1
|
Lucarini V, Melaiu O, Gragera P, Król K, Scaldaferri V, Damiani V, De Ninno A, Nardozi D, Businaro L, Masuelli L, Bei R, Cifaldi L, Fruci D. Immunogenic Cell Death Inducers in Cancer Immunotherapy to Turn Cold Tumors into Hot Tumors. Int J Mol Sci 2025; 26:1613. [PMID: 40004078 PMCID: PMC11855819 DOI: 10.3390/ijms26041613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The combination of chemotherapeutic agents with immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment. However, its success is often limited by insufficient immune priming in certain tumors, including pediatric malignancies. In this report, we explore clinical trials currently investigating the use of immunogenic cell death (ICD)-inducing chemotherapies in combination with ICIs for both adult and pediatric cancers. Given the limited clinical data available for pediatric tumors, we focused on recent preclinical studies evaluating the efficacy of these combinations in neuroblastoma (NB). Finally, to address this gap, we propose an innovative strategy to assess the impact of ICD-inducing chemotherapies on antitumor immune responses in NB. Using tumor spheroids derived from a transgenic NB mouse model, we validated our previous in vivo findings concerning how anthracyclines, specifically mitoxantrone and doxorubicin, significantly enhance MHC class I surface expression, stimulate IFNγ and granzyme B production by CD8+ T cells and NK cells, and promote immune cell recruitment. Importantly, these anthracyclines also upregulated PD-L1 expression on NB spheroids. This screening platform yielded results similar to in vivo findings, demonstrating that mitoxantrone and doxorubicin are the most potent immunomodulatory agents for NB. These data suggest that the creation of libraries of ICD inducers to be tested on tumor spheroids could reduce the number of combinations to be tested in vivo, in line with the principles of the 3Rs. Furthermore, these results highlight the potential of chemo-immunotherapy regimens to counteract the immunosuppressive tumor microenvironment in NB, paving the way for improved therapeutic strategies in pediatric cancers. They provide compelling evidence to support further clinical investigations of these combinations to enhance outcomes for children with malignancies.
Collapse
Affiliation(s)
- Valeria Lucarini
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (L.M.)
| | - Ombretta Melaiu
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (L.C.)
| | - Paula Gragera
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
| | - Kamila Król
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
| | - Valentina Scaldaferri
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
| | - Verena Damiani
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 00133 Rome, Italy; (A.D.N.); (L.B.)
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (L.M.)
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 00133 Rome, Italy; (A.D.N.); (L.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy; (D.N.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (L.C.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (L.C.)
| | - Doriana Fruci
- Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.L.); (O.M.); (P.G.); (V.S.); (V.D.)
| |
Collapse
|
2
|
Wu L, Pi W, Huang X, Yang L, Zhang X, Lu J, Yao S, Lin X, Tan X, Wang Z, Wang P. Orchestrated metal-coordinated carrier-free celastrol hydrogel intensifies T cell activation and regulates response to immune checkpoint blockade for synergistic chemo-immunotherapy. Biomaterials 2025; 312:122723. [PMID: 39121732 DOI: 10.1016/j.biomaterials.2024.122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.
Collapse
Affiliation(s)
- Linying Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Luping Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinru Tan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Ranjan T, Podder V, Margolin K, Velcheti V, Maharaj A, Ahluwalia MS. Immune Checkpoint Inhibitors in the Management of Brain Metastases from Non-Small Cell Lung Cancer: A Comprehensive Review of Current Trials, Guidelines and Future Directions. Cancers (Basel) 2024; 16:3388. [PMID: 39410008 PMCID: PMC11475580 DOI: 10.3390/cancers16193388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Brain metastases (BM) are a common, severe complication in patients with non-small cell lung cancer (NSCLC) and are difficult to treat due to their complex tumor biology and the intricate microenvironment of the brain. OBJECTIVES This review examines the current role of immune checkpoint inhibitors (ICIs) in treating NSCLC with BM, focusing on the latest clinical trials, emerging strategies, current guidelines, and future directions. We highlight the efficacy of ICIs as monotherapy and in combination with other treatments such as radiotherapy, stereotactic radiosurgery, chemotherapy, and anti-VEGF agents. RESULTS While no single treatment sequence is universally accepted, combining ICIs with traditional therapies forms the core of the current treatment protocols. ICIs targeting the PD-1/PD-L1 pathway have significantly advanced NSCLC treatment, demonstrated by improved overall and progression-free survival in various settings. However, optimizing these benefits requires careful consideration of potential side effects, including cognitive decline and radiation necrosis, and the impact of steroid use on ICI efficacy. CONCLUSION The review underscores the necessity for a personalized, integrated multidisciplinary treatment approach. Future research should focus on refining combination therapies and understanding the optimal sequence and timing of treatment.
Collapse
Affiliation(s)
- Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA; (T.R.); (V.P.); (A.M.)
| | - Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA; (T.R.); (V.P.); (A.M.)
| | - Kim Margolin
- Saint John’s Cancer Institute, Santa Monica, CA 90404, USA;
| | | | - Arun Maharaj
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA; (T.R.); (V.P.); (A.M.)
| | - Manmeet Singh Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA; (T.R.); (V.P.); (A.M.)
| |
Collapse
|
4
|
Zhang JS, Sun YD, Li YM, Han JJ. Application of combined ablation and immunotherapy in NSCLC and liver cancer: Current status and future prospects. Heliyon 2024; 10:e36388. [PMID: 39253229 PMCID: PMC11382172 DOI: 10.1016/j.heliyon.2024.e36388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
This review examines combining tumor ablation therapy with immunotherapy for respiratory and digestive system tumors, particularly NSCLC and liver cancer. Despite advancements in traditional methods, they face limitations in advanced-stage tumors. Ablation techniques like RFA, MWA, and cryoablation offer minimally invasive options, while immune checkpoint inhibitors enhance the immune system's tumor-fighting ability. This review highlights their synergistic effects, clinical outcomes, and future research directions, including optimizing protocols, exploring new combinations, uncovering molecular mechanisms, advancing precision medicine, and improving accessibility. Combined therapy is expected to improve efficacy and patient outcomes significantly.
Collapse
Affiliation(s)
- Jing-Shun Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| | - Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yuan-Min Li
- Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
5
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
6
|
Singh J, Stensvold A, Turzer M, Grov EK. Anticancer therapy at end-of-life: A retrospective cohort study. Acta Oncol 2024; 63:313-321. [PMID: 38716486 PMCID: PMC11332458 DOI: 10.2340/1651-226x.2024.22139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND A significant proportion of patients with incurable cancer receive systemic anticancer therapy (SACT) within their last 30 days of life (DOL). The treatment has questionable benefit, nevertheless is considered a quality indicator of end-of-life (EOL) care. This retrospective cohort study aims to investigate the rates and potential predictors of SACT and factors associated with SACT within the last 30 DOL. The study also evaluates the scope of Eastern Cooperative Oncology Group (ECOG) performance status and the modified Glasgow prognostic score (mGPS) as decision-making tools for oncologists. PATIENTS AND MATERIAL This review of medical records included 383 patients with non-curable cancer who died between July 2018 and December 2019. Descriptive statistics with Chi-squared tests and regression analysis were used to identify factors associated with SACT within the last 30 DOL. RESULTS Fifty-seven (15%) patients received SACT within the last 30 DOL. SACT within 30 last DOL was associated with shorter time from diagnosis until death (median 234 days vs. 482, p = 0.008) and ECOG score < 3 30 days prior to death (p = 0.001). Patients receiving SACT during the last 30 DOL were more likely to be hospitalised and die in hospital. ECOG and mGPS score were stated at start last line of treatment only in 139 (51%) and 135 (49%) respectively. INTERPRETATION Those with short time since diagnosis tended to receive SACT more frequently the last 30 DOL. The use of mGPS as a decision-making tool is modest, and there is lack in documentation of performance status.
Collapse
Affiliation(s)
- Johnny Singh
- Østfold Hospital Trust, Department of Oncology, Graalum, Norway; Oslo Metropolitan University, Faculty of Health Sciences, Institute of Nursing and Health Promotion, Oslo, Norway.
| | | | - Martin Turzer
- Østfold Hospital Trust, Department of Oncology, Graalum, Norway
| | - Ellen Karine Grov
- Oslo Metropolitan University, Faculty of Health Sciences, Institute of Nursing and Health Promotion, Oslo, Norway
| |
Collapse
|
7
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Bao X, Leng X, Yu T, Zhu J, Zhao Y, Tenzindrogar, Yang Z, Wu S, Sun Q. Integrated Multi-omics Analyses Identify CDCA5 as a Novel Biomarker Associated with Alternative Splicing, Tumor Microenvironment, and Cell Proliferation in Colon Cancer Via Pan-cancer Analysis. J Cancer 2024; 15:825-840. [PMID: 38213717 PMCID: PMC10777042 DOI: 10.7150/jca.91082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Background: CDCA5 has been reported as a gene involved in the cell cycle, however current research provides little details. Our goal was to figure out its functions and probable mechanisms in pan-cancer. Methods: Pan-cancer bulk sequencing data and web-based analysis tools were applied to analyze CDCA5's correlations with the gene expression, clinical prognosis, genetic alterations, promoter methylation, alternative splicing, immune checkpoints, tumor microenvironment and enrichment. Real‑time PCR, cell clone formation assay, CCK-8 assay, cell proliferation assay, migration assay, invasion assay and apoptosis assay were used to evaluate the effect of CDCA5 silencing on colon cancer cell lines. Results: CDCA5 is highly expressed in most tumors, which has been linked to a poor prognosis. Immune checkpoints analysis revealed that CDCA5 was associated with the immune gene CD276 in various tumors. Single-cell analysis showed that CDCA5 correlated with proliferating T cell infiltration in COAD. Enrichment analysis demonstrated that CDCA5 may modify cell cycle genes to influence p53 signaling. The examination of DLD1 cells revealed that CDCA5 increased the proliferation and blocked cell apoptosis. Conclusion: This study contributes to the knowledge of the role of CDCA5 in carcinogenesis, highlighting the prognostic potential and carcinogenic involvement of CDCA5 in pan-cancer.
Collapse
Affiliation(s)
- Xinyue Bao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Leng
- Department of Urology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou215300, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Junzheya Zhu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yunhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tenzindrogar
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhiluo Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shaobo Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Zhang Y, Wang Y, Chen J, Xia Y, Huang Y. A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma. Front Immunol 2023; 14:1183230. [PMID: 37671155 PMCID: PMC10475728 DOI: 10.3389/fimmu.2023.1183230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Background lung adenocarcinoma (LUAD) remains one of the most common and lethal malignancies with poor prognosis. Programmed cell death (PCD) is an evolutionarily conserved cell suicide process that regulates tumorigenesis, progression, and metastasis of cancer cells. However, a comprehensive analysis of the role of PCD in LUAD is still unavailable. Methods We analyzed multi-omic variations in PCD-related genes (PCDRGs) for LUAD. We used cross-validation of 10 machine learning algorithms (101 combinations) to synthetically develop and validate an optimal prognostic cell death score (CDS) model based on the PCDRGs expression profile. Patients were classified based on their median CDS values into the high and low-CDS groups. Next, we compared the differences in the genomics, biological functions, and tumor microenvironment of patients between both groups. In addition, we assessed the ability of CDS for predicting the response of patients from the immunotherapy cohort to immunotherapy. Finally, functional validation of key genes in CDS was performed. Results We constructed CDS based on four PCDRGs, which could effectively and consistently stratify patients with LUAD (patients with high CDS had poor prognoses). The performance of our CDS was superior compared to 77 LUAD signatures that have been previously published. The results revealed significant genetic alterations like mutation count, TMB, and CNV were observed in patients with high CDS. Furthermore, we observed an association of CDS with immune cell infiltration, microsatellite instability, SNV neoantigens. The immune status of patients with low CDS was more active. In addition, CDS could be reliable to predict therapeutic response in multiple immunotherapy cohorts. In vitro experiments revealed that high DNA damage inducible transcript 4 (DDIT4) expression in LUAD cells mediated protumor effects. Conclusion CDS was constructed based on PCDRGs using machine learning. This model could accurately predict patients' prognoses and their responses to therapy. These results provide new promising tools for clinical management and aid in designing personalized treatment strategies for patients with LUAD.
Collapse
Affiliation(s)
- Yi Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yuzhi Wang
- Department of Laboratory Medicine, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Jianlin Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yu Xia
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central Laboratory, Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, China
| |
Collapse
|
10
|
Dong X, Fan J, Xie W, Wu X, Wei J, He Z, Wang W, Wang X, Shen P, Bei Y. Efficacy evaluation of chimeric antigen receptor-modified human peritoneal macrophages in the treatment of gastric cancer. Br J Cancer 2023; 129:551-562. [PMID: 37386139 PMCID: PMC10403530 DOI: 10.1038/s41416-023-02319-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common cancers. Peritoneal carcinomatosis (PC) appears to be the most common pattern of recurrence, and more than half of the GC patients eventually die from PC. Novel strategies for the management of patients with PC are urgently needed. Recently, rapid progress has been made in adoptive transfer therapy by using macrophages as the effector cells due to their capabilities of phagocytosis, antigen presentation, and high penetration. Here, we generated a novel macrophage-based therapy and investigated anti-tumoral effects on GC and potential toxicity. METHODS We developed a novel Chimeric Antigen Receptor-Macrophage (CAR-M) based on genetically modifying human peritoneal macrophages (PMs), expressing a HER2-FcεR1γ-CAR (HF-CAR). We tested HF-CAR macrophages in a variety of GC models in vitro and in vivo. RESULTS HF-CAR-PMs specifically targeted HER2-expressed GC, and harboured the FcεR1γ moieties to trigger engulfment. Intraperitoneal administration of HF-CAR-PMs significantly facilitated the HER2-positive tumour regression in PC mouse model and prolonged the overall survival rate. In addition, the combined use of oxaliplatin and HF-CAR-PMs exhibited significantly augment anti-tumour activity and survival benefit. CONCLUSIONS HF-CAR-PMs could represent an exciting therapeutic option for patients with HER2-positive GC cancer, which should be tested in carefully designed clinical trials.
Collapse
Affiliation(s)
- Xuhui Dong
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiqiang Fan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Wangxu Xie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Xiang Wu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Xueting Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Pingping Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China.
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, 518000, Shenzhen, China.
| | - Yuncheng Bei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China.
| |
Collapse
|
11
|
Abstract
Immunotherapy has revolutionized the treatment of patients with cancer. However, promoting antitumour immunity in patients with tumours that are resistant to these therapies remains a challenge. Thermal therapies provide a promising immune-adjuvant strategy for use with immunotherapy, mostly owing to the capacity to reprogramme the tumour microenvironment through induction of immunogenic cell death, which also promotes the recruitment of endogenous immune cells. Thus, thermal immunotherapeutic strategies for various cancers are an area of considerable research interest. In this Review, we describe the role of the various thermal therapies and provide an update on attempts to combine these with immunotherapies in clinical trials. We also provide an overview of the preclinical development of various thermal immuno-nanomedicines, which are capable of combining thermal therapies with various immunotherapy strategies in a single therapeutic platform. Finally, we discuss the challenges associated with the clinical translation of thermal immuno-nanomedicines and emphasize the importance of multidisciplinary and inter-professional collaboration to facilitate the optimal translation of this technology from bench to bedside.
Collapse
|
12
|
Gu X, Wei S, Chen B, Zhang W, Zheng S. Development and validation of a combined ferroptosis- and pyroptosis-related gene signatures for the prediction of clinical outcomes in lung adenocarcinoma. Am J Cancer Res 2022; 12:3870-3891. [PMID: 36119825 PMCID: PMC9442029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a very heterogeneous cancer with a bad prognosis. Pyroptosis and ferroptosis are two newly discovered forms of regulated cell death, which can trigger inflammation-related immunosuppression in tumor microenvironments, thereby promoting tumor growth. So far, there has been no thorough systematic investigation of the predictive values of ferroptosis and pyroptosis-related genes in LUAD. Therefore, in this study, we conducted a combined analyses in the gene expression of ferroptosis and pyroptosis and identified four distinct subgroups: immobility, ferroptosis, pyroptosis, and mixed. The gene sets most closely associated to both ferroptosis and pyroptosis were utilized to build a risk prediction model based on their variations in survival and biological activities. More importantly, our conclusions from bioinformatics analyses were validated by external experiments in patients with LUAD. In conclusion, the establishment of LUAD subgroups based on the ferroptosis- and pyroptosis-related gene expression profile provided new insights into understanding the roles of programmed cell death in oncogenesis and might contribute to the development of individualized therapy.
Collapse
Affiliation(s)
- Xuyu Gu
- School of Medicine, Southeast UniversityNanjing 210009, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Bing Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, China
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing 210009, China
| |
Collapse
|
13
|
Integrated Network Pharmacology Approach for Drug Combination Discovery: A Multi-Cancer Case Study. Cancers (Basel) 2022; 14:cancers14082043. [PMID: 35454948 PMCID: PMC9028433 DOI: 10.3390/cancers14082043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Despite remarkable efforts of computational and predictive pharmacology to improve therapeutic strategies for complex diseases, only in a few cases have the predictions been eventually employed in the clinics. One of the reasons behind this drawback is that current predictive approaches are based only on the integration of molecular perturbation of a certain disease with drug sensitivity signatures, neglecting intrinsic properties of the drugs. Here we integrate mechanistic and chemocentric approaches to drug repositioning by developing an innovative network pharmacology strategy. We developed a multilayer network-based computational framework integrating perturbational signatures of the disease as well as intrinsic characteristics of the drugs, such as their mechanism of action and chemical structure. We present five case studies carried out on public data from The Cancer Genome Atlas, including invasive breast cancer, colon adenocarcinoma, lung squamous cell carcinoma, hepatocellular carcinoma and prostate adenocarcinoma. Our results highlight paclitaxel as a suitable drug for combination therapy for many of the considered cancer types. In addition, several non-cancer-related genes representing unusual drug targets were identified as potential candidates for pharmacological treatment of cancer.
Collapse
|
14
|
Xu B, Sun HC. Camrelizumab: an investigational agent for hepatocellular carcinoma. Expert Opin Investig Drugs 2021; 31:337-346. [PMID: 34937475 DOI: 10.1080/13543784.2022.2022121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although many approaches have been used to treat hepatocellular carcinoma (HCC), the clinical benefits were limited, particularly for advanced HCC. However, recent treatments with PD-1/PD-L1 inhibitor monotherapy and its combination with other therapies, have demonstrated remarkable results. Camrelizumab, a selective, humanized, high-affinity IgG4 PD-1 monoclonal antibody, has been approved as a second-line treatment in patients with advanced HCC by NMPA in China. AREAS COVERED This paper introduces anti-PD-1/PD-L1 immunotherapies for advanced HCC and progresses to discuss the pharmacology, safety, and efficacy of camrelizumab in the treatment of advanced HCC. It also considers future research directions for camrelizumab in this setting. EXPERT OPINION The PD-1 binding epitope of camrelizumab is different from other PD-1 inhibitors. The IC50 and EC50 of camrelizumab for inhibiting the binding of PD-1 and PD-L1 is similar to pembrolizumab, is significantly lower than other PD-1 inhibitors, and has a higher affinity for PD-1 site. Camrelizumab exhibits a promising antitumor activity and an acceptable safety profile similar to other PD-1 inhibitors in advanced HCC. Apatinib (a VEGFR-2 tyrosine kinase inhibitor) can reduce the incidence of camrelizumab-specific reactive cutaneous capillary endothelial proliferation (RCCEP).
Collapse
Affiliation(s)
- Bin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Reischer A, Kruger S, von Bergwelt-Baildon M. [A decade of checkpoint inhibitors: current standard of care and future trends]. Dtsch Med Wochenschr 2021; 146:1108-1118. [PMID: 34448187 DOI: 10.1055/a-1303-8820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Therapy with checkpoint inhibitors still revolutionizes the therapeutical landscape in oncology. Since the first approval of a checkpoint inhibitor for the therapy of malignant melanoma 2011, many other approvals in the field of hematology and oncology followed. Besides monotherapy, a rapidly increasing number of trials is investigating checkpoint inhibitors in different combination therapies for advanced disease. Cumulating evidence suggests checkpoint blockade also as promising option for (neo)-adjuvant treatment. Here we review the different treatment strategies of mono- and combination-therapies. Additionally, important biomarkers for the treatment with checkpoint inhibitors are discussed.
Collapse
|
16
|
Saini KS, Punie K, Twelves C, Bortini S, de Azambuja E, Anderson S, Criscitiello C, Awada A, Loi S. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin Biol Ther 2021; 21:945-962. [PMID: 34043927 DOI: 10.1080/14712598.2021.1936494] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Advanced breast cancer (aBC) remains incurable and the quest for more effective systemic anticancer agents continues. Promising results have led to the FDA approval of three antibody-drug conjugates (ADCs) and two immune checkpoint inhibitors (ICIs) to date for patients with aBC. AREAS COVERED With the anticipated emergence of newer ADCs and ICIs for patients with several subtypes of breast cancer, and given their potential synergy, their use in combination is of clinical interest. In this article, we review the use of ADCs and ICIs in patients with breast cancer, assess the scientific rationale for their combination, and provide an overview of ongoing trials and some early efficacy and safety results of such dual therapy. EXPERT OPINION Improvement in the medicinal chemistry of next-generation ADCs, their rational combination with ICIs and other agents, and the development of multiparametric immune biomarkers could help to significantly improve the outlook for patients with refractory aBC.
Collapse
Affiliation(s)
- Kamal S Saini
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chris Twelves
- Leeds Institute of Medical Research, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Evandro de Azambuja
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium.,Faculté de Médecine, Université Libre De Bruxelles (U.L.B.), Brussels, Belgium
| | - Steven Anderson
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ahmad Awada
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
17
|
Yuan X, Yi M, Zhang W, Xu L, Chu Q, Luo S, Wu K. The biology of combination immunotherapy in recurrent metastatic head and neck cancer. Int J Biochem Cell Biol 2021; 136:106002. [PMID: 33962022 DOI: 10.1016/j.biocel.2021.106002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Preclinical data suggest that head and neck cancer is an intrinsically immunosuppressive disease with abnormal inflammatory components in the tumor microenvironment. The development of immune checkpoint inhibitors, which are monoclonal antibodies capable of inhibiting immune suppressive signals to prime anticancer immunity, has revolutionized the therapeutic landscape in recurrent/metastatic head and neck cancer. However, patients with head and neck cancer present primary resistance to immunotherapy. Many ongoing trials include combinations of immunotherapy with different therapeutic interventions, aiming to improve response rates and overall survival. As novel therapy strategies are leveraged, the significance of immunotherapy in recurrent/metastatic head and neck cancer continues to be revealed. This review aims to summarize combinational immunotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
18
|
Wang J, Bie Z, Zhang Y, Li L, Zhu Y, Zhang Y, Nie X, Zhang P, Cheng G, Di X, Li X, Cheng S, Feng L. Prognostic value of the baseline circulating T cell receptor β chain diversity in advanced lung cancer. Oncoimmunology 2021; 10:1899609. [PMID: 33796410 PMCID: PMC7993185 DOI: 10.1080/2162402x.2021.1899609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
An indicator for systemic evaluation of the adaptive immune status is lacking. Peripheral blood is important in antitumour immunity, and the T-cell receptor (TCR) repertoire diversity is key for effective immunity. This study aimed to investigate changes in the circulating T cell receptor β chain (TCRB) diversity during the first few (1 ~ 4) treatment cycles and its clinical value in patients with advanced lung cancer. TCRB-enriched sequencing data combined with transcriptomic RNA sequencing data of peripheral blood leukocytes were obtained from 72 patients with advanced lung cancer before and after targeted therapy or chemotherapy. Changes in the circulating TCRB diversity during treatment and the relationship of the baseline circulating TCRB diversity with prognosis and therapeutic effects were evaluated. We found that targeted therapy or chemotherapy did not significantly affect the T lymphocyte composition or circulating TCRB diversity (3.83 vs 3.74, T-test, p = .16) in patients with advanced lung adenocarcinoma (LUAD) during the first few treatment cycles. The higher circulating TCRB diversity was linked to improved therapeutic effects (T-test, p = .00083) in LUAD patients receiving targeted therapy. Higher baseline circulating TCRB diversity was associated with better prognosis. In addition, a five-factor prognostic risk score model was built for more accurate prognosis prediction for LUAD patients. The chemotherapeutic agents for advanced lung cancer do not significantly affect adaptive immune function over the first few treatment cycles. The circulating TCRB diversity reflects the adaptive immunological repertoire and might be a convenient indicator for evaluating the adaptive immune status and prognosis.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixin Bie
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajing Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Zhu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Nie
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Cheng
- Department of Medical Oncology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Diao D, Zhai J, Yang J, Wu H, Jiang J, Dong X, Passaro A, Aramini B, Rao S, Cai K. Delivery of gefitinib with an immunostimulatory nanocarrier improves therapeutic efficacy in lung cancer. Transl Lung Cancer Res 2021; 10:926-935. [PMID: 33718033 PMCID: PMC7947404 DOI: 10.21037/tlcr-21-144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Combining different cancer treatments represents a promising strategy to improve the therapeutic outcome for lung cancer patients with or without druggable gene alterations. Methods We previously developed a polyethylene glycol-based (PEG-based) immunostimulatory nanocarrier (PEG2k-Fmoc-NLG919) which can efficiently co-deliver an indoleamine 2,3-dioxygenase-1 (IDO1) inhibitor and the chemotherapeutic agent, paclitaxel. This method was found to improve cancer therapy by simultaneously performing immuno- and chemo-therapy. However, whether this nanocarrier could deliver targeted drugs to implement targeted therapy together with immunotherapy remains unclear. Results Here, we report that the delivery of the classical tyrosine kinase inhibitor (TKI), gefitinib, with the optimized PEG5k-Fmoc-NLG919 nanocarrier, increased the sensitivity of lung cancer cells to gefitinib in vitro. Gefitinib was gradually but sufficiently released from the nanocarrier with comparable capacity to inhibit epidermal growth factor receptor (EGFR) activity as using free gefitinib directly. More importantly, treatment with gefitinib-loaded PEG5k-Fmoc-NLG919 could suppress lung tumor development more efficiently than gefitinib alone in vivo by inducing an immune active microenvironment with more functional CD8+ T cells and less regulatory T cell infiltration. Conclusions Our study therefore demonstrates that delivery of small molecular targeted drugs with the immunostimulatory nanocarrier is a straightforward strategy for improving antitumor response for lung cancer therapy.
Collapse
Affiliation(s)
- Dingwei Diao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianxue Zhai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Yang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Jiang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoying Dong
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|