 mg/kg significantly reduced the nitric oxide level (p < 0.001) and the gene expression levels of NF-κB (p < 0.05) and TNF-α (p < 0.01) in the brain. These data may indicate that stem bark extracts of P. macrocarpus possess a potent anti-hypernociceptive effect on CCI neuropathic pain. The inhibition of the nitric oxide pathway as well as the reduction in NF-κB and TNF-α gene expression in the brain may at least partially contribute to this effect. The results further support the use of this plant by traditional healers in pain conditions.
Collapse
Affiliation(s)
- Francis Desire Tatsinkou Bomba
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon.
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India.
| | - Telesphore Benoit Nguelefack
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Gangadhar Matharasala
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Ram Kumar Mishra
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Madhu Babu Battu
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Albert Kamanyi
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Perumal Yogeeswari
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
13
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|
14
|
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Mol Pain 2021; 16:1744806920901890. [PMID: 31908187 PMCID: PMC6985973 DOI: 10.1177/1744806920901890] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The trigeminal nerve (V) is the fifth and largest of all cranial nerves, and it is responsible for detecting sensory stimuli that arise from the craniofacial area. The nerve is divided into three branches: ophthalmic (V1), maxillary (V2), and mandibular (V3); their cell bodies are located in the trigeminal ganglia and they make connections with second-order neurons in the trigeminal brainstem sensory nuclear complex. Ascending projections via the trigeminothalamic tract transmit information to the thalamus and other brain regions responsible for interpreting sensory information. One of the most common forms of craniofacial pain is trigeminal neuralgia. Trigeminal neuralgia is characterized by sudden, brief, and excruciating facial pain attacks in one or more of the V branches, leading to a severe reduction in the quality of life of affected patients. Trigeminal neuralgia etiology can be classified into idiopathic, classic, and secondary. Classic trigeminal neuralgia is associated with neurovascular compression in the trigeminal root entry zone, which can lead to demyelination and a dysregulation of voltage-gated sodium channel expression in the membrane. These alterations may be responsible for pain attacks in trigeminal neuralgia patients. The antiepileptic drugs carbamazepine and oxcarbazepine are the first-line pharmacological treatment for trigeminal neuralgia. Their mechanism of action is a modulation of voltage-gated sodium channels, leading to a decrease in neuronal activity. Although carbamazepine and oxcarbazepine are the first-line treatment, other drugs may be useful for pain control in trigeminal neuralgia. Among them, the anticonvulsants gabapentin, pregabalin, lamotrigine and phenytoin, baclofen, and botulinum toxin type A can be coadministered with carbamazepine or oxcarbazepine for a synergistic approach. New pharmacological alternatives are being explored such as the active metabolite of oxcarbazepine, eslicarbazepine, and the new Nav1.7 blocker vixotrigine. The pharmacological profiles of these drugs are addressed in this review.
Collapse
Affiliation(s)
- Eder Gambeta
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Brazil
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Tétreault P, Besserer-Offroy É, Brouillette RL, René A, Murza A, Fanelli R, Kirby K, Parent AJ, Dubuc I, Beaudet N, Côté J, Longpré JM, Martinez J, Cavelier F, Sarret P. Pain relief devoid of opioid side effects following central action of a silylated neurotensin analog. Eur J Pharmacol 2020; 882:173174. [DOI: 10.1016/j.ejphar.2020.173174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
16
|
白 珊, 莫 思, 徐 啸, 刘 云, 谢 秋, 曹 烨. [Characteristics of orofacial operant test for orofacial pain sensitivity caused by occlusal interference in rats]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:51-57. [PMID: 32071463 PMCID: PMC7439061 DOI: 10.19723/j.issn.1671-167x.2020.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To compare the orofacial pain sensitivity with operant test and mechanical hyperalgesia with von Frey filaments of two orofacial pain models (EOI: experimental occlusal interference; pIONX: partial infraorbital nerve transection). To investigate the operant and evoked characteristics of EOI-rats. METHODS The orofacial operant behaviors were tested by Ugo Basile Orofacial Stimulation Test System. The mechanical thresholds of vibrissal pads were tested by von Frey filaments. Male Sprague-Dawley rats were randomly divided into eight groups: von Frey group: sham-EOI, EOI, sham-pIONX, pIONX (sham: sham-operated group); operant test group: sham-EOI, EOI, sham-pIONX, pIONX (sham: sham-operated group). The mechanical thresholds and orofacial operant behaviors were tested on pre-operation and post-operation days l, 3, 7, 10, 14 and 21. RESULTS In pIONX of von Frey group, the mechanical withdrawal threshold decreased from days 1 to 21 (P<0.05), peaking from days 7 to 10, and lasted until the end of the experiment. There was no significant difference between the bilateral sides. In pIONX of operant test group, the total contact time decreased from days 10 to 21 (P<0.05), peaking from days 10 to 14, and lasted until the end of the experiment. In EOI of von Frey group, the mechanical withdrawal threshold decreased from days 3 to 21 (P<0.05), peaking on day 7, and lasted until the end of the experiment. There was no significant difference between the bilateral sides. In EOI of operant test group, the total contact time decreased from days 1 to 21 (P<0.05), peaking from days 7 to 10, and lasting until the end of experiment. CONCLUSION Orofacial operant test is a stable method to evaluate orofacial pain behaviors, which could discriminate the feature of neuropathic and EOI orofacial pain. In these two animal models, both of the operant behaviors and the mechanical hyperalgesia exhibited different time courses. Orofacial operant test provides a novel method for evaluating the orofacial pain sensitivity and studying the orofacial pain mechanism thoroughly.
Collapse
Affiliation(s)
- 珊珊 白
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 思怡 莫
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 啸翔 徐
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 云 刘
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 秋菲 谢
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 烨 曹
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
17
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
18
|
Wilkerson JL, Felix JS, Restrepo LF, Ansari MI, Coop A, McMahon LR. The Effects of Morphine, Baclofen, and Buspirone Alone and in Combination on Schedule-Controlled Responding and Hot Plate Antinociception in Rats. J Pharmacol Exp Ther 2019; 370:380-389. [PMID: 31235534 PMCID: PMC6697778 DOI: 10.1124/jpet.118.255844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Better therapeutic options are needed for pain. Baclofen, buspirone, and morphine are characterized as having analgesic properties. However, little is known about potential interactions between analgesic effects of these drugs when combined. Furthermore, it is not known if the magnitude of these potential interactions will be similar for all drug effects. Thus, we tested the effects of these drugs alone and in combination for their capacity to produce thermal antinociception and to decrease food-maintained responding. Four male and four female Sprague-Dawley rats responded for food under a fixed-ratio 10 schedule; afterward they were immediately placed on a 52°C hot plate. Morphine, baclofen, and buspirone were examined alone and in 1:1 combinations, based upon ED50 values. Morphine and baclofen effects were evaluated with the opioid antagonist naltrexone and the GABAB antagonist (3-Aminopropyl)(diethoxymethyl)phosphinic acid (CGP35348), respectively. Morphine, baclofen, and buspirone dose dependently decreased operant responding, with the calculated ED50 values being 7.09, 3.42, and 0.57 mg/kg, respectively. The respective antinociception ED50 values were 16.15, 8.75, and 2.20 mg/kg. Analysis of 1:1 combinations showed the effects of morphine plus baclofen to decrease schedule-controlled responding and to produce thermal antinociception were synergistic. Effects of morphine plus buspirone and baclofen plus buspirone to decrease schedule-controlled responding were additive. Effects of the two combinations to produce thermal antinociception were synergistic. Naltrexone and CGP35348 antagonized the effects of morphine and baclofen, respectively. Synergistic antinociceptive effects, in conjunction with additive effects on food-maintained responding, highlight the therapeutic utility of opioid and non-opioid drug combinations.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Luis F Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Mohd Imran Ansari
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Andrew Coop
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.L.W., J.S.F., L.F.R., L.R.M.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland (M.I.A., A.C.)
| |
Collapse
|
19
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
20
|
Araújo-Filho HG, Pereira EWM, Campos AR, Quintans-Júnior LJ, Quintans JSS. Chronic orofacial pain animal models - progress and challenges. Expert Opin Drug Discov 2018; 13:949-964. [PMID: 30220225 DOI: 10.1080/17460441.2018.1524458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic orofacial pain is one of the most common pain conditions experienced by adults. Animal models are often selected as the most useful scientific methodology to explore the pathophysiology of the disorders that cause this disabling pain to facilitate the development of new treatments. The creation of new models or the improvement of existing ones is essential for finding new ways to approach the complex neurobiology of this type of pain. Areas covered: The authors describe and discuss a variety of animal models used in chronic orofacial pain (COFP). Furthermore, they examine in detail the mechanisms of action involved in orofacial neuropathic pain and orofacial inflammatory pain. Expert opinion: The use of animal models has several advantages in chronic orofacial pain drug discovery. Choosing an animal model that most closely represents the human disease helps to increase the chances of finding effective new therapies and is key to the successful translation of preclinical research to clinical practice. Models using genetically modified animals seem promising but have not yet been fully developed for use in chronic orofacial pain research. Although animal models have provided significant advances in the pharmacological treatment of orofacial pain, several barriers still need to be overcome for better treatment options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Erik W M Pereira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Adriana Rolim Campos
- b Experimental Biology Centre (NUBEX) , University of Fortaleza (UNIFOR) , Fortaleza , Brazil
| | - Lucindo J Quintans-Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Jullyana S S Quintans
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| |
Collapse
|
21
|
Orofacial neuropathic pain reduces spontaneous burrowing behavior in rats. Physiol Behav 2018; 191:91-94. [DOI: 10.1016/j.physbeh.2018.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 12/29/2022]
|
22
|
Li L, Han Y, Li T, Zhou J, Sun C, Xue Y. The analgesic effect of intravenous methylprednisolone on acute neuropathic pain with allodynia due to central cord syndrome: a retrospective study. J Pain Res 2018; 11:1231-1238. [PMID: 29983586 PMCID: PMC6025778 DOI: 10.2147/jpr.s160463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Central cord syndrome (CCS) may be associated with severe neuropathic pain that often resists to conventional pain therapy regimens and affects the patients’ quality of life (QoL) seriously. Current treatments for CCS-associated neuropathic pain have limited evidence of efficacy. This retrospective study was performed to present the effects of early treatment with methylprednisolone (MP) on acute neuropathic pain relief and the QoL in CCS patients. Patients and methods Data were collected from the medical records of CCS patients who suffered from acute neuropathic pain with allodynia. All the patients received intravenous MP treatment for up to 1 week. Patients were evaluated with standard measures of efficacy: neuropathic pain intensity, the area of allodynia, and the QoL at baseline, daily treatment, and at 1 and 3 months after the end of MP treatment. Results Thirty-four eligible patients were enrolled in our study. By the end of MP treatment, the proportion of patients who gained total or major (visual analog scale [VAS] score decreased by 50% or more) allodynia relief from the treatment was 91.18%, and a decrease in spontaneous pain was also observed. Moreover, this study showed MP could significantly improve the QoL of patients based on McGill Pain Questionnaire Short Form and EuroQol Five Dimensions Questionnaire. Four patients (11.76%) during MP treatment experienced mild or moderate side effects. None of the patients manifested CCS-associated neuropathic pain recurrence and MP-associated side effects at follow-up. Conclusion The current results suggested that MP offered an effective therapeutic alternative for relieving CCS-associated acute neuropathic pain with allodynia. Given the encouraging results of this study, it would be worthwhile to confirm these results in randomized placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Liandong Li
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tengshuai Li
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Jiaming Zhou
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| | - Chao Sun
- Department of Orthopaedics Surgery, Tianjin Metabolic Diseases Hospital & Tianjin Institution of Endocrinology, Tianjin, China.,Key Lab of Hormones and Development (National Health and Family Planning Commission of the PRC), Tianjin Key Laboratory of Metabolic Diseases, Tianjin, China
| | - Yuan Xue
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, China,
| |
Collapse
|
23
|
Sensory symptom profiles differ between trigeminal and thoracolumbar postherpetic neuralgia. Pain Rep 2018; 3:e636. [PMID: 29430564 PMCID: PMC5802323 DOI: 10.1097/pr9.0000000000000636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023] Open
Abstract
Introduction Animal experimental evidence suggests that mechanisms of pain generation and response to treatment differ between neuropathic pain in the cephalic and the extracephalic innervation territories. Objectives The objective of the study was to examine whether in humans an identical peripheral painful neuropathy is associated with different pain qualities and sensory abnormalities in the face as compared with the thoracic region. Methods We retrospectively analysed epidemiological and clinical data of 639 patients with postherpetic neuralgia (PHN) in the face and at the trunk who were collected within a cross-sectional cohort survey and compared the respective sensory symptom profiles captured with the painDETECT questionnaire. Results Two hundred twenty-four patients suffered from trigeminal PHN and 415 from thoracolumbar PHN. There were no significant differences in sex-ratio, age, body mass index, and pain duration. Patients with trigeminal PHN were more often severely depressed. Anxiety and sleep scores were not different. The average pain intensity was slightly higher in thoracolumbar PHN than trigeminal PHN (visual analogue scale 5.0 vs 4.6). Postherpetic neuralgia in the thoracolumbar region showed significantly more intense burning sensations, allodynia, painful attacks, and significantly less prickling and numbness than PHN in the face. Conclusions The differences in sensory symptom profiles between facial PHN and truncal PHN might be associated with different pathophysiological mechanisms and different treatment response. Drugs that primarily act on sensitization processes in the peripheral nociceptive system may work better in thoracolumbar PHN than in trigeminal PHN. If new medications are tested in patients with PHN, it would therefore be of interest to include an analysis of the treatment results in regard to subgroups based on the localisation of pain in patients with PHN.
Collapse
|
24
|
Gambeta E, Kopruszinski CM, dos Reis RC, Zanoveli JM, Chichorro JG. Facial pain and anxiety-like behavior are reduced by pregabalin in a model of facial carcinoma in rats. Neuropharmacology 2017; 125:263-271. [DOI: 10.1016/j.neuropharm.2017.07.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|