1
|
Atale N, Wells A. Statins as Secondary Preventive Agent to Limit Breast Cancer Metastatic Outgrowth. Int J Mol Sci 2025; 26:1300. [PMID: 39941069 PMCID: PMC11818786 DOI: 10.3390/ijms26031300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Metastasis is a leading cause of mortality in breast cancer, as metastatic disease is often aggressive and resistant to conventional treatments. Cancer cells that spread to distant organs can enter a dormant phase for extended periods, sometimes years or decades. During this dormant phase, cancer cells avoid immune and pharmacological response. Thus, new approaches are needed to prevent these disseminated cells from becoming lethal cancers. Statins are known inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase that have been extensively used in patients with cardiovascular diseases to lower cholesterol. However, recent research has demonstrated their potential in anticancer therapies. Epidemiological evidence suggests that statins are associated with a reduction in breast cancer-specific mortality, although they do not appear to affect the incidence of primary tumors. In this review, we discuss the role of statins in metastasis and dormancy, their cytocidal and cytostatic effects and their interactions with different cell types in the tumor microenvironment. The exact mechanisms by which statins reduce mortality without influencing primary tumor growth remain unclear, also warranting further investigation into their potential role in metastasis and tumor dormancy, which could ultimately help patients to improve survival and quality of life.
Collapse
Affiliation(s)
- Neha Atale
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Alan Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Research and Development Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- Cell Biology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Lifanov D, Zorigt D, Shabalina E, Khalil A, Gorbunov K, Petersen E. Method for determining of cytotoxicity based on the release of fluorescent proteins. BMC Mol Cell Biol 2025; 26:7. [PMID: 39875861 PMCID: PMC11776130 DOI: 10.1186/s12860-025-00532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
This paper describes a method for determining the cytotoxicity of chemical compounds based on the detection of fluorescent proteins-in this case, green fluorescent protein (GFP) and red fluorescent protein (RFP), which are released into the medium from dead cells. This method is similar in principle to the lactate dehydrogenase test (LDH test), but it does not require a reaction with a chromogenic substrate. This method also makes it possible to independently determine the viability of different lines when used in cocultures. Experiments were performed on a classical monolayer, spheroids and 3D cultures in alginate hydrogel. Capecitabine was used as a model cytotoxic agent. We included liver cells (Huh7) in a coculture model and determined changes in the cytotoxicity levels of capecitabine against NCI-H1299 cells. The experimental part also found that there were differences in sensitivity to capecitabine depending on the type of 3D cultures used.
Collapse
Affiliation(s)
- Dmitry Lifanov
- Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia.
| | - Dulamsuren Zorigt
- Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia
| | - Evgenya Shabalina
- Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchny prd. 18, Moscow, Russia
| | - Abdullah Khalil
- Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia
| | - Konstantin Gorbunov
- Scientific Research Institute for Systems Biology and Medicine, Nauchny prd. 18, Moscow, Russia
| | - Elena Petersen
- Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia
- Scientific Research Institute for Systems Biology and Medicine, Nauchny prd. 18, Moscow, Russia
| |
Collapse
|
3
|
Chen YH, Wu JX, Yang SF, Wu YC, Hsiao YH. Molecular Mechanisms Underlying the Anticancer Properties of Pitavastatin against Cervical Cancer Cells. Int J Mol Sci 2024; 25:7915. [PMID: 39063157 PMCID: PMC11277542 DOI: 10.3390/ijms25147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Jyun-Xue Wu
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yun-Chia Wu
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Yi-Hsuan Hsiao
- Women’s Health Research Laboratory, Changhua Christian Hospital, Changhua 50006, Taiwan; (Y.-H.C.); (J.-X.W.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Hacıseyitoğlu AÖ, Doğan TÇ, Dilsiz SA, Canpınar H, Eken A, Bucurgat ÜÜ. Pitavastatin induces caspase-mediated apoptotic death through oxidative stress and DNA damage in combined with cisplatin in human cervical cancer cell line. J Appl Toxicol 2024; 44:623-640. [PMID: 38053498 DOI: 10.1002/jat.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Pitavastatin (PITA) is a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor to treat hypercholesterolemia and in recent studies is focused that its potential anti-cancer effect. This study was aimed to elucidate the effect of PITA alone and in combination with cisplatin on cervical cancer cells (HeLa) in vitro. Cytotoxicity of PITA (5-200 μM) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays for 24, 48, and 72 h. Cell apoptosis and cell cycle analyses were performed in flow cytometry (0.1-100 μM). The evaluation of genotoxic effects and oxidative DNA damage of PITA (2-200 μM) were performed with standard comet assay, formamidopyrimidine glycosylase (fpg)-modified comet assay, and reactive oxygen species (ROS) activation in HeLa cells. PITA alone reduced cell viability in a dose-dependent manner (20-200, 20-200, and 5-200 μM for 24, 48, and 72 h, respectively, in MTT). The combined treatment of PITA with cisplatin resulted in significantly greater inhibition of cell viability. ROS and DNA damage increased significantly at 100 μM for 4 h and 20 μM for 24 h, respectively. PITA-induced apoptosis, an increased proportion of sub G1 cells, was monitored, and also, it increased the expression of active caspase-9 and caspase-3 and upregulated cleaved poly adenosine diphosphate ribose polymerase (PARP) by western blotting and caspase 3/8/9 multiple assay kit. We conclude that PITA can be used to efficiently cervical cancer studies, and promising findings have been obtained for further studies.
Collapse
Affiliation(s)
- Aysun Ökçesiz Hacıseyitoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Tuğbagül Çal Doğan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sevtap Aydın Dilsiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hande Canpınar
- Department of Basic Oncology, Institute of Cancer, Hacettepe University, Ankara, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Liu H, Guo W, Wang T, Cao P, Zou T, Peng Y, Yan T, Liao C, Li Q, Duan Y, Han J, Zhang B, Chen Y, Zhao D, Yang X. CD36 inhibition reduces non-small-cell lung cancer development through AKT-mTOR pathway. Cell Biol Toxicol 2024; 40:10. [PMID: 38319449 PMCID: PMC10847192 DOI: 10.1007/s10565-024-09848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Hui Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wentong Guo
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peichang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
6
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
7
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
8
|
Piktel D, Moore JC, Nesbit S, Sprowls SA, Craig MD, Rellick SL, Nair RR, Meadows E, Hollander JM, Geldenhuys WJ, Martin KH, Gibson LF. Chemotherapeutic Activity of Pitavastatin in Vincristine Resistant B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:707. [PMID: 36765664 PMCID: PMC9913300 DOI: 10.3390/cancers15030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.
Collapse
Affiliation(s)
- Debbie Piktel
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Javohn C. Moore
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Sloan Nesbit
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Samuel A. Sprowls
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Departments of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44195, USA
| | - Michael D. Craig
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Queen’s Health System, Honolulu, HI 96813, USA
| | - Stephanie L. Rellick
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Rajesh R. Nair
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ethan Meadows
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
| | - John M. Hollander
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Karen H. Martin
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Laura F. Gibson
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
9
|
Kharouba M, El-Kamel A, Mehanna R, Thabet E, Heikal L. Pitavastatin-loaded bilosomes for oral treatment of hepatocellular carcinoma: a repurposing approach. Drug Deliv 2022; 29:2925-2944. [PMID: 36081339 PMCID: PMC9467608 DOI: 10.1080/10717544.2022.2120925] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Albeit its established efficacy as an anti-hyperlipidemic agent, pitavastatin (PIT) has been shown to have other various therapeutic effects. One of these effects is the anti-cancer activity against hepatocellular carcinoma (HCC). This effect has been evaluated in this study for the first time via its oral delivery loaded in bilosomes both in vitro in hepatocellular carcinoma (HCC) cell line; HepG2 and in vivo in an Ehrlich ascites carcinoma (EAC) model. Moreover, the impact of surface modification of bilosomes with lactoferrin (LF) as an active targeting ligand for HCC was investigated. Bilosomes were prepared by thin-film hydration and different molar phospholipid to bile salt ratios were used to optimize the bilosomal formulation. The molar phospholipid to bile salt ratio was adjusted to 4:1 at pH 7.4. LF-coated bilosomes possessed a particle size, PDI, entrapment efficiency, and zeta potential of 112.28 nm ± 6.35, 0.229 ± 0.06, 90.56% ± 3.22, and -7.86 mV ± 1.13, respectively. LF-coated bilosomes also increased permeation of PIT when tested on Caco-2 cells by 3.1-folds (compared to uncoated ones or free PIT solution). It also improved the cytotoxicity of HepG2 spheroids 44-folds more than PIT-free solution. RT-PCR analysis showed that LF-coated PIT-loaded bilosomes caused an improvement (2-fold increase) in the apoptotic potential of PIT mediated by caspase-3. In conclusion, the optimized LF-coated PIT-loaded bilosomes were cytotoxic to HCC with improved hepatocytes permeation and cellular uptake. Thus, the proposed formula could be a promising treatment for HCC.
Collapse
Affiliation(s)
- Maged Kharouba
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Radwa Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Chen CY, Yang YF, Wang PC, Shan L, Lin S, Chen PJ, Chen YJ, Chiang HS, Lin JT, Hung CF, Liang YJ. Simvastatin Attenuated Tumor Growth in Different Pancreatic Tumor Animal Models. Pharmaceuticals (Basel) 2022; 15:1408. [PMID: 36422538 PMCID: PMC9692350 DOI: 10.3390/ph15111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Newly diagnosed pancreatic cancer increases year by year, while the prognosis of pancreatic cancer has not been very good. Statin drugs were found to have protective effects against a variety of cancers, but their association with pancreatic cancer remains to be clarified. This study used different pancreatic cancer cell lines and in different animal models to confirm the relationship between simvastatin and pancreatic cancer. Flow cytometry and luciferase-based bioluminescent images were used to investigate the cell cycle and tumor growth changes under simvastatin treatment. Simvastatin decreased the MIA PaCa-2 cells, PANC-1 cells, and BxPC-3 cell viability significantly and may arrest the cell cycle in the G0 phase. During in vivo study, subcutaneously implanted simvastatin pre-treated pancreatic cancer cells and intraperitoneally treated simvastatin continuously demonstrated a slower tumor growth rate and decreased the tumor/body weight ratio significantly. In intravenous implant models, implanted simvastatin-pre-treated BxPC-3 cells and cells treated along with simvastatin significantly decreased the tumor growth curve. Implanting the simvastatin-pre-treated pancreatic cells in the subcutaneous model showed better growth inhibition than the intravenous model. These results suggest simvastatin treatment may relate to different signaling pathways in local growth and metastasis. Pancreatic cancer cells presented different growth patterns in different animal-induced models, which could be important for clinical reference when it comes to the relationship of long-term statin use and pancreatic cancer.
Collapse
Affiliation(s)
- Chao-Yi Chen
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yi-Feng Yang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC 20060, USA
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Liang Shan
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Po-Jung Chen
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yi-Jung Chen
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Han-Sun Chiang
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Jaw-Town Lin
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Digestive Medicine Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
11
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
12
|
Lu H, Qiu YC, Zhao Q, Tang R, Chen T, Hu L, Wu ZG. An efficient approach for 3-haloquinoline synthesis: PhI(OAc)2-mediated A3-X type tandem annulation of amine, aldehyde, alkyne and halide salt. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Cheng X, Zhang F, Gong J, Li Y, Zhou D, Wang J, Vong EG, Yuan Y, Lai M, Zhang D. Identification of potential functional variants and genes at 18q21.1 associated with the carcinogenesis of colorectal cancer. PLoS Genet 2022; 18:e1010050. [PMID: 35108261 PMCID: PMC8870576 DOI: 10.1371/journal.pgen.1010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/24/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 160 susceptibility loci for colorectal cancer (CRC). The effects of these variants, particularly their mechanisms, however, remain unclear. In this study, a comprehensive functional annotation of CRC-related GWAS signals was firstly conducted to identify the potential causal variants. We found that the SNP rs7229639 in intron 3 of SMAD7 at 18q21.1 might serve as a putative functional variant in CRC. The SNP rs7229639 is located in a region with evidence of regulatory potential. Dual-luciferase reporter assays revealed that three other SNPs (rs77544449, rs60385309 and rs72917785), in strong linkage disequilibrium (LD) with rs7229639, exhibited allele-specific enhancer activity, of which one of the target genes may conceivably be LIPG, as suggested by eQTL association data and Hi-C data. We also verified that LIPG promoted malignancy of CRC cells in vitro, with supporting clinical data indicating that LIPG is upregulated and correlated with a poor prognosis in CRC. Finally, pitavastatin was observed to exhibit an anti-CRC activity and modest inhibition of LIPG mRNA levels. Collectively, our data suggest that these functional variants at 18q21.1 are involved in the pathogenesis of CRC by modulating enhancer activity, and possibly LIPG expression, thus indicating a promising therapeutic target for CRC. The results of functional annotation in our investigation could also serve as an inventory for CRC susceptibility SNPs and offer guides for post-GWAS downstream functional studies. In the latest statistics, the incidence and mortality rate of colorectal cancer (CRC) remains high. Genome-wide association studies (GWAS) have become a powerful tool for identifying genetic susceptibility loci that confer significant risk on disease, and have identified more than 160 risk loci associated with CRC. However, it has proven quite difficult to identify the regulatory variants and target genes involved behind these GWAS signals. Here, we take advantage of multi-omics data and multiple biological experiments to reveal new biological pathways affecting susceptibility to CRC. We show that a specific genetic variant, rs7229639, and three other high linked functional variants (rs77544449, rs60385309 and rs72917785) at 18q21.1 might regulate the expression of LIPG, a gene that was shown to exhibit an oncogenic function by our in-vitro experiments and clinical data analysis. The link between genetic variants, gene expression and CRC phenotype established by us could provide references for follow-up basic and clinical studies.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenglan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yige Li
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Zhou
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eu Gene Vong
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- * E-mail: (YY); (ML); (DZ)
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (YY); (ML); (DZ)
| | - Dandan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (YY); (ML); (DZ)
| |
Collapse
|
14
|
A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res 2021; 84:101127. [PMID: 34509516 DOI: 10.1016/j.plipres.2021.101127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.
Collapse
|
15
|
Chen YH, Huang YC, Yang SF, Yen HH, Tsai HD, Hsieh MC, Hsiao YH. Pitavastatin and metformin synergistically activate apoptosis and autophagy in pancreatic cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1491-1503. [PMID: 33886150 DOI: 10.1002/tox.23146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths globally. Metformin is the standard first-line of treatment for hyperglycemia in Type 2 diabetes, whereas pitavastatin is a cholesterol-lowering drug used to prevent cardiovascular diseases. Both these agents evidently exert anticancer effects on pancreatic cancer; however, it remains unclear whether cotreatment using them has additive or synergistic anticancer effects on pancreatic cancer. Thus, we herein used the ASPC-1 and PANC-1 cells and treated them with metformin and/or pitavastatin. We performed the cell viability assay, transwell migration assay, and cell cycle analysis using flow cytometry. Western blotting was used to determine protein levels. We found that cotreatment with metformin (30 mM) and pitavastatin (10 μM) significantly reduced cell viability; caused G0/G1 cell cycle arrest; upregulated the expression levels of Bax, PCNA, cleaved PARP-1, cleaved caspase-3, LC3 II, and p27 Kip1 /p21Cip1 ; and inhibited cell migration. The combination index value for cell viability indicated a synergistic interaction between metformin and pitavastatin. Moreover, cotreating the cells with metformin (30 mM) and pitavastatin (10 μM) could preserve mitochondrial function, activate AMPK, and inhibit PI3K/mTOR than treatment with metformin or pitavastatin alone. These findings clearly indicated that metformin plus pitavastatin had a synergistic anticancer effect on pancreatic cancer cells, potentially caused due to the activation of AMPK and inhibition of PI3K/mTOR signaling. Altogether, our results provide that use of metformin plus pitavastatin maybe serve as a chemotherapeutic agent for human pancreatic cancer in future.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Chih Huang
- Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsu-Heng Yen
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Horng-Der Tsai
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Chia Hsieh
- Intelligent Diabetes Metabolism and Exercise Center, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
16
|
Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. Semin Cancer Biol 2021; 73:116-133. [DOI: 10.1016/j.semcancer.2020.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
|
17
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
18
|
Nagayama D, Saiki A, Shirai K. The Anti-Cancer Effect of Pitavastatin May Be a Drug-Specific Effect: Subgroup Analysis of the TOHO-LIP Study. Vasc Health Risk Manag 2021; 17:169-173. [PMID: 33953560 PMCID: PMC8092348 DOI: 10.2147/vhrm.s306540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
The significance of statin treatment for the reduction of cardiovascular (CV) disease has been reported, whereas other reports have also described anti-cancer properties associated with the class effect of statins. However, the differences in anti-cancer effect of various types of statins have rarely been examined. Pitavastatin is a statin with a different chemical structure and pharmacokinetics from other statins, and the mechanism of the specific anti-cancer effect of pitavastatin has been reported in in vivo therapeutic models. We previously revealed that pitavastatin therapy was superior to atorvastatin therapy in the prevention of CV events, despite similar LDL-cholesterol-lowering effect in the TOHO Lipid Intervention Trial Using Pitavastatin (TOHO-LIP). Furthermore, in subgroup analysis of the TOHO-LIP study, cumulative 240-week incidence of new cancer cases tended to be lower in the pitavastatin group compared to the atorvastatin group [0.32% (1/312) vs 1.94% (6/310), log-rank P=0.051]. This finding might reveal the superiority of pitavastatin to prevent carcinogenesis. The molecular mechanism by which pitavastatin suppresses the incidence of any-organ cancer is gradually elucidated, and new combination of cancer treatments with pitavastatin will be developed in the future to further enhance the anti-cancer activity and reduce the side effects.
Collapse
Affiliation(s)
- Daiji Nagayama
- Department of Internal Medicine, Nagayama Clinic, Tochigi, Japan.,Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kohji Shirai
- Department of Internal Medicine, Mihama Hospital, Chiba, Japan
| |
Collapse
|
19
|
Lactonic sophorolipid-induced apoptosis in human HepG2 cells through the Caspase-3 pathway. Appl Microbiol Biotechnol 2021; 105:2033-2042. [PMID: 33582833 DOI: 10.1007/s00253-020-11045-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Liver cancer, one of the most common types of cancer in the world, is the second leading cause of death for cancer patients. For liver cancer, there is an urgent need for an effective treatment with no or less toxic side effects. Lactonic sophorolipids (LSL), as a potential anticancer drug, has attracted wide attention of pharmaceutical researchers with its good biological activities. The effects of LSL and cell death inhibitors were measured by MTT test on HepG2 cells. Meanwhile, the morphology of the cells was observed under a microscope. The apoptosis rate was detected by flow cytometry, and the expression levels of enzyme activity of Caspase-3 and Caspase-9 were measured by detection kits. Meanwhile, mRNA levels of Apaf-1, Caspase-3, Bax, and Bcl-2 were measured by quantitative real-time RT-PCR; protein levels of Caspase-3, Cleaved Caspase-3, Bax, and Bcl-2 were measured by western blot. LSL can inhibit the proliferation of cells, and it is possible to induce apoptosis in cells. The HepG2 cells with LSL co-culture exhibited typical apoptotic morphology, and the expression levels of enzyme activity of Caspase-3 and Caspase-9 increased (P< 0.05). We also found that LSL increases cell apoptosis rate and regulates the expression of genes and proteins associated with apoptosis through the Caspase-3 pathway. These results indicate that LSL may be one of the potential drug candidates to inhibit the proliferation and induce apoptosis in HepG2 cells.Key points• LSL, which is of good biological activities such as anti-bacterium, virus elimination, and inflammatory response elimination, has been firstly used to intervene in vitro to investigate its effect on HepG2 cell proliferation.• LSL can inhibit the proliferation of cells, and it is possible to induce apoptosis in HepG2 cells through the Caspase-3 pathway.• The mechanism of LSL action on HepG2 cell proliferation was firstly also discussed, which provides a certain experimental reference for the clinical treatment of liver cancer.
Collapse
|
20
|
Cholesterol-lowering drug pitavastatin targets lung cancer and angiogenesis via suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling. Anticancer Drugs 2021; 31:377-384. [PMID: 32011362 DOI: 10.1097/cad.0000000000000885] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic agents that target both tumor cell and vascular endothelial cell may achieve additional anti-tumor efficacy, particularly in lung cancer due to the critical roles of angiogenesis during lung cancer progression and metastasis. In this work, we showed that pitavastatin, a novel cholesterol-lowering drug, potently inhibited lung cancer cells and angiogenesis. This was achieved by the induction of apoptosis and inhibition of proliferation of lung cancer cells and human lung tumor-associated endothelial cell. Pitavastatin was not only effective to chemo-sensitive but also chemo-resistant lung cancer cells. This was also consistent with the finding that pitavastatin significantly enhanced cisplatin's efficacy in lung cancer xenograft model without causing toxicity in mice. We further showed that pitavastatin inhibited lung tumor angiogenesis in vitro and in vivo through suppressing human lung tumor-associated endothelial cell migration and morphogenesis without affecting adhesion. Mechanistically, we showed that pitavastatin acted on lung cancer cells and human lung tumor-associated endothelial cell through suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling. Our work is the first to demonstrate the inhibitory effects of pitavastatin on Ras-mediated signaling. Our findings provide pre-clinical evidence to repurpose pitavastatin for the treatment of lung cancer.
Collapse
|
21
|
Xu B, Muramatsu T, Inazawa J. Suppression of MET Signaling Mediated by Pitavastatin and Capmatinib Inhibits Oral and Esophageal Cancer Cell Growth. Mol Cancer Res 2020; 19:585-597. [PMID: 33443139 DOI: 10.1158/1541-7786.mcr-20-0688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Despite increasing knowledge on oral and esophageal squamous cell carcinoma (OSCC and ESCC), specific medicines against both have not yet been developed. Here, we aimed to find novel anticancer drugs through functional cell-based screening of an FDA-approved drug library against OSCC and ESCC. Pitavastatin, an HMGCR inhibitor, emerged as an anticancer drug that inhibits tumor growth by downregulating AKT and ERK signals in OSCC and ESCC cells. One of the mechanisms by which pitavastatin inhibits cell growth might be the suppression of MET signaling through immature MET due to dysfunction of the Golgi apparatus. Moreover, the sensitivity of tumor growth to pitavastatin might be correlated with GGPS1 expression levels. In vivo therapeutic models revealed that the combination of pitavastatin with capmatinib, a MET-specific inhibitor, dramatically reduced tumor growth. Our findings suggest that GGPS1 expression could be a biomarker in cancer therapy with pitavastatin, and the combination of pitavastatin with capmatinib might be a promising therapeutic strategy in OSCC and ESCC. IMPLICATIONS: This study provides new insight into the mechanism of pitavastatin as an anticancer drug and suggests that the combination of pitavastatin with capmatinib is a useful therapeutic strategy in OSCC and ESCC.
Collapse
Affiliation(s)
- Bo Xu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Laboratory for Integrated Research Projects on Intractable Diseases, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
22
|
Chen YH, Chen YC, Lin CC, Hsieh YP, Hsu CS, Hsieh MC. Synergistic Anticancer Effects of Gemcitabine with Pitavastatin on Pancreatic Cancer Cell Line MIA PaCa-2 in vitro and in vivo. Cancer Manag Res 2020; 12:4645-4665. [PMID: 32606957 PMCID: PMC7306478 DOI: 10.2147/cmar.s247876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with an overall 5-year survival rate of 9.3%, and this malignancy is expected to become the second leading cause of cancer-related death by 2030. Gemcitabine resistance develops within weeks of PDAC patient’s chemotherapeutic initiation. Statins, including pitavastatin, have been indicated to have anticancer effects in numerous human cancer cell lines. Thus, in this study, we hypothesized that a combination of gemcitabine and pitavastatin may have a greater anticancer effect than gemcitabine alone on the human pancreatic carcinoma cell line MIA PaCa-2. Methods The anticancer effects of gemcitabine with pitavastatin were evaluated using human MIA PaCa-2 cell line in vitro and in vivo Balb/c murine xenograft tumor model. Cell viability was assessed with CCK-8, and cell migration was stained by crystal violet. Cell cycle distribution, apoptosis and mitochondrial membrane potential were examined by flow cytometry. Activation of drug transporters (hENTs, hCNTs), intracellular drug activating (dCK) and inhibition of inactivating enzymes (RRMs) pathways were assessed by Western blotting analysis. Molecular mechanisms and signaling pathways of apoptosis, necrosis and autophagy also were assessed by Western blotting. Results We observed that gemcitabine and pitavastatin synergistically suppressed the proliferation of MIA PaCa-2 cells through causing sub-G1 and S phase cell cycle arrest. Activation of apoptosis/necrosis was confirmed by annexin V/propidium iodide double staining, which showed increasing levels of active caspase 3, cleaved poly(ADP-ribose) polymerase and the RIP1–RIP3–MLKL complex. Moreover, gemcitabine–pitavastatin-mediated S phase arrest downregulated cyclin A2/CDK2 and upregulated p21/p27 in MIA PaCa-2 cells. Furthermore, this combination improved drug cellular metabolism pathway, mitochondria function and activated autophagy as part of the cell death mechanism. In vivo, gemcitabine-pitavastatin effectively inhibited tumor growth in a nude mouse mode of Mia PaCa-2 xenografts without observed adverse effect. Conclusion Combined gemcitabine–pitavastatin may be an effective novel treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chun Chen
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan.,Department of Health and Nutrition, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yao-Peng Hsieh
- Division of General Internal Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan
| | - Ming-Chia Hsieh
- Diabetes Research Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.,Intelligent Diabetes Metabolism and Exercise Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Friggeri L, Hargrove TY, Wawrzak Z, Guengerich FP, Lepesheva GI. Validation of Human Sterol 14α-Demethylase (CYP51) Druggability: Structure-Guided Design, Synthesis, and Evaluation of Stoichiometric, Functionally Irreversible Inhibitors. J Med Chem 2019; 62:10391-10401. [PMID: 31663733 PMCID: PMC6881533 DOI: 10.1021/acs.jmedchem.9b01485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sterol 14α-demethylases (CYP51) are the cytochrome P450 enzymes required for biosynthesis of sterols in eukaryotes, the major targets for antifungal agents and prospective targets for treatment of protozoan infections. Human CYP51 could be and, for a while, was considered as a potential target for cholesterol-lowering drugs (the role that is now played by statins, which are also in clinical trials for cancer) but revealed high intrinsic resistance to inhibition. While microbial CYP51 enzymes are often inhibited stoichiometrically and functionally irreversibly, no strong inhibitors have been identified for human CYP51. In this study, we used comparative structure/functional analysis of CYP51 orthologs from different biological kingdoms and employed site-directed mutagenesis to elucidate the molecular basis for the resistance of the human enzyme to inhibition and also designed, synthesized, and characterized new compounds. Two of them inhibit human CYP51 functionally irreversibly with their potency approaching the potencies of azole drugs currently used to inhibit microbial CYP51.
Collapse
Affiliation(s)
- Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Tatiana Y. Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, United States
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
24
|
Yan ZY, Chen JJ, Duan ZK, Yao GD, Lin B, Wang XB, Huang XX, Song SJ. Racemic phenylpropanoids from the root barks of Ailanthus altissima (Mill.) Swingle with cytotoxicity against hepatoma cells. Fitoterapia 2018; 130:234-240. [DOI: 10.1016/j.fitote.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
25
|
Abdullah MI, de Wolf E, Jawad MJ, Richardson A. The poor design of clinical trials of statins in oncology may explain their failure - Lessons for drug repurposing. Cancer Treat Rev 2018; 69:84-89. [PMID: 29936313 DOI: 10.1016/j.ctrv.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/27/2023]
Abstract
Statins are widely used to treat hypercholesterolaemia. However, by inhibiting the production of mevalonate, they also reduce the production of several isoprenoids that are necessary for the function of small GTPase oncogenes such as Ras. As such, statins offer an attractive way to inhibit an "undruggable" target, suggesting that they may be usefully repurposed to treat cancer. However, despite numerous studies, there is still no consensus whether statins are useful in the oncology arena. Numerous preclinical studies have provided evidence justifying the evaluation of statins in cancer patients. Some retrospective studies of patients taking statins to control cholesterol have identified a reduced risk of cancer mortality. However, prospective clinical studies have mostly not been successful. We believe that this has occurred because many of the prospective clinical trials have been poorly designed. Many of these trials have failed to take into account some or all of the factors identified in preclinical studies that are likely to be necessary for statins to be efficacious. We suggest an improved trial design which takes these factors into account. Importantly, we suggest that the design of clinical trials of drugs which are being considered for repurposing should not assume it is appropriate to use them in the same way as they are used in their original indication. Rather, such trials deserve to be informed by preclinical studies that are comparable to those for any novel drug.
Collapse
Affiliation(s)
- Marwan I Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Elizabeth de Wolf
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Mohammed J Jawad
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom; School of Pharmacy, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
26
|
Huang J, Yang X, Peng X, Huang W. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis. Biochem Biophys Res Commun 2017; 493:921-927. [PMID: 28943437 DOI: 10.1016/j.bbrc.2017.09.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
Abstract
Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism.
Collapse
Affiliation(s)
- Jiangrong Huang
- Department of Integrative Medicine, The Second Clinical School, Yangtze University, Jingzhou, Hubei, China; Department of Integrative Medicine, Medical School of Yangtze University, Jingzhou, Hubei, China
| | - Xiaoyu Yang
- Department of Oncology, Xiangyang No.1 People's Hospital, Xiangyang, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, Medical School of Yangtze University, Jingzhou, Hubei, China
| | - Wei Huang
- Department of Endocrinology, Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical School of Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
27
|
Paškevičiūtė M, Petrikaitė V. Differences of statin activity in 2D and 3D pancreatic cancer cell cultures. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3273-3280. [PMID: 29180851 PMCID: PMC5695256 DOI: 10.2147/dddt.s149411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose To evaluate the anticancer activity of lovastatin (LOVA), mevastatin (MEVA), pitavastatin (PITA), and simvastatin (SIMVA) in 2D and 3D models of three human pancreatic cancer cell lines (BxPC-3, MIA PaCa-2, and PANC-1). Methods The effect of statins on cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. The activity of statins in 3D pancreatic cancer cell cultures was examined by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. The activity of statins on the clonogenicity of cancer cells was tested by evaluating the effect on the colony-forming ability of cells. Results The rank order of the activity of tested statins on cell viability was as follows: PITA > SIMVA > LOVA > MEVA. Among the tested statins, PITA had the greatest effect on cell viability (half maximal effective concentration values after 72 h on BxPC-3, MIA PaCa-2, and PANC-1 cells were 1.4±0.4 μM, 1.0±0.2 μM, and 1.0±0.5 μM, respectively). PITA also showed the strongest effect on tumor spheroid growth. Statins suppressed the colony formation of cancer cells. PITA demonstrated the greatest reduction in colony size and number. Apoptosis and necrosis assay results showed that at lower concentrations statins mostly induced cell death through apoptosis, whereas higher concentrations of compounds activated also necrotic processes. Conclusion Statins, especially PITA, demonstrate an anticancer activity against pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and PANC-1 in both 2D and 3D models.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, Lithuania
| |
Collapse
|
28
|
Abdullah MI, Abed MN, Richardson A. Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Sci Rep 2017; 7:8090. [PMID: 28808351 PMCID: PMC5556066 DOI: 10.1038/s41598-017-08649-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022] Open
Abstract
Only 40% of patients with advanced ovarian cancer survive more than 5 years. We have previously shown that pitavastatin induces regression of ovarian cancer xenografts in mice. To evaluate whether the response of ovarian cancer cells to pitavastatin is potentiated by farnesyl diphosphate synthase inhibitors or geranylgeraniol transferase I inhibitors, we evaluated combinations of pitavastatin with zoledronic acid, risedronate and GGTI-2133 in a panel of ovarian cancer cells. Pitavastatin (IC50 = 0.6–14 μM), zoledronic acid (IC50 = 21–57 μM), risedronate (IC50 > 100 μM) or GGTI-2133 (IC50 > 25 μM) inhibited the growth of ovarian cancer cell cultures. Combinations of pitavastatin with zoledronic acid displayed additive or synergistic effects in cell growth assays in 10 of 11 cell lines evaluated as well as in trypan blue exclusion, cellular ATP or caspase 3/7, 8 and 9 assays. Pitavastatin reduced levels of GGT-IIβ and the membrane localization of several small GTPases and this was potentiated by zoledronic acid. siRNA to GGT-Iβ and GGT-IIβ used in combination, but not when used individually, significantly increased the sensitivity of cells to pitavastatin. These data suggest that zoledronic acid, a drug already in clinical use, may be usefully combined with pitavastatin in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Marwan Ibrahim Abdullah
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Mohammed Najim Abed
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK
| | - Alan Richardson
- Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornborrow Drive, Stoke-on-Trent, UK. .,School of Pharmacy, Keele University, Keele, United Kingdom.
| |
Collapse
|