1
|
Cofano F, Monticelli M, Ajello M, Zenga F, Marengo N, Di Perna G, Altieri R, Cassoni P, Bertero L, Melcarne A, Tartara F, Ducati A, Garbossa D. The Targeted Therapies Era Beyond the Surgical Point of View: What Spine Surgeons Should Know Before Approaching Spinal Metastases. Cancer Control 2020; 26:1073274819870549. [PMID: 31865766 PMCID: PMC6728684 DOI: 10.1177/1073274819870549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last few years, the treatment of spinal metastases has significantly
changed. This is due to the advancements in surgical technique, radiotherapy,
and chemotherapy which have enriched the multidisciplinary management. Above
all, the field of molecular biology of tumors is in continuous and prosperous
evolution. In this review, the molecular markers and new approaches that have
radically modified the chemotherapeutic strategy of the most common metastatic
neoplasms will be examined together with clinical and surgical implications. The
experience and skills of several different medical professionals are mandatory:
an interdisciplinary oncology team represents the winning strategy in the
treatment of patients with spinal metastases
Collapse
Affiliation(s)
- Fabio Cofano
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Matteo Monticelli
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Marco Ajello
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Francesco Zenga
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Nicola Marengo
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Giuseppe Di Perna
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Roberto Altieri
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Paola Cassoni
- Dipartimento di Scienze Mediche, Pathology, Universita degli Studi di Torino, Torino, Italy
| | - Luca Bertero
- Dipartimento di Scienze Mediche, Pathology, Universita degli Studi di Torino, Torino, Italy
| | - Antonio Melcarne
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Fulvio Tartara
- Azienda Ospedaliero-Universitaria di Parma, Special surgery, Neurosurgery, Torino, Italy
| | - Alessandro Ducati
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| | - Diego Garbossa
- Dipartimento di Neuroscienze, Neurosurgery, Universita degli Studi di Torino, Torino, Italy
| |
Collapse
|
2
|
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:115-135. [PMID: 30881110 PMCID: PMC6410754 DOI: 10.2147/bctt.s189224] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since its first documentation, breast cancer (BC) has been a conundrum that ails millions of women every year. This cancer has been well studied by researchers all over the world, which has improved the patient outcome significantly. There are many diagnostic markers to identify the disease, but early detection and then subclassification of this cancer remain dubious. Even after the correct diagnosis, more than half the patients come back with a more aggressive and metastatic tumor. The underpinning mechanism that governs the resistance includes over-amplification of receptors, mutations in key gene targets, and activation of different signaling. A plethora of drugs have been devised that have shown promising results in clinical settings. However, in recent times, the role played by cancer stem cells in disease progression and their interaction in mediating the resistance to cellular insults have come into the limelight. As breast cancer stem cells (BCSCs) are dormant in nature, it is highly likely that they fail to directly respond to the cytotoxic drugs which are meant for ablating rapidly proliferating cells. Furthermore, the absence of well-characterized, drug-able surface markers to date, has limited the application of targeted therapies in complete eradication of the disease. In this review, our intent is to discuss versatile therapeutics in practice followed by discussing the upcoming therapy strategies in the pipeline for BC. Furthermore, we focus on the roles played by BCSCs in mediating the resistance, and therefore, the aspects of new therapeutics against BCSCs under development that may ease the burden in future has also been discussed.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Maitreyi Rathod
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| |
Collapse
|
3
|
Jiang N, Lin JJ, Wang J, Zhang BN, Li A, Chen ZY, Guo S, Li BB, Duan YZ, Yan RY, Yan HF, Fu XY, Zhou JL, Yang HM, Cui Y. Novel treatment strategies for patients with HER2-positive breast cancer who do not benefit from current targeted therapy drugs. Exp Ther Med 2018; 16:2183-2192. [PMID: 30186457 PMCID: PMC6122384 DOI: 10.3892/etm.2018.6459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Human epidermal growth factor receptor-2 positive breast cancer (HER2+ BC) is characterized by a high rate of metastasis and drug resistance. The advent of targeted therapy drugs greatly improves the prognosis of HER2+ BC patients. However, drug resistance or severe side effects have limited the application of targeted therapy drugs. To achieve more effective treatment, considerable research has concentrated on strategies to overcome drug resistance. Abemaciclib (CDK4/6 inhibitor), a new antibody-drug conjugate (ADC), src homology 2 (SH2) containing tyrosine phosphatase-1 (SHP-1) and fatty acid synthase (FASN) have been demonstrated to improve drug resistance. In addition, using an effective vector to accurately deliver drugs to tumors has shown good application prospects. Many studies have also found that natural anti-cancer substances produced effective results during in vitro and in vivo anti-HER2+ BC research. This review aimed to summarize the current status of potential clinical drugs that may benefit HER2+ BC patients in the future.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Jing-Jing Lin
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Jun Wang
- Department of Hepatology, 302 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Bei-Ning Zhang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Ao Li
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Zheng-Yang Chen
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Yu-Zhong Duan
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Ru-Yi Yan
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
- Department of Pathology, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Xiao-Yan Fu
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| |
Collapse
|
4
|
Du J, Yu Y, Zhan J, Zhang H. Targeted Therapies Against Growth Factor Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1026:125-146. [PMID: 29282682 DOI: 10.1007/978-981-10-6020-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most prevalent female malignancy throughout the world. Conventional treatment strategies for breast cancer consist of chemotherapy, radiation, surgery, chemoradiation, hormone therapy, and targeted therapies. Among them, targeted therapies show advantages to reduce cost and toxicity for being possible for individualized treatments based on the intrinsic subtypes of breast cancer. With deeper understanding of key signaling pathways concerning tumor growth and survival, growth factor-controlled signaling pathways are frequently dysregulated in the development and progression of breast cancer. Thus, targeted therapies against growth factor-mediated signaling pathways have been shown to have promising efficacy in both preclinical animal models and human clinical trials. In this chapter, we will briefly introduce inhibitors and monoclonal antibodies that target the main growth factor-modulated scenarios including epidermal growth factor receptor (EGFR), transforming growth factor beta (TGF-β), insulin-like growth factor 1 receptor (IGF1R), and fibroblast growth factor receptor (FGFR) signaling pathways in breast cancer therapy.
Collapse
Affiliation(s)
- Juan Du
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Tong CWS, Wu M, Cho WCS, To KKW. Recent Advances in the Treatment of Breast Cancer. Front Oncol 2018; 8:227. [PMID: 29963498 PMCID: PMC6010518 DOI: 10.3389/fonc.2018.00227] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy in women. It is classified into a few major molecular subtypes according to hormone and growth factor receptor expression. Over the past few years, substantial advances have been made in the discovery of new drugs for treating BC. Improved understanding of the biologic heterogeneity of BC has allowed the development of more effective and individualized approach to treatment. In this review, we provide an update about the current treatment strategy and discuss the various emerging novel therapies for the major molecular subtypes of BC. A brief account of the clinical development of inhibitors of poly(ADP-ribose) polymerase, cyclin-dependent kinases 4 and 6, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, histone deacetylation, multi-targeting tyrosine kinases, and immune checkpoints for personalized treatment of BC is included. However, no targeted drug has been approved for the most aggressive subtype-triple negative breast cancer (TNBC). Thus, we discuss the heterogeneity of TNBC and how molecular subtyping of TNBC may help drug discovery for this deadly disease. The emergence of drug resistance also poses threat to the successful development of targeted therapy in various molecular subtypes of BC. New clinical trials should incorporate advanced methods to identify changes induced by drug treatment, which may be associated with the upregulation of compensatory signaling pathways in drug resistant cancer cells.
Collapse
Affiliation(s)
- Christy W. S. Tong
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Mingxia Wu
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Kenneth K. W. To
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
6
|
Huang L, Zeng L, Chu J, Xu P, Lv M, Xu J, Wen J, Li W, Wang L, Wu X, Fu Z, Xie H, Wang S. Chemoresistance‑related long non‑coding RNA expression profiles in human breast cancer cells. Mol Med Rep 2018; 18:243-253. [PMID: 29749447 PMCID: PMC6059676 DOI: 10.3892/mmr.2018.8942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in females worldwide. Chemoresistance has been a major reason for the drug therapy failure. The present study performed a microarray analysis between MCF-7 and MCF-7/adriamycin (ADR) cells, and intended to identify long non-coding (lnc)RNA expression character in drug resistant breast cancer cells. MCF-7/ADR cells were induced from MCF-7 cells via pulse-selection with doxorubicin for 4 weeks, and the resistance to doxorubicin of ADR cells was confirmed by MTT assay. Microarray analysis was performed between MCF-7 and MCF-7/ADR cells. Total RNA was extracted from the two cell lines respectively and was transcribed into cDNA. The results of the microarray were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene Ontology (GO) and pathways analysis were conducted to enrich the dysregulated lncRNAs presented in the microarray results. Compared to the MCF-7 cells, 8,892 lncRNAs were differentially expressed in MCF/ADR cells (absolute fold-change >2.0). A total of 32 lncRNAs were selected for RT-qPCR by fold-change filtering, standard Student's t-test, and multiple hypothesis testing. Among the dysregulated lncRNAs, AX747207 was prominent because its associated gene RUNX3 was previously reported to be relative to malignant tumor chemoresistance. GO analysis results also indicated some biological processes and molecular functions linked to chemoresistance. The pathway enrichment results provided some potential pathways associated with chemoresistance. In the present study, the authors intended to identify lncRNA expression character in drug resistant cell line MCF-7/ADR, corresponding to the parental MCF-7 cell line. In addition, the study identified the lncRNA AX747207, and its potential targeted gene RUNX3, may be related to chemoresistance in breast cancer. These results may new insights into exploring the mechanisms of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Lei Huang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lihua Zeng
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Jiahui Chu
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Mingming Lv
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Xu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Wen
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Wenqu Li
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Luyu Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaowei Wu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Affiliated Nanjing Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Hui Xie
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
7
|
Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. Updates Surg 2017; 69:313-317. [PMID: 28260181 DOI: 10.1007/s13304-017-0424-1] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Despite dramatic advances in cancer research setting, breast cancer remains a major health problem and represents currently a top biomedical research priority. Worldwide, breast cancer is the most common cancer affecting women, and its incidence and mortality rates are expected to increase significantly the next years. Recently the researchers' interest has been attracted by breast cancer arising in young women. Current evidence suggests that in women aged <45 years, breast cancer is unquestionably the leading cause of cancer-related deaths. This type of cancer seems to be highly heterogeneous and has potentially aggressive and complex biological features. However, management strategies, recommendations and options are not age based and the 'complex' biology of this type of cancer remains uncertain and unexplored. In this review, we summarize the latest scientific information on breast cancer arising in young women highlighting the heterogeneity and the complex nature of this type of cancer.
Collapse
Affiliation(s)
- Zoi Anastasiadi
- Department of Surgery, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Georgios D Lianos
- Department of Surgery, School of Medicine, University of Ioannina, Ioannina, Greece.
| | | | | | - Michail Mitsis
- Department of Surgery, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H, Amanlou M. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. Onco Targets Ther 2016; 9:7315-7330. [PMID: 27980423 PMCID: PMC5144897 DOI: 10.2147/ott.s113815] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are known as carriers with high loading capacity and large functionalizable surface area for target-directed delivery. In this study, a series of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles (DTX/MSN-FA or DTX/MSN-Met) with large pores and amine groups at inner pore surface properties were prepared. The results showed that the MSNs were successfully synthesized, having good pay load and pH-sensitive drug release kinetics. The cellular investigation on MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice proved that bare MSN-NH2 are mostly accumulated in the liver but MSN-FA or MSN-Met are more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug delivery for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center
- Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Addition of vasopressin synthetic analogue [V(4)Q(5)]dDAVP to standard chemotherapy enhances tumour growth inhibition and impairs metastatic spread in aggressive breast tumour models. Clin Exp Metastasis 2016; 33:589-600. [PMID: 27146156 DOI: 10.1007/s10585-016-9799-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
[V(4)Q(5)]dDAVP is a novel 2nd generation vasopressin analogue with robust antitumour activity against metastatic breast cancer. We recently reported that, by acting on vasopressin V2r membrane receptor present in tumour cells and microvascular endothelium, [V(4)Q(5)]dDAVP inhibits angiogenesis and metastatic progression of the disease without overt toxicity. Despite chemotherapy remaining as a primary therapeutic option for aggressive breast cancer, its use is limited by low selectivity and associated adverse effects. In this regard, we evaluated potential combinational benefits by adding [V(4)Q(5)]dDAVP to standard-of-care chemotherapy. In vitro, combination of [V(4)Q(5)]dDAVP with sub-IC50 concentrations of paclitaxel or carmustine resulted in a cooperative inhibition of breast cancer cell growth in comparison to single-agent therapy. In vivo antitumour efficacy of [V(4)Q(5)]dDAVP addition to chemotherapy was first evaluated using the triple-negative MDA-MB-231 breast cancer xenograft model. Tumour-bearing mice were treated with i.v. injections of [V(4)Q(5)]dDAVP (0.3 μg/kg, thrice weekly) in combination with weekly cycles of paclitaxel (10 mg/kg i.p.). After 6 weeks of treatment, combination regimen resulted in greater tumour growth inhibition compared to monotherapy. [V(4)Q(5)]dDAVP addition was also associated with reduction of local aggressiveness, and impairment of tumour invasion and infiltration of the skin. Benefits of combined therapy were confirmed in the hormone-independent and metastatic F3II breast cancer model by combining [V(4)Q(5)]dDAVP with carmustine (25 mg/kg i.p.). Interestingly, [V(4)Q(5)]dDAVP plus cytotoxic agents severely impaired colony forming ability of tumour cells and inhibited breast cancer metastasis to lung. The present study shows that [V(4)Q(5)]dDAVP may complement conventional chemotherapy by modulating metastatic progression and early stages of microtumour establishment, and thus supports further preclinical testing of the compound for the management of aggressive breast cancer.
Collapse
|
10
|
Abstract
INTRODUCTION Paclitaxel and docetaxel were two epoch-making anticancer drugs and have been successfully used in chemotherapy for a variety of cancer types. In the year 2010, a new taxane, cabazitaxel, was approved by FDA for use in combination with prednisone for the treatment of metastatic hormone-refractory prostate cancer. Albumin-bound paclitaxel (nab™-paclitaxel; abraxane) nanodroplet formulation was another notable invention (FDA approval 2005 for refractory, metastatic, or relapsed breast cancer). Abraxane in combination with gemcitabine for the treatment of pancreatic cancer was approved by FDA in 2013. Accordingly, there have been a huge number of patent applications dealing with taxane anticancer agents in the last 5 years. Thus, it is a good time to review the progress in this area and find the next wave for new developments. AREA COVERED This review covers the patent literature from the year 2010 to early 2015 on various aspects of taxane-based chemotherapies and drug developments. EXPERT OPINION Three FDA-approved taxane anticancer drugs will continue to expand their therapeutic applications, especially through drug combinations and new formulations. Inspired by the success of abraxane, new nano-formulations are emerging. Highly potent new-generation taxanes will play a key role in the development of efficacious tumor-targeted drug delivery systems.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U. S. A
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, U. S. A
| | - Brendan Lichtenthal
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U. S. A
| | - Siyeon Lee
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, U. S. A
| | - Changwei Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U. S. A
| | - Xin Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U. S. A
| |
Collapse
|
11
|
Crosby NM, Ghosh M, Su B, Beckstead JA, Kamei A, Simonsen JB, Luo B, Gordon LI, Forte TM, Ryan RO. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas. Biochem Cell Biol 2015; 93:343-50. [PMID: 25994015 DOI: 10.1139/bcb-2015-0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.
Collapse
Affiliation(s)
- Natasha M Crosby
- a Lypro Biosciences Inc., 1236 Hawthorne St. Alameda, CA 94501, USA
| | - Mistuni Ghosh
- b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Betty Su
- b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Jennifer A Beckstead
- b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Ayako Kamei
- b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Jens B Simonsen
- b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Bing Luo
- a Lypro Biosciences Inc., 1236 Hawthorne St. Alameda, CA 94501, USA
| | - Leo I Gordon
- c Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Trudy M Forte
- a Lypro Biosciences Inc., 1236 Hawthorne St. Alameda, CA 94501, USA.,b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Robert O Ryan
- b Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| |
Collapse
|
12
|
Garona J, Pifano M, Orlando UD, Pastrian MB, Iannucci NB, Ortega HH, Podesta EJ, Gomez DE, Ripoll GV, Alonso DF. The novel desmopressin analogue [V4Q5]dDAVP inhibits angiogenesis, tumour growth and metastases in vasopressin type 2 receptor-expressing breast cancer models. Int J Oncol 2015; 46:2335-45. [PMID: 25846632 PMCID: PMC4441290 DOI: 10.3892/ijo.2015.2952] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/19/2015] [Indexed: 12/31/2022] Open
Abstract
Desmopressin (dDAVP) is a safe haemostatic agent with previously reported antitumour activity. It acts as a selective agonist for the V2 vasopressin membrane receptor (V2r) present on tumour cells and microvasculature. The purpose of this study was to evaluate the novel peptide derivative [V4Q5]dDAVP in V2r-expressing preclinical mouse models of breast cancer. We assessed antitumour effects of [V4Q5]dDAVP using human MCF-7 and MDA-MB-231 breast carcinoma cells, as well as the highly metastatic mouse F3II cell line. Effect on in vitro cancer cell growth was evaluated by cell proliferation and clonogenic assays. Cell cycle distribution was analysed by flow cytometry. In order to study the effect of intravenously administered [V4Q5]dDAVP on tumour growth and angiogenesis, breast cancer xenografts were generated in athymic mice. F3II cells were injected into syngeneic mice to evaluate the effect of [V4Q5]dDAVP on spontaneous and experimental metastatic spread. In vitro cytostatic effects of [V4Q5]dDAVP against breast cancer cells were greater than those of dDAVP, and associated with V2r-activated signal transduction and partial cell cycle arrest. In MDA-MB-231 xenografts, [V4Q5]dDAVP (0.3 μg/kg, thrice a week) reduced tumour growth and angiogenesis. Treatment of F3II mammary tumour-bearing immunocompetent mice resulted in complete inhibition of metastatic progression. [V4Q5]dDAVP also displayed greater antimetastatic efficacy than dDAVP on experimental lung colonisation by F3II cells. The novel analogue was well tolerated in preliminary acute toxicology studies, at doses ≥300-fold above that required for anti-angiogenic/antimetastatic effects. Our data establish the preclinical activity of [V4Q5]dDAVP in aggressive breast cancer, providing the rationale for further clinical trials.
Collapse
Affiliation(s)
- Juan Garona
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Marina Pifano
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Ulises D Orlando
- Biomedical Research Institute (INBIOMED), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Maria B Pastrian
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Nancy B Iannucci
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Hugo H Ortega
- Institute of Veterinary Sciences (ICIVET-CONICET), National University of Litoral, Esperanza, Santa Fe, Argentina
| | - Ernesto J Podesta
- Biomedical Research Institute (INBIOMED), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Giselle V Ripoll
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
13
|
He K, Wang P. Unregulated long non-coding RNA-AK058003 promotes the proliferation, invasion and metastasis of breast cancer by regulating the expression levels of the γ-synuclein gene. Exp Ther Med 2015; 9:1727-1732. [PMID: 26136884 DOI: 10.3892/etm.2015.2323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/18/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the function of long chain non-coding RNA (lncRNA) in breast cancer cells. Quantitative polymerase chain reaction was used to measure mRNA expression levels in breast cancer tissues, adjacent tissues and in MCF-7 breast cancer cells. Western blot analysis was used to determine the protein expression levels. In addition, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was employed to measure the rates of cell proliferation. The invasion and migration of the MCF-7 cells were examined using a Transwell® assay. The expression levels of lncRNA-AK058003 were increased significantly in the breast cancer tissues and were found to strongly correlate with the severity of the breast cancer clinical stage. Bioinformatics analysis revealed that the γ-synuclein gene (SNCG) may be a target gene regulated by lncRNA-AK058003. Thus, lncRNA-AK058803 was downregulated using small interfering RNA, and the mRNA and protein expression levels of SNCG were shown to be significantly reduced. Furthermore, the proliferation, invasion and migration rates of the MCF-7 breast cancer cells were significantly reduced. Therefore, the results demonstrated that unregulated lncRNA-AK058003 in breast cancer cells promotes cancer cell proliferation, invasion and metastasis via the regulation of SNCG expression.
Collapse
Affiliation(s)
- Kai He
- Department of Surgery, The University Hospital of Shandong University, Jinan, Shandong 250100, P.R. China
| | - Peilin Wang
- Department of General Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
14
|
Abstract
Chemotherapy and targeted therapy have opened new avenues in clinical oncology. However, there is a lack of response in a substantial percentage of cancer patients and diseases frequently relapse in those who even initially respond. Resistance is, at present, the major barrier to conquering cancer, the most lethal age-related pathology. Identification of mechanisms underlying resistance and development of effective strategies to circumvent treatment pitfalls thereby improving clinical outcomes remain overarching tasks for scientists and clinicians. Growing bodies of data indicate that stromal cells within the genetically stable but metabolically dynamic tumor microenvironment confer acquired resistance against anticancer therapies. Further, treatment itself activates the microenvironment by damaging a large population of benign cells, which can drastically exacerbate disease conditions in a cell nonautonomous manner, and such off-target effects should be well taken into account when establishing future therapeutic rationale. In this review, we highlight relevant biological mechanisms through which the tumor microenvironment drives development of resistance. We discuss some unsolved issues related to the preclinical and clinical trial paradigms that need to be carefully devised, and provide implications for personalized medicine. In the long run, an insightful and accurate understanding of the intricate signaling networks of the tumor microenvironment in pathological settings will guide the design of new clinical interventions particularly combinatorial therapies, and it might help overcome, or at least prevent, the onset of acquired resistance.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, 200031, China
- School of Medicine, Shanghai Jiaotong UniversityShanghai, 200025, China
- VA Seattle Medical CenterSeattle, WA, 98108
- Department of Medicine, University of WashingtonSeattle, WA, 98195
| |
Collapse
|