1
|
Nandi D, Sharma D. Integrating immunotherapy with conventional treatment regime for breast cancer patients- an amalgamation of armamentarium. Front Immunol 2024; 15:1477980. [PMID: 39555066 PMCID: PMC11563812 DOI: 10.3389/fimmu.2024.1477980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Immunotherapy stands as the frontrunner in treatment strategies imparting efficient remission in various types of cancer. In fact, emerging breakthroughs with immune checkpoint inhibitors (ICI) in a spectrum of cancers have evoked interest in research related to the potential effects of immunotherapy in breast cancer patients. A major challenge with breast cancer is the molecular heterogeneity that limits the efficacy of many therapeutic regimes. Clinical trials have shown favorable clinical outcomes with immunotherapeutic options in some subtypes of breast cancer. However, ICI monotherapy may not be sufficient for all breast cancer patients, emphasizing the need for combinatorial approaches. Ongoing research is focused on untangling the interplay of ICI with established as well as novel anticancer therapeutic regimens in preclinical models of breast cancer. Our review will analyze the existing research regarding the mechanisms and clinical impact of immunotherapy for the treatment of breast cancer. We shall evaluate the role of immune cell modulation for improved therapeutic response in breast cancer patients. This review will provide collated evidences about the current clinical trials that are testing out the implications of immunotherapy in conjunction with traditional treatment modalities in breast cancer and summarize the potential future research directions in the field. In addition, we shall underline the recent findings related to microbiota modulation as a key regulator of immune therapy response in cancer patients and its plausible applications in breast cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
2
|
Vasileiou M, Diamantoudis SC, Tsianava C, Nguyen NP. Immunotherapeutic Strategies Targeting Breast Cancer Stem Cells. Curr Oncol 2024; 31:3040-3063. [PMID: 38920716 PMCID: PMC11203270 DOI: 10.3390/curroncol31060232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the implementation of multiple treatment options, including immunotherapy, breast cancer treatment remains a challenge. In this review, we aim to summarize present challenges in breast cancer immunotherapy and recent advancements in overcoming treatment resistance. We elaborate on the inhibition of signaling cascades, such as the Notch, Hedgehog, Hippo, and WNT signaling pathways, which regulate the self-renewal and differentiation of breast cancer stem cells and, consequently, disease progression and survival. Cancer stem cells represent a rare population of cancer cells, likely originating from non-malignant stem or progenitor cells, with the ability to evade immune surveillance and develop resistance to immunotherapeutic treatments. We also discuss the interactions between breast cancer stem cells and the immune system, including potential agents targeting breast cancer stem cell-associated signaling pathways, and provide an overview of the emerging approaches to breast cancer stem cell-targeted immunotherapy. Finally, we consider the development of breast cancer vaccines and adoptive cellular therapies, which train the immune system to recognize tumor-associated antigens, for eliciting T cell-mediated responses to target breast cancer stem cells.
Collapse
Affiliation(s)
- Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | | | - Christina Tsianava
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA
| |
Collapse
|
3
|
Ali K, Nabeel M, Mohsin F, Iqtedar M, Islam M, Rasool MF, Hashmi FK, Hussain SA, Saeed H. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 2024; 41:112. [PMID: 38592510 DOI: 10.1007/s12032-024-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.
Collapse
Affiliation(s)
- Khubaib Ali
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Nabeel
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Fatima Mohsin
- Department of Biological Sciences, KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-Technology, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Furqan K Hashmi
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
| |
Collapse
|
4
|
Mahanti K, Bhattacharyya S. Rough neighborhood: Intricacies of cancer stem cells and infiltrating immune cell interaction in tumor microenvironment and potential in therapeutic targeting. Transl Res 2023; 265:S1931-5244(23)00176-7. [PMID: 39491179 DOI: 10.1016/j.trsl.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Ongoing research on cellular heterogeneity of Cancer stem cells (CSCs) and its synergistic involvement with tumor milieu reveals enormous complexity, resulting in diverse hindrance in immune therapy. CSCs has captured attention for their contribution in shaping of tumor microenvironment and as target for therapeutic intervention. Recent studies have highlighted cell-extrinsic and intrinsic mechanisms of reciprocal interaction between tumor stroma constituents and CSCs. Therapeutic targeting requires an in-depth understanding of the underlying mechanisms involved with the rate limiting factors in tumor aggressiveness and pinpoint role of CSCs. Some of the major constituents of tumor microenvironment includes resident and infiltrating immune cell, both innate and adaptive. Some of these immune cells play crucial role as adjustors of tumor immune response. Tumor-adjustor immune cell interaction confer plasticity and features enabling tumor growth and metastasis in one hand and on the other hand blunts anti-tumor immunity. Detail understanding of CSC and TME resident immune cells interaction can shape new avenues for cancer immune therapy. In this review, we have tried to summarize the development of knowledge on cellular, molecular and functional interaction between CSCs and tumor microenvironment immune cells, highlighting immune-mediated therapeutic strategies aimed at CSCs. We also discussed developing a potential CSC and TME targeted therapeutic avenue.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India
| | - Sankar Bhattacharyya
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India.
| |
Collapse
|
5
|
Vajari MK, Sanaei MJ, Salari S, Rezvani A, Ravari MS, Bashash D. Breast cancer vaccination: Latest advances with an analytical focus on clinical trials. Int Immunopharmacol 2023; 123:110696. [PMID: 37494841 DOI: 10.1016/j.intimp.2023.110696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer (BC) is one of the main causes of cancer-related death worldwide. The heterogenicity of breast tumors and the presence of tumor resistance, metastasis, and disease recurrence make BC a challenging malignancy. A new age in cancer treatment is being ushered in by the enormous success of cancer immunotherapy, and therapeutic cancer vaccination is one such area of research. Nevertheless, it has been shown that the application of cancer vaccines in BC as monotherapy could not induce satisfying anti-tumor immunity. Indeed, the application of various vaccine platforms as well as combination therapies like immunotherapy could influence the clinical benefits of BC treatment. We analyzed the clinical trials of BC vaccination and revealed that the majority of trials were in phase I and II meaning that the BC vaccine studies lack favorable outcomes or they need more development. Furthermore, peptide- and cell-based vaccines are the major platforms utilized in clinical trials according to our analysis. Besides, some studies showed satisfying outcomes regarding carbohydrate-based vaccines in BC treatment. Recent advancements in therapeutic vaccines for breast cancer were promising strategies that could be accessible in the near future.
Collapse
Affiliation(s)
- Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology-Hematology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Rezvani
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hashemi F, Razmi M, Tajik F, Zöller M, Dehghan Manshadi M, Mahdavinezhad F, Tiyuri A, Ghods R, Madjd Z. Efficacy of Whole Cancer Stem Cell-Based Vaccines: A Systematic Review of Preclinical and Clinical Studies. Stem Cells 2023; 41:207-232. [PMID: 36573273 DOI: 10.1093/stmcls/sxac089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite the conventional cancer therapeutic, cancer treatment remains a medical challenge due to neoplasm metastasis and cancer recurrence; therefore, new approaches promoting therapeutic strategies are highly desirable. As a new therapy, the use of whole neoplastic stem cells or cancer stem cell (CSC)-based vaccines is one strategy to overcome these obstacles. We investigated the effects of whole CSC-based vaccines on the solid tumor development, metastasis, and survival rate. METHODS Primary electronic databases (PubMed/MEDLINE, Scopus, Embase, and Web of Science) and a major clinical registry were searched. Interventional studies of whole CSC-based vaccines in rodent cancer models (38 studies) and human cancer patients (11 studies) were included; the vaccine preparation methodologies, effects, and overall outcomes were evaluated. RESULTS Preclinical studies were divided into 4 groups: CSC-lysates/ inactivated-CSC-based vaccines, CSC-lysate-loaded dendritic cell (CSC-DC) vaccines, cytotoxic T-cell (CTL) vaccines generated with CSC-DC (CSC-DC-CTL), and combinatorial treatments carried out in the prophylactic and therapeutic experimental models. The majority of preclinical studies reported a promising effect on tumor growth, survival rate, and metastasis. Moreover, whole CSC-based vaccines induced several antitumor immune responses. A small number of clinical investigations suggested that the whole CSC-based vaccine treatment is beneficial; however, further research is required. CONCLUSIONS This comprehensive review provides an overview of the available methods for assessing the efficacy of whole CSC-based vaccines on tumor development, metastasis, and survival rate. In addition, it presents a set of recommendations for designing high-quality clinical studies that may allow to determine the efficacy of whole CSC-based-vaccines in cancer therapy.
Collapse
Affiliation(s)
- Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Tiyuri
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Li K, Sun X, Minami K, Tamari K, Ogawa K, Li H, Ma H, Zhou M, Na S, Li BY, Yokota H. Proteomes from AMPK-inhibited peripheral blood mononuclear cells suppress the progression of breast cancer and bone metastasis. Theranostics 2023; 13:1247-1263. [PMID: 36923539 PMCID: PMC10008730 DOI: 10.7150/thno.80294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
Background: During a developmental process, embryos employ varying tactics to remove unwanted cells. Using a procedure analogous to some of the embryonic cells, we generated a tumor-eliminating conditioned medium (CM) from AMPK-inhibited lymphocytes and monocytes in peripheral blood mononuclear cells (PBMCs). Methods: AMPK signaling was inhibited by the application of a pharmacological agent, Dorsomorphin, and the therapeutic effects of their conditioned medium (CM) were evaluated using in vitro cell cultures, ex vivo breast cancer tissues, and a mouse model of mammary tumors and tumor-induced osteolysis. The regulatory mechanism was evaluated using mass spectrometry-based proteomics, Western blotting, immunoprecipitation, gene overexpression, and RNA interference. Results: While AMPK signaling acted mostly anti-tumorigenic, we paradoxically inhibited it to build induced tumor-suppressing cells and their tumor-eliminating CM. In a mouse model of breast cancer, the application of AMPK-inhibited lymphocyte-derived CM reduced mammary tumors additively to a chemotherapeutic agent, Taxol. It also prevented bone loss in the tumor-bearing tibia. Furthermore, the application of CM from the patient-derived peripheral blood diminished ex vivo breast cancer tissues isolated from the same patients. Notably, proteins enriched in CM included Moesin (MSN), Enolase 1 (ENO1), and polyA-binding protein 1 (PABPC1), which are considered tumorigenic in many types of cancer. The tumor-suppressing actions of MSN and ENO1 were at least in part mediated by Metadherin (Mtdh), which is known to promote metastatic seeding. Conclusion: We demonstrated that PBMCs can be used to generate tumor-suppressive proteomes, and extracellular tumor-suppressing proteins such as MSN, ENO1, and PABPC1 are converted from tumor-promoting factors inside cancer cells. The results support the possibility of developing autologous blood-based therapy, in which tumor-suppressing proteins are enriched in engineered PBMC-derived CM by the inhibition of AMPK signaling.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine; Suita, Osaka 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine; Suita, Osaka 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine; Suita, Osaka 565-0871, Japan
| | - Hudie Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hailan Ma
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Meng Zhou
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Sun X, Li K, Aryal UK, Li BY, Yokota H. PI3K-activated MSC proteomes inhibit mammary tumors via Hsp90ab1 and Myh9. Mol Ther Oncolytics 2022; 26:360-371. [PMID: 36090473 PMCID: PMC9420348 DOI: 10.1016/j.omto.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Despite the advance in medications in the past decade, aggressive breast cancer such as triple-negative breast cancer is difficult to treat. Here, we examined a counter-intuitive approach to converting human bone marrow-derived mesenchymal stem cells (MSCs) into induced tumor-suppressing cells by administering YS49, a PI3K/Akt activator. Notably, PI3K-activated MSCs generated tumor-suppressive proteomes, while PI3K-inactivated MSCs tumor-promotive proteomes. In a mouse model, the daily administration of YS49-treated MSC-derived CM decreased the progression of primary mammary tumors as well as the colonization of tumor cells in the lung. In the ex vivo assay, the size of freshly isolated human breast cancer tissues, including estrogen receptor positive and negative as well as human epidermal growth factor receptor 2 (HER2) positive and negative, was decreased by YS49-treated MSC-derived CM. Hsp90ab1 was enriched in CM as an atypical tumor-suppressing protein and immunoprecipitated a non-muscle myosin, Myh9. Extracellular Hsp90ab1 and Myh9 exerted the anti-tumor action and inhibited the maturation of bone-resorbing osteoclasts. Collectively, this study demonstrated that the activation of PI3K generated tumor-suppressive proteomes in MSCs and supported the possibility of using patient-derived MSCs for the treatment of breast cancer and bone metastasis.
Collapse
|
9
|
Eini L, Naseri M, Karimi-Busheri F, Bozorgmehr M, Ghods R, Madjd Z. Preventive cancer stem cell-based vaccination modulates tumor development in syngeneic colon adenocarcinoma murine model. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04303-8. [PMID: 36040667 DOI: 10.1007/s00432-022-04303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cancer stem cells (CSCs), a rare sub-fraction of tumor cells, with the capability of self-renewal and strong oncogenicity are tightly responsible for chemo and radio resistance and tumor metastasis in colorectal cancer. Hence, CSCs targeting would improve the efficacy of therapeutic strategies and clinical outcomes. METHODS Here, using three-dimensional CSC spheroids and syngeneic mice model, we evaluated the cancer preventive impact of CSCs-based vaccination. CSCs enrichment was performed via colonosphere formation from CT-26 cell line and CT-26-derived tumor biopsy and characterized by confirming high expression of key stemness genes (OCT4, SOX2, and NANOG) and CSC-related surface biomarkers (CD166, DCLK1, and CD133) via real-time PCR and flow cytometry, respectively. Then, the stemness phenotype and self-renewal in CSC-enriched spheroids were further confirmed by showing serial sphere formation capacity, clonogenicity potential, and enhanced in vivo tumorigenic capacity compared to their parental counterparts. CSCs lysates were used as vaccines in prophylactic settings compared to the parental cell lysate and PBS groups. RESULT Immunization of syngeneic mice with CSCs lysates was effective in the prevention of tumor establishment and significantly decreased tumor growth rate accompanied by an improvement in survival rate in tumor-bearing mice compared to groups subjected to parental cells lysate and PBS. These results, for the first time, showed that mice immunized with cell lysate from tumor biopsy-derived spheroids are resistant to tumor induction. Immunofluorescence staining indicated that only the serum antibodies from CSC-vaccinated mice reacted with colonospheres. CONCLUSIONS These findings represent CSCs lysate-based vaccination as a potential approach to hampering immunotherapy failure of colorectal cancer which along with other traditional therapies may effectively apply to prevent the establishment of aggressive tumors harboring stemness features.
Collapse
Affiliation(s)
- Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Liao F, Zhang J, Hu Y, Najafabadi AH, Moon JJ, Wicha MS, Kaspo B, Whitfield J, Chang AE, Li Q. Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells. Cancer Immunol Immunother 2022; 71:1959-1973. [DOI: 10.1007/s00262-021-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
11
|
Ruiu R, Di Lorenzo A, Cavallo F, Conti L. Are Cancer Stem Cells a Suitable Target for Breast Cancer Immunotherapy? Front Oncol 2022; 12:877384. [PMID: 35530300 PMCID: PMC9069673 DOI: 10.3389/fonc.2022.877384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
There is substantial evidence to suggest that complete tumor eradication relies on the effective elimination of cancer stem cells (CSCs). CSCs have been widely described as mediators of resistance to conventional therapies, including chemo- and radiotherapy, as well as of tumor metastasization and relapse in different tumor types, including breast cancer. However, the resistant phenotype of CSCs makes their targeting a tough task, and immunotherapy may therefore be an interesting option. Nevertheless, although immunotherapeutic approaches to cancer treatment have generated great enthusiasm due to recent success in clinics, breast cancer treatment mostly relies on standard approaches. In this context, we review the existing literature on the immunological properties of breast CSC and immunotherapeutic approaches to them. We will thus attempt to clarify whether there is room for the immunotargeting of breast CSCs in the current landscape of breast cancer therapies. Finally, we will provide our opinion on the CSC-targeting immunotherapeutic strategies that could prospectively be attempted.
Collapse
Affiliation(s)
| | | | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
12
|
"Double hit" strategy: Removal of sialic acid from the dendritic cell surface and loading with CD44+/CD24-/low cell lysate inhibits tumor growth and metastasis by targeting breast cancer stem cells. Int Immunopharmacol 2022; 107:108684. [PMID: 35272171 DOI: 10.1016/j.intimp.2022.108684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Cancer stem cells (CSCs), which represent the root cause of resistance to conventional treatments, recurrence, and metastasis, constitute the critical point of failure in cancer treatments. Targeting CSCs with dendritic cell (DC)-based vaccines have been an effective strategy, but sialic acids on the surface of DCs limit the interaction with loaded antigens. We hypothesized that removal of sialic acid moieties on immature DCs (iDCs) could significantly affect DC-CSC-antigen loading, thereby leading to DC maturation and improving immune recognition and activity. The lysate of CD44+/CD24-/low breast CSCs (BCSCs) was pulsed with sialidase-treated DCs to obtain mature dendritic cells (mDCs). The roles of cytoskeletal elements in antigen uptake and dendritic cell maturation were determined by immunofluorescence staining, flow cytometry, and cytokine measurement, respectively. To test the efficacy of the vaccine in vivo, CSCs tumor-bearing mice were immunized with iDC or mDC. Pulsing DCs with antigen increased the expression levels of actin, gelsolin, talin, WASp, and Arp2, especially in podosome-like regions. Compared with iDCs, mDCs expressed high levels of CD40, CD80, CD86 costimulatory molecules and increased IL-12 production. Vaccination with mDC: i) increased CD8+ and CD4 + T-cell numbers, ii) prevented tumor growth with anti-mitotic activity and apoptotic induction, iii) suppressed metastasis by decreasing Snail, Slug, and Twist expressions. This study reveals for the first time that sialic acid removal and loading with CSC antigens induces significant molecular, morphological, and functional changes in DCs and that this new DC identity may be considered for future combined immunotherapy strategies against breast tumors.
Collapse
|
13
|
Barua N, Yang Y, Huang L, Ip M. VraSR Regulatory System Contributes to the Virulence of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) in a 3D-Skin Model and Skin Infection of Humanized Mouse Model. Biomedicines 2021; 10:biomedicines10010035. [PMID: 35052714 PMCID: PMC8772825 DOI: 10.3390/biomedicines10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
The vancomycin-resistance associated sensor/regulator, VraSR two-component regulatory-system (VraSR), regulates virulence and the response of Staphylococcus aureus (SA) to environmental stress. To investigate the role of VraSR in SA skin and soft tissue infections (SSTI), we inactivated the VraSR of a clinical CA-MRSA ST30 strain by insertional mutation in vraR gene using the TargeTron-Gene Knockout System. We constructed an organotypic keratinocyte fibroblast co-culture (3D-skin model) and a humanized mouse as SSTI infection models. In the 3D-skin model, inactivation of VraSR in the strains ST30 and USA300 showed 1-log reduction in adhesion and internalization (p < 0.001) compared to the respective wildtype. The mutant strains of ST30 (p < 0.05) and USA300-LAC (p < 0.001) also exhibited reduced apoptosis. The wildtype ST30 infection in the humanized mouse model demonstrated increased skin lesion size and bacterial burden compared to BALB/c mice (p < 0.01). The response of the humanized mouse towards the MRSA infection exhibited human similarity indicating that the humanized mouse SSTI model is more suitable for evaluating the role of virulence determinants. Inactivation of VraSR in ST30 strain resulted in decreased skin lesion size in the humanized mouse SSTI model (p < 0.05) and reduction in apoptotic index (p < 0.01) when compared with the wildtype. Our results reveal that inactivating the VraSR system may be a potent anti-virulence approach to control MRSA infection.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China; (N.B.); (Y.Y.)
| | - Ying Yang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China; (N.B.); (Y.Y.)
| | - Lin Huang
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China;
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong 999077, China; (N.B.); (Y.Y.)
- Correspondence:
| |
Collapse
|
14
|
Conversion of Osteoclasts into Bone-Protective, Tumor-Suppressing Cells. Cancers (Basel) 2021; 13:cancers13225593. [PMID: 34830748 PMCID: PMC8615769 DOI: 10.3390/cancers13225593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Osteoclasts are bone-resorbing cells and, together with bone-forming osteoblasts, they are responsible for maintaining healthy bones. When cancer cells invade into the bone, however, osteoclasts assist in cancer progression and stimulate bone loss. In this study, we converted the bone-destructive action of osteoclasts by activating their Wnt signaling and generated an osteoclast-derived, bone-protective, tumor-suppressive conditioned medium. The conditioned medium was able to suppress tumor growth and bone loss in a mouse model of mammary tumors and bone metastasis. The described approach is expected to add a novel strategy to treat primary breast cancer as well as bone metastasis. Abstract Osteoclasts are a driver of a vicious bone-destructive cycle with breast cancer cells. Here, we examined whether this vicious cycle can be altered into a beneficial one by activating Wnt signaling with its activating agent, BML284. The conditioned medium, derived from Wnt-activated RAW264.7 pre-osteoclast cells (BM CM), reduced the proliferation, migration, and invasion of EO771 mammary tumor cells. The same inhibitory effect was obtained with BML284-treated primary human macrophages. In a mouse model, BM CM reduced the progression of mammary tumors and tumor-induced osteolysis and suppressed the tumor invasion to the lung. It also inhibited the differentiation of RANKL-stimulated osteoclasts and enhanced osteoblast differentiation. BM CM was enriched with atypical tumor-suppressing proteins such as Hsp90ab1 and enolase 1 (Eno1). Immunoprecipitation revealed that extracellular Hsp90ab1 interacted with latent TGFβ (LAP-TGFβ) as an inhibitor of TGFβ activation, while Hsp90ab1 and Eno1 interacted and suppressed tumor progression via CD44, a cell-adhesion receptor and a cancer stem cell marker. This study demonstrated that osteoclast-derived CM can be converted into a bone-protective, tumor-suppressing agent by activating Wnt signaling. The results shed a novel insight on the unexplored function of osteoclasts as a potential bone protector that may develop an unconventional strategy to combat bone metastasis.
Collapse
|
15
|
Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, Feng Y, Li K, Sano T, Vike N, Li F, Rispoli J, Sudo A, Liu J, Robling A, Nakshatri H, Li BY, Yokota H. Overexpression of Lrp5 enhanced the anti-breast cancer effects of osteocytes in bone. Bone Res 2021; 9:32. [PMID: 34230453 PMCID: PMC8260600 DOI: 10.1038/s41413-021-00152-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osteocytes are the most abundant cells in bone, which is a frequent site of breast cancer metastasis. Here, we focused on Wnt signaling and evaluated tumor-osteocyte interactions. In animal experiments, mammary tumor cells were inoculated into the mammary fat pad and tibia. The role of Lrp5-mediated Wnt signaling was examined by overexpressing and silencing Lrp5 in osteocytes and establishing a conditional knockout mouse model. The results revealed that administration of osteocytes or their conditioned medium (CM) inhibited tumor progression and osteolysis. Osteocytes overexpressing Lrp5 or β-catenin displayed strikingly elevated tumor-suppressive activity, accompanied by downregulation of tumor-promoting chemokines and upregulation of apoptosis-inducing and tumor-suppressing proteins such as p53. The antitumor effect was also observed with osteocyte-derived CM that was pretreated with a Wnt-activating compound. Notably, silencing Lrp5 in tumors inhibited tumor progression, while silencing Lrp5 in osteocytes in conditional knockout mice promoted tumor progression. Osteocytes exhibited elevated Lrp5 expression in response to tumor cells, implying that osteocytes protect bone through canonical Wnt signaling. Thus, our results suggest that the Lrp5/β-catenin axis activates tumor-promoting signaling in tumor cells but tumor-suppressive signaling in osteocytes. We envision that osteocytes with Wnt activation potentially offer a novel cell-based therapy for breast cancer and osteolytic bone metastasis.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Yan Feng
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Orthopedic Surgery, Mie University, Tsu, Mie, Japan
| | - Nicole Vike
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fangjia Li
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Joseph Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University, Tsu, Mie, Japan
| | - Jing Liu
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexander Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA. .,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China. .,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA. .,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
17
|
Wang W, Bai L, Xu D, Li W, Cui J. Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells. Curr Cancer Drug Targets 2021; 21:117-131. [PMID: 32364076 DOI: 10.2174/1568009620666200504111914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
Tumor recurrence and drug resistance are two of the key factors affecting the prognosis of cancer patients. Cancer stem cells (CSCs) are a group of cells with infinite proliferation potential which are not sensitive to traditional therapies, including radio- and chemotherapy. These CSCs are considered to be central to tumor recurrence and the development of drug resistance. In addition, CSCs are important targets in cancer immunotherapy because of their expression of novel tumorassociated antigens, which result from mutations in cancer cells over the course of treatment. Emerging immunotherapies, including cancer vaccines, checkpoint blockade therapies, and transferred immune cell therapies, have all been shown to be more effective when they selectively target CSCs. Such therapies may also provide novel additions to the current therapeutic milieu and may offer new therapeutic combinations for treatment. This review summarizes the relationships between various immunotherapies and CSCs and provides novel insights into potential therapeutic applications for these approaches in the future.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
18
|
Naseri M, Zöller M, Hadjati J, Ghods R, Ranaei Pirmardan E, Kiani J, Eini L, Bozorgmehr M, Madjd Z. Dendritic cells loaded with exosomes derived from cancer stem cell-enriched spheroids as a potential immunotherapeutic option. J Cell Mol Med 2021; 25:3312-3326. [PMID: 33634564 PMCID: PMC8034455 DOI: 10.1111/jcmm.16401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)‐based therapeutic strategies against CSCs. Here, in an in vitro model using the HT‐29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC‐enriched colonospheres (CSCenr‐EXOs) as an antigen source in activating CSC‐specific T‐cell responses. HT‐29 lysate, HT‐29‐EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr‐EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen‐pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr‐EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr‐EXOs significantly increased the IL‐12/IL‐10 ratio in supernatants of mature DCs. CSCenr‐EXO‐loaded DCs effectively promoted T‐cell proliferation. Importantly, T cells stimulated with CSCenr‐EXOs disrupted spheroids' structure. Thus, CSCenr‐EXOs present a novel and promising antigen source that in combination with conventional tumour bulk‐derived antigens should be further explored in pre‐clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.
Collapse
Affiliation(s)
- Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Radiology, Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Basic Science, Faculty of Veterinary, Science and Research Branch of Islamic, Azad University, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
19
|
Wang J, Shao L, Wu L, Ma W, Zheng Y, Hu C, Li F. Expression levels of a gene signature in hiPSC associated with lung adenocarcinoma stem cells and its capability in eliciting specific antitumor immune-response in a humanized mice model. Thorac Cancer 2020; 11:1603-1612. [PMID: 32314522 PMCID: PMC7262930 DOI: 10.1111/1759-7714.13440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have reported that cancer stem cells (CSCs) play a key role in tumorigenesis, metastasis, and recurrence. CSC‐based vaccination confers better protection in tumor cells. However, isolation and cultivation of CSCs are difficult. This study aimed to explore the similarities between CSCs and induced pluripotent stem cells (iPSCs). Methods ALDH1+ cancer stem cells were isolated from lung adenocarcinoma patients and their gene expression patterns compared with human induced pluripotent stem cells (hiPSCs). In addition, a tumor vaccine was developed using hiPSC and unmethylated cytosine‐guanine (CpG). Finally, the antitumor properties of the vaccine were evaluated in a humanized mouse model. Results Preimmunization of iPSC+CpG elicited stronger antigen presentation and cytotoxic T cell response which suppressed the growth of tumors. Adoptive transfer of spleen T cells from the vaccine preimmunized mice inhibited tumor growth in unvaccinated recipients without any side effects. Conclusions This study suggests a universal strategy for tumor therapy which simplifies future clinical procedures. Therefore, the application of hiPSC elicits tumor protective responses.
Collapse
Affiliation(s)
- Jingbo Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Shenzhen key laboratory of stem cell research and clinical transformation, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Lijuan Shao
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Shenzhen key laboratory of stem cell research and clinical transformation, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Liujing Wu
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Shenzhen key laboratory of stem cell research and clinical transformation, Shenzhen, China
| | - Wei Ma
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Shenzhen key laboratory of stem cell research and clinical transformation, Shenzhen, China
| | - Yuanyuan Zheng
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Shenzhen key laboratory of stem cell research and clinical transformation, Shenzhen, China
| | - Chaofeng Hu
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| | - Furong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Shenzhen key laboratory of stem cell research and clinical transformation, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Mucin-Like Domain of Ebola Virus Glycoprotein Enhances Selective Oncolytic Actions against Brain Tumors. J Virol 2020; 94:JVI.01967-19. [PMID: 32051271 DOI: 10.1128/jvi.01967-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
Given that the Ebola virus (EBOV) infects a wide array of organs and cells yet displays a relative lack of neurotropism, we asked whether a chimeric vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) might selectively target brain tumors. The mucin-like domain (MLD) of the EBOV GP may enhance virus immune system evasion. Here, we compared chimeric VSVs in which EBOV GP replaces the VSV glycoprotein, thereby reducing the neurotoxicity associated with wild-type VSV. A chimeric VSV expressing the full-length EBOV GP (VSV-EBOV) containing the MLD was substantially more effective and safer than a parallel construct with an EBOV GP lacking the MLD (VSV-EBOVΔMLD). One-step growth, reverse transcription-quantitative PCR, and Western blotting assessments showed that VSV-EBOVΔMLD produced substantially more progeny faster than VSV-EBOV. Using immunodeficient SCID mice, we focused on targeting human brain tumors with these VSV-EBOVs. Similar to the findings of our previous study in which we used an attenuated VSV-EBOV with no MLD that expressed green fluorescent protein (GFP) (VSV-EBOVΔMLD-GFP), VSV-EBOVΔMLD without GFP targeted glioma but yielded only a modest extension of survival. In contrast, VSV-EBOV containing the MLD showed substantially better targeting and elimination of brain tumors after intravenous delivery and increased the survival of brain tumor-bearing mice. Despite the apparent destruction of most tumor cells by VSV-EBOVΔMLD, the virus remained active within the SCID mouse brain and showed widespread infection of normal brain cells. In contrast, VSV-EBOV eliminated the tumors and showed relatively little infection of normal brain cells. Parallel experiments with direct intracranial virus infection generated similar results. Neither VSV-EBOV nor VSV-EBOVΔMLD showed substantive infection of the brains of normal immunocompetent mice.IMPORTANCE The Ebola virus glycoprotein contains a mucin-like domain which may play a role in immune evasion. Chimeric vesicular stomatitis viruses with the EBOV glycoprotein substituted for the VSV glycoprotein show greater safety and efficacy in targeting brain tumors in immunodeficient mice when the MLD was expressed within the EBOV glycoprotein than when EBOV lacked the mucin-like domain.
Collapse
|
21
|
Sumransub N, Jirapongwattana N, Jamjuntra P, Thongchot S, Chieochansin T, Yenchitsomanus PT, Thuwajit P, Warnnissorn M, O-Charoenrat P, Thuwajit C. Breast cancer stem cell RNA-pulsed dendritic cells enhance tumor cell killing by effector T cells. Oncol Lett 2020; 19:2422-2430. [PMID: 32194742 PMCID: PMC7038997 DOI: 10.3892/ol.2020.11338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) underpin the resistance of breast cancer (BC) cells to therapy. Dendritic cell (DC)-based treatment is efficacious and safe, but the efficiency of this technique for targeting CSCs in BC treatment requires further investigation. The present study aimed to investigate the ability of DCs pulsed with breast CSC antigens to activate effector lymphocytes for killing BC cells. CD44+/CD24− CSCs were isolated from BCA55-121, an in-house patient-derived BC cell line, and acquisition of stemness properties was confirmed by upregulated expression of OCT4A and a superior proliferative capacity in colony formation assays compared with whole population of BCA55-121 (BCA55-121-WP). DCs were differentiated from monocytes from peripheral blood of healthy donors and pulsed with CSC total RNA. Maturation of the CSC RNA-pulsed DCs was confirmed by increased expression of CD11c, CD40, CD83, CD86 and HLA-DR, as well as reduced CD14 expression compared with monocytes. Total lymphocytes co-cultured with CSC RNA-pulsed DCs were analyzed by flow cytometry for markers including CD3, CD4, CD8, CD16 and CD56. The results revealed that the co-cultures contained mostly cytotoxic CD8+ T lymphocytes followed by CD4+ T lymphocytes and smaller populations of natural killer (NK) and NKT cells. ELISA was used to measure IFN-γ production, and it was revealed that activated CD4+ and CD8+ lymphocytes produced more IFN-γ compared with naïve T cells, suggesting that CD8+ T cells were effector T cells. CSC RNA was a more efficient antigen source compared with RNA from mixed BC cells for activating tumor antigen-specific killing by T cells. These CSC-specific effector T cells significantly induced BC cell apoptosis at a 20:1 effector T cell:tumor cell ratio. Of note, the breast CSCs cultures demonstrated resistance to effector T cell killing, which was in part due to increased expression of programmed death ligand 1 in the CSC population. The present study highlights the potential use of CSC RNA for priming DCs in modulating an anticancer immune response against BC.
Collapse
Affiliation(s)
- Nuttavut Sumransub
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaweesak Chieochansin
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Department of Siriraj Center of Research Excellence for Cancer Immunotherapy (siCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Department of Siriraj Center of Research Excellence for Cancer Immunotherapy (siCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pornchai O-Charoenrat
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
22
|
Lasso P, Llano Murcia M, Sandoval TA, Urueña C, Barreto A, Fiorentino S. Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model. Integr Cancer Ther 2019; 18:1534735419848047. [PMID: 31056957 PMCID: PMC6505237 DOI: 10.1177/1534735419848047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The tumor cells responsible for metastasis are highly
resistant to chemotherapy and have characteristics of stem cells, with a high
capacity for self-regeneration and the use of detoxifying mechanisms that
participate in drug resistance. In vivo models of highly resistant cells allow
us to evaluate the real impact of the immune response in the control of cancer.
Materials and Methods: A tumor population derived from the 4T1
breast cancer cell line that was stable in vitro and highly aggressive in vivo
was obtained, characterized, and determined to exhibit cancer stem cell (CSC)
phenotypes (CD44+, CD24+, ALDH+,
Oct4+, Nanog+, Sox2+, and high self-renewal
capacity). Orthotopic transplantation of these cells allowed us to evaluate
their in vivo susceptibility to chemo and immune responses induced after
vaccination. Results: The immune response induced after vaccination
with tumor cells treated with doxorubicin decreased the formation of tumors and
macrometastasis in this model, which allowed us to confirm the immune response
relevance in the control of highly chemotherapy-resistant ALDH+ CSCs
in an aggressive tumor model in immunocompetent animals.
Conclusions: The antitumor immune response was the main element
capable of controlling tumor progression as well as metastasis in a highly
chemotherapy-resistant aggressive breast cancer model.
Collapse
Affiliation(s)
- Paola Lasso
- 1 Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
23
|
Liu G, Fan X, Cai Y, Fu Z, Gao F, Dong J, Li K, Cai J. Efficacy of dendritic cell-based immunotherapy produced from cord blood in vitro and in a humanized NSG mouse cancer model. Immunotherapy 2019; 11:599-616. [PMID: 30943862 DOI: 10.2217/imt-2018-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/18/2019] [Indexed: 02/08/2023] Open
Abstract
AIM To produce dendritic cells (DCs) from CD34+ stem cells from cord blood and explore their prophylactic and curative effect against tumors by vaccinating humanized NSG mice. MATERIALS & METHODS Separated CD34+ stem cells from cord blood were cultured for 30 days, and the resultant DCs (CD34-DCs) were collected. The basic function of the CD34-DCs and the cytotoxicity of CD34-cytotoxic-T lymphocytes (CTLs) were tested in vitro, and tumor inhibition in a humanized NSG mouse tumor model was observed. RESULTS The number of CD34-DCs reached approximately 9 log. These cells performed functions similar to those of DCs derived from monocytes from peripheral blood (PBMC-DCs). The CTLs of the CD34-DCs (CD34-CTLs) presented a better antitumor effect in vitro. The obvious prophylactic and therapeutic antitumor effects of the CD34-DC vaccine were observed in the humanized NSG mouse models. CONCLUSION CD34-DCs from cord blood were sufficient in quantity and quality as a vaccine agent against tumors in vitro and in vivo.
Collapse
Affiliation(s)
- Gang Liu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
- Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Xiaoyan Fan
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Ying Cai
- Department of Research and Development, Hebei Engineering Technology Research Center for Cell Therapy, Hebei HOFOY Biotech Corporation Ltd, 238 Changjiang Aveneu, Shijiazhuang 500350, China
| | - Zexian Fu
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Fei Gao
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jiantao Dong
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
- Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| | - Kang Li
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, China
- Department of Surgery, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang 050051, China
| |
Collapse
|
24
|
Abstract
Cancer stem cells (CSCs) are crucial for tumor recurrence and distant metastasis. Immunologically targeting CSCs represents a promising strategy to improve efficacy of multimodal cancer therapy. Modulating the innate immune response involving Toll-like receptors, macrophages, natural killer cells, and γδT cells has therapeutic effects on CSCs. Antigens expressed by CSCs provide specific targets for immunotherapy. CSC-primed dendritic cell-based vaccines have induced significant antitumor immunity as an adjuvant therapy in experimental models of established tumors. Targeting the tumor microenvironment CSC niche with cytokines or checkpoint blockade provides additional strategies to eliminate CSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, Room 3410, 1150 East Medical Center Drive, Ann Arbor, MI 48109, USA; Department of the 2nd Thoracic Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 116 Zhuodaoquan South Road, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Qiao Li
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, 3520B MSRB-1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Alfred E Chang
- Division of Surgical Oncology, University of Michigan Rogel Cancer Center, Room 3304, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Bagheri V, Abbaszadegan MR, Memar B, Motie MR, Asadi M, Mahmoudian RA, Gholamin M. Induction of T cell-mediated immune response by dendritic cells pulsed with mRNA of sphere-forming cells isolated from patients with gastric cancer. Life Sci 2019; 219:136-143. [PMID: 30641083 DOI: 10.1016/j.lfs.2019.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) as the third most common cause of cancer-associated mortality worldwide is one of the cancers with very high heterogeneity. Cancer stem cells (CSCs) as a small subset of cancer cells in solid tumors with the self-renewal, differentiation and tumorigenic ability are responsible for tumor initiation, progression, recurrence, metastasis, and resistance to current treatments. Therefore, eradication of CSCs is very vital to cure cancer. Here, we first isolated and identified sphere-forming cells in tumor tissue from four GC patients and then analyzed T cell responses induced by monocyte-derived dendritic cells (DCs) loaded with total mRNA of sphere-forming cells in terms of interferon-gamma (IFN-γ) gene expression and specific cytotoxicity. Spheroid colonies were formed in serum-free media. Sphere-forming cells dissociated from tumorspheres heterogeneously expressed CD44, CD54, and epithelial cell adhesion molecule (EpCAM) markers and generated one tumor in nude mice. These results demonstrated that gastric CSCs were enriched in tumorspheres. Cytokine-matured DCs loaded with mRNA of sphere-forming cells were able to induce IFN-γ gene expression in T-lymphocytes after a 12-day co-culture. mRNA level of IFN-γ gene in these lymphocytes was more highly expressed compared to stimulated T-lymphocytes by DCs transfected with normal tissue (6.4-9.39 folds). Cytotoxic activity of primed T-lymphocytes with antigens of sphere-forming cells was significantly higher than normal tissue antigens and mock DCs (P ≤ 0.0001). Taken together, DCs loaded with mRNA of sphere-forming cells that elicit effectively specific T cell-mediated immune responses in vitro, may be considered as a promising therapeutic vaccination in GC patients in future.
Collapse
Affiliation(s)
- Vahid Bagheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Bahram Memar
- Surgical Oncology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Motie
- Surgical Oncology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Asadi
- Surgical Oncology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mehran Gholamin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Zhu S, Lv X, Zhang X, Li T, Zang G, Yang N, Wang X, Wu J, Chen W, Liu YJ, Chen J. An effective dendritic cell-based vaccine containing glioma stem-like cell lysate and CpG adjuvant for an orthotopic mouse model of glioma. Int J Cancer 2019; 144:2867-2879. [PMID: 30565657 DOI: 10.1002/ijc.32008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
Owing to the limited therapeutic efficacy of glioma vaccines, new strategies are required to improve cancer vaccines. Our study aimed to assess the therapeutic efficacy of a glioma vaccine called STDENVANT. This vaccine, comprising glioma stem-like cell (GSC) lysate, dendritic cells (DCs), and Toll-like receptor (TLR) 9 agonist CpG motif-containing oligodeoxynucleotides (CpG ODNs), was assessed using a GL261-C57BL/6 orthotopic mouse model of glioma. STDENVANT markedly improved survival and tumor regression by enhancing anti-tumor immune function. Moreover, STDENVANT upregulated programmed death 1 (PD-1) and its ligand PD-L1 on effector T cells, DCs, and glioma tissues, resulting in the accumulation of regulatory T (Treg) cells in the brain and lymph nodes. Combinatorial administration of anti-PD-L1 antibody and STDENVANT conferred a greater survival advantage and decreased the Treg cell population in the brain. The present results indicate that PD-L1 blockade can promote tumor regression via STDENVANT in a mouse model of glioma, and combinatorial administration of anti-PD-L1 antibody and STDENVANT increases the therapeutic anti-tumor efficacy of treatment.
Collapse
Affiliation(s)
- Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinping Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xuhao Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xue Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wei Chen
- ADC Biomedical Research Institute, Saint Paul, MN
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Sanofi R&D, Cambridge, MA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Li TY, Chiang BH. 4-Acetylantroquinonol B from antrodia cinnamomea enhances immune function of dendritic cells against liver cancer stem cells. Biomed Pharmacother 2018; 109:2262-2269. [PMID: 30551483 DOI: 10.1016/j.biopha.2018.11.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/05/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022] Open
Abstract
The functions of 4-acetylantroquinonol B (4-AAQB), a ubiquinone derivative isolated from the mycelium of Antrodia cinnamomea, in immunotherapy for liver cancer were investigated. We found that 4-AAQB could inhibit liver cancer stem cell related manifestations and activate the antitumor ability of dendritic cells. Specifically, 4-AAQB can inhibit EpCAM, AFP and related pathways of HepG2 cells. It also significantly decreases the expression of β-catenin, inhibits the tumorigenicity and decreases the secretion of immune escape related cytokines. Moreover, 4-AAQB can stimulate the proliferation of immune cells and promote the endocytosis of immature dendritic cells. When co-cultured immature dendritic cells with EpCAM+ HepG2 cells, 4-AAQB enhanced the expression of MHC class I and II on the surface of liver cancer stem cells and dendritic cells, increased the expression of costimulatory molecules CD80 of dendritic cells and cytokines related to immune activation. In conclusion, 4-AAQB from Antrodia cinnamomea can enhance immune function of dendritic cells against liver cancer stem cells, and may have the potential to be used for liver cancer prevention and immunotherapy.
Collapse
Affiliation(s)
- Ting-Yi Li
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
29
|
Szaryńska M, Olejniczak A, Kobiela J, Łaski D, Śledziński Z, Kmieć Z. Cancer stem cells as targets for DC-based immunotherapy of colorectal cancer. Sci Rep 2018; 8:12042. [PMID: 30104575 PMCID: PMC6089981 DOI: 10.1038/s41598-018-30525-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The therapy of colorectal cancer (CRC) patients is often unsuccessful because of the presence of cancer stem cells (CSCs) resistant to conventional approaches. Dendritic cells (DC)-based protocols are believed to effectively supplement CRC therapy. Our study was aimed to assess how the number and properties of CSCs isolated from tumor tissue of CRC patients will affect the biological characteristics of in vitro modified DCs. Similar procedures were conducted with the using of CRC HCT116 and HT29 cell lines. We found that the detailed configuration of CSC-like markers significantly influenced the maturation and activation of DCs after stimulation with cancer cells lysates or culture supernatants. This basic stimulatory effect was enhanced by LPS that is normally present in CRC CSCs niche. The increased number of CD29+ and CD44+ CSCs presented the opposite impact on treated DCs as showed by many significant correlations. The CD133+ CSCs seemed to impair the functions of DCs. The more CD133+ CSCs in tumor sample the lower number of activated DCs evidenced after stimulation. Moreover, our results showed superiority of the spherical culture model over the adherent one since spherical HCT116 and HT29 cells presented similar influence on DCs properties as CRC patients cancer cells. We concluded that the DCs features may depend directly on the properties of CSCs affected by progression status of tumor.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-210, Gdansk, Poland.
| | - Agata Olejniczak
- Department of Histology, Medical University of Gdansk, 80-210, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Dariusz Łaski
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Zbigniew Śledziński
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-214, Gdansk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-210, Gdansk, Poland
| |
Collapse
|
30
|
Wenbo L, Wang J. Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J R Soc Interface 2018; 14:rsif.2017.0105. [PMID: 28659412 DOI: 10.1098/rsif.2017.0105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
The study of the cancer-immune system is important for understanding tumorigenesis and the development of cancer and immunotherapy. In this work, we build a comprehensive cancer-immune model including both cells and cytokines to uncover the underlying mechanism of cancer immunity based on landscape topography. We quantify three steady-state attractors, normal state, low cancer state and high cancer state, for the innate immunity and adaptive immunity of cancer. We also illustrate the cardinal inhibiting cancer immunity interactions and promoting cancer immunity interactions through global sensitivity analysis. We simulate tumorigenesis and the development of cancer and classify these into six stages. The characteristics of the six stages can be classified further into three groups. These correspond to the escape, elimination and equilibrium phases in immunoediting, respectively. Under specific cell-cell interactions strength oscillations emerge. We found that tumorigenesis and cancer recovery processes may need to go through cancer-immune oscillation, which consumes more energy. Based on the cancer-immune landscape, we predict three types of cells and two types of cytokines for cancer immunotherapy as well as combination immunotherapy. This landscape framework provides a quantitative way to understand the underlying mechanisms of the interplay between cancer and the immune system for cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Li Wenbo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China .,Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, USA.,Department of Physics, State University of New York at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|