1
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
2
|
Prognostic Index for Nonsmall Cell Lung Cancer Based on Immune-Related Genes Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4779811. [PMID: 36193311 PMCID: PMC9526605 DOI: 10.1155/2022/4779811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Immune system dysregulation is associated with tumor incidence and growth. Here, we established an RNA-based individualized immune signature associated with prognosis for nonsmall cell lung cancer (NSCLC) to guide adjuvant therapy. We downloaded publicly accessible data on RNA expression and clinical characteristics of NSCLC from the Cancer Genome Atlas (TCGA). From immune-related genes (IRGs) retrieved from the immunology database and analysis portal (ImmPort) database, we then screened differentially expressed immune-related genes (DEIRGs). Using overall survival (OS) as a clinical endpoint, we identified 26 prognostic DEIRGs via univariate and multivariate Cox regression analysis, and then developed a risk model based on these 26 IRGs with an area under the curve (AUC) of 0.701, and its predictive ability independent from other clinical factors. We also downloaded tumor immune infiltrate data and analyzed the correlations between lymphocytic infiltration with our risk scores, but found no significant association. Furthermore, we retrieved 86 differentially expressed transcription factors (TFs) to assess their regulatory relationships with the 26 prognostic DEIRGs. In summary, we developed a robust risk model to predict survival in patients with NSCLC, based on the expression of 26 IRGs. It provides novel predictive and therapeutic molecular targets.
Collapse
|
3
|
Moes-Sosnowska J, Skupinska M, Lechowicz U, Szczepulska-Wojcik E, Skronska P, Rozy A, Stepniewska A, Langfort R, Rudzinski P, Orlowski T, Popiel D, Stanczak A, Wieczorek M, Chorostowska-Wynimko J. FGFR1-4 RNA-Based Gene Alteration and Expression Analysis in Squamous Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231810506. [PMID: 36142417 PMCID: PMC9505002 DOI: 10.3390/ijms231810506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023] Open
Abstract
While fibroblast growth factor receptors (FGFRs) are involved in several biological pathways and FGFR inhibitors may be useful in the treatment of squamous non-small cell lung cancer (Sq-NSCLC), FGFR aberrations are not well characterized in Sq-NSCLC. We comprehensively evaluated FGFR expression, fusions, and variants in 40 fresh-frozen primary Sq-NSCLC (stage IA3−IV) samples and tumor-adjacent normal tissues using real-time PCR and next-generation sequencing (NGS). Protein expression of FGFR1−3 and amplification of FGFR1 were also analyzed. FGFR1 and FGFR4 median gene expression was significantly (p < 0.001) decreased in tumors compared with normal tissue. Increased FGFR3 expression enhanced the recurrence risk (hazard ratio 4.72, p = 0.029), while high FGFR4 expression was associated with lymph node metastasis (p = 0.036). Enhanced FGFR1 gene expression was correlated with FGFR1 protein overexpression (r = 0.75, p = 0.0003), but not with FGFR1 amplification. NGS revealed known pathogenic FGFR2,3 variants, an FGFR3::TACC3 fusion, and a novel TACC1::FGFR1 fusion together with FGFR1,2 variants of uncertain significance not previously reported in Sq-NSCLC. These findings expand our knowledge of the Sq-NSCLC molecular background and show that combining different methods increases the rate of FGFR aberrations detection, which may improve patient selection for FGFRi treatment.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Microtubule-Associated Proteins
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 4/genetics
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Monika Skupinska
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Ewa Szczepulska-Wojcik
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Paulina Skronska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Adriana Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Aneta Stepniewska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
| | - Renata Langfort
- Department of Pathology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Piotr Rudzinski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Tadeusz Orlowski
- Department of Surgery, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A, Research & Development Centre, 05-152 Kazun Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Research & Development Centre, 05-152 Kazun Nowy, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland or
- Correspondence: or
| |
Collapse
|
4
|
The genomic landscape of lung adenocarcinoma—insights towards personalized medicine. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Wei W, Cao S, Liu J, Wang Y, Song Q, A L, Sun S, Zhang X, Liang X, Jiang Y. Fibroblast growth factor receptor 4 as a prognostic indicator in triple-negative breast cancer. Transl Cancer Res 2020; 9:6881-6888. [PMID: 35117296 PMCID: PMC8797274 DOI: 10.21037/tcr-20-1756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/26/2020] [Indexed: 11/18/2022]
Abstract
Background Triple-negative breast cancer (TNBC) constitutes up to 15% of all breast cancers. It is one of the most aggressive breast cancers and is more prone to metastasize compared with other subtypes. Breast cancer patients with this subtype usually have a poor prognosis. Fibroblast growth factor receptor 4 (FGFR4) belongs to the receptor tyrosine kinase (RTK) family, and early analyses identified that FGFR4 was involved in breast cancer. However, the prognostic effect of FGFR4 on TNBC is unknown. In the present study, we investigated the association between FGFR4 and TNBC prognosis. Methods A total of 282 TNBC patients were enrolled. FGFR4 protein expression was detected in these 282 TNBC patients using immunohistochemistry (IHC). Results In the present study, FGFR4 was highly expressed in TNBC patients. Lymph node metastasis (LNM) (P=0.033) and p53 status (P=0.019) were associated with high FGFR4 expression. Univariate analysis identified high FGFR4 expression (P=0.016) as a prognostic predictor, and multivariate analysis found that high FGFR4 expression (P=0.016) was an independent prognostic factor. The Kaplan-Meier survival curve showed that high FGFR4 protein expression was correlated with poorer overall survival (OS). Conclusions The results of our present study show that FGFR4 protein expression is correlated with a worse prognosis in TNBC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Breast Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shiyu Cao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuhang Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Quanfu Song
- Department of Oncology, Altay District People's Hospital, Altay, China
| | - Leha A
- Department of Oncology, Altay District People's Hospital, Altay, China
| | - Shanshan Sun
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoshuan Liang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
6
|
Fu D, Zhang B, Yang L, Huang S, Xin W. Development of an Immune-Related Risk Signature for Predicting Prognosis in Lung Squamous Cell Carcinoma. Front Genet 2020; 11:978. [PMID: 33005178 PMCID: PMC7485220 DOI: 10.3389/fgene.2020.00978] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lung squamous cell carcinoma (LSCC) is the most common subtype of non-small cell lung cancer. Immunotherapy has become an effective treatment in recent years, while patients showed different responses to the current treatment. It is vital to identify the potential immunogenomic signatures to predict patient' prognosis. The expression profiles of LSCC patients with the clinical information were downloaded from TCGA database. Differentially expressed immune-related genes (IRGs) were extracted using edgeR algorithm, and functional enrichment analysis showed that these IRGs were primarily enriched in inflammatory- and immune-related processes. "Cytokine-cytokine receptor interaction" and "PI3K-AKT signaling pathway" were the most enriched KEGG pathways. 27 differentially expressed IRGs were significantly correlated with the overall survival (OS) of patients using univariate Cox regression analysis. A prognostic risk signature that comprises seven IRGs (GCCR, FGF8, CLEC4M, PTH, SLC10A2, NPPC, and FGF4) was developed with effective predictive performance by multivariable Cox stepwise regression analysis. Most importantly, the signature could be an independent prognostic predictor after adjusting for clinicopathological parameters, and also validated in two independent LSCC cohorts (GSE4573 and GSE17710). Potential molecular mechanisms and tumor immune landscape of these IRGs were investigated through computational biology. Analysis of tumor infiltrating lymphocytes and immune checkpoint molecules revealed distinct immune landscape in high- and low-risk group. The study was the first time to construct IRG-based immune signature in the recognition of disease progression and prognosis of LSCC patients.
Collapse
Affiliation(s)
- Denggang Fu
- School of Basic Medicine, Jiujiang University, Jiujiang, China
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Lei Yang
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Wang Xin
- School of Basic Medicine, Jiujiang University, Jiujiang, China
| |
Collapse
|
7
|
Easter M, Garth J, Harris ES, Shei RJ, Helton ES, Wei Y, Denson R, Zaharias R, Rowe SM, Geraghty P, Faul C, Barnes JW, Krick S. Fibroblast Growth Factor Receptor 4 Deficiency Mediates Airway Inflammation in the Adult Healthy Lung? Front Med (Lausanne) 2020; 7:317. [PMID: 32793609 PMCID: PMC7393220 DOI: 10.3389/fmed.2020.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) 4 has been shown to mediate pro-inflammatory signaling in the liver and airway epithelium in chronic obstructive pulmonary disease. In past reports, FGFR4 knockout (Fgfr4 -/- ) mice did not show any lung phenotype developmentally or at birth, unless FGFR3 deficiency was present simultaneously. Therefore, we wanted to know whether the loss of FGFR4 had any effect on the adult murine lung. Our results indicate that adult Fgfr4 -/- mice demonstrate a lung phenotype consisting of widened airway spaces, increased airway inflammation, bronchial obstruction, and right ventricular hypertrophy consistent with emphysema. Despite downregulation of FGF23 serum levels, interleukin (IL) 1β and IL-6 in the Fgfr4 -/- lung, and abrogation of p38 signaling, primary murine Fgfr4 -/- airway cells showed increased expression of IL-1β and augmented secretion of IL-6, which correlated with decreased airway surface liquid depth as assessed by micro-optical coherence tomography. These findings were paralleled by increased ERK phosphorylation in Fgfr4 -/- airway cells when compared with their control wild-type cells. Analysis of a murine model with constitutive activation of FGFR4 showed attenuation of pro-inflammatory mediators in the lung and airway epithelium. In conclusion, we are the first to show an inflammatory and obstructive airway phenotype in the adult healthy murine Fgfr4 -/- lung, which might be due to the upregulation of ERK phosphorylation in the Fgfr4 -/- airway epithelium.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex S. Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ren-Jay Shei
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric S. Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rennan Zaharias
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M. Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
FGFR1 and FGFR4 oncogenicity depends on n-cadherin and their co-expression may predict FGFR-targeted therapy efficacy. EBioMedicine 2020; 53:102683. [PMID: 32114392 PMCID: PMC7047190 DOI: 10.1016/j.ebiom.2020.102683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR)1 and FGFR4 have been associated with tumorigenesis in a variety of tumour types. As a therapeutic approach, their inhibition has been attempted in different types of malignancies, including lung cancer, and was initially focused on FGFR1-amplified tumours, though with limited success. METHODS In vitro and in vivo functional assessments of the oncogenic potential of downregulated/overexpressed genes in isogenic cell lines were performed, as well as inhibitor efficacy tests in vitro and in vivo in patient-derived xenografts (PDXs). mRNA was extracted from FFPE non-small cell lung cancer samples to determine the prognostic potential of the genes under study. FINDINGS We provide in vitro and in vivo evidence showing that expression of the adhesion molecule N-cadherin is key for the oncogenic role of FGFR1/4 in non-small cell lung cancer. According to this, assessment of the expression of genes in different lung cancer patient cohorts showed that FGFR1 or FGFR4 expression alone showed no prognostic potential, and that only co-expression of FGFR1 and/or FGFR4 with N-cadherin inferred a poorer outcome. Treatment of high-FGFR1 and/or FGFR4-expressing lung cancer cell lines and patient-derived xenografts with selective FGFR inhibitors showed high efficacy, but only in models with high FGFR1/4 and N-cadherin expression. INTERPRETATION Our data show that the determination of the expression of FGFR1 or FGFR4 alone is not sufficient to predict anti-FGFR therapy efficacy; complementary determination of N-cadherin expression may further optimise patient selection for this therapeutic strategy.
Collapse
|
9
|
Liu Y, Cao M, Cai Y, Li X, Zhao C, Cui R. Dissecting the Role of the FGF19-FGFR4 Signaling Pathway in Cancer Development and Progression. Front Cell Dev Biol 2020; 8:95. [PMID: 32154250 PMCID: PMC7044267 DOI: 10.3389/fcell.2020.00095] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) belongs to a family of tyrosine kinase receptor. FGFR4 is highly activated in certain types of cancer and its activation is closely associated with its specific ligand, FGF19. Indeed, FGF19-FGFR4 signaling is implicated in many cellular processes including cell proliferation, migration, metabolism, and differentiation. Since active FGF19-FGFR4 signaling acts as an oncogenic pathway in certain types of cancer, the development and therapeutic evaluation of FGFR4-specific inhibitors in cancer patients is a topic of significant interest. In this review, we aim to provide an updated overview of currently-available FGFR4 inhibitors and their ongoing clinical trials, as well as upcoming potential therapeutics. Further, we examined the possibility of enhancing the therapeutic efficiency of FGFR4 inhibitors in cancer patients. We also discussed the underlying molecular mechanisms of oncogenic activation of FGFR4 by FGF19.
Collapse
Affiliation(s)
- Yanan Liu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng Cao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengguang Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
10
|
Vlacic G, Hoda MA, Klikovits T, Sinn K, Gschwandtner E, Mohorcic K, Schelch K, Pirker C, Peter-Vörösmarty B, Brankovic J, Dome B, Laszlo V, Cufer T, Rozman A, Klepetko W, Grasl-Kraupp B, Hegedus B, Berger W, Kern I, Grusch M. Expression of FGFR1-4 in Malignant Pleural Mesothelioma Tissue and Corresponding Cell Lines and its Relationship to Patient Survival and FGFR Inhibitor Sensitivity. Cells 2019; 8:E1091. [PMID: 31527449 PMCID: PMC6769772 DOI: 10.3390/cells8091091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a devastating malignancy with limited therapeutic options. Fibroblast growth factor receptors (FGFR) and their ligands were shown to contribute to MPM aggressiveness and it was suggested that subgroups of MPM patients could benefit from FGFR-targeted inhibitors. In the current investigation, we determined the expression of all four FGFRs (FGFR1-FGFR4) by immunohistochemistry in tissue samples from 94 MPM patients. From 13 of these patients, we were able to establish stable cell lines, which were subjected to FGFR1-4 staining, transcript analysis by quantitative RT-PCR, and treatment with the FGFR inhibitor infigratinib. While FGFR1 and FGFR2 were widely expressed in MPM tissue and cell lines, FGFR3 and FGFR4 showed more restricted expression. FGFR1 and FGFR2 showed no correlation with clinicopathologic data or patient survival, but presence of FGFR3 in 42% and of FGFR4 in 7% of patients correlated with shorter overall survival. Immunostaining in cell lines was more homogenous than in the corresponding tissue samples. Neither transcript nor protein expression of FGFR1-4 correlated with response to infigratinib treatment in MPM cell lines. We conclude that FGFR3 and FGFR4, but not FGFR1 or FGFR2, have prognostic significance in MPM and that FGFR expression is not sufficient to predict FGFR inhibitor response in MPM cell lines.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Female
- Gene Expression Profiling
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Male
- Mesothelioma/diagnosis
- Mesothelioma/drug therapy
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Middle Aged
- Phenylurea Compounds/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Quinazolines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Gregor Vlacic
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Mir A Hoda
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klikovits
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Katharina Sinn
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Elisabeth Gschwandtner
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Katja Mohorcic
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Jelena Brankovic
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Balazs Dome
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1085 Budapest, Hungary.
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1085 Budapest, Hungary.
| | - Viktoria Laszlo
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, 1085 Budapest, Hungary.
| | - Tanja Cufer
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Ales Rozman
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Walter Klepetko
- Translational Thoracic Oncology Laboratory, Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Balazs Hegedus
- Department of Thoracic Surgery, University Medicine Essen-Ruhrlandklinik, 45239 Essen, Germany.
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| | - Izidor Kern
- University Clinic for Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia.
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
11
|
A model of NSCLC microenvironment predicts optimal receptor targets. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Quintanal-Villalonga A, Molina-Pinelo S, Yagüe P, Marrugal Á, Ojeda-Márquez L, Suarez R, Ponce-Aix S, Enguita AB, Carnero A, Ferrer I, Paz-Ares L. FGFR4 increases EGFR oncogenic signaling in lung adenocarcinoma, and their combined inhibition is highly effective. Lung Cancer 2019; 131:112-121. [PMID: 31027687 DOI: 10.1016/j.lungcan.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Lung adenocarcinoma accounts for approximately half of lung cancer cases. Twenty to 50% of tumors of this type harbor mutations affecting epidermal growth factor receptor (EGFR) expression or activity, which can be therapeutically targeted. EGFR inhibitors in this context exhibit high efficacy and are currently used in the clinical setting. However, not all adenocarcinomas harboring EGFR mutations respond to therapy, so predictive biomarkers of therapeutic outcomes, as well as novel therapies sensitizing these tumors to EGFR inhibition, are needed. MATERIALS AND METHODS We performed in vitro gene overexpression/silencing and tumorigenic surrogate assays, as well as in vitro and in vivo combination treatments with Fibroblast Growth Factor Receptor (FGFR)/EGFR inhibitors. At the clinical level, we determined FGFR4 expression levels in tumors from patients treated with EGFR inhibitors and correlated these with treatment response. RESULTS We describe a cooperative interaction between EGFR and FGFR4, which results in their reciprocal activation with pro-oncogenic consequences in vitro and in vivo. This cooperation is independent of EGFR activating mutations and increases resistance to different EGFR inhibitors. At the therapeutic level, we provide evidence of the synergistic effects of the combination of EGFR and FGFR inhibitors in high FGFR4-expressing, EGFR-activated tumors in vitro and in vivo. Correlated with these results, we found that patients treated with EGFR inhibitors relapse earlier when their tumors exhibit high FGFR4 expression. CONCLUSIONS We propose a novel predictive biomarker for EGFR-targeted therapy, and a highly efficacious combinatory therapeutic strategy to treat EGFR-dependent; this may may extend the use of appropriate inhibitors beyond EGFR-mutated adenocarcinoma patients.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain; CIBERONC, Madrid, Spain
| | - Patricia Yagüe
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain
| | - Ángela Marrugal
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Laura Ojeda-Márquez
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain
| | - Rocío Suarez
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain
| | - Santiago Ponce-Aix
- Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain
| | - Ana Belén Enguita
- Pathological Anatomy Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Sevilla, Spain; CIBERONC, Madrid, Spain
| | - Irene Ferrer
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain.
| | - Luis Paz-Ares
- H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Medical School, Universidad Complutense, Madrid, Spain; CIBERONC, Madrid, Spain.
| |
Collapse
|
13
|
Quintanal-Villalonga A, Molina-Pinelo S, Cirauqui C, Ojeda-Márquez L, Marrugal Á, Suarez R, Conde E, Ponce-Aix S, Enguita AB, Carnero A, Ferrer I, Paz-Ares L. FGFR1 Cooperates with EGFR in Lung Cancer Oncogenesis, and Their Combined Inhibition Shows Improved Efficacy. J Thorac Oncol 2019; 14:641-655. [PMID: 30639621 DOI: 10.1016/j.jtho.2018.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION There is substantial evidence for the oncogenic effects of fibroblast growth factor receptor 1 (FGFR1) in many types of cancer, including lung cancer, but the role of this receptor has not been addressed specifically in lung adenocarcinoma. METHODS We performed FGFR1 and EGFR overexpression and co-overexpression assays in adenocarcinoma and in inmortalized lung cell lines, and we also carried out surrogate and interaction assays. We performed monotherapy and combination EGFR/FGFR inhibitor sensitivity assays in vitro and in vivo in cell line- and patient-derived xenografts. We determined FGFR1 mRNA expression in a cohort of patients with anti-EGFR therapy-treated adenocarcinoma. RESULTS We have reported a cooperative interaction between FGFR1 and EGFR in this context, resulting in increased EGFR activation and oncogenic signaling. We have provided in vitro and in vivo evidence indicating that FGFR1 expression increases tumorigenicity in cells with high EGFR activation in EGFR-mutated and EGFR wild-type models. At the clinical level, we have shown that high FGFR1 expression levels predict higher resistance to erlotinib or gefitinib in a cohort of patients with tyrosine kinase inhibitor-treated EGFR-mutated and EGFR wild-type lung adenocarcinoma. Dual EGFR and FGFR inhibition in FGFR1-overexpressing, EGFR-activated models shows synergistic effects on tumor growth in vitro and in cell line- and patient-derived xenografts, suggesting that patients with tumors bearing these characteristics may benefit from combined EGFR/FGFR inhibition. CONCLUSION These results support the extended the use of EGFR inhibitors beyond monotherapy in the EGFR-mutated adenocarcinoma setting in combination with FGFR inhibitors for selected patients with increased FGFR1 overexpression and EGFR activation.
Collapse
Affiliation(s)
- Alvaro Quintanal-Villalonga
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonia Molina-Pinelo
- Insitute for Biomedical Research in Seville (UHVR, SNRC, Seville University), Seville, Spain; CIBERONC, Madrid, Spain
| | - Cristina Cirauqui
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Ojeda-Márquez
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain
| | - Ángela Marrugal
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Suarez
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Esther Conde
- CIBERONC, Madrid, Spain; Therapeutic Targets Laboratory, University Hospital HM Sanchinarro, Madrid, Spain
| | - Santiago Ponce-Aix
- CIBERONC, Madrid, Spain; Medical Oncology Department, University Hospital Doce de Octubre Madrid, Spain
| | - Ana Belén Enguita
- Pathological Anatomy Department, University Hospital Doce de Octubre, Madrid, Spain
| | - Amancio Carnero
- Insitute for Biomedical Research in Seville (UHVR, SNRC, Seville University), Seville, Spain; CIBERONC, Madrid, Spain
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain.
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain; Medical Oncology Department, University Hospital Doce de Octubre Madrid, Spain; Medical School, Complutense University, Madrid, Spain
| |
Collapse
|
14
|
Wei W, You Z, Sun S, Wang Y, Zhang X, Pang D, Jiang Y. Prognostic implications of fibroblast growth factor receptor 4 polymorphisms in primary breast cancer. Mol Carcinog 2018; 57:988-996. [PMID: 29603419 DOI: 10.1002/mc.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) belongs to the receptor tyrosine kinase (RTK) family, and FGFR4 polymorphisms have been implicated in both normal development and cancer, including breast cancer. In the present study, we investigated correlations between polymorphisms in FGFR4 and breast cancer prognosis. The FGFR4 SNPs rs1966265 and rs351855 were genotyped in 747 breast cancer patients using the SNaPshot method. FGFR4 protein expression was detected by immunohistochemistry in 339 samples. SNP rs351855 was correlated with FGFR4 protein expression under dominant and co-dominant models. Lymph node metastasis (LNM), ER (estrogen receptor) status, and molecular subtype were associated with high FGFR4 expression. Univariate analysis revealed rs351855 (CC/CT: P = 0.027, CC/TT: P < 0.001, CC/CT + TT: P = 0.005) to be a prognostic predictor, and multivariate analysis indicated rs351855 (CC/TT: P = 0.005) to be an independent prognostic factor. Kaplan-Meier survival analysis showed that high FGFR4 protein expression was associated with a poor prognosis. SNP rs351855 was correlated with worse outcomes, with a dose-dependent effect. The results of this study show that FGFR4 SNP rs351855 is associated with up-regulation of FGFR4 protein expression and a worse prognosis in breast cancer.
Collapse
Affiliation(s)
- Wei Wei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Sun
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhang Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,North China Translational Medicine Research and Cooperation Center (NTMRC), Harbin, China
| | - Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
15
|
Fibroblast growth factor receptor 4 induced resistance to radiation therapy in colorectal cancer. Oncotarget 2018; 7:69976-69990. [PMID: 27650548 PMCID: PMC5342528 DOI: 10.18632/oncotarget.12099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
In colorectal cancer (CRC), fibroblast growth factor receptor 4 (FGFR4) is upregulated and acts as an oncogene. This study investigated the impact of this receptor on the response to neoadjuvant radiotherapy by analyzing its levels in rectal tumors of patients with different responses to the therapy. Cellular mechanisms of FGFR4-induced radioresistance were analyzed by silencing or over-expressing FGFR4 in CRC cell line models. Our findings showed that the FGFR4 staining score was significantly higher in pre-treatment biopsies of non-responsive than responsive patients. Similarly, high expression of FGFR4 inhibited radiation response in cell line models. Silencing or inhibition of FGFR4 resulted in a reduction of RAD51 levels and decreased survival in radioresistant HT29 cells. Increased RAD51 expression rescued cells in the siFGFR4-group. In radiosensitive SW480 and DLD1 cells, enforced expression of FGFR4 stabilized RAD51 protein levels resulting in enhanced clearance of γ-H2AX foci and increased cell survival in the mismatch repair (MMR)-proficient SW480 cells. MMR-deficient DLD1 cells are defective in homologous recombination repair and no FGFR4-induced radioresistance was observed. Based on our results, FGFR4 may serve as a predictive marker to select CRC patients with MMR-proficient tumors who may benefit from pre-operative radiotherapy.
Collapse
|
16
|
The FGFR4-388arg Variant Promotes Lung Cancer Progression by N-Cadherin Induction. Sci Rep 2018; 8:2394. [PMID: 29402970 PMCID: PMC5799167 DOI: 10.1038/s41598-018-20570-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
The FGFR4-388Arg variant has been related to poor prognosis in several types of cancer, including lung cancer. The mechanism underlying this association has not been addressed in detail in patients with this pathology. Here, we report that this FGFR4 variant induces MAPK and STAT3 activation and causes pro-oncogenic effects in NSCLC in vitro and in vivo. This variant induces the expression of EMT-related genes, such as N-cadherin, vimentin, Snail1 and Twist1. Indeed, the induction of N-cadherin protein expression by this variant is essential for its pro-tumorigenic role. The presence of the FGFR4-388Arg variant correlates with higher N-cadherin expression levels in clinical NSCLC samples and with poorer outcome in patients with FGFR expression. These results support the prognostic role of this FGFR variant in lung cancer and show that these effects may be mediated by the induction of N-cadherin expression and an EMT phenotype.
Collapse
|
17
|
Michael M, Bang YJ, Park YS, Kang YK, Kim TM, Hamid O, Thornton D, Tate SC, Raddad E, Tie J. A Phase 1 Study of LY2874455, an Oral Selective pan-FGFR Inhibitor, in Patients with Advanced Cancer. Target Oncol 2017; 12:463-474. [PMID: 28589492 DOI: 10.1007/s11523-017-0502-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND We report here a phase 1 study of LY2874455, a potent oral selective pan-fibroblast growth factor receptor (FGFR) inhibitor. OBJECTIVE The primary objective was to determine the recommended phase 2 dosing (RP2D). Secondary objectives included determining toxicity, antitumor activity, pharmacokinetics (PK), and pharmacodynamic (PD) properties of LY2874455. PATIENTS AND METHODS This study comprised two parts: (a) dose escalation with 3 + 3 cohorts in patients with solid tumors and (b) dose-expansion cohorts in patients with gastric cancer (GC) and non-small cell lung cancer (NSCLC). Part A: 36 patients in 11 dose cohorts ranging from 2 to 24 mg twice daily (BID). RP2D was 16 mg BID. Part B: GC cohort, 29 patients, NSCLC cohort, 27 patients, all treated at the RP2D. RESULTS LY2874455 was slowly absorbed and generally showed linear PK. The effective half-life was ∼12 h. PD properties of LY2874455 occurred at doses ≥10 mg by increases in serum phosphorus. Phosphate binders were administered to control serum phosphorus. LY2874455 was generally well tolerated; most toxicities were grade 1 or 2; most frequent were hyperphosphatemia, diarrhea, and stomatitis. EFFICACY part A: 24 patients evaluable: 1 patient in the 14-mg BID cohort with GC had a partial response (PR); 14 patients had stable disease (SD); part B: NSCLC cohort: 11 of 12 evaluable patients had SD; GC cohort: 15 patients evaluable: 1 patient with PR; 12 patients with SD. CONCLUSIONS LY2874455 has an RP2D of 16 mg BID and demonstrated good tolerability and activity in solid-organ cancer patients. The role of FGFR inhibition on tumor growth in patients requires further study. (NCT01212107).
Collapse
Affiliation(s)
- Michael Michael
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.
| | - Yung-Jue Bang
- Seoul National University College of Medicine, Seoul, South Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | - Oday Hamid
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Sonya C Tate
- Eli Lilly and Company, Basingstoke, Hampshire, UK
| | - Eyas Raddad
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jeanne Tie
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
18
|
Prognostic Role of the FGFR4-388Arg Variant in Lung Squamous-Cell Carcinoma Patients With Lymph Node Involvement. Clin Lung Cancer 2017; 18:667-674.e1. [PMID: 28583379 DOI: 10.1016/j.cllc.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The identification of prognostic biomarkers for lung squamous-cell carcinoma (SCC) pathology is crucial because of its poor prognosis. A variant of the FGFR4 (fibroblast growth factor receptor 4) gene, FGFR4-388Arg, has been associated with prognosis and is linked to oncogenesis in vitro in several types of cancer. We analyzed the association of this variant with prognosis and downstream signaling alteration in lung SCC patients. METHODS The presence of the FGFR4-388Arg variant was determined in 114 formalin-fixed, paraffin-embedded lung SCC tissue samples by DNA genotyping and was correlated with clinicopathologic data. The activation of the protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) pathways was determined by immunohistochemistry, and its association with the presence of FGFR4-388Arg was analyzed. RESULTS We found that tumor differentiation status and adjuvant chemotherapy administration could be independent prognostic factors for overall survival (OS) in lymph node-affected patients, as expected. The progression-free survival and OS of patients with lymph node involvement (n = 41) and the FGFR4-388Arg genotype were significantly lower than those of patients lacking this variant (P = .035 and P = .042, respectively). Importantly, multivariate analysis supported the independent prognostic role of the FGFR4-388Arg genotype in OS (P = .025). Regarding downstream signaling, the FGFR4-388Arg genotype was not correlated with altered AKT signaling but was associated with increased MAPK activation in the SCC tumor samples (P = .017). CONCLUSION The FGFR4-388Arg variant may represent a promising prognostic biomarker in SCC patients with lymph node involvement. For these patients, FGFR4 may be a potential therapeutic target.
Collapse
|
19
|
Inokuchi M, Murase H, Otsuki S, Kawano T, Kojima K. Different clinical significance of FGFR1-4 expression between diffuse-type and intestinal-type gastric cancer. World J Surg Oncol 2017; 15:2. [PMID: 28056982 PMCID: PMC5217622 DOI: 10.1186/s12957-016-1081-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022] Open
Abstract
Background Receptor tyrosine kinases promote tumor progression in many cancers, although oncologic activation differs between diffuse-type gastric cancer (DGC) and intestinal-type gastric cancer (IGC). Fibroblast growth factor receptor (FGFR) is one RTK, and we previously reported the clinical significance of FGFR1, 2, 3, and 4 in gastric cancer. The aim of the present study was to reevaluate the clinical significance of FGFR1–4 expression separately in DGC and IGC. Methods Tumor samples, including 109 DGCs and 100 IGCs, were obtained from patients who underwent gastrectomy between 2003 and 2007 in our institution. The expression levels of FGFR1, 2, 3, and 4 were measured in the tumors by immunohistochemical analysis. Results In DGC, high expression of FGFR1, FGFR2, or FGFR4 was significantly associated with the depth of invasion, lymph-node metastasis, pathological stage, and distant metastasis or recurrent disease. Patients with high expression of FGFR1, FGFR2, or FGFR4 had significantly poorer disease-specific survival (DSS) (p = 0.009, p = 0.001, and p = 0.023, respectively). In IGC, only FGFR4 expression was significantly associated with factors relative to tumor progression and with shorter DSS (p = 0.012). Conclusion In conclusion, high FGFR4 expression correlated with tumor progression and survival in both DGC and IGC, whereas high expression of FGFR1 and 2 correlated with tumor progression and survival in only DGC.
Collapse
Affiliation(s)
- Mikito Inokuchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan.
| | - Hideaki Murase
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Sho Otsuki
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Tatsuyuki Kawano
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Kazuyuki Kojima
- Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| |
Collapse
|