1
|
Yuan D, Chen W, Jin S, Li W, Liu W, Liu L, Wu Y, Zhang Y, He X, Jiang J, Sun H, Liu X, Liu J. Co-expression of immune checkpoints in glioblastoma revealed by single-nucleus RNA sequencing and spatial transcriptomics. Comput Struct Biotechnol J 2024; 23:1534-1546. [PMID: 38633388 PMCID: PMC11021796 DOI: 10.1016/j.csbj.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system. The pattern of immune checkpoint expression in GBM remains largely unknown. We performed snRNA-Seq and spatial transcriptomic (ST) analyses on untreated GBM samples. 8 major cell types were found in both tumor and adjacent normal tissues, with variations in infiltration grade. Neoplastic cells_6 was identified in malignant cells with high expression of invasion and proliferator-related genes, and analyzed its interactions with microglia, MDM cells and T cells. Significant alterations in ligand-receptor interactions were observed, particularly between Neoplastic cells_6 and microglia, and found prominent expression of VISTA/VSIG3, suggesting a potential mechanism for evading immune system attacks. High expression of TIM-3, VISTA, PSGL-1 and VSIG-3 with similar expression patterns in GBM, may have potential as therapeutic targets. The prognostic value of VISTA expression was cross-validated in 180 glioma patients, and it was observed that patients with high VISTA expression had a poorer prognosis. In addition, multimodal cross analysis integrated SnRNA-seq and ST, revealing complex intracellular communication and mapping the GBM tumor microenvironment. This study reveals novel molecular characteristics of GBM, co-expression of immune checkpoints, and potential therapeutic targets, contributing to improving the understanding and treatment of GBM.
Collapse
Affiliation(s)
- Dingyi Yuan
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Wenting Chen
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Shasha Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wanmei Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Yinhao Wu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Yuxin Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xiaoyu He
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Xiangyu Liu
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jun Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Di Vito A, Donato A, Bria J, Conforti F, La Torre D, Malara N, Donato G. Extracellular Matrix Structure and Interaction with Immune Cells in Adult Astrocytic Tumors. Cell Mol Neurobiol 2024; 44:54. [PMID: 38969910 PMCID: PMC11226480 DOI: 10.1007/s10571-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The extracellular matrix (ECM) is a dynamic set of molecules produced by the cellular component of normal and pathological tissues of the embryo and adult. ECM acts as critical regulator in various biological processes such as differentiation, cell proliferation, angiogenesis, and immune control. The most frequent primary brain tumors are gliomas and by far the majority are adult astrocytic tumors (AATs). The prognosis for patients with these neoplasms is poor and the treatments modestly improves survival. In the literature, there is a fair number of studies concerning the composition of the ECM in AATs, while the number of studies relating the composition of the ECM with the immune regulation is smaller. Circulating ECM proteins have emerged as a promising biomarker that reflect the general immune landscape of tumor microenvironment and may represent a useful tool in assessing disease activity. Given the importance it can have for therapeutic and prognostic purposes, the aim of our study is to summarize the biological properties of ECM components and their effects on the tumor microenvironment and to provide an overview of the interactions between major ECM proteins and immune cells in AATs. As the field of immunotherapy in glioma is quickly expanding, we retain that current data together with future studies on ECM organization and functions in glioma will provide important insights into the tuning of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Annalidia Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Domenico La Torre
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Natalia Malara
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Wang AF, Hsueh B, Choi BD, Gerstner ER, Dunn GP. Immunotherapy for Brain Tumors: Where We Have Been, and Where Do We Go From Here? Curr Treat Options Oncol 2024; 25:628-643. [PMID: 38649630 DOI: 10.1007/s11864-024-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
OPINION STATEMENT Immunotherapy for glioblastoma (GBM) remains an intensive area of investigation. Given the seismic impact of cancer immunotherapy across a range of malignancies, there is optimism that harnessing the power of immunity will influence GBM as well. However, despite several phase 3 studies, there are still no FDA-approved immunotherapies for GBM. Importantly, the field has learned a great deal from the randomized studies to date. Today, we are continuing to better understand the disease-specific features of the microenvironment in GBM-as well as the exploitable antigenic characteristic of the tumor cells themselves-that are informing the next generation of immune-based therapeutic strategies. The coming phase of next-generation immunotherapies is thus poised to bring us closer to treatments that will improve the lives of patients with GBM.
Collapse
Affiliation(s)
- Alexander F Wang
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Brian Hsueh
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kappel AD, Jha R, Guggilapu S, Smith WJ, Feroze AH, Dmytriw AA, Vicenty-Padilla J, Alcedo Guardia RE, Gessler FA, Patel NJ, Du R, See AP, Peruzzi PP, Aziz-Sultan MA, Bernstock JD. Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era. Cancers (Basel) 2024; 16:1594. [PMID: 38672676 PMCID: PMC11049132 DOI: 10.3390/cancers16081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade gliomas (HGGs) have a poor prognosis and are difficult to treat. This review examines the evolving landscape of endovascular therapies for HGGs. Recent advances in endovascular catheter technology and delivery methods allow for super-selective intra-arterial cerebral infusion (SSIACI) with increasing precision. This treatment modality may offer the ability to deliver anti-tumoral therapies directly to tumor regions while minimizing systemic toxicity. However, challenges persist, including blood-brain barrier (BBB) penetration, hemodynamic complexities, and drug-tumor residence time. Innovative adjunct techniques, such as focused ultrasound (FUS) and hyperosmotic disruption, may facilitate BBB disruption and enhance drug penetration. However, hemodynamic factors that limit drug residence time remain a limitation. Expanding therapeutic options beyond chemotherapy, including radiotherapy and immunobiologics, may motivate future investigations. While preclinical and clinical studies demonstrate moderate efficacy, larger randomized trials are needed to validate the clinical benefits. Additionally, future directions may involve endovascular sampling for peri-tumoral surveillance; changes in drug formulations to prolong residence time; and the exploration of non-pharmaceutical therapies, like radioembolization and photodynamic therapy. Endovascular strategies hold immense potential in reshaping HGG treatment paradigms, offering targeted and minimally invasive approaches. However, overcoming technical challenges and validating clinical efficacy remain paramount for translating these advancements into clinical care.
Collapse
Affiliation(s)
- Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
| | - Saibaba Guggilapu
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
| | - William J. Smith
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abdullah H. Feroze
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Adam A. Dmytriw
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Juan Vicenty-Padilla
- Neurosurgery Section, School of Medicine University of Puerto Rico, Medical Sciences Campus, San Juan P.O. Box 365067, Puerto Rico (R.E.A.G.)
| | - Rodolfo E. Alcedo Guardia
- Neurosurgery Section, School of Medicine University of Puerto Rico, Medical Sciences Campus, San Juan P.O. Box 365067, Puerto Rico (R.E.A.G.)
| | - Florian A. Gessler
- Department of Neurosurgery, Rostock University Hospital, 18057 Rostock, Germany
| | - Nirav J. Patel
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rose Du
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Alfred P. See
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mohammad A. Aziz-Sultan
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Shirazi MMA, Saedi TA, Moghaddam ZS, Nemati M, Shiri R, Negahdari B, Goradel NH. Nanotechnology and nano-sized tools: Newer approaches to circumvent oncolytic adenovirus limitations. Pharmacol Ther 2024; 256:108611. [PMID: 38387653 DOI: 10.1016/j.pharmthera.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oncolytic adenoviruses (OAds), engineered Ads preferentially infect and lyse tumor cells, have attracted remarkable attention as immunotherapy weapons for the treatment of various malignancies. Despite hopeful successes in preclinical investigations and translation into clinical phases, they face some challenges that thwart their therapeutic effectiveness, including low infectivity of cancer cells, liver sequestration, pre-existing neutralizing antibodies, physical barriers to the spread of Ads, and immunosuppressive TME. Nanotechnology and nano-sized tools provide several advantages to overcome these limitations of OAds. Nano-sized tools could improve the therapeutic efficacy of OAds by enhancing infectivity and cellular uptake, targeting and protecting from pre-existing immune responses, masking and preventing liver tropism, and co-delivery with other therapeutic agents. Herein, we reviewed the constructs of various OAds and their application in clinical trials, as well as the limitations they have faced. Furthermore, we emphasized the potential applications of nanotechnology to solve the constraints of OAds to improve their anti-tumor activities.
Collapse
Affiliation(s)
| | - Tayebeh Azam Saedi
- Department of Genetics, Faculty of Science, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Zahra Samadi Moghaddam
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shiri
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran; Arthropod-Borne Diseases Research Centre, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
6
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
7
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Volovat SR, Scripcariu DV, Vasilache IA, Stolniceanu CR, Volovat C, Augustin IG, Volovat CC, Ostafe MR, Andreea-Voichița SG, Bejusca-Vieriu T, Lungulescu CV, Sur D, Boboc D. Oncolytic Virotherapy: A New Paradigm in Cancer Immunotherapy. Int J Mol Sci 2024; 25:1180. [PMID: 38256250 PMCID: PMC10816814 DOI: 10.3390/ijms25021180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Oncolytic viruses (OVs) are emerging as potential treatment options for cancer. Natural and genetically engineered viruses exhibit various antitumor mechanisms. OVs act by direct cytolysis, the potentiation of the immune system through antigen release, and the activation of inflammatory responses or indirectly by interference with different types of elements in the tumor microenvironment, modification of energy metabolism in tumor cells, and antiangiogenic action. The action of OVs is pleiotropic, and they show varied interactions with the host and tumor cells. An important impediment in oncolytic virotherapy is the journey of the virus into the tumor cells and the possibility of its binding to different biological and nonbiological vectors. OVs have been demonstrated to eliminate cancer cells that are resistant to standard treatments in many clinical trials for various cancers (melanoma, lung, and hepatic); however, there are several elements of resistance to the action of viruses per se. Therefore, it is necessary to evaluate the combination of OVs with other standard treatment modalities, such as chemotherapy, immunotherapy, targeted therapies, and cellular therapies, to increase the response rate. This review provides a comprehensive update on OVs, their use in oncolytic virotherapy, and the future prospects of this therapy alongside the standard therapies currently used in cancer treatment.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | - Dragos Viorel Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Ingrid Andrada Vasilache
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics—Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | | | | | - Madalina-Raluca Ostafe
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | - Slevoacă-Grigore Andreea-Voichița
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | - Toni Bejusca-Vieriu
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | | | - Daniel Sur
- 11th Department of Medical Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| |
Collapse
|
9
|
Peña Pino I, Darrow DP, Chen CC. Magnetic Resonance Imaging-Aided SmartFlow Convection Delivery of DNX-2401: A Pilot, Prospective Case Series. World Neurosurg 2024; 181:e833-e840. [PMID: 37925150 DOI: 10.1016/j.wneu.2023.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects (CAPTIVE) study is a phase II clinical trial testing the efficacy of a recombinant adenovirus DNX-2401 combined with the immune checkpoint inhibitor pembrolizumab. Here, we report the first patients in this study who underwent viral delivery through real-time magnetic resonance imaging (MRI) stereotaxis-guided SmartFlow convection delivery of DNX-2401. METHODS Patients who underwent real-time MRI-guided DNX-2401 delivery through the SmartFlow convection catheter were prospectively followed. RESULTS Precise catheter placement was achieved in all patients treated, and no adverse events were noted. Average radial error from target was 0.9 mm. Average procedural time was 3 hours 16 minutes and was comparable to other convection-enhanced delivery techniques. In 2 patients, delivery of DNX-2401 was visualized as >1 cm maximal diameter of T1 hypointensity infusate on MRI obtained immediately after completion of viral infusion. These patients exhibited partial response based on Response Assessment in Neuro-Oncology assessment. The remaining patient showed <1 cm maximal diameter of infusate on immediate postinfusion MRI and showed disease progression on subsequent MRI. CONCLUSIONS Our pilot case series supports compatibility of the SmartFlow system with oncolytic adenovirus delivery and provides the basis for future validation studies.
Collapse
Affiliation(s)
- Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David P Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
10
|
Varela ML, Comba A, Faisal SM, Argento A, Peña Aguelo JA, Candolfi M, Castro MG, Lowenstein PR. Cell and gene therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:297-315. [PMID: 39341660 PMCID: PMC11441620 DOI: 10.1016/b978-0-323-90120-8.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jorge A Peña Aguelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
11
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
12
|
Seyed-Khorrami SM, Azadi A, Rastegarvand N, Habibian A, Soleimanjahi H, Łos MJ. A promising future in cancer immunotherapy: Oncolytic viruses. Eur J Pharmacol 2023; 960:176063. [PMID: 37797673 DOI: 10.1016/j.ejphar.2023.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Alongside the conventional methods, attention has been drawn to the use of immunotherapy-based methods for cancer treatment. Immunotherapy has developed as a therapeutic option that can be more specific with better outcomes in tumor treatment. It can boost or regulate the immune system behind the targeted virotherapy. Virotherapy is a kind of oncolytic immunotherapy that investigated broadly in cancer treatment in recent decades, due to its several advantages. According to recent advance in the field of understanding cancer cell biology and its occurrence, as well as increasing the knowledge about conditionally replicating oncolytic viruses and their destructive function in the tumor cells, nowadays, it is possible to apply this strategy in the treatment of malignancies. Relying on achievements in clinical trials of oncolytic viruses, we can certainly expect that this therapeutic perception can play a more central role in cancer treatment. In cancer treatment, combination therapy using oncolytic viruses alongside standard cancer treatment methods and other immunotherapy-based treatments can expect more promising results in the future.
Collapse
Affiliation(s)
| | - Arezou Azadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Rastegarvand
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ala Habibian
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100, Gliwice, Poland; LinkoCare Life Sciences AB, Linkoping, Sweden.
| |
Collapse
|
13
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
14
|
Hu M, Liao X, Tao Y, Chen Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma. Front Immunol 2023; 14:1285113. [PMID: 38022620 PMCID: PMC10652401 DOI: 10.3389/fimmu.2023.1285113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Recurrent glioma treatment is challenging due to molecular heterogeneity and treatment resistance commonly observed in these tumors. Researchers are actively pursuing new therapeutic strategies. Oncolytic viruses have emerged as a promising option. Oncolytic viruses selectively replicate within tumor cells, destroying them and stimulating the immune system for an enhanced anticancer response. Among Oncolytic viruses investigated for recurrent gliomas, oncolytic herpes simplex virus and oncolytic adenovirus show notable potential. Genetic modifications play a crucial role in optimizing their therapeutic efficacy. Different generations of replicative conditioned oncolytic human adenovirus and oncolytic HSV have been developed, incorporating specific modifications to enhance tumor selectivity, replication efficiency, and immune activation. This review article summarizes these genetic modifications, offering insights into the underlying mechanisms of Oncolytic viruses' therapy. It also aims to identify strategies for further enhancing the therapeutic benefits of Oncolytic viruses. However, it is important to acknowledge that additional research and clinical trials are necessary to establish the safety, efficacy, and optimal utilization of Oncolytic viruses in treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Mingming Hu
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - XuLiang Liao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Elahi SM, Nazemi-Moghaddam N, Gilbert R. Protease-deleted adenovirus as an alternative for replication-competent adenovirus vector. Virology 2023; 586:67-75. [PMID: 37487327 DOI: 10.1016/j.virol.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
For cancer therapy and vaccination an amplified expression of the therapeutic gene is desired. Previously, we have developed a single-cycle adenovirus vector (SC-AdV) by deleting the adenovirus protease (PS) gene. In order to keep the E1 region intact within the PS-deleted adenoviruses, we examined the insertion of two transgenes under the control of a constitutive or inducible promoters. These were inserted between E4 and the right inverted terminal repeat in a wide variety of backbones with various combinations of PS, E3 and E4 deletion. Our data showed that PS-deleted adenoviruses, expressed transgenes as strongly as replication-competent AdVs in HEK293A and a variant of HeLa cells. In a head-to-head comparison in four human cell lines, we demonstrated that SC-AdV, was comparable for transgene expression efficacy with its replication-competent counterpart. However, the SC-AdV expresses its transgene 10 to 16,000 times higher than its replication-defective counterpart.
Collapse
Affiliation(s)
- S Mehdy Elahi
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada; Department of Bioengineering McGill University, Montréal, Canada.
| |
Collapse
|
16
|
Vaz-Salgado MA, Villamayor M, Albarrán V, Alía V, Sotoca P, Chamorro J, Rosero D, Barrill AM, Martín M, Fernandez E, Gutierrez JA, Rojas-Medina LM, Ley L. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) 2023; 15:4279. [PMID: 37686553 PMCID: PMC10487236 DOI: 10.3390/cancers15174279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
Collapse
Affiliation(s)
- Maria Angeles Vaz-Salgado
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - María Villamayor
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Alía
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Pilar Sotoca
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Jesús Chamorro
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Diana Rosero
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Ana M. Barrill
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Mercedes Martín
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - Eva Fernandez
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - José Antonio Gutierrez
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Mariano Rojas-Medina
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Ley
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| |
Collapse
|
17
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14:138-159. [PMID: 37124134 PMCID: PMC10134201 DOI: 10.5306/wjco.v14.i4.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.
Collapse
Affiliation(s)
- Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
19
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
20
|
Complementary Cell Lines for Protease Gene-Deleted Single-Cycle Adenovirus Vectors. Cells 2023; 12:cells12040619. [PMID: 36831286 PMCID: PMC9954690 DOI: 10.3390/cells12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
To increase the safety of adenovirus vector (AdV)-based therapy without reducing its efficacy, a single-cycle adenovirus vector (SC-AdV) with a deletion in the protease gene (PS) was developed in order to be used as a substitute for the replication-competent adenovirus (RC-AdV). Since no infectious viral particles are assembled, there is no risk of viral shedding. The complementary cell lines for this developed AdV proved to be suboptimal for the production of viral particles and require the presence of fetal bovine serum (FBS) to grow. In the current study, we produced both stable pools and clones using adherent and suspension cells expressing the PS gene. The best adherent cell pool can be used in the early stages for the generation of protease-deleted adenovirus, plaque purification, and titration. Using this, we produced over 3400 infectious viral particles per cell. Additionally, the best suspension subclone that was cultured in the absence of FBS yielded over 4000 infectious viral particles per cell. Harvesting time, culture media, and concentration of the inducer for the best suspension subclone were further characterized. With these two types of stable cells (pool and subclone), we successfully improved the titer of protease-deleted adenovirus in adherent and suspension cultures and eliminated the need for FBS during the scale-up production. Eight lots of SC-AdV were produced in the best suspension subclone at a scale of 2 to 8.2 L. The viral and infectious particle titers were influenced by the virus backbone and expressed transgene.
Collapse
|
21
|
Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene Therapy for High Grade Glioma: The Clinical Experience. Expert Opin Biol Ther 2023; 23:145-161. [PMID: 36510843 PMCID: PMC9998375 DOI: 10.1080/14712598.2022.2157718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved. AREAS COVERED Gene therapy was developed as a promising approach to treat HGG. Here, we review completed and ongoing clinical trials employing viral and non-viral vectors for adult and pediatric HGG, as well as the key supporting preclinical data. EXPERT OPINION These therapies have proven safe, and pre- and post-treatment tissue analyses demonstrated tumor cell lysis, increased immune cell infiltration, and increased systemic immune function. Although viral therapy in clinical trials has not yet significantly extended the survival of HGG, promising strategies are being tested. Oncolytic HSV vectors have shown promising results for both adult and pediatric HGG. A recently published study demonstrated that HG47Δ improved survival in recurrent HGG. Likewise, PVSRIPO has shown survival improvement compared to historical controls. It is likely that further analysis of these trials will stimulate the development of new administration protocols, and new therapeutic combinations that will improve HGG prognosis.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marcus N Barissi
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sean Sachdev
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Cloquell A, Mateo I, Gambera S, Pumarola M, Alemany R, García-Castro J, Perisé-Barrios AJ. Systemic cellular viroimmunotherapy for canine high-grade gliomas. J Immunother Cancer 2022; 10:jitc-2022-005669. [PMID: 36600663 PMCID: PMC9772696 DOI: 10.1136/jitc-2022-005669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oncolytic viruses constitute a growing field of interest, both in human and veterinary oncology, given that they are particularly helpful for treating non-surgical tumors and disseminated cancer, such as high-grade gliomas. Companion dogs present malignant gliomas with biological, genetic, phenotypic, immunological, and clinical similarities to human gliomas. These features favor comparative approaches, leading to the treatment of canine oncological patients to achieve translational applications to the human clinic. The systemic administration of oncolytic viruses presents a challenge due to their limitations in effectively targeting tumors and metastases. Therefore, the aim of this study is to evaluate the safety and antitumor activity of a virotherapy used in spontaneous canine tumors. METHODS Ten dogs with high-grade rostrotentorial gliomas underwent weekly systemic endovenous cellular virotherapy with dCelyvir (canine mesenchymal stem cells infected with the canine oncolytic adenovirus ICOCAV17) for 8 weeks. Efficacy was determined in seven dogs according to the Response Assessment in Veterinary Neuro-Oncology criteria considering clinical status and MRI measurements. Medical history, physical and neurological examinations, and vaccination status were evaluated prior to and during follow-up. Safety was evaluated by physical examinations and hematological and biochemical changes in peripheral blood. Immune populations were analyzed by flow cytometry in peripheral blood and by gene expression and immunohistochemistry in the tumor microenvironment. RESULTS The treatment was well tolerated and major adverse effects were not observed. Two dogs had partial responses (76% and 86% reduction in tumor size), and 3/7 showed stable disease. ICOCAV17 was detected in peripheral blood in nine dogs, and a correlation between the ICOCAV17 particles and anti-canine adenovirus (CAV) antibodies was observed. ICOCAV17 was detected in 3/9 tumor tissues after necropsies. Regarding tumor-infiltrating lymphocytes, the dogs with disease stabilization and partial response tended to have reduced memory B-cell infiltration and increased monocyte/macrophage lineage cells. CONCLUSIONS These findings indicate that dCelyvir is safe and presents efficacy in canine rostrotentorial high-grade gliomas. These data are relevant to the ongoing phase Ib regulated human clinical trial that is administering this virotherapy to children, adolescents, and young adults with diffuse pontine glioma. Celyvir should be further explored as a treatment in veterinary and human neuro-oncology.
Collapse
Affiliation(s)
- Ana Cloquell
- Servicio de Neurología, Hospital Clínico Veterinario, Universidad Alfonso X el Sabio, Villanueva de la Cañada, Spain
| | - Isidro Mateo
- Servicio de Neurología, Hospital Clínico Veterinario, Universidad Alfonso X el Sabio, Villanueva de la Cañada, Spain,Servicio de Neurología, Hospital Veterinario VETSIA, Leganés, Spain
| | - Stefano Gambera
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain,Molecular Genetics of Angiogenesis Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Martí Pumarola
- Unitat de Patologia Murina i Comparada (UPMiC), Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Alemany
- IDIBELL, Institut Català d'Oncologia, Barcelona, Spain
| | | | - Ana Judith Perisé-Barrios
- Unidad de Investigación Biomédica (UIB-UAX), Universidad Alfonso X el Sabio, Villanueva de la Cañada, Spain
| |
Collapse
|
23
|
Chalise L, Kato A, Ohno M, Maeda S, Yamamichi A, Kuramitsu S, Shiina S, Takahashi H, Ozone S, Yamaguchi J, Kato Y, Rockenbach Y, Natsume A, Todo T. Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma. Mol Ther Oncolytics 2022; 26:265-274. [PMID: 35991754 PMCID: PMC9364057 DOI: 10.1016/j.omto.2022.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/15/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is a devastating malignant brain tumor with a poor prognosis despite standard therapy. Podoplanin (PDPN), a type I transmembrane mucin-like glycoprotein that is overexpressed in various cancers, is a potential therapeutic target for the treatment of glioblastoma. We previously reported the efficacy of chimeric antigen receptor (CAR)-T cells using an anti-pan-PDPN monoclonal antibody (mAb; NZ-1)-based third-generation CAR in a xenograft mouse model. However, NZ-1 also reacted with PDPN-expressing normal cells, such as lymphatic endothelial cells, pulmonary alveolar type I cells, and podocytes. To overcome possible on-target-off-tumor effects, we produced a cancer-specific mAb (CasMab, LpMab-2)-based CAR. LpMab-2 (Lp2) reacted with PDPN-expressing cancer cells but not with normal cells. In this study, Lp2-CAR-transduced T cells (Lp2-CAR-T) specifically targeted PDPN-expressing glioma cells while sparing the PDPN-expressing normal cells. Lp2-CAR-T also killed patient-derived glioma stem cells, demonstrating its clinical potential against glioblastoma. Systemic injection of Lp2-CAR-T cells inhibited the growth of a subcutaneous glioma xenograft model in immunodeficient mice. Combination therapy with Lp2-CAR-T and oncolytic virus G47Δ, a third-generation recombinant herpes simplex virus (HSV)-1, further inhibited the tumor growth and improved survival. These findings indicate that the combination therapy of Lp2-CAR-T cells and G47Δ may be a promising approach to treat glioblastoma.
Collapse
Affiliation(s)
- Lushun Chalise
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
- Department of Neurosurgery, Nagoya Central Hospital, Nagoya, Japan
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Kato
- The Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Masasuke Ohno
- Department of Neurosurgery, Aichi Cancer Centre Hospital, Nagoya, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Shunichiro Kuramitsu
- Department of Neurosurgery, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | | - Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Sachiko Ozone
- The Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Rockenbach
- The Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Atsushi Natsume
- The Institute of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Department of Neurosugery, Kawamura Medical Society Hospital, Gifu, Japan
- Corresponding author Tomoki Todo, MD, PhD, Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Corresponding author Atsushi Natsume, MD, PhD, The Institute of Innovation for Future Society, Nagoya University, NIC Room 803, Furo-Cho, Chikusa-Ku, Nagoya 464-8601, Japan.
| |
Collapse
|
24
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
25
|
Ghajar-Rahimi G, Kang KD, Totsch SK, Gary S, Rocco A, Blitz S, Kachurak K, Chambers MR, Li R, Beierle EA, Bag A, Johnston JM, Markert JM, Bernstock JD, Friedman GK. Clinical advances in oncolytic virotherapy for pediatric brain tumors. Pharmacol Ther 2022; 239:108193. [PMID: 35487285 DOI: 10.1016/j.pharmthera.2022.108193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Malignant brain tumors constitute nearly one-third of cancer diagnoses in children and have recently surpassed hematologic malignancies as the most lethal neoplasm in the pediatric population. Outcomes for children with brain tumors are unacceptably poor and current standards of care-surgical resection, chemotherapy, and radiation-are associated with significant long-term morbidity. Oncolytic virotherapy has emerged as a promising immunotherapy for the treatment of brain tumors. While the majority of brain tumor clinical trials utilizing oncolytic virotherapy have been in adults, five viruses are being tested in pediatric brain tumor clinical trials: herpes simplex virus (G207), reovirus (pelareorep/Reolysin), measles virus (MV-NIS), poliovirus (PVSRIPO), and adenovirus (DNX-2401, AloCELYVIR). Herein, we review past and current pediatric immunovirotherapy brain tumor trials including the relevant preclinical and clinical research that contributed to their development. We describe mechanisms by which the viruses may overcome barriers in treating pediatric brain tumors, examine challenges associated with achieving effective, durable responses, highlight unique aspects and successes of the trials, and discuss future directions of immunovirotherapy research for the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyung-Don Kang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stacie K Totsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sam Gary
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abbey Rocco
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kara Kachurak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M R Chambers
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rong Li
- Department of Pathology, University of Alabama at Birmingham, and Children's of Alabama, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard University, Boston, MA, USA.
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience 2022; 491:240-270. [PMID: 35395355 DOI: 10.1016/j.neuroscience.2022.03.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades. However, despite the advances, recurrence is often inevitable, and the survival of patients remains low. Various factors contribute to the difficulty in identifying an effective therapeutic option, among which are tumor complexity, the presence of the blood-brain barrier (BBB), and the presence of GBM cancer stem cells, prompting the need for improving existing treatment approaches and investigating new treatment alternatives for ameliorating the treatment strategies of GBM. In this review, we outline some of the most recent literature on the various available treatment options such as surgery, radiotherapy, cytotoxic chemotherapy, gene therapy, immunotherapy, phototherapy, nanotherapy, and tumor treating fields in the treatment of GBM, and we list some of the potential future directions of GBM. The reviewed studies confirm that GBM is a sophisticated disease with several challenges for scientists to address. Hence, more studies and a multimodal therapeutic approach are crucial to yield an effective cure and prolong the survival of GBM patients.
Collapse
|
27
|
Yuan B, Wang G, Tang X, Tong A, Zhou L. Immunotherapy of glioblastoma: recent advances and future prospects. Hum Vaccin Immunother 2022; 18:2055417. [PMID: 35344682 PMCID: PMC9248956 DOI: 10.1080/21645515.2022.2055417] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) stands out as the most common, aggressive form of primary malignant brain tumor conferring a devastatingly poor prognosis. Despite aggressive standard-of-care in surgical resection and chemoradiation with temozolomide, the median overall survival of patients still remains no longer than 15 months, due to significant tumor heterogeneity, immunosuppression induced by the tumor immune microenvironment and low mutational burden. Advances in immunotherapeutic approaches have revolutionized the treatment of various cancer types and become conceptually attractive for glioblastoma. In this review, we provide an overview of the basic knowledge underlying immune targeting and promising immunotherapeutic strategies including CAR T cells, oncolytic viruses, cancer vaccines, and checkpoint blockade inhibitors that have been recently investigated in glioblastoma. Current clinical trials and previous clinical trial findings are discussed, shedding light on novel strategies to overcome various limitations and challenges.
Collapse
Affiliation(s)
- Boyang Yuan
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
28
|
Chen J, Zhang Q, Zhuang Y, Liu S, Zhou X, Zhang G. Molecular mechanism of GANT61 combined with doxorubicin in the treatment of gliomas based on network pharmacology. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Biegert GWG, Rosewell Shaw A, Suzuki M. Current development in adenoviral vectors for cancer immunotherapy. Mol Ther Oncolytics 2021; 23:571-581. [PMID: 34938857 DOI: 10.1016/j.omto.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses are well characterized and thus easily modified to generate oncolytic vectors that directly lyse tumor cells and can be "armed" with transgenes to promote lysis, antigen presentation, and immunostimulation. Oncolytic adenoviruses (OAds) are safe, versatile, and potent immunostimulants in patients. Since transgene expression is restricted to the tumor, adenoviral transgenes overcome the toxicities and short half-life of systemically administered cytokines, immune checkpoint blockade molecules, and bispecific T cell engagers. While OAds expressing immunostimulatory molecules ("armed" OAds) have demonstrated anti-tumor potential in preclinical solid tumor models, the efficacy has not translated into significant clinical outcomes as a monotherapy. However, OAds synergize with established standards of care and novel immunotherapeutic agents, providing a multifaceted means to address complexities associated with solid tumors. Critically, armed OAds revitalize endogenous and adoptively transferred immune cells while simultaneously enhancing their anti-tumor function. To properly evaluate these novel vectors and reduce the gap in the cycle between bench-to-bedside and back, improving model systems must be a priority. The future of OAds will involve a multidimensional approach that provides immunostimulatory molecules, immune checkpoint blockade, and/or immune engagers in concert with endogenous and exogenous immune cells to initiate durable and comprehensive anti-tumor responses.
Collapse
Affiliation(s)
- Greyson Willis Grossman Biegert
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
30
|
Vázquez Cervantes GI, González Esquivel DF, Gómez-Manzo S, Pineda B, Pérez de la Cruz V. New Immunotherapeutic Approaches for Glioblastoma. J Immunol Res 2021; 2021:3412906. [PMID: 34557553 PMCID: PMC8455182 DOI: 10.1155/2021/3412906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510 Distrito Federal, Mexico
| | - Dinora F. González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
31
|
Elahi SM, Nazemi-Moghaddam N, Gadoury C, Lippens J, Radinovic S, Venne MH, Marcil A, Gilbert R. A rapid Focus-Forming Assay for quantification of infectious adenoviral vectors. J Virol Methods 2021; 297:114267. [PMID: 34437873 DOI: 10.1016/j.jviromet.2021.114267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Currently available methods to titrate adenoviral vectors (AdV) in the absence of a gene reporter such as GFP, are either time-consuming or not very reproducible. A Focus-Forming Assay (FFA) for quantification of infectious AdV particles followed by automated focus counting was developed using new monoclonal antibodies (mAbs) against the human adenovirus type 5. Briefly, in this method, 96-well plates of HEK293A cells were infected with 2-fold dilutions of AdV at seeding time. Forty eight hours post-infection, the cells were fixed with methanol. The cells were then incubated with each mAb followed by a FITC conjugated anti-mouse antibody. The plates were scanned and positive cells counted using an automated fluorescence microscopy system. The results of the FFA were compared with the plaque assay and the TCID50 assay. The titer of six different recombinant AdV were compared using the FFA along with a commercial kit. The results were similar, but in contrast to the commercial kit for which the stained cells are counted manually, the software automatically counts the positives cells in the FFA. The automatic counting of positive cells makes the FFA a more precise and reliable assay compared to the commercial kit for titration of AdV.
Collapse
Affiliation(s)
- Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Christine Gadoury
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Julie Lippens
- Department of Immunobiology, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Stevo Radinovic
- Department of Downstream Processing and Analytics, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Marie-Hélène Venne
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Anne Marcil
- Department of Immunobiology, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montréal, Canada; Department of Bioengineering McGill University, Montréal, Canada.
| |
Collapse
|
32
|
Appolloni I, Alessandrini F, Menotti L, Avitabile E, Marubbi D, Piga N, Ceresa D, Piaggio F, Campadelli-Fiume G, Malatesta P. Specificity, Safety, Efficacy of EGFRvIII-Retargeted Oncolytic HSV for Xenotransplanted Human Glioblastoma. Viruses 2021; 13:1677. [PMID: 34578259 PMCID: PMC8473268 DOI: 10.3390/v13091677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Glioblastoma is a lethal primary brain tumor lacking effective therapy. The secluded onset site, combined with the infiltrative properties of this tumor, require novel targeted therapies. In this scenario, the use of oncolytic viruses retargeted to glioblastoma cells and able to spread across the tumor cells represent an intriguing treatment strategy. Here, we tested the specificity, safety and efficacy of R-613, the first oncolytic HSV fully retargeted to EGFRvIII, a variant of the epidermal growth factor receptor carrying a mutation typically found in glioblastoma. An early treatment with R-613 on orthotopically transplanted EGFRvIII-expressing human glioblastoma significantly increased the median survival time of mice. In this setting, the growth of human glioblastoma xenotransplants was monitored by a secreted luciferase reporter and showed that R-613 is able to substantially delay the development of the tumor masses. When administered as late treatment to a well-established glioblastomas, R-613 appeared to be less effective. Notably the uninfected tumor cells derived from the explanted tumor masses were still susceptible to R-613 infection ex vivo, thus suggesting that multiple treatments could enhance R-613 therapeutic efficacy, making R-613 a promising oncolytic HSV candidate for glioblastoma treatment.
Collapse
Affiliation(s)
- Irene Appolloni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (I.A.); (D.M.); (N.P.); (F.P.)
| | | | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (L.M.); (E.A.)
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (L.M.); (E.A.)
| | - Daniela Marubbi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (I.A.); (D.M.); (N.P.); (F.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.A.); (D.C.)
| | - Noemi Piga
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (I.A.); (D.M.); (N.P.); (F.P.)
| | - Davide Ceresa
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.A.); (D.C.)
| | - Francesca Piaggio
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (I.A.); (D.M.); (N.P.); (F.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.A.); (D.C.)
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Paolo Malatesta
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (I.A.); (D.M.); (N.P.); (F.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.A.); (D.C.)
| |
Collapse
|
33
|
A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation. Sci Rep 2021; 11:16088. [PMID: 34373477 PMCID: PMC8352973 DOI: 10.1038/s41598-021-94573-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Two-cycle cesium chloride (2 × CsCl) gradient ultracentrifugation is a conventional approach for purifying recombinant adenoviruses (rAds) for research purposes (gene therapy, vaccines, and oncolytic vectors). However, rAds containing the RGD-4C peptide in the HI loop of the fiber knob domain tend to aggregate during 2 × CsCl gradient ultracentrifugation resulting in a low infectious titer yield or even purification failure. An iodixanol-based purification method preventing aggregation of the RGD4C-modified rAds has been proposed. However, the reason explaining aggregation of the RGD4C-modified rAds during 2 × CsCl but not iodixanol gradient ultracentrifugation has not been revealed. In the present study, we showed that rAds with the RGD-4C peptide in the HI loop but not at the C-terminus of the fiber knob domain were prone to aggregate during 2 × CsCl but not iodixanol gradient ultracentrifugation. The cysteine residues with free thiol groups after the RGD motif within the inserted RGD-4C peptide were responsible for formation of the interparticle disulfide bonds under atmospheric oxygen and aggregation of Ad5-delta-24-RGD4C-based rAds during 2 × CsCl gradient ultracentrifugation, which could be prevented using iodixanol gradient ultracentrifugation, most likely due to antioxidant properties of iodixanol. A cysteine-to-glycine substitution of the cysteine residues with free thiol groups (RGD-2C2G) prevented aggregation during 2 × CsCl gradient purification but in coxsackie and adenovirus receptor (CAR)-low/negative cancer cell lines of human and rodent origin, this reduced cytolytic efficacy to the levels observed for a fiber non-modified control vector. However, both Ad5-delta-24-RGD4C and Ad5-delta-24-RGD2C2G were equally effective in the murine immunocompetent CT-2A glioma model due to a primary role of antitumor immune responses in the therapeutic efficacy of oncolytic virotherapy.
Collapse
|
34
|
Núñez-Manchón E, Farrera-Sal M, Otero-Mateo M, Castellano G, Moreno R, Medel D, Alemany R, Villanueva E, Fillat C. Transgene codon usage drives viral fitness and therapeutic efficacy in oncolytic adenoviruses. NAR Cancer 2021; 3:zcab015. [PMID: 34316705 PMCID: PMC8210037 DOI: 10.1093/narcan/zcab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 11/14/2022] Open
Abstract
Arming oncolytic adenoviruses with therapeutic transgenes is a well-established strategy for multimodal tumour attack. However, this strategy sometimes leads to unexpected attenuated viral replication and a loss of oncolytic effects, preventing these viruses from reaching the clinic. Previous work has shown that altering codon usage in viral genes can hamper viral fitness. Here, we have analysed how transgene codon usage impacts viral replication and oncolytic activity. We observe that, although transgenes with optimized codons show high expression levels at the first round of infection, they impair viral fitness and are therefore not expressed in a sustained manner. Conversely, transgenes encoded by suboptimal codons do not compromise viral replication and are thus stably expressed over time, allowing a greater oncolytic activity both in vitro and in vivo. Altogether, our work shows that fine-tuning codon usage leads to a concerted optimization of transgene expression and viral replication paving the way for the rational design of more efficacious oncolytic therapies.
Collapse
Affiliation(s)
- Estela Núñez-Manchón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Martí Farrera-Sal
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - Marc Otero-Mateo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Giancarlo Castellano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Rafael Moreno
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - David Medel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Ramon Alemany
- Cancer Virotherapy Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, 08907-L'Hospitalet de Llobregat, Spain
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| |
Collapse
|
35
|
Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Rev Rep 2021; 18:523-543. [PMID: 34319509 DOI: 10.1007/s12015-021-10207-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Evasion of growth suppression is among the prominent hallmarks of cancer. Phosphatase and tensin homolog (PTEN) and p53 tumor-suppressive pathways are compromised in most human cancers, including glioblastoma (GB). Hence, these signaling pathways are an ideal point of focus for novel cancer therapeutics. Recombinant viruses can selectivity kill cancer cells and carry therapeutic genes to tumors. Specifically, oncolytic viruses (OV) have been successfully employed for gene delivery in GB animal models and showed potential to neutralize immunosuppression at the tumor site. However, the associated systemic immunogenicity, inefficient transduction of GB cells, and inadequate distribution to metastatic tumors have been the major bottlenecks in clinical studies. Mesenchymal stem cells (MSCs), with tumor-tropic properties and immune privilege, can improve OVs targeting. Remarkably, combining the two approaches can address their individual issues. Herein, we summarize findings to advocate the reactivation of tumor suppressors p53 and PTEN in GB treatment and use MSCs as a "Trojan horse" to carry oncolytic viral cargo to disseminated tumor beds. The integration of MSCs and OVs can emerge as the new paradigm in cancer treatment.
Collapse
|
36
|
Kasten BB, Houson HA, Coleman JM, Leavenworth JW, Markert JM, Wu AM, Salazar F, Tavaré R, Massicano AVF, Gillespie GY, Lapi SE, Warram JM, Sorace AG. Positron emission tomography imaging with 89Zr-labeled anti-CD8 cys-diabody reveals CD8 + cell infiltration during oncolytic virus therapy in a glioma murine model. Sci Rep 2021; 11:15384. [PMID: 34321569 PMCID: PMC8319402 DOI: 10.1038/s41598-021-94887-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Determination of treatment response to immunotherapy in glioblastoma multiforme (GBM) is a process which can take months. Detection of CD8+ T cell recruitment to the tumor with a noninvasive imaging modality such as positron emission tomography (PET) may allow for tumor characterization and early evaluation of therapeutic response to immunotherapy. In this study, we utilized 89Zr-labeled anti-CD8 cys-diabody-PET to provide proof-of-concept to detect CD8+ T cell immune response to oncolytic herpes simplex virus (oHSV) M002 immunotherapy in a syngeneic GBM model. Immunocompetent mice (n = 16) were implanted intracranially with GSC005 GBM tumors, and treated with intratumoral injection of oHSV M002 or saline control. An additional non-tumor bearing cohort (n = 4) receiving oHSV M002 treatment was also evaluated. Mice were injected with 89Zr-labeled anti-CD8 cys-diabody seven days post oHSV administration and imaged with a preclinical PET scanner. Standardized uptake value (SUV) was quantified. Ex vivo tissue analyses included autoradiography and immunohistochemistry. PET imaging showed significantly higher SUV in tumors which had been treated with M002 compared to those without M002 treatment (p = 0.0207) and the non-tumor bearing M002 treated group (p = 0.0021). Accumulation in target areas, especially the spleen, was significantly reduced by blocking with the non-labeled diabody (p < 0.001). Radioactive probe accumulation in brains was consistent with CD8+ cell trafficking patterns after oHSV treatment. This PET imaging strategy could aid in distinguishing responders from non-responders during immunotherapy of GBM.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA
| | - Jennifer M Coleman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna M Wu
- Department of Immunology and Theranostics, City of Hope, Duarte, CA, USA
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Felix Salazar
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | | | - Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason M Warram
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Otolaryngology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Volker Hall G082, 1670 University Boulevard, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
37
|
Xia M, Meng G, Dong J. [Synergistic Effect of NF-κB Signaling Pathway Inhibitor and Oncolytic
Measles Virus Vaccine Strain against Lung Cancer and Underlying Mechanisms]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:245-253. [PMID: 33775041 PMCID: PMC8105609 DOI: 10.3779/j.issn.1009-3419.2021.102.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
背景与目的 肺癌已成为我国发病率和死亡率居首位的恶性肿瘤。能自我复制、选择性杀伤肿瘤的溶瘤病毒,是治疗恶性肿瘤的有效策略,而其中溶瘤麻疹病毒疫苗株因其良好的溶瘤效果,且对正常细胞无损伤或微损伤,已进入几项临床试验。本研究旨在探讨核转录因子κB(nuclear factor kappa B, NF-κB)信号通路抑制剂与溶瘤麻疹病毒疫苗株协同抗肺癌的作用及机制。 方法 应用Western blot方法检测MV-Edm感染人肺癌细胞A549和H1299并应用细胞自噬相关的siRNA或者应用NF-кB通路抑制剂PS1145后SQSTM1、p-IκBα、IκBα、PARP及BAX的表达水平,运用流式细胞术分析各组细胞凋亡率的变化,同时采用噻唑蓝[3-(4, 5)-dimethylthiahiazo(-z-y1)-3, 5-di-phenytetrazoliumromide, MTT]法检测各组细胞的存活率。 结果 Western blot结果显示MV-Edm感染人肺癌细胞A549和H1299后,自噬引起NF-κB通路的激活,进而抑制细胞凋亡。抑制细胞自噬可抑制NF-κB通路的激活,MV-Edm感染后p-IκBα表达水平随着感染时间有不同程度的升高,IκBα的表达水平则降低,NF-κB通路抑制剂PS1145可促进人肺癌细胞A549和H1299凋亡(P < 0.01),并增强其溶瘤效果。 结论 NF-κB信号通路抑制剂PS1145与溶瘤麻疹病毒疫苗株联合可促进人肺癌细胞A549和H1299凋亡,并增强其溶瘤效果。
Collapse
Affiliation(s)
- Mao Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210007, China
| | - Gang Meng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210007, China
| | - Jie Dong
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210007, China
| |
Collapse
|
38
|
Carpenter AB, Carpenter AM, Aiken R, Hanft S. Oncolytic virus in gliomas: a review of human clinical investigations. Ann Oncol 2021; 32:968-982. [PMID: 33771666 DOI: 10.1016/j.annonc.2021.03.197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Gliomas remain one of the more frustrating targets for oncologic therapy. Glioma resistance to conventional therapeutics is a product of their immune-privileged milieu behind the blood-brain barrier, in addition to their suppressive effect on the immune response itself. Taking the lead from the growing success of immunotherapy for systemic cancers, such as lung cancer and melanoma, immunotherapeutics has emerged as a major player in the potential treatment of gliomas, with oncolytic viruses in particular showing significant promise as evidenced by the recent Breakthrough and Fast Tract Designations for PVSRIPO and DNX2401. This review serves as a useful and updated compendium of the completed human clinical investigations for several oncolytic viruses in the treatment of gliomas.
Collapse
Affiliation(s)
- A B Carpenter
- Georgetown University School of Medicine, Washington, USA.
| | - A M Carpenter
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, USA
| | - R Aiken
- Gerald J. Glasser Brain Tumor Center, Atlantic Healthcare, Summit, USA
| | - S Hanft
- Department of Neurological Surgery, Westchester Medical Center, New York Medical College, Valhalla, USA
| |
Collapse
|
39
|
Martikainen M, Ramachandran M, Lugano R, Ma J, Martikainen MM, Dimberg A, Yu D, Merits A, Essand M. IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:37-46. [PMID: 33869741 PMCID: PMC8042242 DOI: 10.1016/j.omto.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 03/14/2021] [Indexed: 12/25/2022]
Abstract
Oncolytic virotherapy holds promise of effective immunotherapy against otherwise nonresponsive cancers such as glioblastoma. Our previous findings have shown that although oncolytic Semliki Forest virus (SFV) is effective against various mouse glioblastoma models, its therapeutic potency is hampered by type I interferon (IFN-I)-mediated antiviral signaling. In this study, we constructed a novel IFN-I-resistant SFV construct, SFV-AM6, and evaluated its therapeutic potency in vitro, ex vivo, and in vivo in the IFN-I competent mouse GL261 glioma model. In vitro analysis shows that SFV-AM6 causes immunogenic apoptosis in GL261 cells despite high IFN-I signaling. MicroRNA-124 de-targeted SFV-AM6-124T selectively replicates in glioma cells, and it can infect orthotopic GL261 gliomas when administered intraperitoneally. The combination of SFV-AM6-124T and anti-programmed death 1 (PD1) immunotherapy resulted in increased immune cell infiltration in GL261 gliomas, including an increased tumor-reactive CD8+ fraction. Our results show that SFV-AM6-124T can overcome hurdles of innate anti-viral signaling. Combination therapy with SFV-AM6-124T and anti-PD1 promotes the inflammatory response and improves the immune microenvironment in the GL261 glioma model.
Collapse
Affiliation(s)
- Miika Martikainen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Corresponding author: Miika Martikainen, Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden.
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jing Ma
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
41
|
Kasala D, Hong J, Yun CO. Overcoming the barriers to optimization of adenovirus delivery using biomaterials: Current status and future perspective. J Control Release 2021; 332:285-300. [PMID: 33626335 DOI: 10.1016/j.jconrel.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
Adenovirus (Ad) is emerging as a promising modality for cancer gene therapy due to its ability to induce high level of therapeutic transgene expression with no risk of insertional mutagenesis, ability to be facilely produced at a high titer, and capacity to induce robust antitumor immune response. Despite these excellent attributes of human serotype 5 Ad, poor systemic administration capability, coxsackie and adenovirus receptor (CAR)-dependent endocytic mechanism limiting potentially targetable cell types, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances toward maximizing the therapeutic benefit of Ad in clinical setting. To address the abovementioned shortcomings, various non-immunogenic nanomaterials have been explored to modify Ad surface via physical or chemical interactions. In this review, we summarize the recent developments of different types of nanomaterials that had been utilized for modification of Ad and how tumor-targeted local and system delivery can be achieved with these nanocomplexes. Finally, we conclude by highlighting the key features of various nanomaterials-coated Ads and their prospects to optimize the delivery of virus.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea.
| |
Collapse
|
42
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
43
|
Kiyokawa J, Kawamura Y, Ghouse SM, Acar S, Barçın E, Martínez-Quintanilla J, Martuza RL, Alemany R, Rabkin SD, Shah K, Wakimoto H. Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clin Cancer Res 2021; 27:889-902. [PMID: 33257429 PMCID: PMC7854507 DOI: 10.1158/1078-0432.ccr-20-2400] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Extracellular matrix (ECM) component hyaluronan (HA) facilitates malignant phenotypes of glioblastoma (GBM), however, whether HA impacts response to GBM immunotherapies is not known. Herein, we investigated whether degradation of HA enhances oncolytic virus immunotherapy for GBM. EXPERIMENTAL DESIGN Presence of HA was examined in patient and murine GBM. Hyaluronidase-expressing oncolytic adenovirus, ICOVIR17, and its parental virus, ICOVIR15, without transgene, were tested to determine if they increased animal survival and modulated the immune tumor microenvironment (TME) in orthotopic GBM. HA regulation of NF-κB signaling was examined in virus-infected murine macrophages. We combined ICOVIR17 with PD-1 checkpoint blockade and assessed efficacy and determined mechanistic contributions of tumor-infiltrating myeloid and T cells. RESULTS Treatment of murine orthotopic GBM with ICOVIR17 increased tumor-infiltrating CD8+ T cells and macrophages, and upregulated PD-L1 on GBM cells and macrophages, leading to prolonged animal survival, compared with control virus ICOVIR15. High molecular weight HA inhibits adenovirus-induced NF-κB signaling in macrophages in vitro, linking HA degradation to macrophage activation. Combining ICOVIR17 with anti-PD-1 antibody further extended the survival of GBM-bearing mice, achieving long-term remission in some animals. Mechanistically, CD4+ T cells, CD8+ T cells, and macrophages all contributed to the combination therapy that induced tumor-associated proinflammatory macrophages and tumor-specific T-cell cytotoxicity locally and systemically. CONCLUSIONS Our studies are the first to show that immune modulatory ICOVIR17 has a dual role of mediating degradation of HA within GBM ECM and subsequently modifying the immune landscape of the TME, and offers a mechanistic combination immunotherapy with PD-L1/PD-1 blockade that remodels innate and adaptive immune cells.
Collapse
Affiliation(s)
- Juri Kiyokawa
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Yoichiro Kawamura
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Shanawaz M Ghouse
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Simge Acar
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Erinç Barçın
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordi Martínez-Quintanilla
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Robert L Martuza
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Ramon Alemany
- ProCure Program, Catalan Institute of Oncology - ICO and Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Samuel D Rabkin
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts.
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Boston, Massachusetts.
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Srinivasan VM, Lang FF, Kan P. Intraarterial delivery of virotherapy for glioblastoma. Neurosurg Focus 2021; 50:E7. [PMID: 33524944 DOI: 10.3171/2020.11.focus20845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022]
Abstract
Oncolytic viruses (OVs) have been used in the treatment of cancer, in a focused manner, since the 1990s. These OVs have become popular in the treatment of several cancers but are only now gaining interest in the treatment of glioblastoma (GBM) in recent clinical trials. In this review, the authors discuss the unique applications of intraarterial (IA) delivery of OVs, starting with concepts of OV, how they apply to IA delivery, and concluding with discussion of the current ongoing trials. Several OVs have been used in the treatment of GBM, including specifically several modified adenoviruses. IA delivery of OVs has been performed in the hepatic circulation and is now being studied in the cerebral circulation to help enhance delivery and specificity. There are some interesting synergies with immunotherapy and IA delivery of OVs. Some of the shortcomings are discussed, specifically the systemic response to OVs and feasibility of treatment. Future studies can be performed in the preclinical setting to identify the ideal candidates for translation into clinical trials, as well as the nuances of this novel delivery method.
Collapse
Affiliation(s)
- Visish M Srinivasan
- 1Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Frederick F Lang
- 2Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Peter Kan
- 3Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
45
|
Ene CI, Fueyo J, Lang FF. Delta-24 adenoviral therapy for glioblastoma: evolution from the bench to bedside and future considerations. Neurosurg Focus 2021; 50:E6. [PMID: 33524949 DOI: 10.3171/2020.11.focus20853] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022]
Abstract
Delta-24-based oncolytic viruses are conditional replication adenoviruses developed to selectively infect and replicate in retinoblastoma 1 (Rb)-deficient cancer cells but not normal cell with intact Rb1 pathways. Over the years, there has been a significant evolution in the design of Delta-24 based on a better understanding of the underlying basis for infection, replication, and spread within cancer. One example is the development of Delta-24-RGD (DNX-2401), where the arginine-glycine-aspartate (RGD) domain enhances the infectivity of Delta-24 for cancer cells. DNX-2401 demonstrated objective biological and clinical responses during a phase I window of opportunity clinical trial for recurrent human glioblastoma. In long-term responders (> 3 years), there was evidence of immune infiltration (T cells and macrophages) into the tumor microenvironment with minimal toxicity. Although more in-depth analysis and phase III studies are pending, these results indicate that Delta-24-based adenovirus therapy may induce an antitumor response in glioblastoma, resulting in long-term antitumor immune response. In this review, the authors discuss the preclinical and clinical development of Delta-24 oncolytic adenoviral therapy for glioblastoma and describe structural improvements to Delta-24 that have enhanced its efficacy in vivo. They also highlight ongoing research that attempts to address the remaining obstacles limiting efficacy of Delta-24 adenovirus therapy for glioblastoma.
Collapse
Affiliation(s)
| | - Juan Fueyo
- Departments of1Neurosurgery and.,2Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
46
|
Kawka K, Wilton AN, Madadkar P, Medina MFC, Lichty BD, Ghosh R, Latulippe DR. Integrated development of enzymatic DNA digestion and membrane chromatography processes for the purification of therapeutic adenoviruses. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Hwang JK, Hong J, Yun CO. Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials. Int J Mol Sci 2020; 21:E8627. [PMID: 33207653 PMCID: PMC7697902 DOI: 10.3390/ijms21228627] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function. However, ICI therapies are effective only in a small subset of patients and show limited therapeutic potential due to their inability to demonstrate efficacy in 'cold' or unresponsive tumor microenvironments (TMEs). Relatedly, oncolytic viruses (OVs) have been shown to induce antitumor immune responses, augment the efficacy of existing cancer treatments, and reform unresponsive TME to turn 'cold' tumors 'hot,' increasing their susceptibility to checkpoint blockade immunotherapies. For this reason, OVs serve as ideal complements to ICIs, and multiple preclinical studies and clinical trials are demonstrating their combined therapeutic efficacy. This review will discuss the merits and limitations of OVs and ICIs as monotherapy then progress onto the preclinical rationale and the results of clinical trials of key combination therapies.
Collapse
Affiliation(s)
- June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Institute of Nano Science and Technology, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
48
|
Cunliffe TG, Bates EA, Parker AL. Hitting the Target but Missing the Point: Recent Progress towards Adenovirus-Based Precision Virotherapies. Cancers (Basel) 2020; 12:E3327. [PMID: 33187160 PMCID: PMC7696810 DOI: 10.3390/cancers12113327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
More people are surviving longer with cancer. Whilst this can be partially attributed to advances in early detection of cancers, there is little doubt that the improvement in survival statistics is also due to the expansion in the spectrum of treatments available for efficacious treatment. Transformative amongst those are immunotherapies, which have proven effective agents for treating immunogenic forms of cancer, although immunologically "cold" tumour types remain refractive. Oncolytic viruses, such as those based on adenovirus, have great potential as anti-cancer agents and have seen a resurgence of interest in recent years. Amongst their many advantages is their ability to induce immunogenic cell death (ICD) of infected tumour cells, thus providing the alluring potential to synergise with immunotherapies by turning immunologically "cold" tumours "hot". Additionally, enhanced immune mediated cell killing can be promoted through the local overexpression of immunological transgenes, encoded from within the engineered viral genome. To achieve this full potential requires the development of refined, tumour selective "precision virotherapies" that are extensively engineered to prevent off-target up take via native routes of infection and targeted to infect and replicate uniquely within malignantly transformed cells. Here, we review the latest advances towards this holy grail within the adenoviral field.
Collapse
Affiliation(s)
| | | | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (T.G.C.); (E.A.B.)
| |
Collapse
|
49
|
Rius-Rocabert S, García-Romero N, García A, Ayuso-Sacido A, Nistal-Villan E. Oncolytic Virotherapy in Glioma Tumors. Int J Mol Sci 2020; 21:ijms21207604. [PMID: 33066689 PMCID: PMC7589679 DOI: 10.3390/ijms21207604] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma tumors are one of the most devastating cancer types. Glioblastoma is the most advanced stage with the worst prognosis. Current therapies are still unable to provide an effective cure. Recent advances in oncolytic immunotherapy have generated great expectations in the cancer therapy field. The use of oncolytic viruses (OVs) in cancer treatment is one such immune-related therapeutic alternative. OVs have a double oncolytic action by both directly destroying the cancer cells and stimulating a tumor specific immune response to return the ability of tumors to escape the control of the immune system. OVs are one promising alternative to conventional therapies in glioma tumor treatment. Several clinical trials have proven the feasibility of using some viruses to specifically infect tumors, eluding undesired toxic effects in the patient. Here, we revisited the literature to describe the main OVs proposed up to the present moment as therapeutic alternatives in order to destroy glioma cells in vitro and trigger tumor destruction in vivo. Oncolytic viruses were divided with respect to the genome in DNA and RNA viruses. Here, we highlight the results obtained in various clinical trials, which are exploring the use of these agents as an alternative where other approaches provide limited hope.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668 Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Correspondence: (A.A.-S.); (E.N.-V.); Tel.: +34-913-724-714 (E.N.-V.)
| | - Estanislao Nistal-Villan
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668 Madrid, Spain
- Correspondence: (A.A.-S.); (E.N.-V.); Tel.: +34-913-724-714 (E.N.-V.)
| |
Collapse
|
50
|
Zhang W, Chen CC, Ning J. Combining oncolytic virus with FDA approved pharmacological agents for cancer therapy. Expert Opin Biol Ther 2020; 21:183-189. [PMID: 32799567 DOI: 10.1080/14712598.2020.1811848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) have been engineered to selectively replicate in cancer cells. While initially thought to exert its anti-cancer effects through direct cytolysis, it is increasingly appreciated that OVs interact with a multitude of cellular processes during its life cycle; FDA approved pharmacologic agents that modulate these cellular processes have been shown to augment the anti-neoplastic effects of OVs. Moreover, because of the release of tumor antigens as well as the innate immuno-stimulatory nature of viruses, OVs induce potent immune responses that augment the anti-tumor effects of FDA approved immunotherapies. There is mounting interest in OV as a platform for combinational anti-cancer therapy in this context. AREAS COVERED We will review pre-clinical and clinical data that demonstrate proof-of-principle and potential efficacy for OV-based combination therapies with FDA approved anti-cancer agents. EXPERT OPINION While the cytolytic activity of OV remains a key driver for its anti-neoplastic effects, understanding the virus-host interactions may afford opportunities for potential synergism with FDA approved therapeutics that target these interactions. Most intriguingly, the immune stimulatory effects of OVs renders combination with FDA approved immunotherapies more potent. While there are growing clinical trials employing such combination therapy, meaningful advances in this paradigm will require improved understanding of virus-host interactions.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, University of Minnesota Medical School , Minneapolis, MN, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Medical School , Minneapolis, MN, USA
| | - Jianfang Ning
- Department of Neurosurgery, University of Minnesota Medical School , Minneapolis, MN, USA
| |
Collapse
|