1
|
Tsilimigras DI, Kurzrock R, Pawlik TM. Molecular Testing and Targeted Therapies in Hepatobiliary Cancers: A Review. JAMA Surg 2025; 160:576-585. [PMID: 40105823 DOI: 10.1001/jamasurg.2025.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Importance Hepatobiliary cancers are heterogeneous and molecularly complex. Recent advances in next-generation sequencing (NGS) have enhanced the understanding of their molecular landscape and enabled deployment of biomarker-based gene- and immune-targeted therapies. This review examines the role of molecular testing and targeted therapies in these malignant neoplasms. Observations Patients with hepatobiliary cancers have poor outcomes. Precision oncology studies have shown that while many common molecular alterations are not currently targetable in hepatocellular carcinoma (HCC), a large number of actionable alterations characterize biliary tract cancers (BTCs), with several therapies now approved by the US Food and Drug Administration. Immunotherapy is increasingly adopted in clinical practice, either as monotherapy or combined with cytotoxic chemotherapy, for both HCC and BTCs. Moreover, multiple solid cancer tumor-agnostic therapies are approved (larotrectinib, entrectinib, and repotrectinib for NTRK fusions; selpercatinib for RET fusions; dabrafenib and trametinib combination for BRAF V600E mutations; dostarlimab or pembrolizumab for tumors with high microsatellite instability and pembrolizumab for tumor mutation burden ≥10 mutations/megabase), highlighting the need for NGS as well as ERBB2 (formerly HER2) immunohistochemistry (IHC) (with the recent approval of solid tissue-agnostic deruxtecan trastuzumab for ERBB2-positive [IHC 3+] cancer) across cancers. N-of-1 clinical trials using customized drug combinations matched to the tumor's molecular profile have yielded encouraging results and provide a promising framework for future clinical trial design. Conclusions and Relevance Molecular testing and gene- and immune-targeted therapies are transforming hepatobiliary cancer treatment. Tumor-agnostic and N-of-1 clinical trials have challenged traditional clinical trial paradigms and provide the foundation for truly personalized oncology for patients with these aggressive cancers. Further work is needed to determine how to leverage these novel approaches into the management of operable disease.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center and Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Milwaukee
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus
- Deputy Editor, JAMA Surgery
| |
Collapse
|
2
|
Singh P, Chaturvedi R, Somvanshi P. Network-Based Integrative Analysis to Identify Key Genes and Corresponding Reporter Biomolecules for Triple-Negative Breast Cancer. Cancer Med 2025; 14:e70674. [PMID: 40287845 PMCID: PMC12034156 DOI: 10.1002/cam4.70674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The malignant neoplasm of the TNBC is the leading cause of death among Indian women. Recent studies identified the global burden of TNBC affecting approximately more than 40 percent of all BC cases in women worldwide. The absence of expression of receptors such as ER, PR, and HER2 characterizes TNBC. OBJECTIVES Due to the lack of specific targets, standard treatment options for TNBC are limited. This integrative study aims to identify key genes and provide insights into the underlying molecular mechanisms of TNBC, which can potentially lead to the development of more effective therapeutic strategies. MATERIAL AND METHODOLOGY This study integrates PPI and WGCNA analysis of TNBC-related datasets (GSE52194 and GSE58135) to identify key genes. Subsequently, downstream analysis is conducted to explore potential therapeutic targets for TNBC. RESULTS The present study renders the potential 13 key genes (PLCG2, CXCL10, CDK1, STAT1, IL6, PLK1, CCNB1, AURKA, NDC80, EGFR, 1L1B, FN1, BUB1B), along with their associated 6 TFs and 20 miRNAs, as reporter biomolecules around which the most significant changes occur. There were some miRNAs hsa-mir-449b-5p, hsa-let-7b-5p, hsa-mir-26a-5p, hsa-mir-155-5p, hsa-mir-24-3p, hsa-mir-212-3p, hsa-mir-21-5p, hsa-mir-210-3p and hsa-mir-20a-5p whose association with other cancers and other BC subtypes have been reported but their association with TNBC need to be explored. Further, enrichment and cumulative survival analysis support the disease association of identified key genes with TNBC. CONCLUSION This integrative analysis could be regarded for experimental inspection as it provides the platform for future researchers in drug designing and biomarker discovery for TNBC diagnosis and treatment.
Collapse
Affiliation(s)
- Pooja Singh
- School of Computational & Sciences (SCIS)Jawaharlal Nehru UniversityNew DelhiIndia
| | - Rupesh Chaturvedi
- School of Biotechnology (SBT)Jawaharlal Nehru UniversityNew DelhiIndia
| | - Pallavi Somvanshi
- School of Computational & Sciences (SCIS)Jawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
3
|
Farajzadeh M, Fathi M, Jalali P, Mahmoudsalehi Kheshti A, Khodayari S, Hojjat-Farsangi M, Jadidi F. Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential. Cancer Cell Int 2025; 25:131. [PMID: 40188050 PMCID: PMC11972515 DOI: 10.1186/s12935-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as significant modulators of gene expression and are essential for various biological functions, even though they don't appear to have the ability to encode proteins. Originally considered dark matter, lncRNAs have been recognized as being dysregulated and contributing to the onset, progression, and resistance to treatment of acute myeloid leukemia (AML). AML is a prevalent type of leukemia characterized by the disruption of myeloid cell differentiation, leading to an increased number of immature myeloid progenitor cells. Currently, the need for novel biomarkers and treatment targets to enhance therapeutic alternatives has led to a focus on lncRNAs as possible indicators for prognostic, therapeutic, and diagnostic systems in various human cancers, including AML. Recent research has recognized a limited set of lncRNAs as possible prognostic biomarkers or diagnoses in AML. This review evaluates the key research that highlights the significance of lncRNAs in AML and discusses their roles and impacts on the disease. Furthermore, we intend to underscore the importance of lncRNAs as new and trustworthy markers for the diagnosis, prediction, drug resistance, and targets for treatment in AML.
Collapse
Affiliation(s)
- Maryam Farajzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran
| | | | - Shahla Khodayari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Farhat J, Alzyoud L, AlWahsh M, Acharjee A, Al‐Omari B. Advancing Precision Medicine: The Role of Genetic Testing and Sequencing Technologies in Identifying Biological Markers for Rare Cancers. Cancer Med 2025; 14:e70853. [PMID: 40249565 PMCID: PMC12007469 DOI: 10.1002/cam4.70853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Genetic testing and sequencing technologies offer a comprehensive understanding of cancer genetics, providing rapid and cost-effective solutions. In particular, these advanced technologies play an important role in assessing the complexities of the rare cancer types affecting several systems including the bone, endocrine, digestive, vascular, and soft tissue. This review will explore how genetic testing and sequencing technologies have contributed to the identification of biomarkers across several rare cancer types in diagnostic, therapeutic, and prognostic stages, thereby advancing PM. METHODS A comprehensive literature search was conducted across PubMed (MEDLINE), EMBASE, and Web of Science using keywords related to sequencing technologies, genetic testing, and cancer. There were no restrictions on language, methodology, age, or publication date. Both primary and secondary research involving humans or animals were considered. RESULTS In practice, fluorescence in situ hybridization, karyotype, microarrays and other genetic tests are mainly applied to identify specific genetic alterations and mutations associated with cancer progression. Sequencing technologies, such as next generation sequencing, polymerase chain reaction, whole genome or exome sequencing, enable the rapid analysis of millions of DNA fragments. These techniques assess genome structure, genetic changes, gene expression profiles, and epigenetic variations. Consequently, they help detect main intrinsic markers that are crucial for personalizing diagnosis, treatment options, and prognostic assessments, leading to better patient prognosis. This highlights why these methods are now considered as primary tools in rare cancer research. However, these methods still face multiple limitations, including false positive results, limited precision, and high costs. CONCLUSION Genetic testing and sequencing technologies have significantly advanced the field of rare cancer research by enabling the identification of key biomarkers for precision diagnosis, treatment, and prognosis. Despite existing limitations, their integration into clinical and research fields continues to improve the development of personalized medicine strategies for rare and complex cancer types.
Collapse
Affiliation(s)
- Joviana Farhat
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| | - Lara Alzyoud
- College of PharmacyAl Ain UniversityAbu DhabiUAE
- Health and Biomedical Research CenterAl Ain UniversityAbu DhabiUAE
| | - Mohammad AlWahsh
- Leibniz‐Institut Für Analytische Wissenschaften‐ISAS e.V.DortmundGermany
- Institute of Pathology and Medical Research Center (ZMF) University Medical Center MannheimHeid Elberg UniversityMannheimGermany
- Department of Pharmacy, Faculty of PharmacyAlZaytoonah University of JordanAmmanJordan
| | - Animesh Acharjee
- Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| | - Basem Al‐Omari
- Department of Epidemiology and Population Health, College of Medicine and Health SciencesKhalifa UniversityAbu DhabiUAE
| |
Collapse
|
5
|
Peng W, Shi M, Hu B, Jia J, Li X, Wang N, Man S, Ye S, Ma L. Nanotechnology-leveraged CRISPR/Cas systems: icebreaking in trace cancer-related nucleic acids biosensing. Mol Cancer 2025; 24:78. [PMID: 40087758 PMCID: PMC11908094 DOI: 10.1186/s12943-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/31/2024] [Indexed: 03/17/2025] Open
Abstract
As promising noninvasive biomarkers, nucleic acids provide great potential to innovate cancer early detection methods and promote subsequent diagnosis to improve the survival rates of patient. Accurate, straightforward and sensitive detection of such nucleic acid-based cancer biomarkers in complex biological samples holds significant clinical importance. However, the low abundance creates huge challenges for their routine detection. As the next-generation diagnostic tool, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) with their high programmability, sensitivity, fidelity, single-base resolution, and precise nucleic acid positioning capabilities are extremely attractive for trace nucleic acid-based cancer biomarkers (NABCBs), permitting rapid, ultra-sensitive and specific detection. More importantly, by combing with nanotechnology, it can solve the long-lasting problems of poor sensitivity, accuracy and simplicity, as well as to achieve integrated miniaturization and portable point-of-care testing (POCT) detection. However, existing literature lacks specific emphasis on this topic. Thus, we intend to propose a timely one for the readers. This review will bridge this gap by providing insights for CRISPR/Cas-based nano-biosensing development and highlighting the current state-of-art, challenges, and prospects. We expect that it can provide better understanding and valuable insights for trace NABCBs detection, thereby facilitating advancements in early cancer screening/detection/diagnostics and win practical applications in the foreseeable future.
Collapse
Affiliation(s)
- Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengting Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinyue Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Tianjin, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025; 44:409-426. [PMID: 39863748 PMCID: PMC11810799 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
7
|
Rahman MM, Wang L, Chen Y, Rahman MM, Islam MOA, Lee LP, Wan Y. Rapid in situ mutation detection in extracellular vesicle DNA. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:72-86. [PMID: 40206799 PMCID: PMC11977346 DOI: 10.20517/evcna.2024.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
Aim: A PCR- and sequencing-free mutation detection assay facilitates cancer diagnosis and reduces over-reliance on specialized equipment. This benefit was highlighted during the pandemic when high demand for viral nucleic acid testing often sidelined mutation analysis. This shift led to substantial challenges for patients on targeted therapy in tracking mutations. Here, we report a 30-min DNA mutation detection technique using Cas12a-loaded liposomes in a microplate reader, a fundamental laboratory tool. Methods: CRISPR-Cas12a complex and fluorescence-quenching (FQ) probes are introduced into tumor-derived extracellular vesicles (EV) through membrane fusion. When CRISPR-RNA hybridizes with the DNA target, activated Cas12a can trans-cleave FQ probes, resulting in fluorescence signals for the quantification of DNA mutation. Results: This method enables the detection of EGFR L858R mutation in EV DNA within 30 min. Laborious extraction, purification, and other preparation steps for EV DNA are eliminated. The need for advanced data processing is also dispensed with. In a cohort study involving 10 healthy donors and 30 patients with advanced non-small cell lung cancer (NSCLC), the assay achieved a sensitivity of 86.7%, a specificity of 90%, and an accuracy of 87.5%. Conclusion: The limit of detection of our Cas12 assay was ~ 8 × 105 EVs, corresponding to a mutation allele frequency (MAF) of ~ 10%. The MAF in late-stage cancers varies widely but often falls within 5%-50%. Therefore, without amplification of targets, this Cas12 assay can detect mutations in patients with advanced lung cancer. Future advancements in multiplex and high-throughput mutation detection using this assay will streamline self-diagnosis and treatment monitoring at home.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Authors contributed equally
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu, China
- Authors contributed equally
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Md Motiar Rahman
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | | | - Luke P. Lee
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 03063, South Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
8
|
Helal AA, Kamal IH, Osman A, Youssef M, Ibrahim AK. The prevalence and clinical significance of EGFR mutations in non-small cell lung cancer patients in Egypt: a screening study. J Egypt Natl Canc Inst 2024; 36:39. [PMID: 39710832 DOI: 10.1186/s43046-024-00251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/16/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Lung cancer is a form of cancer that is responsible for the largest incidence of deaths attributed to cancer worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent of all the subtypes of the disease. Treatment with tyrosine kinase inhibitors (TKI) may help some people who have been diagnosed with non-small cell lung cancer. The presence of actionable mutations in the epidermal growth factor receptor (EGFR) gene is a key predictor of how a patient will respond to a TKI. Thus, the frequency of identification of mutations in EGFR gene in patients with NSCLC can facilitate personalized treatment. OBJECTIVE The objective of this study was to screen for mutations in the EGFR gene and to investigate whether there is a correlation between the screened mutations and various clinical and pathological factors, such as gender, smoking history, and age, in tissue samples from patients with NSCLC. METHODS The study comprised 333 NSCLC tissue samples from 230 males and 103 females with an average age of 50 years. Exons 18-21 of the EGFR gene have been examined using real-time PCR. Using SPSS, correlations between clinical and demographic variables were examined, and EGFR mutation and clinical features associations were studied. RESULTS The study's findings revealed that the incidence rate of EGFR mutation was 24.32% (81/333), with partial deletion of exon 19 (19-Del) and a point mutation of L858R in exon 21 accounting for 66.67% (P < 0.001) and 28.40% (P < 0.001) of the mutant cases, respectively. Patients who had the T790M mutation represent 4.94% (P = 0.004) of total number of patients. Females harbored EGFR mutations (54.32%) with higher frequency than men (45.68%) (P < 0.001), while nonsmokers had EGFR mutations (70.37%) more frequently than current smokers (29.63%) (P < 0.001). CONCLUSION The screening study conducted in Egypt reported that the EGFR mutations prevalence was 24.32% among Egyptians with NSCLC. The study also found a slight gender bias, with females having an incidence rate of these mutations higher than males. Additionally, nonsmokers had higher rates of mutations in EGFR gene compared to smokers. According to the findings, somatic EGFR mutations can be employed as a diagnostic tool for non-small cell lung cancer in Egypt, and they can be implemented in conjunction with clinical criteria to identify which patients are more likely to respond favorably to TKIs.
Collapse
Affiliation(s)
- Asmaa A Helal
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Ibrahim H Kamal
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed Osman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt
| | | | - Adel K Ibrahim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
9
|
Lila K, Bhanushali H, Chanekar M, Jatale R, Banerjee M, Dixit RB, Rajadhyaksha A, Chadha K. Mutation Spectrum Analysis of BRCA1/2 Genes for Hereditary Breast and Ovarian Cancer in the Indian Population. Asian Pac J Cancer Prev 2024; 25:4145-4151. [PMID: 39733403 PMCID: PMC12008341 DOI: 10.31557/apjcp.2024.25.12.4145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE The objective of this study was to determine the prevalence and spectrum of genetic mutations linked to inherited breast and ovary cancer (HBOC) in the Indian population, and to evaluate the correlation of BRCA mutation types, frequency, and incidence with age, gender, and personal and family history. METHODS A retrospective cohort of 500 Indian HBOC patients, meeting NCCN criteria who underwent BRCA1/2 testing from 2017 to 2023 were shortlisted for this study. The anonymized data was retrieved from medical records. Genetic analysis was conducted using Next Generation Sequencing (NGS) on the Thermo Ion GeneStudio™ S5 System, with positive mutations confirmed via Sanger sequencing. Peripheral blood samples were processed for DNA extraction, library preparation, and variant classification following ACMG guidelines. RESULTS Out of the 500 patients, 119 (23.8%) were positive for BRCA mutations, and 381 (76.2%) were negative. The prevalence of BRCA pathogenesis, likely pathogenicity, and variants of uncertain significance (VUSs) were 14.8%, 1.6%, and 7.4%, respectively. A total of 128 mutations were detected in the positive BRCA1/2 patients. A statistically significant correlation was found between BRCA mutations with the patient and family history. A total of 38.8% of the patients with mutations had a family history of BC, OC or BC/OC, while 7.6% had other cancers. BRCA mutations were predominant (26.2%) in the age group of 46-65 Y. Among the 128 mutations, 59.3% (76/128) and 40.6% (52/12) of the patients had mutations in BRCA1 and BRCA2, respectively. Missense mutations were the most common in both the BRCA1 (30.26%) and BRCA2 (55.77%) genes, followed by frameshift (22.3%) and nonsense (17.3%) mutations in BRCA1 and BRCA2, respectively. CONCLUSION BRCA positivity was detected in 23.8% of the patients. A statistically significant association was shown between BRCA mutations and patient and family history.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kirti Chadha
- Department of Surgical Pathology and Molecular Biology, Global Reference Laboratory, Metropolis Healthcare Limited, Vidyavihar, Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Peng J, Zhu Z, Shi M, Shao W, Ji X, Liu C, Zhou D, Wang X, Huang J. Chemotherapy combined with immunotherapy in a patient with multiple primary gastric and rectal cancers with good prognosis: A case report. Medicine (Baltimore) 2024; 103:e40699. [PMID: 39612421 PMCID: PMC11608756 DOI: 10.1097/md.0000000000040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
RATIONALE Multiple primary cancer is common in clinical practice, but its diagnosis process is complicated, and relevant genetic testing is required to assist in diagnosis when necessary. The formulation of treatment strategies for multiple primary cancer is a highly personalized process. In this article, we introduce a case of a patient with rectal cancer and gastric cancer who was diagnosed with multiple primary cancers, to investigate and explore the clinical application value of next-generation sequencing (NGS) testing in patients with multiple primary gastric and colorectal cancers. PATIENT CONCERNS A 74-year-old male patient had a mass at the anal verge. DIAGNOSES Endoscopy, imaging studies, and pathological examinations showed adenocarcinoma in both the rectal and gastric antral regions. Genetic testing confirmed the diagnosis of multiple primary cancer. INTERVENTIONS The patient received 8 cycles of neoadjuvant chemotherapy combined with immunotherapy and underwent laparoscopic radical resection for rectal cancer. Postoperative adjuvant chemotherapy (XELOX) supplemented with PD-1 immunotherapy, and Camrelizumab was continued. OUTCOMES Gastric lesions continued to regress and eventually disappeared completely at the end of adjuvant therapy. LESSONS According to the results of NGS testing, the multiple primary cancers' patient received personalized treatment and ultimately achieved clinical complete remission. This case highlights the critical role of genetic testing in accurately identifying multiple primary cancer and the value of personalized guidance for patient treatment using NGS in clinical practice.
Collapse
Affiliation(s)
- Jibang Peng
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhu Zhu
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Min Shi
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xiang Ji
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Chang Liu
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Dayang Zhou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xueqin Wang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Huang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
11
|
Vashisht V, Vashisht A, Mondal AK, Woodall J, Kolhe R. From Genomic Exploration to Personalized Treatment: Next-Generation Sequencing in Oncology. Curr Issues Mol Biol 2024; 46:12527-12549. [PMID: 39590338 PMCID: PMC11592618 DOI: 10.3390/cimb46110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Next-generation sequencing (NGS) has revolutionized personalized oncology care by providing exceptional insights into the complex genomic landscape. NGS offers comprehensive cancer profiling, which enables clinicians and researchers to better understand the molecular basis of cancer and to tailor treatment strategies accordingly. Targeted therapies based on genomic alterations identified through NGS have shown promise in improving patient outcomes across various cancer types, circumventing resistance mechanisms and enhancing treatment efficacy. Moreover, NGS facilitates the identification of predictive biomarkers and prognostic indicators, aiding in patient stratification and personalized treatment approaches. By uncovering driver mutations and actionable alterations, NGS empowers clinicians to make informed decisions regarding treatment selection and patient management. However, the full potential of NGS in personalized oncology can only be realized through bioinformatics analyses. Bioinformatics plays a crucial role in processing raw sequencing data, identifying clinically relevant variants, and interpreting complex genomic landscapes. This comprehensive review investigates the diverse NGS techniques, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and single-cell RNA sequencing (sc-RNA-Seq), elucidating their roles in understanding the complex genomic/transcriptomic landscape of cancer. Furthermore, the review explores the integration of NGS data with bioinformatics tools to facilitate personalized oncology approaches, from understanding tumor heterogeneity to identifying driver mutations and predicting therapeutic responses. Challenges and future directions in NGS-based cancer research are also discussed, underscoring the transformative impact of these technologies on cancer diagnosis, management, and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.V.); (A.V.); (A.K.M.); (J.W.)
| |
Collapse
|
12
|
Wang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, et alWang W, Lian B, Xu C, Wang Q, Li Z, Zheng N, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Liu X, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Feng J, Ge R, Dai E, Han Y, Pan W, Pang F, Huang X, Hu M, Hao Q, Wang K, Wu F, Song B, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang D, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Yang S, Kang J, Zhang J, Zhang C, Li W, Fu J, Wu L, Lan S, Ou J, Shi L, Zhai Z, Wang Y, Li B, Zhang Z, Wang K, Ma X, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Shi H, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Song Y, Song Z, Fang W, Lu Y, Si L. Expert consensus on the diagnosis and treatment of solid tumors with BRAF mutations. Innovation (N Y) 2024; 5:100661. [PMID: 39529955 PMCID: PMC11551471 DOI: 10.1016/j.xinn.2024.100661] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
The BRAF gene is an important signaling molecule in human cells that is involved in the regulation of cell growth, differentiation, and survival. When the BRAF gene mutates, it can lead to abnormal activation of the signaling pathway, which promotes cell proliferation, inhibits cell apoptosis, and ultimately contributes to the occurrence and development of cancer. BRAF mutations are widely present in various cancers, including malignant melanoma, thyroid cancer, colorectal cancer, non-small cell lung cancer, and hairy cell leukemia, among others. BRAF is an important target for the treatment of various solid tumors, and targeted combination therapies, represented by BRAF inhibitors, have become one of the main treatment modalities for a variety of BRAF-mutation-positive solid tumors. Dabrafenib plus trametinib, as the first tumor-agnostic therapy, has been approved by the US Food and Drug Administration for the treatment of adult and pediatric patients aged 6 years and older harboring a BRAF V600E mutation with unresectable or metastatic solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options. This is also the first time a BRAF/MEK inhibitor combination has been approved for use in pediatric patients. As research into the diagnosis and treatment of BRAF mutations advances, standardizing the detection of BRAF mutations and the clinical application of BRAF inhibitors becomes increasingly important. Therefore, we have established a universal and systematic strategy for diagnosing and treating solid tumors with BRAF mutations. In this expert consensus, we (1) summarize the epidemiology and clinical characteristics of BRAF mutations in different solid tumors, (2) provide recommendations for the selection of genetic testing methods and platforms, and (3) establish a universal strategy for the diagnosis and treatment of patients with solid tumors harboring BRAF mutations.
Collapse
Affiliation(s)
- Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Chunwei Xu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Nan Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 200030, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 200030, China
| | - Aijun Liu
- Senior Department of Pathology, the 7 Medical Center of PLA General Hospital, Beijing 100700, P.R. China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Jilin, Changchun 130012, P.R. China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, West Lake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. ChinaP.R. China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing 100035, P.R. China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900 Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100700, P.R. China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510300, P.R. China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xuewen Liu
- Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, P.R. China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fan Xia
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, P.R. China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 13003, P.R. China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 1550081, P.R. China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Xin Huang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Meizhen Hu
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Qing Hao
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co., Ltd., Shanghai 201114, P.R. China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai 400000, P.R. China
| | - Binbin Song
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014000, P.R. China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Xinqing Lin
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui 230011, P.R. China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinnan, Shangdong 250012, P.R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200070, P.R. China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250031, P.R. China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hong Wang
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Donglai Lv
- Department of Clinical Oncology, The 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui 230031, P.R. China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People’s Hospital, Chuxiong, Yunnan 675000, P.R. China
| | - Jin Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Jiatao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Jianfei Fu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lizhi Wu
- Department of Microsurgery, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Shijie Lan
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210000, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5 Medical Center of PLA General Hospital, Beijing 100071, P.R. China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huijuan Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hubing Shi
- Frontier Science Center for Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
13
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102120. [PMID: 39424062 DOI: 10.1016/j.jormas.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Next generation sequencing (NGS) is a massive, high-throughput sequencing technology used to analyze various mutations and genetic changes in cancer. Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck region. OSCC usually arises from oral potentially malignant disorders, like oral leukoplakia, oral submucous fibrosis and erythroplakia, and shows mutation of tumor suppressor genes, and several other critical genes involved in apoptotic pathways, cell migration, and cell growth. AIM To analyze the molecular profiles of oral epithelial dysplasia and different grades of oral squamous cell carcinoma using NGS in the Indian subpopulation. METHODOLOGY 21 patients (5 patients each of well differentiated, moderately differentiated, poorly differentiated squamous cell carcinoma, severe epithelial dysplasia, and 1 normal appearing mucosal tissue from apparently healthy individuals) were included in the study. Next generation sequencing was carried out using 50 hotspot gene panel. Protein-protein analysis was carried out using STRING Consortium 2023 and the methylation profile of the expressed genes was evaluated using the UALCAN portal. RESULTS Severe epithelial dysplasia showed TP53 (c.743G>A, p.R248Q) pathogenic mutations (SNV) in suboptimal QC parameters. Well differentiated squamous cell carcinoma showed TP53 (c.328delC, p.Arg110fs*13), APC (c.4135G>T, p.Glu1379*), and FBXW7 (c.832C>T, p.Arg278*) mutations. CTNNB1 (c.134C>T, p.Ser45PheS45F), TP53 (c.637C>T, Arg213TerR213*), NRAS (c.183A>C, p.Gln61HisQ61H) and PDGFRA (c.1672C>T, p.Arg558Cys) mutations were seen in moderately differentiated squamous cell carcinoma. No pathogenic mutations were evident in poorly differentiated squamous cell carcinoma. STRING analysis showed that all the expressed proteins in each group were interrelated to each other. No significant difference was evident in the methylation profile of all the expressed genes when compared to the normal controls. CONCLUSION The results obtained in this study explain the diverse genetic mutations in various grades of oral squamous cell carcinoma. Identification of these mutations would help in providing better treatment, designing a proper treatment plan for the patients with OSCC and support minimal intervention medicine.
Collapse
Affiliation(s)
- Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
14
|
Tommasi S, Maurmo L, Rizzo A, Carella C, Ranieri G, De Summa S, Mannavola F, Chiurì VE, Guida M, Nisi C, Montrone M, Giotta F, Patruno M, Lacalamita R, Pilato B, Zito FA, Fucci L, Coppola CA, Ditonno P, Nardulli P, Quaresmini D, Strippoli S. The molecular tumor board as a step in cancer patient management: a southern Italian experience. Front Med (Lausanne) 2024; 11:1432628. [PMID: 39323465 PMCID: PMC11422073 DOI: 10.3389/fmed.2024.1432628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The management of cancer patients follows a Diagnostic Therapeutic and Care Pathway (PDTA) approach, aimed at achieving the optimal balance between care and quality of life. To support this process, precision medicine and innovative technologies [e.g., next-generation sequencing (NGS)] allow rapid identification of genetic-molecular alterations useful for the design of PDTA-approved therapies. If the standard approach proves inadequate, the Molecular Tumor Board (MTB), a group comprising specialists from diverse disciplines, can step in to evaluate a broader molecular profile, proposing potential therapies beyond evidence levels I-II or considering enrolment in clinical trials. Our aim is to analyze the role of the MTB in the entire management of patients in our institute and its impact on the strategy of personalized medicine, particularly when all approved treatments have failed. Materials and methods In alignment with European and national guidelines, a panel of clinicians and preclinical specialists from our institution was defined as the MTB core team. We designed and approved a procedure for the operation of this multidisciplinary group, which is the only one operating in the Puglia region. Results and discussion In 29 months (2021-2023), we discussed and analyzed 93 patients. A total of 44% presented pathogenic alterations, of which 40.4% were potentially actionable. Only 11 patients were proposed for enrollment in clinical trials, treatment with off-label drugs, or AIFA (the Italian pharmaceutical agency for drugs)-5% funding. Our process indicators, time to analysis, and number of patient cases discussed are in line with the median data of other European institutions. Such findings underscore both the importance and usefulness of the integration of an MTB process into the care of oncology patients.
Collapse
Affiliation(s)
- Stefania Tommasi
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Leonarda Maurmo
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Alessandro Rizzo
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Claudia Carella
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Girolamo Ranieri
- Unità di Oncologia Interventistica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Simona De Summa
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Francesco Mannavola
- Unità di Oncologia Medica, Azienda Ospedaliera Policlinico Consorziale di Bari, Bari, Italy
| | | | - Michele Guida
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Claudia Nisi
- Reparto di Oncologia, Ospedale San Giuseppe Moscati Taranto, Taranto, Italy
| | - Michele Montrone
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Francesco Giotta
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Margherita Patruno
- Centro Studi Tumori eredo-familiari, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Rosanna Lacalamita
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Brunella Pilato
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Francesco Alfredo Zito
- Unità Operativa di Anatomia Patologica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Livia Fucci
- Unità Operativa di Anatomia Patologica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Claudio Antonio Coppola
- Unità di Diagnostica Molecolare e Farmacogenetica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Paolo Ditonno
- Unità Operativa di Ematologia, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Patrizia Nardulli
- Unità Operativa Farmacia e U.M.A.C.A., IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Davide Quaresmini
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| | - Sabino Strippoli
- Unità Operativa di Oncologia Medica, IRCCS Istituto Tumori Giovanni Paolo II Bari, Bari, Italy
| |
Collapse
|
15
|
Tsoulos N, Agiannitopoulos K, Potska K, Katseli A, Ntogka C, Pepe G, Bouzarelou D, Papathanasiou A, Grigoriadis D, Tsaousis GN, Gogas H, Troupis T, Papazisis K, Natsiopoulos I, Venizelos V, Amarantidis K, Giassas S, Papadimitriou C, Fountzilas E, Stathoulopoulou M, Koumarianou A, Xepapadakis G, Blidaru A, Zob D, Voinea O, Özdoğan M, Ergören MÇ, Hegmane A, Papadopoulou E, Nasioulas G, Markopoulos C. The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory. Cancer Genomics Proteomics 2024; 21:448-463. [PMID: 39191493 PMCID: PMC11363926 DOI: 10.21873/cgp.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer. MATERIALS AND METHODS A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis. RESULTS 20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg). CONCLUSION Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Theodore Troupis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Clinic, Thessaloniki, Greece
| | | | - Anna Koumarianou
- Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Daniela Zob
- Oncology Department, "Prof. Dr. Al. Trestioreanu" Bucharest Oncology Institute, Bucharest, Romania
| | - Oana Voinea
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mustafa Özdoğan
- Division of Medical Oncology, Memorial Antalya Hospital, Antalya, Turkey
| | - Mahmut Çerkez Ergören
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Alinta Hegmane
- Riga East University Hospital, Oncology Center of Latvia, Riga, Latvia
| | | | | | - Christos Markopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Nicholas C, Beharry A, Bendzsak AM, Bisson KR, Dadson K, Dudani S, Iafolla M, Irshad K, Perdrizet K, Raskin W, Singh R, Tsui DCC, Wang X, Yeung C, Cheema PK, Sheffield BS. Point of Care Liquid Biopsy for Cancer Treatment-Early Experience from a Community Center. Cancers (Basel) 2024; 16:2505. [PMID: 39061145 PMCID: PMC11274424 DOI: 10.3390/cancers16142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid biopsy is rapidly becoming an indispensable tool in the oncologist's arsenal; however, this technique remains elusive in a publicly funded healthcare system, and real-world evidence is needed to demonstrate utility and feasibility. Here, we describe the first experience of an in-house point of care liquid biopsy program at a Canadian community hospital. A retrospective review of consecutive cases that underwent plasma-based next-generation sequencing (NGS) was conducted. Liquid biopsy was initiated at the discretion of clinicians. Sequencing followed a point of care workflow using the Genexus™ integrated sequencer and the Oncomine precision assay, performed by histotechnologists. Results were reported by the attending pathologist. Eligible charts were reviewed for outcomes of interest, including the intent of the liquid biopsy, results of the liquid biopsy, and turnaround time from blood draw to results available. A total of 124 cases, with confirmed or suspected cancer, underwent liquid biopsy between January 2021 and November 2023. The median turnaround time for liquid biopsy results was 3 business days (range 1-12 days). The sensitivity of liquid biopsies was 71%, compared to tissue testing in cases with matched tissue results available for comparison. Common mutations included EGFR (29%), in 86 lung cancer patients, and PIK3CA (22%), identified in 13 breast cancer patients. Healthcare providers ordered liquid biopsies to inform diagnostic investigations and treatment decisions, and to determine progression or resistance mechanisms, as these reasons often overlapped. This study demonstrates that rapid in-house liquid biopsy using point of care methodology is feasible. The technique facilitates precision treatment and offers many additional advantages for cancer care.
Collapse
Affiliation(s)
- Champica Nicholas
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Andrea Beharry
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Anna M. Bendzsak
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Thoracic Surgery, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Kassandra R. Bisson
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Keith Dadson
- Thermo Fisher Scientific, Burlington, ON L7L 5Z1, Canada
| | - Shaan Dudani
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Marco Iafolla
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Kashif Irshad
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Thoracic Surgery, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Kirstin Perdrizet
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - William Raskin
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Raviya Singh
- Division of Medical Oncology, Scarborough Health Network, Scarborough, ON M1P 2V5, Canada
| | - David Chun Cheong Tsui
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Xin Wang
- Division of Medical Oncology, UHN Princess Margaret Cancer Centre, Toronto, ON M5S 1A1, Canada
| | - Ching Yeung
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Thoracic Surgery, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Parneet K. Cheema
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Medical Oncology, William Osler Health System, Brampton, ON L6R 3J7, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Brandon S. Sheffield
- Osler Research Institute for Health Innovation, William Osler Health System, Brampton, ON L6R 3J7, Canada (P.K.C.)
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| |
Collapse
|
18
|
Singh H, Choudhary HB, Mandlik DS, Magre MS, Mohanto S, Ahmed MG, Singh BK, Mishra AK, Kumar A, Mishra A, Venkatachalam T, Chopra H. Molecular pathways and therapeutic strategies in dermatofibrosarcoma protuberans (DFSP): unravelling the tumor's genetic landscape. EXCLI JOURNAL 2024; 23:727-762. [PMID: 38983783 PMCID: PMC11231459 DOI: 10.17179/excli2024-7164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/26/2024] [Indexed: 07/11/2024]
Abstract
Dermatofibrosarcoma Protuberans (DFSP) is a rare soft tissue sarcoma distinguished by its infiltrative growth pattern and recurrence potential. Understanding the molecular characteristics of DFSP is essential for enhancing its diagnosis, prognosis, and treatment strategies. The paper provides an overview of DFSP, highlighting the significance of its molecular understanding. The gene expression profiling has uncovered unique molecular signatures in DFSP, highlighting its heterogeneity and potential therapeutic targets. The Platelet-Derived Growth Factor Receptors (PDGFRs) and Fibroblast Growth Factor Receptors (FGFRs) signaling pathways play essential roles in the progression and development of DFSP. The abnormal activation of these pathways presents opportunities for therapeutic interventions. Several emerging therapies, i.e., immunotherapies, immunomodulatory strategies, and immune checkpoint inhibitors, offer promising alternatives to surgical resection. In DFSP management, combination strategies, including rational combination therapies, aim to exploit the synergistic effects and overcome resistance. The article consisting future perspectives and challenges includes the discovery of prognostic and predictive biomarkers to improve risk stratification and treatment selection. Preclinical models, such as Patient-derived xenografts (PDX) and genetically engineered mouse models, help study the biology of DFSP and evaluate therapeutic interventions. The manuscript also covers small-molecule inhibitors, clinical trials, immune checkpoint inhibitors for DFSP treatment, combination therapies, rational therapies, and resistance mechanisms, which are unique and not broadly covered in recent pieces of literature. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | | | - Deepa Satish Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Manoj Subhash Magre
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Bhuvnesh Kumar Singh
- Faculty of Pharmacy, Moradabad Educational Trust, Moradabad, Uttar Pradesh, 244001, India
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - T. Venkatachalam
- Department of Pharmaceutical Chemistry, JKKMMRFs-Annai JKK Sampoorani Ammal College of Pharmacy, Komarapalayam, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, 638183, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| |
Collapse
|
19
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
20
|
Ferreira-Gonzalez A, Hocum B, Ko G, Shuvo S, Appukkuttan S, Babajanyan S. Next-Generation Sequencing Trends among Adult Patients with Select Advanced Tumor Types: A Real-World Evidence Evaluation. J Mol Diagn 2024; 26:292-303. [PMID: 38296192 DOI: 10.1016/j.jmoldx.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
There are limited data on the prevalence of next-generation sequencing (NGS) in the United States, especially in light of the increasing importance of identifying actionable oncogenic variants due to molecular biomarker-based therapy approvals. This retrospective study of adult patients with select metastatic solid tumors and central nervous system tumors from the Optum Clinformatics Data Mart US health care claims database (January 1, 2014, to June 30, 2021; N = 63,209) examined NGS use trends over time. A modest increase in NGS was observed across tumor types from 2015 (0.0% to 1.5%) to 2021 (2.1% to 17.4%). A similar increase in NGS rates was also observed across key periods; however, rates in the final key period remained <10% for patients with breast, colorectal, head and neck, soft tissue sarcoma, and thyroid cancers, as well as central nervous system tumors. The median time to NGS from diagnosis was shortest among patients with non-small-cell lung cancer and longest for patients with breast cancer. Predictors of NGS varied by tumor type; test rates for minorities in select tumor types appeared comparable to the White population. Despite improving payer policies to expand coverage of NGS and molecular biomarker-based therapy approvals, NGS rates remained low across tumor types. Given the potential for improved patient outcomes with molecular biomarker-based therapy, further efforts to improve NGS rates are warranted.
Collapse
Affiliation(s)
| | - Brian Hocum
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Gilbert Ko
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey.
| | - Sohul Shuvo
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | | |
Collapse
|
21
|
Jalali P, Samii A, Rezaee M, Shahmoradi A, Pashizeh F, Salehi Z. UBE2C: A pan-cancer diagnostic and prognostic biomarker revealed through bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2032. [PMID: 38577722 PMCID: PMC10995712 DOI: 10.1002/cnr2.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The diverse and complex attributes of cancer have made it a daunting challenge to overcome globally and remains to endanger human life. Detection of critical cancer-related gene alterations in solid tumor samples better defines patient diagnosis and prognosis, and indicates what targeted therapies must be administered to improve cancer patients' outcome. MATERIALS AND METHODS To identify genes that have aberrant expression across different cancer types, differential expressed genes were detected within the TCGA datasets. Subsequently, the DEGs common to all pan cancers were determined. Furthermore, various methods were employed to gain genetic alterations, co-expression genes network and protein-protein interaction (PPI) network, pathway enrichment analysis of common genes. Finally, the gene regulatory network was constructed. RESULTS Intersectional analysis identified UBE2C as a common DEG between all 28 types of studied cancers. Upregulated UBE2C expression was significantly correlated with OS and DFS of 10 and 9 types of cancer patients. Also, UBE2C can be a diagnostic factor in CESC, CHOL, GBM, and UCS with AUC = 100% and diagnose 19 cancer types with AUC ≥90%. A ceRNA network constructed including UBE2C, 41 TFs, 10 shared miRNAs, and 21 circRNAs and 128 lncRNAs. CONCLUSION In summary, UBE2C can be a theranostic gene, which may serve as a reliable biomarker in diagnosing cancers, improving treatment responses and increasing the overall survival of cancer patients and can be a promising gene to be target by cancer drugs in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Amir Samii
- Department of Hematology and Blood TransfusionSchool of Allied Medical Sciences, Iran University of Medical SciencesTehranIran
| | - Malihe Rezaee
- Department of PharmacologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Arvin Shahmoradi
- Department of Laboratory MedicineFaculty of Paramedical, Kurdistan University of Medical SciencesSanandajIran
| | - Fatemeh Pashizeh
- Department of Clinical ImmunologyShahid Sadoughi University of Medical SciencesYazdIran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical SciencesTehranIran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
22
|
Rahman MM, Wang L, Rahman MM, Chen Y, Zhang W, Wang J, Lee LP, Wan Y. Rapid in situ mutation detection in extracellular vesicle-DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582068. [PMID: 38464277 PMCID: PMC10925088 DOI: 10.1101/2024.02.26.582068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A PCR- and sequencing-free mutation detection assay facilitates cancer diagnosis and reduces over-reliance on specialized equipment. This benefit was highlighted during the pandemic when high demand for viral nucleic acid testing often sidelined mutation analysis. This shift led to substantial challenges for patients on targeted therapy in tracking mutations. Here, we report a 30-minute DNA mutation detection technique using Cas12a-loaded liposomes in a microplate reader, a fundamental laboratory tool. CRISPR-Cas12a complex and fluorescence-quenching (FQ) probes are introduced into tumor-derived extracellular vesicles (EV) through membrane fusion. When CRISPR-RNA hybridizes with the DNA target, activated Cas12a can trans-cleave FQ probes, resulting in fluorescence signals for the quantification of DNA mutation. Future advancements in multiplex and high-throughput mutation detection using this assay will streamline self-diagnosis and treatment monitoring at home.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Md Motiar Rahman
- Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Wenlong Zhang
- Twist Bioscience Corporation, San Francisco, CA, USA
| | - Jing Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, Jiangsu, China
| | - Luke P Lee
- Harvard Medical School, Harvard University; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
23
|
Black JO, Al-Ibraheemi A, Arnold MA, Coffin CM, Davis JL, Parham DM, Rudzinski ER, Shenoy A, Surrey LF, Tan SY, Spunt SL. The Pathologic Diagnosis of Pediatric Soft Tissue Tumors in the Era of Molecular Medicine: The Sarcoma Pediatric Pathology Research Interest Group Perspective. Arch Pathol Lab Med 2024; 148:107-116. [PMID: 37196343 DOI: 10.5858/arpa.2022-0364-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 05/19/2023]
Abstract
CONTEXT.— Pediatric soft tissue tumors are one of the areas of pediatric pathology that frequently generate consult requests. Evolving classification systems, ancillary testing methods, new treatment options, research enrollment opportunities, and tissue archival processes create additional complexity in handling these unique specimens. Pathologists are at the heart of this critical decision-making, balancing responsibilities to consider expediency, accessibility, and cost-effectiveness of ancillary testing during pathologic examination and reporting. OBJECTIVE.— To provide a practical approach to handling pediatric soft tissue tumor specimens, including volume considerations, immunohistochemical staining panel recommendations, genetic and molecular testing approaches, and other processes that impact the quality and efficiency of tumor tissue triage. DATA SOURCES.— The World Health Organization Classification of Soft Tissue and Bone Tumors, 5th edition, other recent literature investigating tissue handling, and the collective clinical experience of the group are used in this manuscript. CONCLUSIONS.— Pediatric soft tissue tumors can be difficult to diagnose, and evaluation can be improved by adopting a thoughtful, algorithmic approach to maximize available tissue and minimize time to diagnosis.
Collapse
Affiliation(s)
- Jennifer O Black
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Colorado, Aurora (Black, Arnold)
| | - Alyaa Al-Ibraheemi
- the Department of Pathology, Children's Hospital Boston, Boston, Massachusetts (Al-Ibraheemi)
| | - Michael A Arnold
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Colorado, Aurora (Black, Arnold)
| | - Cheryl M Coffin
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee (Coffin)
| | - Jessica L Davis
- From the Department of Pathology and Laboratory Medicine, Children's Hospital of Colorado, Aurora (Black, Arnold)
- the Department of Pathology and Laboratory Medicine, Oregon Health and Sciences University, Portland (Davis)
| | - David M Parham
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles (Parham)
| | - Erin R Rudzinski
- the Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, Washington (Rudzinski)
| | - Archana Shenoy
- the Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio (Shenoy)
| | - Lea F Surrey
- the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Surrey)
| | - Serena Y Tan
- the Departments of Pathology (Tan) and Pediatrics (Spunt), Lucille Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
| | - Sheri L Spunt
- the Departments of Pathology (Tan) and Pediatrics (Spunt), Lucille Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
24
|
Blay E, Hardyman E, Morovic W. PCR-based analytics of gene therapies using adeno-associated virus vectors: Considerations for cGMP method development. Mol Ther Methods Clin Dev 2023; 31:101132. [PMID: 37964893 PMCID: PMC10641278 DOI: 10.1016/j.omtm.2023.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The field of gene therapy has evolved and improved so that today the treatment of thousands of genetic diseases is now possible. An integral aspect of the drug development process is generating analytical methods to be used throughout clinical and commercial manufacturing. Enumeration and identification assays using genetic testing are critical to ensure the safety, efficacy, and stability of many active pharmaceutical ingredients. While nucleic acid-based methods are already reliable and rapid, there are unique biological, technological, and regulatory aspects in gene therapies that must be considered. This review surveys aspects of method development and validation using nucleic acid-based testing of gene therapies by focusing on adeno-associated virus (AAV) vectors and their co-transfection factors. Key differences between quantitative PCR and droplet digital technologies are discussed to show how improvements can be made while still adhering to regulatory guidance. Example validation parameters for AAV genome titers are described to demonstrate the scope of analytical development. Finally, several areas for improving analytical testing are presented to inspire future innovation, including next-generation sequencing and artificial intelligence. Reviewing the broad characteristics of gene therapy assessment serves as an introduction for new researchers, while clarifying processes for professionals already involved in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Emmanuel Blay
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Elaine Hardyman
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Wesley Morovic
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| |
Collapse
|
25
|
Zhang Z, Song W, Yan R. Gbp3 is associated with the progression of lupus nephritis by regulating cell proliferation, inflammation and pyroptosis. Autoimmunity 2023; 56:2250095. [PMID: 37621179 DOI: 10.1080/08916934.2023.2250095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Lupus nephritis (LN) is a major cause death in patients with systemic lupus erythematosus. We aimed to find the differentially expressed genes (DEGs) in LN and confirm the regulatory mechanism on LN. The mouse model of LN was constructed by subcutaneous injection of pristane. RNA-seq screened 392 up-regulated and 447 down-regulated DEGs in LN mouse model, and KEGG analysis found that the top 20 DEGs were enriched in arachidonic acid metabolism, tryptophan metabolism, etc. The hub genes, Kynu, Spidr, Gbp3, Cbr1, Cyp4b1, and Cndp2 were identified, in which Gbp3 was selected for following study. Afterwards, the function of Gbp3 on the proliferation, inflammation, and pyroptosis of LN was verified by CCK-8, ELISA, and WB in vitro. The results demonstrated that si-Gbp3 promoted cell proliferation and inhibited the levels of inflammatory factors (IL-1β, TNF-α and IL-8) and pyroptosis-related proteins (GSDMD, Caspase-1 and NLRP3) in a cell model of LN. In constrast, Gbp3 overexpression played an opposite role. In summary, Gbp3 promoted the progression of LN via inhibiting cell proliferation and facilitating inflammation and pyroptosis.
Collapse
Affiliation(s)
- Zhongfeng Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| | - Wenyu Song
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| | - Run Yan
- Department of Nephrology, The Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, P.R. China
| |
Collapse
|
26
|
Golan T, Casolino R, Biankin AV, Hammel P, Whitaker KD, Hall MJ, Riegert-Johnson DL. Germline BRCA testing in pancreatic cancer: improving awareness, timing, turnaround, and uptake. Ther Adv Med Oncol 2023; 15:17588359231189127. [PMID: 37720496 PMCID: PMC10504836 DOI: 10.1177/17588359231189127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 09/19/2023] Open
Abstract
Prognosis is generally poor for patients with pancreatic ductal adenocarcinoma. However, patients with germline BRCA1 or BRCA2 mutations (gBRCAm) may benefit from first-line platinum-based chemotherapy and maintenance therapy with the poly(adenosine diphosphate-ribose) polymerase inhibitor olaparib following at least 16 weeks of first-line platinum-based chemotherapy without disease progression. Germline breast cancer gene (BRCA) testing is therefore important to ensure that patients receive the most effective treatment. In addition, testing for other DNA damage response gene mutations beyond gBRCAm may also guide treatment decisions. However, clinical pathways for genetic testing are often suboptimal, leading to delays in treatment initiation or missed opportunities for personalized therapy. Barriers to testing include low rates of referral and uptake, delays to referral and slow result turnaround times, cost, and biopsy and assay limitations if somatic testing is performed, leading to the requirement for subsequent dedicated germline testing. Low rates of referral may result from lack of awareness among physicians of the clinical value of testing, coupled with low confidence in interpreting test results and poor availability of genetic counseling services. Among patients, barriers to uptake may include similar lack of awareness of the clinical value of testing, anxiety regarding the implications of test results, lack of insurance coverage, fear of negative insurance implications, and socioeconomic factors. Potential solutions include innovative approaches to testing pathways, including 'mainstreaming' of testing in which BRCA tests are routinely arranged by the treating oncologist, with the involvement of genetic counselors if a patient is found to have a gBRCAm. More recently, the utility of multigene panel analyses has also been explored. Access to genetic counseling may also be improved through initiatives such as having a genetic counseling appointment for all new patient visits and telemedicine approaches, including the use of telephone consultations or DVD-assisted counseling. Educational programs will also be beneficial, and cost effectiveness is likely to improve as the number of targeted treatments increases and when the earlier detection of tumors in family members following cascade testing is considered.
Collapse
Affiliation(s)
- Talia Golan
- Institute of Oncology, Sheba Medical Center, Tel Hashomer 52621, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raffaella Casolino
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Medicine, University and Hospital Trust of Verona, Verona, Italy
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia
| | - Pascal Hammel
- Department of Digestive and Medical Oncology, University Paris-Saclay, Paul Brousse Hospital (AP-HP), Villejuif, France
| | - Kristen D. Whitaker
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael J. Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | |
Collapse
|
27
|
Asl ER, Sarabandi S, Shademan B, Dalvandi K, sheikhansari G, Nourazarian A. MicroRNA targeting: A novel therapeutic intervention for ovarian cancer. Biochem Biophys Rep 2023; 35:101519. [PMID: 37521375 PMCID: PMC10382632 DOI: 10.1016/j.bbrep.2023.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Ovarian cancer, a perilous form of cancer affecting the female reproductive system, exhibits intricate communication networks that contribute to its progression. This study aims to identify crucial molecular abnormalities linked to the disease to enhance diagnostic and therapeutic strategies. In particular, we investigate the role of microRNAs (miRNAs) as diagnostic biomarkers and explore their potential in treating ovarian cancer. By targeting miRNAs, which can influence multiple pathways and genes, substantial therapeutic benefits can be attained. In this review we want to shed light on the promising application of miRNA-based interventions and provide insights into the specific miRNAs implicated in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Sajed Sarabandi
- Department of Veterinary, Faculty of Medicine Sciences, Islamic Azad University of Karaj, Karaj, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Dalvandi
- Ministry of Health and Medical Education, Health Department, Tehran, Iran
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
28
|
Ciurea AM, Schenker M, Ciofiac CM, Streba L, Schenker R, Streba CT. Genomic Profiling - A Need for Clinical Decision? -Case Reports. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:467-473. [PMID: 38314216 PMCID: PMC10832885 DOI: 10.12865/chsj.49.03.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 02/06/2024]
Abstract
Cancer is still an important health issue worldwide due to increased incidence and mortality. Personalized medicine is the future of cancer treatment. Development in technology improved technical skills in DNA/RNA sequencing. NGS technology in solid-tumor samples can describe DNA or RNA analysis by including the entire genome to detect clinical relevant mutations. Genetic results may be considered having a dynamic impact because of heterogenous molecular alterations depending of time and treatment influence. We conducted a retrospective study of all NGS tests made in the last five years for the patients from 'Sf. Nectarie' Oncology Center, Craiova, Romania. We selected three relevant clinical cases where NGS analysis was performed and the results changed the perspective of the clinical decision. Our aim is to evaluate the importance of NGS results in clinical approach. Although medicine known an important development during the last decades, only a few patients can benefit of advanced personalized treatments. It is still hard to identify the alterations or gene mutations because of genetic tests are not easily available and only a small proportion of patients carries genetic alterations.
Collapse
Affiliation(s)
- Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristina Mihaela Ciofiac
- Doctoral School, Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova
| | - Liliana Streba
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ramona Schenker
- Psychology Department, Sf Nectarie Oncology Center, Craiova, Romania
| | - Costin Teodor Streba
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
29
|
Paganin M, Tebaldi T, Lauria F, Viero G. Visualizing gene expression changes in time, space, and single cells with expressyouRcell. iScience 2023; 26:106853. [PMID: 37250782 PMCID: PMC10220493 DOI: 10.1016/j.isci.2023.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
The last decade has witnessed massive advancements in high-throughput techniques capable of producing increasingly complex gene expression datasets across time and space and at the resolution of single cells. Yet, the large volume of big data available and the complexity of experimental designs hamper an easy understanding and effective communication of the results. We present expressyouRcell, an easy-to-use R package to map the multi-dimensional variations of transcript and protein levels in dynamic cell pictographs. expressyouRcell visualizes gene expression variations as pictographic representations of cell-type thematic maps. expressyouRcell visually reduces the complexity of displaying gene expression and protein level changes across multiple measurements (time points or single-cell trajectories) by generating dynamic representations of cellular pictographs. We applied expressyouRcell to single cell, bulk RNA sequencing (RNA-seq), and proteomics datasets, demonstrating its flexibility and usability in the visualization of complex variations in gene expression. Our approach improves the standard quantitative interpretation and communication of relevant results.
Collapse
Affiliation(s)
| | - Toma Tebaldi
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department CIBIO, University of Trento, Trento, Italy
| | - Fabio Lauria
- Institute of Biophysics, CNR Unit Trento, Trento, Italy
| | | |
Collapse
|
30
|
Pennisi MS, Di Gregorio S, Tirrò E, Romano C, Duminuco A, Garibaldi B, Giuffrida G, Manzella L, Vigneri P, Palumbo GA. Additional Genetic Alterations and Clonal Evolution of MPNs with Double Mutations on the MPL Gene: Two Case Reports. Hematol Rep 2023; 15:317-324. [PMID: 37367082 DOI: 10.3390/hematolrep15020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are two of the main BCR-ABL1-negative chronic myeloproliferative neoplasms (MPNs) characterized by abnormal megakaryocytic proliferation. Janus kinase 2 (JAK2) mutations are detected in 50-60% of ET and PMF, while myeloproliferative leukemia (MPL) virus oncogene mutations are present in 3-5% of cases. While Sanger sequencing is a valuable diagnostic tool to discriminate the most common MPN mutations, next-generation sequencing (NGS) is a more sensitive technology that also identifies concurrent genetic alterations. In this report, we describe two MPN patients with simultaneous double MPL mutations: a woman with ET presenting both MPLV501A-W515R and JAK2V617F mutations and a man with PMF displaying an uncommon double MPLV501A-W515L. Using colony-forming assays and NGS analyses, we define the origin and mutational landscape of these two unusual malignancies and uncover further gene alterations that may contribute to the pathogenesis of ET and PMF.
Collapse
Affiliation(s)
- Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Bruno Garibaldi
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy
| | - Gaetano Giuffrida
- Hematology Unit and Bone Marrow Transplant, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Giuseppe A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies, "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| |
Collapse
|
31
|
Gajda-Walczak A, Potęga A, Kowalczyk A, Sek S, Zięba S, Kowalik A, Kudelski A, Nowicka AM. New, fast and cheap prediction tests for BRCA1 gene mutations identification in clinical samples. Sci Rep 2023; 13:7316. [PMID: 37147448 PMCID: PMC10163215 DOI: 10.1038/s41598-023-34588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023] Open
Abstract
Despite significant progress in cancer therapy, cancer is still the second cause of mortality in the world. The necessity to make quick therapeutic decisions forces the development of procedures allowing to obtain a reliable result in a quick and unambiguous manner. Currently, detecting predictive mutations, including BRCA1, is the basis for effectively treating advanced breast cancer. Here, we present new insight on gene mutation detection. We propose a cheap BRCA1 mutation detection tests based on the surface plasmon resonance (SPR) or quartz crystal microbalance with energy dissipation (QCM-D) response changes recorded during a hybridization process of an oligonucleotide molecular probe with DNA fragments, with and without the BRCA1 mutation. The changes in the morphology of the formed DNA layer caused by the presence of the mutation were confirmed by atomic force microscopy. The unique property of the developed SPR and QCM tests is really short time of analysis: ca. 6 min for SPR and ca. 25 min for QCM. The proposed tests have been verified on 22 different DNA extracted from blood leukocytes collected from cancer patients: 17 samples from patients with various BRCA1 gene mutation variants including deletion, insertion and missense single-nucleotide and 5 samples from patients without any BRCA1 mutation. Our test is a response to the need of medical diagnostics for a quick, unambiguous test to identify mutations of the BRCA1 gene, including missense single-nucleotide (SNPs).
Collapse
Affiliation(s)
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089, Warsaw, Poland
| | - Sebastian Zięba
- Molecular Diagnostics, Holy Cross Cancer Center, Stefana Artwińskiego 3 Str., 25-734, Kielce, Poland
| | - Artur Kowalik
- Molecular Diagnostics, Holy Cross Cancer Center, Stefana Artwińskiego 3 Str., 25-734, Kielce, Poland
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Str., 25-406, Kielce, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland.
| |
Collapse
|
32
|
Andalib KMS, Rahman MH, Habib A. Bioinformatics and cheminformatics approaches to identify pathways, molecular mechanisms and drug substances related to genetic basis of cervical cancer. J Biomol Struct Dyn 2023; 41:14232-14247. [PMID: 36852684 DOI: 10.1080/07391102.2023.2179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Cervical cancer (CC) is a global threat to women and our knowledge is frighteningly little about its underlying genomic contributors. Our research aimed to understand the underlying molecular and genetic mechanisms of CC by integrating bioinformatics and network-based study. Transcriptomic analyses of three microarray datasets identified 218 common differentially expressed genes (DEGs) within control samples and CC specimens. KEGG pathway analysis revealed pathways in cell cycle, drug metabolism, DNA replication and the significant GO terms were cornification, proteolysis, cell division and DNA replication. Protein-protein interaction (PPI) network analysis identified 20 hub genes and survival analyses validated CDC45, MCM2, PCNA and TOP2A as CC biomarkers. Subsequently, 10 transcriptional factors (TFs) and 10 post-transcriptional regulators were detected through TFs-DEGs and miRNAs-DEGs regulatory network assessment. Finally, the CC biomarkers were subjected to a drug-gene relationship analysis to find the best target inhibitors. Standard cheminformatics method including in silico ADMET and molecular docking study substantiated PD0325901 and Selumetinib as the most potent candidate-drug for CC treatment. Overall, this meticulous study holds promises for further in vitro and in vivo research on CC diagnosis, prognosis and therapies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
33
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
34
|
Cetintas VB, Duzgun Z, Akalin T, Ozgiray E, Dogan E, Yildirim Z, Akinturk N, Biceroglu H, Ertan Y, Kosova B. Molecular dynamic simulation and functional analysis of pathogenic PTEN mutations in glioblastoma. J Biomol Struct Dyn 2023; 41:11471-11483. [PMID: 36591942 DOI: 10.1080/07391102.2022.2162582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
PTEN, a dual-phosphatase and scaffold protein, is one of the most commonly mutated tumour suppressor gene across various cancer types in human. The aim of this study therefore was to investigate the stability, structural and functional effects, and pathogenicity of 12 missense PTEN mutations (R15S, E18G, G36R, N49I, Y68H, I101T, C105F, D109N, V133I, C136Y, R173C and N276S) found by next generation sequencing of the PTEN gene in tissue samples obtained from glioblastoma patients. Computational tools and molecular dynamic simulation programs were used to identify the deleterious effects of these mutations. Furthermore, PTEN mRNA and protein expression levels were evaluated by qRT-PCR, Western Blot, and immunohistochemistry staining methods. Various computational tools predicted strong deleterious effects for the G36R, C105F, C136Y and N276S mutations. Molecular dynamic simulation revealed a significant decrease in protein stability for the Y68H and N276S mutations when compared with the wild type protein; whereas, C105F, D109N, V133I and R173C showed partial stability reduction. Significant residual fluctuations were observed in the R15S, N49I and C136Y mutations and radius of gyration graphs revealed the most compact structure for D109N and least for C136Y. In summary, our study is the first one to show the presence of PTEN E18G, N49I, D109N and N276S mutations in glioblastoma patients; where, D109N is neutral and N276S is a damaging and disease-associated mutation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Zekeriya Duzgun
- Department of Medical Biology, Giresun University Faculty of Medicine, Giresun, Turkey
| | - Taner Akalin
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Erkin Ozgiray
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Eda Dogan
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Zafer Yildirim
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nevhis Akinturk
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Huseyin Biceroglu
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Yesim Ertan
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Buket Kosova
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
35
|
Arai H, Minami Y, Chi S, Utsu Y, Masuda S, Aotsuka N. Molecular-Targeted Therapy for Tumor-Agnostic Mutations in Acute Myeloid Leukemia. Biomedicines 2022; 10:3008. [PMID: 36551764 PMCID: PMC9775249 DOI: 10.3390/biomedicines10123008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Comprehensive genomic profiling examinations (CGPs) have recently been developed, and a variety of tumor-agnostic mutations have been detected, leading to the development of new molecular-targetable therapies across solid tumors. In addition, the elucidation of hereditary tumors, such as breast and ovarian cancer, has pioneered a new age marked by the development of new treatments and lifetime management strategies required for patients with potential or presented hereditary cancers. In acute myeloid leukemia (AML), however, few tumor-agnostic or hereditary mutations have been the focus of investigation, with associated molecular-targeted therapies remaining poorly developed. We focused on representative tumor-agnostic mutations such as the TP53, KIT, KRAS, BRCA1, ATM, JAK2, NTRK3, FGFR3 and EGFR genes, referring to a CGP study conducted in Japan, and we considered the possibility of developing molecular-targeted therapies for AML with tumor-agnostic mutations. We summarized the frequency, the prognosis, the structure and the function of these mutations as well as the current treatment strategies in solid tumors, revealed the genetical relationships between solid tumors and AML and developed tumor-agnostic molecular-targeted therapies and lifetime management strategies in AML.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho 286-0041, Japan
| |
Collapse
|
36
|
Tanvir I, Hassan A, Albeladi F. DNA Methylation and Epigenetic Events Underlying Renal Cell Carcinomas. Cureus 2022; 14:e30743. [DOI: 10.7759/cureus.30743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
|
37
|
Ansari S, Yamaoka Y. Helicobacter pylori Infection, Its Laboratory Diagnosis, and Antimicrobial Resistance: a Perspective of Clinical Relevance. Clin Microbiol Rev 2022; 35:e0025821. [PMID: 35404105 PMCID: PMC9491184 DOI: 10.1128/cmr.00258-21] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the recent decrease in overall prevalence of Helicobacter pylori infection, morbidity and mortality rates associated with gastric cancer remain high. The antimicrobial resistance developments and treatment failure are fueling the global burden of H. pylori-associated gastric complications. Accurate diagnosis remains the opening move for treatment and eradication of infections caused by microorganisms. Although several reports have been published on diagnostic approaches for H. pylori infection, most lack the data regarding diagnosis from a clinical perspective. Therefore, we provide an intensive, comprehensive, and updated description of the currently available diagnostic methods that can help clinicians, infection diagnosis professionals, and H. pylori researchers working on infection epidemiology to broaden their understanding and to select appropriate diagnostic methods. We also emphasize appropriate diagnostic approaches based on clinical settings (either clinical diagnosis or mass screening), patient factors (either age or other predisposing factors), and clinical factors (either upper gastrointestinal bleeding or partial gastrectomy) and appropriate methods to be considered for evaluating eradication efficacy. Furthermore, to cope with the increasing trend of antimicrobial resistance, a better understanding of its emergence and current diagnostic approaches for resistance detection remain inevitable.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu City, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
38
|
Pavone G, Romano C, Martorana F, Motta L, Salvatorelli L, Zanghì AM, Magro G, Vigneri P. Giant Paratesticular Liposarcoma: Molecular Characterization and Management Principles with a Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12092160. [PMID: 36140560 PMCID: PMC9498211 DOI: 10.3390/diagnostics12092160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
Paratesticular liposarcomas are extremely rare malignant tumors originating from fat tissues, with an often-challenging diagnosis. We present here the case of a 76-year-old man with a giant paratesticular liposarcoma, initially misdiagnosed as a scrotal hernia. After two years, the progressively enlarging mass underwent surgical resection, and a diagnosis of well-differentiated liposarcoma (lipoma-like subtype) was made. Post-operative treatments were not indicated, and the patient remains relapse free. Next generation sequencing performed on the neoplastic tissue showed co-amplification of MDM2 and CDK4. These alterations are molecular hallmarks of well-differentiated liposarcomas and corroborate the histological diagnosis. Clinical and molecular features of the presented case are in line with the majority of previously published experiences. In conclusion, the presence of a liposarcoma should be taken into account during the diagnostic workup of scrotal masses, in order to minimize the rate of misdiagnosis and improper management. Molecular analysis may support histological characterization of these rare entities and potentially disclose novel therapeutic targets.
Collapse
Affiliation(s)
- Giuliana Pavone
- Division of Medical Oncology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Correspondence:
| | - Chiara Romano
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Motta
- Division of Medical Oncology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Antonio Maria Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technology G. F. Ingrassia, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 87, 95123 Catania, Italy
| | - Paolo Vigneri
- Division of Medical Oncology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico–San Marco”—Catania, Via Santa Sofia, 78, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
39
|
Ding N, Luo H, Peng T, Zhang T, Li M, Deng Y, He Y. Bioinformatics analysis on differentially expressed genes between colorectal adenoma and colorectal adenocarcinoma. Scott Med J 2022; 67:178-188. [PMID: 36031809 DOI: 10.1177/00369330221122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Colorectal adenoma (CRA) is the main cause of the progression of Colorectal adenocarcinoma (COAD). Therefore, it is very important to accurately reveal its developmental mechanism. METHODS Differential expression genes (DEGs) in three microarray datasets were screened using GEO and GEO2R. R packages were used for gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) path enrichment analysis. Hub genes screened by STRING, Cytoscape and CytoHubba were used. R was used for DEGs of hub genes, and Gene Expression Profiling Interactive Analysis (GEPIA2) database was used for prognostic Analysis. R-packet were used to analyze tumor pathology, tumour, lymph-nodes, and metastases (TNM) staging, enrichment, immune invasion and prognosis. RESULTS Among the 66 genes, including 36 up-regulated and 30 down-regulated genes. Survival analysis showed that COL1A1, COL5A2, COL5A1 and secreted protein acidic and rich in cysteine (SPARC) were associated with disease-free survival in patients. The four genes were related to tumor pathological stage, TNM stage and immune invasion. COL1A1 and COL5A2 were highly expressed in chromatin modification and cellular senescence. Low expression of COL5A1 and SPARC was significantly enriched in neutrophil degranulation and Wp VegfavegFR2 signaling pathways. CONCLUSIONS Obviously, these four key genes can serve as important targets for early diagnosis, treatment, immunity and prognosis of CRA to COAD.
Collapse
Affiliation(s)
- Ning Ding
- 118393Graduate School, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Hongbiao Luo
- Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, P.R. China.,Department of Anorectal Surgery, 56696Chenzhou NO. 1 People's Hospital, Chenzhou, PR China
| | - Tianshu Peng
- Department of Anorectal Surgery, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Tao Zhang
- 118393Graduate School, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Menglei Li
- 118393Graduate School, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Yu Deng
- 118393Graduate School, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Yongheng He
- Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
40
|
Gattuso G, Crimi S, Lavoro A, Rizzo R, Musumarra G, Gallo S, Facciponte F, Paratore S, Russo A, Bordonaro R, Isola G, Bianchi A, Libra M, Falzone L. Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:60. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Crimi
- Department of General Surgery and Medical Surgery Specialties, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giorgia Musumarra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Simona Gallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Flavia Facciponte
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Russo
- Medical Oncology Unit, ARNAS Garibaldi, 95122 Catania, Italy
| | | | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Alberto Bianchi
- Department of General Surgery and Medical Surgery Specialties, University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy
| |
Collapse
|
41
|
Bozsodi A, Scholtz B, Papp G, Sapi Z, Biczo A, Varga PP, Lazary A. Potential molecular mechanism in self-renewal is associated with miRNA dysregulation in sacral chordoma - A next-generation RNA sequencing study. Heliyon 2022; 8:e10227. [PMID: 36033338 PMCID: PMC9404356 DOI: 10.1016/j.heliyon.2022.e10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chordoma, the most frequent malignant primary spinal neoplasm, characterized by a high rate of recurrence, is an orphan disease where the clarification of the molecular oncogenesis would be crucial to developing new, effective therapies. Dysregulated expression of non-coding RNAs, especially microRNAs (miRNA) has a significant role in cancer development. Methods Next-generation RNA sequencing (NGS) was used for the combinatorial analysis of mRNA-miRNA gene expression profiles in sacral chordoma and nucleus pulposus samples. Advanced bioinformatics workflow was applied to the data to predict miRNA-mRNA regulatory networks with altered activity in chordoma. Results A large set of significantly dysregulated miRNAs in chordoma and their differentially expressed target genes have been identified. Several molecular pathways related to tumorigenesis and the modulation of the immune system are predicted to be dysregulated due to aberrant miRNA expression in chordoma. We identified a gene set including key regulators of the Hippo pathway, which is targeted by differently expressed miRNAs, and validated their altered expression by RT-qPCR. These newly identified miRNA/RNA interactions are predicted to have a role in the self-renewal process of chordoma stem cells, which might sustain the high rate of recurrence for this tumor. Conclusions Our results can significantly contribute to the designation of possible targets for the development of anti-chordoma therapies.
Collapse
Affiliation(s)
- Arpad Bozsodi
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- School of PhD Studies, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Beata Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Gergo Papp
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltan Sapi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Adam Biczo
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Corresponding author.
| |
Collapse
|
42
|
Mass Spectrometry Imaging Spatial Tissue Analysis toward Personalized Medicine. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071037. [PMID: 35888125 PMCID: PMC9318569 DOI: 10.3390/life12071037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/19/2022]
Abstract
Novel profiling methodologies are redefining the diagnostic capabilities and therapeutic approaches towards more precise and personalized healthcare. Complementary information can be obtained from different omic approaches in combination with the traditional macro- and microscopic analysis of the tissue, providing a more complete assessment of the disease. Mass spectrometry imaging, as a tissue typing approach, provides information on the molecular level directly measured from the tissue. Lipids, metabolites, glycans, and proteins can be used for better understanding imbalances in the DNA to RNA to protein translation, which leads to aberrant cellular behavior. Several studies have explored the capabilities of this technology to be applied to tumor subtyping, patient prognosis, and tissue profiling for intraoperative tissue evaluation. In the future, intercenter studies may provide the needed confirmation on the reproducibility, robustness, and applicability of the developed classification models for tissue characterization to assist in disease management.
Collapse
|
43
|
Li C, Hua K. Dissecting the Single-Cell Transcriptome Network of Immune Environment Underlying Cervical Premalignant Lesion, Cervical Cancer and Metastatic Lymph Nodes. Front Immunol 2022; 13:897366. [PMID: 35812401 PMCID: PMC9263187 DOI: 10.3389/fimmu.2022.897366] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 01/09/2023] Open
Abstract
Cervical cancer (CC) is one of the most common malignancy in women worldwide. It is characterized by a natural continuous phenomenon, that is, it is in the initial stage of HPV infection, progresses to intraepithelial neoplasia, and then develops into invasion and metastasis. Determining the complexity of tumor microenvironment (TME) can deepen our understanding of lesion progression and provide novel therapeutic strategies for CC. We performed the single-cell RNA sequencing on the normal cervix, intraepithelial neoplasia, primary tumor and metastatic lymph node tissues to describe the composition, lineage, and functional status of immune cells and mesenchymal cells at different stages of CC progression. A total of 59913 single cells were obtained and divided into 9 cellular clusters, including immune cells (T/NK cells, macrophages, B cells, plasma cells, mast cells and neutrophils) and mesenchymal cells (endothelial cells, smooth muscle cells and fibroblasts). Our results showed that there were distinct cell subpopulations in different stages of CC. High-stage intraepithelial neoplasia (HSIL) tissue exhibited a low, recently activated TME, and it was characterized by high infiltration of tissue-resident CD8 T cell, effector NK cells, Treg, DC1, pDC, and M1-like macrophages. Tumor tissue displayed high enrichment of exhausted CD8 T cells, resident NK cells and M2-like macrophages, suggesting immunosuppressive TME. Metastatic lymph node consisted of naive T cell, central memory T cell, circling NK cells, cytotoxic CD8+ T cells and effector memory CD8 T cells, suggesting an early activated phase of immune response. This study is the first to delineate the transcriptome profile of immune cells during CC progression using single-cell RNA sequencing. Our results indicated that HSIL exhibited a low, recently activated TME, tumor displayed immunosuppressive statue, and metastatic lymph node showed early activated phase of immune response. Our study enhanced the understanding of dynamic change of TME during CC progression and has implications for the development of novel treatments to inhibit the initiation and progression of CC.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
44
|
Romano C, Di Gregorio S, Pennisi MS, Tirrò E, Broggi G, Caltabiano R, Manzella L, Ruggieri M, Vigneri P, Di Cataldo A. Multiple primary malignances managed with surgical excision: a case report with next generation sequencing analysis. Mol Biol Rep 2022; 49:9059-9064. [PMID: 35715605 DOI: 10.1007/s11033-022-07630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple primary malignancies (MPM) are defined as tumors originating in the same individual without any correlation between them. In addition to morphological and immunohistochemical analyses, sensitive DNA sequencing methods such as next generation sequencing (NGS) may help to discriminate the common or different genetic alterations driving each malignancy, to better diagnose these uncommon cases. METHODS AND RESULTS Here we report the case of a man who developed a poorly differentiated gastric adenocarcinoma invading the pancreas followed, two years later, by a colorectal cancer involving also the kidney and the diaphragm. Despite the advanced stage of both diseases, adjuvant chemotherapy was successful. While the second tumor was initially interpreted as a relapse of his stomach cancer, NGS-based mutation profiling of the two carcinomas revealed two distinct malignances, independently developing in different times and indicative of metachronous MPM. Indeed, sequencing of cancer-associated genes identified somatic mutations only in the first gastric cancer, besides germline variants on three different genes (PDGFRA, APC and TP53). However, analysis of both somatic and germline mutations with bio-informatics prediction tools failed to find a correlation between these variants and the unexpectedly good prognosis of both cancers. CONCLUSIONS In summary, NGS analysis contributed to defined different molecular profiles for two tumors developed in the span of two years, thus allowing diagnosing the case as MPN. However, NGS was unable to establish a direct correlation between the identified alterations and cancer development.
Collapse
Affiliation(s)
- Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy. .,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", 95123, Catania, Italy.
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", 95123, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", 95123, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", 95123, Catania, Italy.,Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Section of Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", 95123, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, 95123, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy.,Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", 95123, Catania, Italy
| | - Antonio Di Cataldo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123, Catania, Italy
| |
Collapse
|
45
|
Jerves T, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. VIII. Neoplasias. Mol Genet Metab 2022; 136:118-124. [PMID: 35422340 PMCID: PMC9189061 DOI: 10.1016/j.ymgme.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Cancer, caused by multiple cumulative pathogenic variants in tumor suppressor genes and proto-oncogenes, is a leading cause of mortality worldwide. The uncontrolled and rapid cell growth of the tumors requires a reprogramming of the complex cellular metabolic network to favor anabolism. Adequate management and treatment of certain inherited metabolic diseases might prevent the development of certain neoplasias, such as hepatocellular carcinoma in tyrosinemia type 1 or hepatocellular adenomas in glycogen storage disorder type 1a. We reviewed and updated the list of known metabolic etiologies associated with various types of benign and malignant neoplasias, finding 64 relevant inborn errors of metabolism. This is the eighth article of the series attempting to create a comprehensive list of clinical and metabolic differential diagnosis by system involvement.
Collapse
Affiliation(s)
- Teodoro Jerves
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Actionable Mutation Profile of Sun-Protected Melanomas in South America. Am J Dermatopathol 2022; 44:741-747. [PMID: 35503891 DOI: 10.1097/dad.0000000000002213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Melanomas that arise in sun-protected sites, including acral and oral mucosal melanomas, are likely under the control of unique, specific mechanisms that lead to mutagenesis through various pathways. In this study, we examined somatic mutations in tumors by targeted sequencing using a custom Ion Ampliseq Panel, comprising hotspots of 14 genes that are frequently mutated in solid tumors. Tumor DNA was extracted from 9 formalin fixation, paraffin-embedded sun-protected melanomas (4 primary oral mucosal melanomas and 5 acral lentiginous melanomas), and we identified mutations in the NRAS, PIK3CA, EGFR, HRAS, ERBB2, and ROS1 genes. This study reveals new actionable mutations that are potential targets in the treatment of photo-protected melanomas. Additional studies on more of these melanoma subtypes could confirm our findings and identify new mutations.
Collapse
|
47
|
Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M, Falzone L. Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol 2022; 60:58. [PMID: 35383859 PMCID: PMC8997337 DOI: 10.3892/ijo.2022.5349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Breast and ovarian cancer represent two of the most common tumor types in females worldwide. Over the years, several non‑modifiable and modifiable risk factors have been associated with the onset and progression of these tumors, including age, reproductive factors, ethnicity, socioeconomic status and lifestyle factors, as well as family history and genetic factors. Of note, BRCA1 and BRCA2 are two tumor suppressor genes with a key role in DNA repair processes, whose mutations may induce genomic instability and increase the risk of cancer development. Specifically, females with a family history of breast or ovarian cancer harboring BRCA1/2 germline mutations have a 60‑70% increased risk of developing breast cancer and a 15‑40% increased risk for ovarian cancer. Different databases have collected the most frequent germline mutations affecting BRCA1/2. Through the analysis of such databases, it is possible to identify frequent hotspot mutations that may be analyzed with next‑generation sequencing (NGS) and novel innovative strategies. In this context, NGS remains the gold standard method for the assessment of BRCA1/2 mutations, while novel techniques, including droplet digital PCR (ddPCR), may improve the sensitivity to identify such mutations in the hereditary forms of breast and ovarian cancer. On these bases, the present study aimed to provide an update of the current knowledge on the frequency of BRCA1/2 mutations and cancer susceptibility, focusing on the diagnostic potential of the most recent methods, such as ddPCR.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aurora Scalisi
- Italian League Against Cancer, Section of Catania, I‑95122 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical‑Surgical Specialties, Policlinico‑Vittorio Emanuele Hospital, University of Catania, I‑95123 Catania, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione 'G. Pascale', I‑80131 Naples, Italy
| |
Collapse
|
48
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
49
|
Cheng YH, Wang CH, Hsu KF, Lee GB. Integrated Microfluidic System for Cell-Free DNA Extraction from Plasma for Mutant Gene Detection and Quantification. Anal Chem 2022; 94:4311-4318. [PMID: 35235296 DOI: 10.1021/acs.analchem.1c04988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ovarian cancer (OvCa) is among the most severe gynecologic cancers, yet individuals may be asymptomatic during its early stages. Routine, early screening for genetic abnormalities associated with OvCa could improve prognoses, and this can be achieved by detecting mutant genes in cell-free DNA (cfDNA). Herein, we developed an integrated microfluidic chip (IMC) that could extract cfDNA from plasma and automatically detect and quantify mutations in the OvCa biomarker BRCA1. The cfDNA extraction module relied on a vortex-type micromixer to mix cfDNA with magnetic beads surface-coated with cfDNA probes and could isolate 76% of molecules from a 200 μL plasma sample in 45 min. The cfDNA quantification module, which comprised a micropump that evenly distributed 4.5 μL of purified cfDNA into the on-chip, allele-specific quantitative polymerase chain reaction (qPCR) zones, was capable of quantifying mutant genes within 90 min. By automating the cfDNA extraction and qPCR processes, this IMC could be used for clinical screening for OvCa-associated mutations.
Collapse
Affiliation(s)
- Yu-Hung Cheng
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
50
|
Hechtman JF. NTRK insights: best practices for pathologists. Mod Pathol 2022; 35:298-305. [PMID: 34531526 PMCID: PMC8860742 DOI: 10.1038/s41379-021-00913-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
Since the discovery of an oncogenic tropomyosin-receptor kinase (TRK) fusion protein in the early 1980s, our understanding of neurotrophic tropomyosin-receptor kinase (NTRK) fusions, their unique patterns of frequency in different tumor types, and methods to detect them have grown in scope and depth. Identification of these molecular alterations in the management of patients with cancer has become increasingly important with the emergence of histology-agnostic, US Food and Drug Administration-approved, effective TRK protein inhibitors. Herein, we review the biology of TRK in normal and malignant tissues, as well as the prevalence and enrichment patterns of these fusions across tumor types. Testing methods currently used to identify NTRK1-3 fusions will be reviewed in detail, with attention to newer assays including RNA-based next-generation sequencing. Recently proposed algorithms for NTRK fusion testing will be compared, and practical insights provided on how testing can best be implemented and communicated within the multidisciplinary healthcare team.
Collapse
Affiliation(s)
- Jaclyn F Hechtman
- Molecular Pathologist, Neogenomics 9490 NeoGenomics Way, Fort Myers, FL, 33912, USA.
| |
Collapse
|