1
|
Guo L, Li X, Zhang R, Hou Y, Ma B, Li Z, Lv J, Wang B, Ma S, Li L, Yan L, Zhang B, Liu W, Lim K, Diao H, Wang S, Zhang C. In situ dual-activated NIRF/PA carrier-free nanoprobe for diagnosis and treatment of Parkinson's disease. Biosens Bioelectron 2025; 282:117473. [PMID: 40267542 DOI: 10.1016/j.bios.2025.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease threatening the life of millions people worldwide. Oxidative stress, mitochondrial dysfunction, and neuroinflammation are the pivotal causative elements of PD. Precise diagnosis enables timely monitoring initiation and progression of PD, thereby facilitating the formulation of customized and targeted treatment strategies. Optical imaging offers one alternative way for PD diagnosis. However, available diagnostic probes suffer from the inability to bypass the blood brain barrier (BBB). To accurately diagnose and effectively combat PD, there is an urgent need to develop an integrated diagnostic and therapeutic nanoprobe that can bypass the BBB and target the factors underlying degeneration of dopaminergic (DA) neurons. In present study, one integrated carrier-free nanoprobe HVCur-NPs towards those factors was designed and constructed. By modifying probe side chain with polypeptide, RVG29, we obtained brain-targeting HV-PEG-RVG29. It not only enables BBB penetration, but also produces near-infrared fluorescence (NIRF) and photoacoustic (PA) signals in cascade response to H2O2 and viscosity. The release of loaded curcumin (CUR) prevents oxidative stress, neuroinflammation and restore mitochondrial function so as to rescue PD phenotypes. In cellular PD model, HVCur-NPs generated NIRF/PA signals in response to elevated ROS and viscosity, and ameliorated cell apoptosis by eliminating ROS and restoring mitochondria function. Moreover, in mice PD model, HVCur-NPs realized in situ NIRF/PA imaging brain, and rescued DA neuron loss and restored the behavioral deficit of PD mice, without detectable biotoxicity. This carrier-free nanoprobe opens venues for integrated diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lixia Guo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Run Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yixuan Hou
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Bolong Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, 117054, Singapore
| | - Jiye Lv
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Bin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lihong Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lili Yan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Boye Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China.
| | - Shaowei Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, PR China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China.
| |
Collapse
|
2
|
Sabnam S, Kumar R, Pranav. Biofunctionalized nanomaterials for Parkinson's disease theranostics: potential for efficient PD biomarker detection and effective therapy. Biomater Sci 2025; 13:2201-2234. [PMID: 40036044 DOI: 10.1039/d5bm00179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
α-Synuclein (α-Syn) is a primary pathological indicator for Parkinson's disease (PD). The α-Syn oligomer is even more toxic and is responsible for PD. Hence, identifying α-Syn and its oligomers is an interesting approach to diagnosing PD. The prevention strategies for oligomer formation could be therapeutic in treating PD. Various conventional strategies have been developed for the management of PD. However, their clinical applications are limited due to toxicity, off-targeting, side effects, and poor bioavailability. Recently, nanomaterials have gained significant attention due to unique physicochemical characteristics such as nanoscale size, large surface area, flexibility of functionalization, and ability to protect and control a loaded payload. Functionalizing the surface of nanoparticles with a desired targeting agent could offer targeted delivery of the payload at the site of action due to specificity and selectivity against complementary molecules. Among various functionalization approaches, biomolecule-functionalized nanomaterials offer benefits such as enhanced bioavailability, improved internalization into target cells through receptor-mediated endocytosis, and delivery of therapeutics across the BBB (blood-brain barrier). In this review, we initially discussed the major milestones related to PD and highlighted the therapeutic strategies focused on clinical trials. The strategies of biomolecule functionalization of nanomaterials and their application in detecting and preventing α-Syn oligomer for the diagnosis and therapy of PD, respectively, have been reviewed comprehensively. Ultimately, we have outlined the conclusions, highlighted the limitations and challenges, and provided insight into future perspectives and alternative approaches that must be investigated.
Collapse
Affiliation(s)
- Saheli Sabnam
- Centre for Nanosciences, Indian Institute of Technology Kanpur, India-208016
| | - Raj Kumar
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab-140413, India.
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, India-632014.
| |
Collapse
|
3
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Cebi I, Graf LH, Schütt M, Hormozi M, Klocke P, Löffler M, Schneider M, Warnecke T, Gharabaghi A, Weiss D. Oral Transport, Penetration, and Aspiration in PD: Insights from a RCT on STN + SNr Stimulation. Dysphagia 2024:10.1007/s00455-024-10779-y. [PMID: 39520524 DOI: 10.1007/s00455-024-10779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Dysphagia is frequent and detrimental in advanced Parkinson's disease (PD) and does not respond to standard treatments. Experimental models suggested that pathological overactivity of the substantia nigra pars reticulata (SNr) may hinder oral contributions to swallowing. Here, we hypothesized that the combined stimulation of subthalamic nucleus (STN) and SNr improves measures of dysphagia after eight weeks of active treatment. We enrolled 20 PD patients with dysphagia and deep brain stimulation (DBS). Patients were assessed in 'medication on' and 'STN' stimulation at baseline (V1) and then were randomized 1:1 to 'STN' or 'STN + SNr' stimulation. In addition, patients of both groups received swallowing therapy as a standard of care. The primary endpoint was the change in Penetration-Aspiration Scale (PAS) at eight-week follow-up (V2) with respect to the baseline (V1) under the hypothesis, that 'STN + SNr' was superior to 'STN'. We obtained further secondary endpoints on oral preparation, transport, pharyngeal phase, penetration, and aspiration. PAS change from V1 to V2 was not significantly different between groups (p = 0.221). When considering all patients for secondary analyses, we found that the entire study cohort showed better PAS scores at V2 compared to V1 irrespective from DBS treatment allocation (p = 0.0156). Both STN and STN + SNr treatments were safe. 'STN + SNr' stimulation was not superior compared to standard 'STN' stimulation both on PAS and the secondary endpoints. We found that the entire study cohort improved dysphagia after eight weeks, which presumably mirrors the effect of continued swallowing therapy and the increased patient attention on swallowing.
Collapse
Affiliation(s)
- Idil Cebi
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany
| | - Lisa Helene Graf
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany
| | - Marion Schütt
- Institute for Clinical Epidemiology and Applied Biometry at the University Hospital Tübingen, Tuebingen, Germany
- Department of Medical Biometry and Epidemiology at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Hormozi
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany
| | - Philipp Klocke
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany
| | - Moritz Löffler
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany
| | - Marlieke Schneider
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany
| | - Tobias Warnecke
- Department of Neurology and Neurorehabilitation, Klinikum Osnabrueck - Academic Teaching Hospital of the WWU, Muenster, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076, Tübingen, Germany
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), 72076, Tübingen, Germany
- German Center for Mental Health (DZPG), 72076, Tübingen, Germany
| | - Daniel Weiss
- Centre of Neurology and Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Hoppe- Seyler- Str. 3, 72076, Tuebingen, Germany.
| |
Collapse
|
5
|
Ha TY, Kim JB, Kim Y, Park SM, Chang KA. GPR40 agonist ameliorates neurodegeneration and motor impairment by regulating NLRP3 inflammasome in Parkinson's disease animal models. Pharmacol Res 2024; 209:107432. [PMID: 39313081 DOI: 10.1016/j.phrs.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and accumulation of intracellular α-synuclein (ɑ-syn) aggregates known as Lewy bodies and Lewy neurites. Levels of polyunsaturated fatty acids (PUFAs) have previously been shown to be reduced in the SN of PD patients. G protein-coupled receptor 40 (GPR40) serves as a receptor for PUFAs, playing a role in neurodevelopment and neurogenesis. Additionally, GPR40 has been implicated in several neuropathological conditions, such as apoptosis and inflammation, suggesting its potential as a therapeutic target in PD. In this study, we investigated the neuroprotective effects of the GPR40 agonist, TUG469 in PD models. Our results demonstrated that TUG469 reduces the neurotoxicity induced by 6-OHDA in SH-SY5Y cells. In 6-OHDA-induced PD model mice, TUG469 treatment improved motor impairment, preserved dopaminergic fibers and cell bodies in the striatum (ST) or SN, and attenuated 6-OHDA-induced microgliosis and astrogliosis in the brain. Furthermore, in a PD model involving the injection of mouse ɑ-syn fibrils into the brain (mPFFs-PD model), TUG469 treatment reduced the levels of pSer129 ɑ-syn, and decreased microgliosis and astrogliosis. Our investigation also revealed that TUG469 modulates inflammasome activation, apoptosis, and autophagy in the 6-OHDA-PD model, as evidenced by the results of RNA-seq and western blotting analyses. In summary, our findings highlight the neuroprotective effects of GPR40 agonists on dopaminergic neurons and their potential as therapeutic agents for PD. These results underscore the importance of targeting GPR40 in PD treatment, particularly in mitigating neuroinflammation and preserving neuronal integrity.
Collapse
Affiliation(s)
- Tae-Young Ha
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Jae-Bong Kim
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yeji Kim
- Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea; Department of Health Science and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
6
|
Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis 2024; 10:186. [PMID: 39369002 PMCID: PMC11455891 DOI: 10.1038/s41531-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/15/2024] [Indexed: 10/07/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Vision Research and Center for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
7
|
Huissoud M, Boussac M, Joineau K, Harroch E, Brefel-Courbon C, Descamps E. The effectiveness and safety of non-pharmacological intervention for pain management in Parkinson's disease: A systematic review. Rev Neurol (Paris) 2024; 180:715-735. [PMID: 37833205 DOI: 10.1016/j.neurol.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 10/15/2023]
Abstract
Chronic pain is a non-motor symptom affecting from 60 to 80% of patients with Parkinson's disease (PD). PD patients can suffer from different types of pain, either specific or not specific of the disease, and depending on various pathophysiological mechanisms (nociceptive, nociplastic or neuropathic), which can be present at any stage of the disease. Non-pharmacological interventions (NPIs) are essential to complement routine care interventions in PD pain management. Moreover, in the literature, it has been shown that 42% of PD patients are already using complementary therapies. Hence, our aim was to investigate the effectiveness and safety of NPIs for pain management in PD. A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Eighteen published randomized control trials (RCTs) were included between 2004 and 2021 leading to a total of 976 PD patients. From them, we reported fifteen different NPIs classified in seven categories: physical exercises, balneotherapy, manual therapy, acupuncture, botanical preparation, body-psychological practice and multiprotection care. Our results have shown that NPIs for PD pain management had a low-to-moderate level of evidence showing mainly favourable results, even if some NPIs presented inconclusive results. Moreover, our review highlighted the clinical relevance of some specific NPIs in PD pain management: NPIs consisting of active physical activities, opposed to passive activities. The safety of NPIs was also confirmed since only few minor transient adverse events were reported. Nevertheless, even if some interesting results were found, the methodology of future studies needs to be more robust and to include comprehensive descriptions in order to offer reliable and sound recommendations to clinicians.
Collapse
Affiliation(s)
- M Huissoud
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse, Inserm UMR1214, University Paul-Sabatier (UPS), Toulouse, France
| | - M Boussac
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse, Inserm UMR1214, University Paul-Sabatier (UPS), Toulouse, France.
| | - K Joineau
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse, Inserm UMR1214, University Paul-Sabatier (UPS), Toulouse, France
| | - E Harroch
- Department of Clinical Pharmacology and Neurosciences, Centre d'Investigation Clinique (CIC1436), NS-Park/FCRIN Network, Toulouse, France
| | - C Brefel-Courbon
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse, Inserm UMR1214, University Paul-Sabatier (UPS), Toulouse, France; Department of Clinical Pharmacology and Neurosciences, Centre d'Investigation Clinique (CIC1436), NS-Park/FCRIN Network, Toulouse, France
| | - E Descamps
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse, Inserm UMR1214, University Paul-Sabatier (UPS), Toulouse, France; CNRS, Toulouse, France
| |
Collapse
|
8
|
Tambe P, Undale V, Sanap A, Bhonde R, Mante N. The prospective role of mesenchymal stem cells in Parkinson's disease. Parkinsonism Relat Disord 2024; 127:107087. [PMID: 39142905 DOI: 10.1016/j.parkreldis.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a stressful neurodegenerative disorder affecting millions worldwide. PD leads to debilitating motor and cognitive symptoms such as tremors, rigidity, and difficulty walking. Current therapies for PD are symptomatic and don't address the root cause. Therefore, there is an urgent need for better management and intensive research into alternative therapies. Mesenchymal stem cell (MSC) therapy is among the leading contenders among these promising avenues. We examined preclinical and clinical evidence demonstrating the neuroprotective, anti-inflammatory, and regenerative properties of the MSCs. This review focuses on the complex pathophysiological mechanisms of PD, as well as the perspectives of MSCs and their derivatives, such as secretomes and exosomes, in the clinical management of PD. We also analyzed the challenges and limitations of each approach, including delivery methods, timing of administration, and long-term safety considerations.
Collapse
Affiliation(s)
- Pratima Tambe
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India.
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| | - Nishant Mante
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
9
|
Zifman N, Levy-Lamdan O, Hiller T, Thaler A, Dolev I, Mirelman A, Fogel H, Hallett M, Maidan I. TMS-evoked potentials unveil occipital network involvement in patients diagnosed with Parkinson's disease within 5 years of inclusion. NPJ Parkinsons Dis 2024; 10:182. [PMID: 39349492 PMCID: PMC11443052 DOI: 10.1038/s41531-024-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
Distinguishing Parkinson's disease (PD) subgroups may be achieved by observing network responses to external stimuli. We compared TMS-evoked potential (TEP) measures from stimulation of bilateral motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), and visual cortex (V1) between 62 PD patients (age: 69.9 ± 7.5) and 76 healthy controls (age: 69.2 ± 4.3) using a TMS-EEG protocol. TEP measures were analyzed using two-way ANCOVA adjusted for MOCA. PD patients were divided into tremor dominant (TD), non-tremor dominant (NTD) and rapid disease progression (RDP) subgroups. PD patients showed lower wide-waveform adherence (wWFA) (p = 0.025) and interhemispheric connectivity (IHCCONN) (p < 0.001) compared to healthy controls. Lower occipital IHCCONN correlated with advanced disease stage (r = -0.37, p = 0.0039). The RDP and NTD groups showed lower wWFA in response to occipital stimulation than the TD group (p = 0.005). Occipital TEP measures identified RDP patients with 85% accuracy. These findings demonstrate occipital network involvement in early PD stages, suggesting that TEP measures offer insights into altered networks in PD subgroups.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | | | - Tal Hiller
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | - Avner Thaler
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hilla Fogel
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
| | - Mark Hallett
- QuantalX Neuroscience Ltd., Kfar Saba, Israel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Ramirez SP, Hernandez I, Dorado ZN, Loyola CD, Roberson DA, Joddar B. Fibrin-Polycaprolactone Scaffolds for the Differentiation of Human Neural Progenitor Cells into Dopaminergic Neurons. ACS OMEGA 2024; 9:37063-37075. [PMID: 39246477 PMCID: PMC11375720 DOI: 10.1021/acsomega.4c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
Parkinson's disease (PD), a progressive central nervous system disorder marked by involuntary movements, poses a significant challenge in neurodegenerative research due to the gradual degeneration of dopaminergic (DA) neurons. Early diagnosis and understanding of PD's pathogenesis could slow disease progression and improve patient management. In vitro modeling with DA neurons derived from human-induced pluripotent stem cell-derived neural progenitor cells (NPCs) offers a promising approach. These neurons can be cultured on electrospun (ES) nanofibrous polycaprolactone (PCL) scaffolds, but PCL's hydrophobic nature limits cell adhesion. We investigated the ability of ES PCL scaffolds coated with hydrophilic extracellular matrix-based biomaterials, including cell basement membrane proteins, Matrigel, and Fibrin, to enhance NPC differentiation into DA neurons. We hypothesized that fibrin-coated scaffolds would maximize differentiation based on fibrin's known benefits in neuronal tissue engineering. The scaffolds both coated and uncoated were characterized using scanning electron microscopy (SEM), transmission electron microscopy, Fourier transform infrared spectroscopy-attenuated total reflectance, and dynamic mechanical analysis to assess their properties. NPCs were seeded on the coated scaffolds, differentiated, and matured into DA neurons. Immunocytochemistry targeting tyrosine hydroxylase (TH) and SEM confirmed DA neuronal differentiation and morphological changes. Electrophysiology via microelectrode array recorded their neuronal firing. Results showed enhanced neurite extension, increased TH expression, and active electrical activity in cells on fibrin-coated scaffolds. Diluted fibrin coatings particularly promoted more pronounced neuronal differentiation and maturation. This study introduces a novel tissue-on-a-chip platform for neurodegenerative disease research using DA neurons.
Collapse
Affiliation(s)
- Salma P Ramirez
- Inspired Materials and Stem-Cell Based Tissue Engineering Lab (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Ivana Hernandez
- Inspired Materials and Stem-Cell Based Tissue Engineering Lab (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zayra N Dorado
- Inspired Materials and Stem-Cell Based Tissue Engineering Lab (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Carla D Loyola
- Inspired Materials and Stem-Cell Based Tissue Engineering Lab (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - David A Roberson
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Polymer Extrusion Lab, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Lab (IMSTEL), The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
11
|
Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. NEUROPROTECTION 2024; 2:182-195. [PMID: 39364217 PMCID: PMC11449118 DOI: 10.1002/nep3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 10/05/2024]
Abstract
The existing literature on neurodegenerative diseases (NDDs) reveals a common pathological feature: the accumulation of misfolded proteins. However, the heterogeneity in disease onset mechanisms and the specific brain regions affected complicates the understanding of the diverse clinical manifestations of individual NDDs. Dementia, a hallmark symptom across various NDDs, serves as a multifaceted denominator, contributing to the clinical manifestations of these disorders. There is a compelling hypothesis that therapeutic strategies capable of mitigating misfolded protein accumulation and disrupting ongoing pathogenic processes may slow or even halt disease progression. Recent research has linked disease-associated microglia to their transition into a senescent state-characterized by irreversible cell cycle arrest-in aging populations and NDDs. Although senescent microglia are consistently observed in NDDs, few studies have utilized animal models to explore their role in disease pathology. Emerging evidence from experimental rat models suggests that disease-associated microglia exhibit characteristics of senescence, indicating that deeper exploration of microglial senescence could enhance our understanding of NDD pathogenesis and reveal novel therapeutic targets. This review underscores the importance of investigating microglial senescence and its potential contributions to the pathophysiology of NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Additionally, it highlights the potential of targeting microglial senescence through iron chelation and senolytic therapies as innovative approaches for treating age-related NDDs.
Collapse
Affiliation(s)
- Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O. Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Omolabake I. Omotosho
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Oritoke M. Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, School of Basic Medical Science, Federal University of Technology, Akure, Ondo, Nigeria
| | - Olayemi J. Olajide
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Omamuyouwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
12
|
Shan Q, Yu X, Lin X, Tian Y. Reduced inhibitory synaptic transmission onto striatopallidal neurons may underlie aging-related motor skill deficits. Neurobiol Dis 2024; 199:106582. [PMID: 38942325 DOI: 10.1016/j.nbd.2024.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Human beings are living longer than ever before and aging is accompanied by an increased incidence of motor deficits, including those associated with the neurodegenerative conditions, Parkinson's disease (PD) and Huntington's disease (HD). However, the biological correlates underlying this epidemiological finding, especially the functional basis at the synapse level, have been elusive. This study reveals that motor skill performance examined via rotarod, beam walking and pole tests is impaired in aged mice. This study, via electrophysiology recordings, further identifies an aging-related reduction in the efficacy of inhibitory synaptic transmission onto dorsolateral striatum (DLS) indirect-pathway medium spiny neurons (iMSNs), i.e., a disinhibition effect on DLS iMSNs. In addition, pharmacologically enhancing the activity of DLS iMSNs by infusing an adenosine A2A receptor (A2AR) agonist, which presumably mimics the disinhibition effect, impairs motor skill performance in young mice, simulating the behavior in aged naïve mice. Conversely, pharmacologically suppressing the activity of DLS iMSNs by infusing an A2AR antagonist, in order to offset the disinhibition effect, restores motor skill performance in aged mice, mimicking the behavior in young naïve mice. In conclusion, this study identifies a functional inhibitory synaptic plasticity in DLS iMSNs that likely contributes to the aging-related motor skill deficits, which would potentially serve as a striatal synaptic basis underlying age being a prominent risk factor for neurodegenerative motor deficits.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoli Lin
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Cooke A, Hindle J, Lawrence C, Bellomo E, Pritchard AW, MacLeod CA, Martin-Forbes P, Jones S, Bracewell M, Linden DEJ, Mehler DMA. Effects of home-based EEG neurofeedback training as a non-pharmacological intervention for Parkinson's disease. Neurophysiol Clin 2024; 54:102997. [PMID: 38991470 DOI: 10.1016/j.neucli.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES Aberrant movement-related cortical activity has been linked to impaired motor function in Parkinson's disease (PD). Dopaminergic drug treatment can restore these, but dosages and long-term treatment are limited by adverse side-effects. Effective non-pharmacological treatments could help reduce reliance on drugs. This experiment reports the first study of home-based electroencephalographic (EEG) neurofeedback training as a non-pharmacological candidate treatment for PD. Our primary aim was to test the feasibility of our EEG neurofeedback intervention in a home setting. METHODS Sixteen people with PD received six home visits comprising symptomology self-reports, a standardised motor assessment, and a precision handgrip force production task while EEG was recorded (visits 1, 2 and 6); and 3 × 1-hr EEG neurofeedback training sessions to supress the EEG mu rhythm before initiating handgrip movements (visits 3 to 5). RESULTS Participants successfully learned to self-regulate mu activity, and this appeared to expedite the initiation of precision movements (i.e., time to reach target handgrip force off-medication pre-intervention = 628 ms, off-medication post-intervention = 564 ms). There was no evidence of wider symptomology reduction (e.g., Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III Motor Examination, off-medication pre-intervention = 29.00, off-medication post intervention = 30.07). Interviews indicated that the intervention was well-received. CONCLUSION Based on the significant effect of neurofeedback on movement-related cortical activity, positive qualitative reports from participants, and a suggestive benefit to movement initiation, we conclude that home-based neurofeedback for people with PD is a feasible and promising non-pharmacological treatment that warrants further research.
Collapse
Affiliation(s)
- Andrew Cooke
- Instutute for the Psychology of Elite Performance (IPEP), Bangor University, UK; School of Psychology and Sport Science, Bangor University, UK.
| | - John Hindle
- The Centre for Research in Ageing and Cognitive Health (REACH), University of Exeter, UK; University of Exeter Medical School, UK
| | - Catherine Lawrence
- Centre for Health Economics and Medicines Evaluation (CHEME), Bangor University, UK; School of Health Sciences, Bangor University, UK
| | - Eduardo Bellomo
- Instutute for the Psychology of Elite Performance (IPEP), Bangor University, UK
| | | | - Catherine A MacLeod
- Centre for Population Health Sciences, Usher Institute, The University of Edinburgh, UK
| | | | | | - Martyn Bracewell
- School of Psychology and Sport Science, Bangor University, UK; North Wales Medical School, Bangor University, UK; Walton Centre NHS Foundation Trust, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; MRC Center for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | - David M A Mehler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; MRC Center for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Germany; Institute for Translational Psychiatry, University Hospital Münster, Germany
| |
Collapse
|
14
|
Li Y, Luo X, Zhang A, Ying F, Wang J, Huang G. The potential of arts therapies in Parkinson's disease rehabilitation: A comprehensive review. Heliyon 2024; 10:e35765. [PMID: 39229526 PMCID: PMC11369473 DOI: 10.1016/j.heliyon.2024.e35765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) causes a decline in motor function, cognitive decline, and impacts the mental health of patients. Due to the high cost and side effects of conventional treatments, the medical community has begun to explore safer and more cost-effective alternative therapies. In this context, arts therapies have gained increasing attention as innovative treatments. This review plans to explore the role and potential of various arts therapies in the rehabilitation of PD patients by analyzing existing literature and case studies. METHODS This review comprehensively searched the literature in several databases, including PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure, to assess the effectiveness of different arts therapies in the rehabilitation of patients with PD. RESULTS From 3440 articles screened, 16 met the inclusion criteria. These studies included a variety of therapies, including music, meditation, yoga, art, dance, theatre, video games and play therapy. These different types of arts therapies had a positive impact on the motor, psychological and cognitive rehabilitation of PD patients, respectively. CONCLUSION The existing literature highlights the great potential of arts therapies in the rehabilitation of people with PD, further confirming the efficacy of arts therapies in enhancing the motor, psychological and cognitive rehabilitation process of people with PD. In addition, this review identifies research gaps in the use of color therapy in PD rehabilitation and highlights the need for further exploration of various arts therapies modalities.
Collapse
Affiliation(s)
- Yiyuan Li
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Fangtian Ying
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
- Zhejiang University, Hangzhou, 310027, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
- Zhuhai M.U.S.T. Science and Technology Research Institute, Zhuhai, Guangdong, China
| |
Collapse
|
15
|
Singh SK, Parihar S, Jain S, Ho JAA, Vankayala R. Light-responsive functional nanomaterials as pioneering therapeutics: a paradigm shift to combat age-related disorders. J Mater Chem B 2024; 12:8212-8234. [PMID: 39058026 DOI: 10.1039/d4tb00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies. They fail to address the issues compounded by altered pharmacokinetics in the elderly. Nanotechnology emerges as a transformative solution, offering tissue-specific targeted therapies through nanoparticles. Functional nanomaterials (FNMs) respond to internal or external stimuli, with light-responsive nanomaterials gaining prominence. Harnessing the benefits of deep tissue penetration and ease of manipulation particularly in the near-infrared spectrum, light-responsive FNMs present innovative strategies for age-related comorbidities. This review comprehensively summarizes the potential of light-responsive FNM-based approaches for targeting cellular environments in age-related disorders, and also emphasizes the advantages over traditional treatment modalities. Specifically, it focuses on the development of various classes of light-responsive functional nanomaterials including plasmonic nanomaterials, nanomaterials as carriers, upconversion nanomaterials, 2D nanomaterials, transition metal oxide and dichalcogenide nanomaterials and carbon-based nanomaterials against age related diseases. We foresee that such advanced developments in the field of nanotechnology could provide a new hope for clinical diagnosis and treatment of age-related disorders.
Collapse
Affiliation(s)
- Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shivay Parihar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Sanskar Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
16
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
17
|
Gorecka-Mazur A, Krygowska-Wajs A, Furgala A, Li J, Misselwitz B, Pietraszko W, Kwinta B, Yilmaz B. Associations between gut microbiota characteristics and non-motor symptoms following pharmacological and surgical treatments in Parkinson's disease patients. Neurogastroenterol Motil 2024; 36:e14846. [PMID: 38873926 DOI: 10.1111/nmo.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The gut microbiota has been implicated in Parkinson's disease (PD), with alterations observed in microbial composition and reduced microbial species richness, which may influence gastrointestinal symptoms in PD patients. It remains to be determined whether the severity of gastrointestinal symptoms correlates with microbiota variations in PD patients treated pharmacologically or with subthalamic nucleus deep brain stimulation (STN-DBS) therapy. This study aims to explore how these treatments affect gut microbiota and gastrointestinal symptoms in PD, identifying specific microbial differences associated with each treatment modality. METHODS A total of 42 individuals diagnosed with PD, along with 38 age-matched household control participants, contributed stool samples for microbiota characterization. Differences in the gut microbiota across various groups of PD patients and their households were identified through comprehensive sequencing of the 16S rRNA gene amplicon sequencing. KEY RESULTS Differences in microbial communities were observed between PD patients and controls, as well as between PD patients receiving pharmacological treatment and those with STN-DBS. Pharmacologically treated advanced PD patients have higher gastrointestinal dysfunctions. Gut microbiota profile linked to STN-DBS and reduced levodopa consumption, characterized by its anti-inflammatory properties, might play a role in diminishing gastrointestinal dysfunction relative to only pharmacological treatments. CONCLUSIONS & INFERENCES Advanced PD patients on medication exhibit more gastrointestinal issues, despite relatively stable microbial diversity, indicating a complex interaction between gut microbiota, PD progression, and treatment effects. An imbalanced gut-brain axis, particularly due to reduced butyrate production, may lead to constipation by affecting the enteric nervous system, which emphasizes the need to incorporate gut microbiome insights into treatment strategies.
Collapse
Affiliation(s)
| | - Anna Krygowska-Wajs
- Department of Neurology, Medical College, Jagiellonian University, Kraków, Poland
| | - Agata Furgala
- Department of Pathophysiology, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Jiaqi Li
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Wojciech Pietraszko
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Kraków, Poland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Ugale V, Deshmukh R, Lokwani D, Narayana Reddy P, Khadse S, Chaudhari P, Kulkarni PP. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers 2024; 28:1765-1792. [PMID: 37266849 PMCID: PMC10234801 DOI: 10.1007/s11030-023-10656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| | - Rutuja Deshmukh
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - P Narayana Reddy
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
19
|
Bhatt V, Shukla H, Tiwari AK. Parkinson's Disease and Mitotherapy-Based Approaches towards α-Synucleinopathies. J Integr Neurosci 2024; 23:109. [PMID: 38940084 DOI: 10.31083/j.jin2306109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 06/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain and the formation of intracellular protein aggregates known as Lewy bodies, of which a major component is the protein α-synuclein. Several studies have suggested that mitochondria play a central role in the pathogenesis of PD, encompassing both familial and sporadic forms of the disease. Mitochondrial dysfunction is attributed to bioenergetic impairment, increased oxidative stress, damage to mitochondrial DNA, and alteration in mitochondrial morphology. These alterations may contribute to improper functioning of the central nervous system and ultimately lead to neurodegeneration. The perturbation of mitochondrial function makes it a potential target, worthy of exploration for neuroprotective therapies and to improve mitochondrial health in PD. Thus, in the current review, we provide an update on mitochondria-based therapeutic approaches toward α-synucleinopathies in PD.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Halak Shukla
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| |
Collapse
|
20
|
Abioye A, Akintade D, Mitchell J, Olorode S, Adejare A. Nonintuitive Immunogenicity and Plasticity of Alpha-Synuclein Conformers: A Paradigm for Smart Delivery of Neuro-Immunotherapeutics. Pharmaceutics 2024; 16:609. [PMID: 38794271 PMCID: PMC11124533 DOI: 10.3390/pharmaceutics16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, only one of the 244 drugs in clinical trials for the treatment of neurodegenerative diseases has been approved in the past decade, indicating a failure rate of 99.6%. In corollary, the approved monoclonal antibody did not demonstrate significant cognitive benefits. Thus, the prevalence of neurodegenerative diseases is increasing rapidly. Therefore, there is an urgent need for creative approaches to identifying and testing biomarkers for better diagnosis, prevention, and disease-modifying strategies for the treatment of neurodegenerative diseases. Overexpression of the endogenous α-synuclein has been identified as the driving force for the formation of the pathogenic α-synuclein (α-Syn) conformers, resulting in neuroinflammation, hypersensitivity, endogenous homeostatic responses, oxidative dysfunction, and degeneration of dopaminergic neurons in Parkinson's disease (PD). However, the conformational plasticity of α-Syn proffers that a certain level of α-Syn is essential for the survival of neurons. Thus, it exerts both neuroprotective and neurotoxic (regulatory) functions on neighboring neuronal cells. Furthermore, the aberrant metastable α-Syn conformers may be subtle and difficult to detect but may trigger cellular and molecular events including immune responses. It is well documented in literature that the misfolded α-Syn and its conformers that are released into the extracellular space from damaged or dead neurons trigger the innate and adaptive immune responses in PD. Thus, in this review, we discuss the nonintuitive plasticity and immunogenicity of the α-Syn conformers in the brain immune cells and their physiological and pathological consequences on the neuroimmune responses including neuroinflammation, homeostatic remodeling, and cell-specific interactions that promote neuroprotection in PD. We also critically reviewed the novel strategies for immunotherapeutic delivery interventions in PD pathogenesis including immunotherapeutic targets and potential nanoparticle-based smart drug delivery systems. It is envisioned that a greater understanding of the nonintuitive immunogenicity of aberrant α-Syn conformers in the brain's microenvironment would provide a platform for identifying valid therapeutic targets and developing smart brain delivery systems for clinically effective disease-modifying immunotherapeutics that can aid in the prevention and treatment of PD in the future.
Collapse
Affiliation(s)
- Amos Abioye
- College of Pharmacy and Health Sciences, Belmont University, Nashville, TN 37212, USA
| | - Damilare Akintade
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - James Mitchell
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Simisade Olorode
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| |
Collapse
|
21
|
Vilela C, Araújo B, Soares-Guedes C, Caridade-Silva R, Martins-Macedo J, Teixeira C, Gomes ED, Prudêncio C, Vieira M, Teixeira FG. From the Gut to the Brain: Is Microbiota a New Paradigm in Parkinson's Disease Treatment? Cells 2024; 13:770. [PMID: 38727306 PMCID: PMC11083070 DOI: 10.3390/cells13090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) is recognized as the second most prevalent primary chronic neurodegenerative disorder of the central nervous system. Clinically, PD is characterized as a movement disorder, exhibiting an incidence and mortality rate that is increasing faster than any other neurological condition. In recent years, there has been a growing interest concerning the role of the gut microbiota in the etiology and pathophysiology of PD. The establishment of a brain-gut microbiota axis is now real, with evidence denoting a bidirectional communication between the brain and the gut microbiota through metabolic, immune, neuronal, and endocrine mechanisms and pathways. Among these, the vagus nerve represents the most direct form of communication between the brain and the gut. Given the potential interactions between bacteria and drugs, it has been observed that the therapies for PD can have an impact on the composition of the microbiota. Therefore, in the scope of the present review, we will discuss the current understanding of gut microbiota on PD and whether this may be a new paradigm for treating this devastating disease.
Collapse
Affiliation(s)
- Cristiana Vilela
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.A.); (J.M.-M.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4710-057/4805-017 Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Carla Soares-Guedes
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Rita Caridade-Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.A.); (J.M.-M.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4710-057/4805-017 Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Catarina Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| | - Eduardo D. Gomes
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Mónica Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (C.V.); (C.S.-G.); (E.D.G.); (C.P.); (M.V.)
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.A.); (J.M.-M.)
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4710-057/4805-017 Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (R.C.-S.); (C.T.)
| |
Collapse
|
22
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
23
|
Yim J, Hwang YS, Lee JJ, Kim JH, Baek JY, Jeong J, Choi YI, Jin BK, Park SB. Inflachromene ameliorates Parkinson's disease by targeting Nrf2-binding Keap1. Chem Sci 2024; 15:3588-3595. [PMID: 38455026 PMCID: PMC10915859 DOI: 10.1039/d3sc06997d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disease characterized by movement disorder. Despite current therapeutic efforts, PD progression and the loss of dopaminergic neurons in the substantia nigra remain challenging to prevent due to the complex and unclear molecular mechanism involved. We adopted a phenotype-based drug screening approach with neuronal cells to overcome these limitations. In this study, we successfully identified a small molecule with a promising therapeutic effect for PD treatment, called inflachromene (ICM), through our phenotypic screening strategy. Subsequent target identification using fluorescence difference in two-dimensional gel electrophoresis (FITGE) revealed that ICM ameliorates PD by targeting a specific form of Keap1. This interaction led to upregulating various antioxidants, including HO-1, NQO1, and glutathione, ultimately alleviating PD symptoms. Furthermore, ICM exhibited remarkable efficacy in inhibiting the loss of dopaminergic neurons and the activation of astrocytes and microglia, which are critical factors in PD pathology. Our findings suggest that the phenotypic approach employed in this study identified that ICM has potential for PD treatment, offering new hope for more effective therapeutic interventions in the future.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of Biophysics and Chemical Biology, Seoul National University Seoul 08826 Korea
| | - Yoon Soo Hwang
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University Seoul 08826 Korea
| | | | | | - Jeong Yeob Baek
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University Seoul 02447 Korea
| | - Jaeyeong Jeong
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University Seoul 02447 Korea
| | | | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University Seoul 02447 Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University Seoul 08826 Korea
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University Seoul 08826 Korea
- SPARK Biopharma, Inc. Seoul 08791 Korea
| |
Collapse
|
24
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
25
|
So YJ, Lee JU, Yang GS, Yang G, Kim SW, Lee JH, Kim JU. The Potentiality of Natural Products and Herbal Medicine as Novel Medications for Parkinson's Disease: A Promising Therapeutic Approach. Int J Mol Sci 2024; 25:1071. [PMID: 38256144 PMCID: PMC10816678 DOI: 10.3390/ijms25021071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
As the global population ages, the prevalence of Parkinson's disease (PD) is steadily on the rise. PD demonstrates chronic and progressive characteristics, and many cases can transition into dementia. This increases societal and economic burdens, emphasizing the need to find effective treatments. Among the widely recognized causes of PD is the abnormal accumulation of proteins, and autophagy dysfunction accelerates this accumulation. The resultant Lewy bodies are also commonly found in Alzheimer's disease patients, suggesting an increased potential for the onset of dementia. Additionally, the production of free radicals due to mitochondrial dysfunction contributes to neuronal damage and degeneration. The activation of astrocytes and the M1 phenotype of microglia promote damage to dopamine neurons. The drugs currently used for PD only delay the clinical progression and exacerbation of the disease without targeting its root cause, and come with various side effects. Thus, there is a demand for treatments with fewer side effects, with much potential offered by natural products. In this study, we reviewed a total of 14 articles related to herbal medicines and natural products and investigated their relevance to possible PD treatment. The results showed that the reviewed herbal medicines and natural products are effective against lysosomal disorder, mitochondrial dysfunction, and inflammation, key mechanisms underlying PD. Therefore, natural products and herbal medicines can reduce neurotoxicity and might improve both motor and non-motor symptoms associated with PD. Furthermore, these products, with their multi-target effects, enhance bioavailability, inhibit antibiotic resistance, and might additionally eliminate side effects, making them good alternative therapies for PD treatment.
Collapse
Affiliation(s)
- Yu-Jin So
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Jae-Ung Lee
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Ga-Seung Yang
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Sung-Wook Kim
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| | - Jun-Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
- Da CaPo Co., Ltd., 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea
| | - Jong-Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si 54986, Jeollabuk-do, Republic of Korea; (Y.-J.S.); (J.-U.L.); (G.-S.Y.); (G.Y.); (S.-W.K.)
| |
Collapse
|
26
|
Shome A, Chahat, Chawla V, Chawla PA. Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson's Disease: An Overview. Curr Med Chem 2024; 31:6251-6271. [PMID: 37702172 DOI: 10.2174/0929867331666230913100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α- synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using betacarboline (also known as "β-carboline") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties. In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.
Collapse
Affiliation(s)
- Abhimannu Shome
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
27
|
Deveney CM, Surya JR, Haroon JM, Mahdavi KD, Hoffman KR, Enemuo KC, Jordan KG, Becerra SA, Kuhn T, Bystritsky A, Jordan SE. Transcranial focused ultrasound for the treatment of tremor: A preliminary case series. Brain Stimul 2024; 17:35-38. [PMID: 38128826 DOI: 10.1016/j.brs.2023.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Essential tremor (ET) can be debilitating. Treatments for ET include beta-blockers and surgical interventions. Low-intensity focused ultrasound (LIFU) may offer an office-based non-invasive alternative. OBJECTIVE This pilot open label clinical trial explores safety, feasibility, and potential efficacy of LIFU in treatment of ET. METHODS We report outcomes from the first 10 participants in this IRB-approved trial of LIFU for treatment of ET. The ventral intermediate nucleus of the thalamus (Vim) was targeted using structural and functional MRI. Participants underwent eight 10-min sessions of LIFU targeting the contralateral (Vim) to the most affected hand. Safety was closely monitored; Global Rating of Change (GRC) and The Essential Tremor Rating Scale (TETRAS) scores were collected. RESULTS No adverse effects were reported. Eight participants reported a GRC ≥2. TETRAS performance subscale demonstrated clinically significant improvement in all participants. CONCLUSION Preliminary findings support LIFU's safety and feasibility. The potential efficacy encourages additional sham-controlled studies.
Collapse
Affiliation(s)
- C M Deveney
- The Regenesis Project, Santa Monica, CA, USA.
| | - J R Surya
- The Regenesis Project, Santa Monica, CA, USA
| | - J M Haroon
- The Regenesis Project, Santa Monica, CA, USA
| | - K D Mahdavi
- The Regenesis Project, Santa Monica, CA, USA
| | - K R Hoffman
- The Regenesis Project, Santa Monica, CA, USA
| | - K C Enemuo
- The Regenesis Project, Santa Monica, CA, USA
| | - K G Jordan
- The Regenesis Project, Santa Monica, CA, USA
| | - S A Becerra
- The Regenesis Project, Santa Monica, CA, USA
| | - T Kuhn
- University of California Los Angeles, Department of Psychiatry and Biobehavioral Sciences, USA
| | - A Bystritsky
- University of California Los Angeles, Department of Psychiatry and Biobehavioral Sciences, USA
| | - S E Jordan
- The Regenesis Project, Santa Monica, CA, USA; University of California Los Angeles, Department of Neurology, USA
| |
Collapse
|
28
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
29
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 PMCID: PMC11091588 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
30
|
Nguyen-Thi PT, Ho TT, Nguyen TT, Vo GV. Nanotechnology-based Drug Delivery for Alzheimer's and Parkinson's Diseases. Curr Drug Deliv 2024; 21:917-931. [PMID: 37424345 DOI: 10.2174/1567201820666230707113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023]
Abstract
The delivery of drugs to the brain is quite challenging in the treatment of the central nervous system (CNS) diseases due to the blood-brain barrier and the blood-cerebrospinal fluid barrier. However, significant developments in nanomaterials employed by nanoparticle drug-delivery systems have substantial potential to cross or bypass these barriers leading to enhanced therapeutic efficacies. Advances in nanoplatform, nanosystems based on lipids, polymers and inorganic materials have been extensively studied and applied in treating Alzheimer's and Parkinson's diseases. In this review, various types of brain drug delivery nanocarriers are classified, summarized, and their potential as drug delivery systems in Alzheimer's and Parkinson's diseases is discussed. Finally, challenges facing the clinical translation of nanoparticles from bench to bedside are highlighted.
Collapse
Affiliation(s)
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University, Ho Chi Minh City [VNU-HCM], Ho Chi Minh City 700000, Vietnam
- Research Center for Genetics and Reproductive Health [CGRH], School of Medicine, Vietnam National University, Ho Chi Minh City [VNU-HCM], Ho Chi Minh City 70000, Vietnam
- Vietnam National University, Ho Chi Minh City [VNU-HCM], Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
31
|
Sola P, Garikapati KK, Krishnamurthy PT, Kumari M. Polysorbate 80 surface modified SLNs of formoterol suppress SNCA gene and mitochondrial oxidative stress in mice model of Parkinson's disease. Sci Rep 2023; 13:19942. [PMID: 37968340 PMCID: PMC10651909 DOI: 10.1038/s41598-023-46511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
The present study hypothesises that the selective brain β2 receptor activation through β2-adrenoreceptor agonist (β2ARA), Formoterol (FMT), suppresses SNCA gene expression, a pathological hallmark of Parkinson's disease (PD) in brain. Further, it is also hypothesized that brain targeted delivery of Formoterol via polysorbate-80 surface modified solid lipid nanoparticles of Formoterol (FMT-SLNs-PS80) can improve its stability, therapeutic efficacy and avoid/reduce peripheral off-target side effects. FMT-SLNs-PS80 was prepared by solvent injection method, the formulation was optimized by using Box-Behnken design and characterized by measuring drug content, entrapment efficacy, particle size, zeta potentials and poly dispersibility. The FMT-SLNs-PS80, significantly decreases the SNCA expression, mitochondrial membrane damage and rotenone induced changes in oxidative (SOD, CAT, GSH and ROS) stress markers in SH-SY5Y cell lines. The ex vivo permeation study of the formulation using everted chicken ileum exhibited a steady state flux. The pharmacokinetic and tissue distribution studies of the formulation in rats showed a significant improvement in the kinetic parameters when compared to naïve FMT, further the formulation also improved the brain bioavailability of FMT. The anti-Parkinson's efficacy studies of the formulation in mice showed a significant neuroprotection against rotenone-induced changes in behavioural and biochemical parameters. Further, the histopathological analysis of mice brain confirms a significant neuroprotective benefit. The present study successfully establishes the brain targeted delivery and anti-Parkinson's therapeutic efficacy of FMT-SLNs-PS80.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Tamil Nadu, India
| | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Tamil Nadu, India
| | | | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
32
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
33
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
34
|
Babu SR, Shekara HH, Sahoo AK, Harsha Vardhan PV, Thiruppathi N, Venkatesh MP. Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Ther Deliv 2023; 14:571-594. [PMID: 37691577 DOI: 10.4155/tde-2023-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative diseases are a significant cause of mortality worldwide, and the blood-brain barrier (BBB) poses a significant challenge for drug delivery. An intranasal route is a prominent approach among the various methods to bypass the BBB. There are different pathways involved in intranasal drug delivery. The drawbacks of this method include mucociliary clearance, enzymatic degradation and poor drug permeation. Novel nanoformulations and intranasal drug-delivery devices offer promising solutions to overcome these challenges. Nanoformulations include polymeric nanoparticles, lipid-based nanoparticles, microspheres, liposomes and noisomes. Additionally, intranasal devices could be utilized to enhance drug-delivery efficacy. Therefore, intranasal drug-delivery systems show potential for treating neurodegenerative diseases through trigeminal or olfactory pathways, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Someshbabu Ramesh Babu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Harshith Hosahalli Shekara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ashish Kumar Sahoo
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Pyda Venkata Harsha Vardhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Nitheesh Thiruppathi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Faculty of Pharmaceutical Sciences, UCSI University, Kaula Lampur, Malaysia
| |
Collapse
|
35
|
Ashraf SS, Hosseinpour Sarmadi V, Larijani G, Naderi Garahgheshlagh S, Ramezani S, Moghadamifar S, Mohebi SL, Brouki Milan P, Haramshahi SMA, Ahmadirad N, Amini N. Regenerative medicine improve neurodegenerative diseases. Cell Tissue Bank 2023; 24:639-650. [PMID: 36527565 DOI: 10.1007/s10561-022-10062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Garahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ramezani
- Neuroscience Research Center, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soraya Moghadamifar
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Lena Mohebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Galkin M, Topcheva O, Priss A, Borisova T, Shvadchak VV. Dopamine-Induced Oligomers of α-Synuclein Inhibit Amyloid Fibril Growth and Show No Toxicity. ACS Chem Neurosci 2023. [PMID: 37162160 DOI: 10.1021/acschemneuro.2c00815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Parkinson's disease is characterized by the selective death of dopaminergic neurons in the midbrain and accumulation of amyloid fibrils composed of α-synuclein (αSyn). Current treatment involves approaches that compensate the death of dopaminergic neurons by increasing the dopamine levels in remaining cells. However, dopamine can interact with αSyn and produce oligomeric species which were reported to be toxic in many models. We studied formation of dopamine-induced αSyn oligomers and their effect on the αSyn aggregation. Using the Thioflavin T kinetic assay, we have shown that small oligomers efficiently inhibit αSyn fibrillization by binding to fibril ends and blocking the elongation. Moreover, all the fractions of oligomer species proved to be nontoxic in the differentiated SH-SY5Y cell model and showed negligible neurotoxicity on isolated rat synaptosomes. The observed inhibition is an important insight in understanding of dopamine-enhancing therapy on Parkinson's disease progression and explains the absence of pathology enhancement.
Collapse
Affiliation(s)
- Maksym Galkin
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Oleksandra Topcheva
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Anastasiia Priss
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Street, Kyiv 01054, Ukraine
| | - Volodymyr V Shvadchak
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 542/2, 160 00 Prague 6, Czech Republic
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| |
Collapse
|
37
|
Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. J Neuroinflammation 2023; 20:95. [PMID: 37072827 PMCID: PMC10111685 DOI: 10.1186/s12974-023-02776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
38
|
Kul A, Sagirli O. A novel method for the therapeutic drug monitoring of biperiden in plasma by GC-MS using salt-assisted liquid-liquid microextraction. Clin Chim Acta 2023; 543:117322. [PMID: 37001688 DOI: 10.1016/j.cca.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Biperiden is an anticholinergic agent with central effects. It is used in Parkinson's syndromes and in the treatment of extrapyramidal symptoms that occur with the use of various agents (neuroleptics, antipsychotics). It causes anticholinergic syndrome in high doses. For this reason, therapeutic drug monitoring of biperiden is important. This study, it was aimed to develop a validated GC-MS method for the therapeutic monitoring of biperiden in human plasma. Biperiden and internal standard biperiden-d5 were extracted from plasma using the salt-assisted liquid-liquid extraction method. The method was validated according to the European Medicines Agency (EMA), Bioanalytical method validation guidelines. The lower limit of quantification of the developed method was chosen as 0.5 ng/mL. The calibration curve of biperiden for the method was validated between 0.5 and 15 ng/mL, showing correlation coefficients >0.99. In addition, the developed method was used for the therapeutic drug monitoring of biperiden in real patient plasma.
Collapse
|
39
|
Khot KB, Gopan G, Bandiwadekar A, Jose J. Current advancements related to phytobioactive compounds based liposomal delivery for neurodegenerative diseases. Ageing Res Rev 2023; 83:101806. [PMID: 36427765 DOI: 10.1016/j.arr.2022.101806] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases are the most widely affected disease condition in an aging population. The treatment available reduces the elevated manifestations but is ineffective due to the drug's poor bioavailability, plasma stability, and permeability across the blood-brain barrier (BBB). Until now, no therapeutic compound has been able to stop the progression of neurodegenerative disease. Even the available therapeutic moiety manages it with possible adverse effects up to the later stage. Hence, phytobioactive compounds of plant origin offer effective treatment strategies against neurodegenerative diseases. The only difficulty of these phytobioactive compounds is permeability across the BBB. Engineered nanocarriers such as liposomes provide high lipid permeability across BBB. Liposomes have unique physicochemical properties that are widely investigated for their application in diagnosing and treating neurodegenerative diseases. The surface modification on liposomes by peptides, antibodies, and RNA aptamers offers receptor targeting. These brain-targeted approaches by liposomes improve the efficacy of phytoconstituents. Additional surface modification methods are utilized on liposomes, which increases the brain-targeted delivery of phytobioactive compounds. The marketing strategy of the liposomal delivery system is in its peak mode, where it has the potential to modify the existing therapy. This review will summarize the brain target liposomal delivery of phytobioactive compounds as a novel disease-modifying agent for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Gopika Gopan
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
40
|
Chintapula U, Chikate T, Sahoo D, Kieu A, Guerrero Rodriguez ID, Nguyen KT, Trott D. Immunomodulation in age-related disorders and nanotechnology interventions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1840. [PMID: 35950266 PMCID: PMC9840662 DOI: 10.1002/wnan.1840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 01/31/2023]
Abstract
Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tanmayee Chikate
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Deepsundar Sahoo
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Amie Kieu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
41
|
Alabrahim OAA, Azzazy HMES. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson's disease. NANOSCALE ADVANCES 2022; 4:5233-5244. [PMID: 36540116 PMCID: PMC9724695 DOI: 10.1039/d2na00524g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
As the world's population ages, the incidence of Parkinson's disease (PD), the second most common neurological ailment, keeps increasing. It is estimated that 1% of the global population over the age of 60 has the disease. The continuous loss of dopaminergic neurons and the concomitant brain depletion of dopamine levels represent the hallmarks of PD. As a result, current PD therapies primarily target dopamine or its precursor (levodopa). Therapeutic approaches that aim to provide an exogenous source of levodopa or dopamine are hindered by their poor bioavailability and the blood-brain barrier. Nevertheless, the fabrication of many polymeric nanoparticles has been exploited to deliver several drugs inside the brain. In addition to a brief introduction of PD and its current therapeutic approaches, this review covers novel polymeric nanoparticulate drug delivery systems exploited lately for dopamine and levodopa replacement in PD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Graduate Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo 11835 New Cairo Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
42
|
Docherty J, Leheste JR, Mancini J, Yao S. Preliminary Effects of Osteopathic Manipulative Medicine on Reactive Oxygen Species in Parkinson’s Disease: A Randomized Controlled Pilot Study. Cureus 2022; 14:e31504. [DOI: 10.7759/cureus.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
|
43
|
Kulisevsky J. Pharmacological management of Parkinson's disease motor symptoms: update and recommendations from an expert. Rev Neurol 2022; 75:S1-S10. [PMID: 36342310 PMCID: PMC10281635 DOI: 10.33588/rn.75s04.2022217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative multisystemic disorder that affects approximately 1% of the population over 55 years old, with the mean age of onset at 60 years old, and the prevalence of the disease constantly growing. DEVELOPMENT PD is a progressive disease characterized by motor and non-motor symptoms that compromise patients' daily activities. It has a variable profile of onset and clinical evolution. Although currently available treatments have failed to clinically demonstrate neuroprotective properties, most motor symptoms are acceptably managed with dopaminergic medication. More than 50 years after launching levodopa, it remains the most effective treatment of motor symptoms in PD, able to provide sustained benefit throughout the entire course of the disease. Nevertheless, after two to three years of treatment, certain fluctuations start to appear in motor and non-motor responses to different doses of levodopa. Early identification and treatment of these fluctuations have a strong positive impact on the quality of life of the patient. Frequently accompanied by involuntary movements, proper control of fluctuations requires periodical adjustments of the medication and expert supplementation with dopaminergic and non-dopaminergic adjuvants. CONCLUSIONS The main purpose of this work is to offer a practical, updated guideline for neurologists regarding the use of dopaminergic agents from the initial stages of PD. Special emphasis is placed on the critical period after the end of the 'honeymoon' phase when variations in the symptomatology presented by each patient appear, forcing re-adjustment of the medication to fit their individual needs.
Collapse
Affiliation(s)
- J Kulisevsky
- Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, España
- CIBERNED. Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Madrid, España
| |
Collapse
|
44
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
45
|
Smit JW, Basile P, Prato MK, Detalle L, Mathy F, Schmidt A, Lalla M, Germani M, Domange C, Biere A, Bani M, Carson S, Genius J. Phase 1/1b Studies of UCB0599, an Oral Inhibitor of α-Synuclein Misfolding, Including a Randomized Study in Parkinson's Disease. Mov Disord 2022; 37:2045-2056. [PMID: 35959805 PMCID: PMC9804489 DOI: 10.1002/mds.29170] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) and its progression are thought to be caused and driven by misfolding of α-synuclein (ASYN). UCB0599 is an oral, small-molecule inhibitor of ASYN misfolding, aimed at slowing disease progression. OBJECTIVE The aim was to investigate safety/tolerability and pharmacokinetics (PK) of single and multiple doses of UCB0599. METHODS Safety/tolerability and PK of single and multiple doses of UCB0599 and its metabolites were investigated in two phase 1 studies in healthy participants (HPs), where food effect and possible interaction with itraconazole (ITZ) were assessed (UP0030 [randomized, placebo-controlled, dose-escalation, crossover study, N = 65] and UP0078 [open-label study, N = 22]). Safety/tolerability and multi-dose PK of UCB0599 were subsequently investigated in a phase 1b randomized, double-blind, placebo-controlled study of participants with PD (UP0077 [NCT04875962], N = 31). RESULTS Across all studies, UCB0599 displayed rapid absorption with linear, time-independent PK properties; PK of multiple doses of UCB0599 were predictable from single-dose exposures. No notable food-effect was observed; co-administration with ITZ affected UCB0599 disposition (maximum plasma concentration and area under the curve increased ~1.3- and ~2 to 3-fold, respectively) however, this did not impact the safety profile. Hypersensitivity reactions were reported in UP0030 (n = 2) and UP0077 (n = 2). Treatment-related adverse events occurred in 43% (UCB0599), and 30% (placebo) of participants with PD were predominantly mild-to-moderate in intensity and were not dose related. CONCLUSIONS Seventy-three HPs and 21 participants with PD received UCB0599 doses; an acceptable safety/tolerability profile and predictable PK support continued development of UCB0599 for the slowing of PD progression. A phase 2 study in early-stage PD is underway (NCT04658186). © 2022 UCB Pharma. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Massimo Bani
- UCB PharmaBraine‐l'AlleudBelgium,Present address:
Bergmapharm ConsultingVeronaItaly
| | | | - Just Genius
- UCB PharmaBraine‐l'AlleudBelgium,Present address:
Genius Biotech Solutions, LtdVictoriaMalta
| |
Collapse
|
46
|
Ren Z, Ding H, Zhou M, Chan P. Ganoderma lucidum Modulates Inflammatory Responses following 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Administration in Mice. Nutrients 2022; 14:nu14183872. [PMID: 36145248 PMCID: PMC9505693 DOI: 10.3390/nu14183872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Ganoderma lucidum, one of the most valued medicinal mushrooms, has been used for health supplements and medicine in China. Our previous studies have proved that Ganoderma lucidum extract (GLE) could inhibit activation of microglia and protect dopaminergic neurons in vitro. In the present study, we investigated the anti-neuroinflammatory potential of GLE in vivo on Parkinsonian-like pathological dysfunction. Male C57BL/6J mice were subjected to acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion, and a treatment group was administered intragastrically with GLE at a dose of 400 mg/kg. Immunohistochemistry staining showed that GLE efficiently repressed MPTP-induced microglia activation in nigrostriatal region. Accordingly, Bio-plex multiple cytokine assay indicated that GLE treatment modulates abnormal cytokine expression levels. In microglia BV-2 cells incubated with LPS, increased expression of iNOS and NLRP3 were effectively inhibited by 800 μg/mL GLE. Furthermore, GLE treatment decreased the expression of LC3II/I, and further enhanced the expression of P62. These results indicated that the neuroprotection of GLE in an experimental model of PD was partially related to inhibition of microglia activation in vivo and vitro, possibly through downregulating the iNOS/NLRP3 pathway, inhibiting abnormal microglial autophagy and lysosomal degradation, which provides new evidence for Ganoderma lucidum in PD treatment.
Collapse
Affiliation(s)
- Zhili Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-10-83188677
| | - Hui Ding
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ming Zhou
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100053, China
- Clinical Center for Parkinson’s Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson’s Disease, Beijing 100053, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| |
Collapse
|
47
|
Mosilhy EA, Alshial EE, Eltaras MM, Rahman MMA, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life Sci 2022; 307:120869. [DOI: 10.1016/j.lfs.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
48
|
Berger AA, Winnick A, Izygon J, Jacob BM, Kaye JS, Kaye RJ, Neuchat EE, Kaye AM, Alpaugh ES, Cornett EM, Han AH, Kaye AD. Opicapone, a Novel Catechol-O-methyl Transferase Inhibitor, for Treatment of Parkinson's Disease "Off" Episodes. Health Psychol Res 2022; 10:36074. [PMID: 35774903 DOI: 10.52965/001c.36074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 11/06/2022] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disorder and the leading cause of disability. It causes significant morbidity and disability through a plethora of symptoms, including movement disorders, sleep disturbances, and cognitive and psychiatric symptoms. The traditional pathogenesis theory of PD involves the loss of dopaminergic neurons in the substantia nigra (SN). Classically, treatment is pursued with an assortment of medications that are directed at overcoming this deficiency with levodopa being central to most treatment plans. Patients taking levodopa tend to experience "off episodes" with decreasing medication levels, causing large fluctuations in their symptoms. These off episodes are disturbing and a source of morbidity for these patients. Opicapone is a novel, peripherally acting Catechol-O-methyl transferase (COMT) inhibitor that is used as adjunctive therapy to carbidopa/levodopa for treatment and prevention of "off episodes." It has been approved for use as an adjunct to levodopa since 2016 in Europe and has recently (April 2020) gained FDA approval for use in the USA. By inhibiting COMT, opicapone slows levodopa metabolism and increases its availability. Several clinical studies demonstrated significant improvement in treatment efficacy and reduction in duration of "off episodes." The main side effect demonstrated was dyskinesia, mostly with the 100mg dose, which is higher than the approved, effective dose of 50mg. Post-marketing surveillance and analysis are required to further elucidate its safety profile and contribute to patient selection. This paper reviews the seminal and latest evidence in the treatment of PD "off episodes" with the novel drug Opicapone, including efficacy, safety, and clinical indications.
Collapse
Affiliation(s)
- Amnon A Berger
- Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center
| | - Ariel Winnick
- Soroka University Medical Center and Faculty of Health Sciences; School of Optometry, University of California
| | - Jonathan Izygon
- Soroka University Medical Center and Faculty of Health Sciences
| | - Binil M Jacob
- Soroka University Medical Center and Faculty of Health Sciences
| | - Jessica S Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | | | | | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | - Edward S Alpaugh
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Andrew H Han
- Georgetown University School of Medicine, Georgetown University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| |
Collapse
|
49
|
Singh S, Ganguly U, Pal S, Chandan G, Thakur R, Saini RV, Chakrabarti SS, Agrawal BK, Chakrabarti S. Protective effects of cyclosporine A on neurodegeneration and motor impairment in rotenone-induced experimental models of Parkinson's disease. Eur J Pharmacol 2022; 929:175129. [PMID: 35777442 DOI: 10.1016/j.ejphar.2022.175129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
The development of neuroprotective drugs targeting mitochondria could be an important strategy in combating the progressive clinical course of Parkinson's disease. In the current study, we demonstrated that in SH-SY5Y cells (human dopaminergic neuroblastoma cell line), rotenone caused a dose-dependent (0.25-1 μM) and time-dependent (up to 48 h) loss of cell viability and a loss of cellular ATP content with mitochondrial membrane depolarization and an increased formation of reactive oxygen species; all these processes were markedly prevented by the mitochondrial permeability transition pore blocker cyclosporine A, which did not affect complex I inhibition by rotenone. The nuclear morphology of rotenone-treated cells for 48 h indicated the presence of both necrosis and apoptosis. We then examined the effects of cyclosporine A on the rotenone-induced model of Parkinson's disease in Wistar rats. Cyclosporine A significantly improved the motor deficits and prevented the loss of nigral dopaminergic neurons projecting into the striatum in rotenone-treated rats. Being a marketed immuno-suppressive drug, cyclosporine A should be further evaluated for its putative neuroprotective action in Parkinson's disease.
Collapse
Affiliation(s)
- Sukhpal Singh
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Upasana Ganguly
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Soumya Pal
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India; Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Gourav Chandan
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Rahul Thakur
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Sankha Shubhra Chakrabarti
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bimal K Agrawal
- Department of Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala, India.
| |
Collapse
|
50
|
Patel A, Olang CA, Lewis G, Mandalaneni K, Anand N, Gorantla VR. An Overview of Parkinson's Disease: Curcumin as a Possible Alternative Treatment. Cureus 2022; 14:e25032. [PMID: 35719816 PMCID: PMC9199586 DOI: 10.7759/cureus.25032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain and basal ganglia, followed by dopamine deficiency in the brain. Dopamine plays a crucial role in motor coordination, memory, and cognition; its decrease in PD leads to dyskinesia, cognitive deficits, and depression. In addition, the formation of alpha-synuclein protein aggregates (Lewy bodies) causes further damage to the CNS. Current treatment options include dopamine precursors, inhibitors of dopamine metabolism, upregulation of autophagy, adenosine A2A antagonists, and surgical intervention as a last resort. A challenge arises from a progressive decrease in treatment efficacy as the disease progresses and this necessitates exploration of adjunctive treatments. Epidemiological studies suggest that the prevalence of PD varies between ethnic groups of Caucasians, Asians, and African Americans. Notably, the prevalence of PD is lower in countries of Southeastern Asia including India. The differences in the diet of various ethnic groups may suggest an origin for this difference in the prevalence of PD. One staple ingredient in traditional Asian cuisine is turmeric. Curcuma longa, popularly known as turmeric, is an orange tuberous rhizome that has been used for centuries in traditional Indian cuisine and traditional medicine. Turmeric contains curcumin, a potent antioxidant that scavenges reactive oxygen species and chelates toxic metals. Curcumin has been proposed to be a neuroprotective agent due to its potent antioxidative properties. Though preliminary studies in animal model systems have suggested a protective effect of curcumin on dopaminergic neurons, the direct benefits of curcumin on the progress of PD remains poorly understood. In this review, we explore the promising use of curcumin as an adjunct to conventional PD treatments in order to enhance treatment and improve outcomes.
Collapse
Affiliation(s)
- Arjun Patel
- Anatomical Sciences, St. George's University School of Medicine, St. George's, GRD
| | - Catherine A Olang
- Anatomical Sciences, St. George's University School of Medicine, St. George's, GRD
| | - Gregory Lewis
- Anatomical Sciences, St. George's University School of Medicine, St. George's, GRD
| | - Kesava Mandalaneni
- Physiology, St. George's University School of Medicine, St. George's, GRD
| | - Nikhilesh Anand
- Pharmacology, American University of Antigua, St. John's, ATG
| | | |
Collapse
|