1
|
Yan R, Zou C, Yang X, Zhuang W, Huang Y, Zheng X, Hu J, Liao L, Yao Y, Sun X, Hu WW. Nebulized inhalation drug delivery: clinical applications and advancements in research. J Mater Chem B 2025; 13:821-843. [PMID: 39652178 DOI: 10.1039/d4tb01938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors. Next, we compare the advantages and disadvantages of different types of nebulizers. Finally, we explore the clinical applications and recent research developments of nebulized inhalation therapy. By delving into these aspects, we aim to gain a deeper understanding of its pivotal role in contemporary medical treatment.
Collapse
Affiliation(s)
- Ruyi Yan
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chang Zou
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiaohang Yang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yushi Huang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiuli Zheng
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingni Liao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Francis D, Chacko AM, Anoop A, Nadimuthu S, Venugopal V. Evolution of biosynthetic human insulin and its analogues for diabetes management. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:191-256. [PMID: 39059986 DOI: 10.1016/bs.apcsb.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hormones play a crucial role in maintaining the normal human physiology. By acting as chemical messengers that facilitate the communication between different organs, tissues and cells of the body hormones assist in responding appropriately to external and internal stimuli that trigger growth, development and metabolic activities of the body. Any abnormalities in the hormonal composition and balance can lead to devastating health consequences. Hormones have been important therapeutic agents since the early 20th century, when it was realized that their exogenous supply could serve as a functional substitution for those hormones which are not produced enough or are completely lacking, endogenously. Insulin, the pivotal anabolic hormone in the body, was used for the treatment of diabetes mellitus, a metabolic disorder due to the absence or intolerance towards insulin, since 1921 and is the trailblazer in hormone therapeutics. At present the largest market share for therapeutic hormones is held by insulin. Many other hormones were introduced into clinical practice following the success with insulin. However, for the six decades following the introduction the first therapeutic hormone, there was no reliable method for producing human hormones. The most common source for hormones were animals, although semisynthetic and synthetic hormones were also developed. However, none of these were optimal because of their allergenicity, immunogenicity, lack of consistency in purity and most importantly, scalability. The advent of recombinant DNA technology was a game changer for hormone therapeutics. This revolutionary molecular biology tool made it possible to synthesize human hormones in microbial cell factories. The approach allowed for the synthesis of highly pure hormones which were structurally and biochemically identical to the human hormones. Further, the fermentation techniques utilized to produce recombinant hormones were highly scalable. Moreover, by employing tools such as site directed mutagenesis along with recombinant DNA technology, it became possible to amend the molecular structure of the hormones to achieve better efficacy and mimic the exact physiology of the endogenous hormone. The first recombinant hormone to be deployed in clinical practice was insulin. It was called biosynthetic human insulin to reflect the biological route of production. Subsequently, the biochemistry of recombinant insulin was modified using the possibilities of recombinant DNA technology and genetic engineering to produce analogues that better mimic physiological insulin. These analogues were tailored to exhibit pharmacokinetic and pharmacodynamic properties of the prandial and basal human insulins to achieve better glycemic control. The present chapter explores the principles of genetic engineering applied to therapeutic hormones by reviewing the evolution of therapeutic insulin and its analogues. It also focuses on how recombinant analogues account for the better management of diabetes mellitus.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Aksa Mariyam Chacko
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Anagha Anoop
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Subramani Nadimuthu
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Vaishnavi Venugopal
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Lokhande KB, Banerjee T, Swamy KV, Ghosh P, Deshpande M. An in silico scientific basis for LL-37 as a therapeutic for Covid-19. Proteins 2022; 90:1029-1043. [PMID: 34333809 PMCID: PMC8441666 DOI: 10.1002/prot.26198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
A multi-pronged approach with help in all forms possible is essential to completely overcome the Covid-19 pandemic. There is a requirement to research as many new and different types of approaches as possible to cater to the entire world population, complementing the vaccines with promising results. The need is also because SARS-CoV-2 has several unknown or variable facets which get revealed from time to time. In this work, in silico scientific findings are presented, which are indicative of the potential for the use of the LL-37 human anti-microbial peptide as a therapeutic against SARS-CoV-2. This indication is based on the high structural similarity of LL-37 to the N-terminal helix, with which the virus interacts, of the receptor for SARS-CoV-2, Angiotensin Converting Enzyme 2. Moreover, there is positive prediction of binding of LL-37 to the receptor-binding domain of SARS-CoV-2; this is the first study to have described this interaction. In silico data on the safety of LL-37 are also reported. As Vitamin D is known to upregulate the expression of LL-37, the vitamin is a candidate preventive molecule. This work provides the possible basis for an inverse correlation between Vitamin D levels in the body and the severity of or susceptibility to Covid-19, as widely reported in literature. With the scientific link put forth herein, Vitamin D could be used at an effective, medically prescribed, safe dose as a preventive. The information in this report would be valuable in bolstering the worldwide efforts to eliminate the pandemic as early as possible.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics InstitutePuneMaharashtraIndia
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Bangalore‐Mumbai HighwayPuneMaharashtraIndia
| | - Tanushree Banerjee
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Bangalore‐Mumbai HighwayPuneMaharashtraIndia
- Molecular Neuroscience Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics InstitutePuneMaharashtraIndia
| | - Kakumani Venkateswara Swamy
- MIT School of Bioengineering Sciences & Research, A Constituent Unit of MIT ArtDesign and Technology UniversityPuneMaharashtraIndia
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune UniversityPuneMaharashtraIndia
| | - Manisha Deshpande
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Bangalore‐Mumbai HighwayPuneMaharashtraIndia
| |
Collapse
|
4
|
Gao Y, Zhang Q, Sun J, Liang Y, Zhang M, Zhao M, Zhang K, Dong C, Ma Q, Liu W, Li W, Chen Y, Han L, Jin F. Extracellular vesicles derived from PM2.5‐exposed alveolar epithelial cells mediate endothelial adhesion and atherosclerosis in ApoE
−/−
mice. FASEB J 2022; 36:e22161. [PMID: 35061300 DOI: 10.1096/fj.202100927rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Yongheng Gao
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qian Zhang
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Jinbo Sun
- Department of Urology General Hospital of the Central Theater Command Wuhan China
| | - Yuan Liang
- Department of Geriatrics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Minlong Zhang
- Department of Respiration The 309th Hospital of the Chinese People's Liberation Army Beijing China
| | - Mingxuan Zhao
- Research Center of Clinical Pharmacology the First Affiliated Hospital of Yunnan University of Chinese Medicine Kunming China
| | - Kailiang Zhang
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Chuan Dong
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qiong Ma
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wei Liu
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wangping Li
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Yanwei Chen
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Luyao Han
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Faguang Jin
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
5
|
Ergun-Longmire B, Clemente E, Vining-Maravolo P, Roberts C, Buth K, Greydanus DE. Diabetes education in pediatrics: How to survive diabetes. Dis Mon 2021; 67:101153. [PMID: 33541707 DOI: 10.1016/j.disamonth.2021.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most common abnormal carbohydrate metabolism disorder affecting millions of people worldwide. It is characterized by hyperglycemia as a result of ß-cell destruction or dysfunction by both genetic and environmental factors. Over time chronic hyperglycemia leads to microvascular (i.e., retinopathy, nephropathy and neuropathy) and macrovascular (i.e., ischemic heart disease, peripheral vascular disease, and cerebrovascular disease) complications of diabetes. Diabetes complication trials showed the importance of achieving near-normal glycemic control to prevent and/or reduce diabetes-related morbidity and mortality. There is a staggering rate of increased incidence of diabetes in youth, raising concerns for future generations' health, quality of life and its enormous economic burden. Despite advancements in the technology, diabetes management remains cumbersome. Training individuals with diabetes to gain life-long survival skills requires a comprehensive and ongoing diabetes education by a multidisciplinary team. Diabetes education and training start at the time of diagnosis of diabetes and should be continuous throughout the course of disease. The goal is to empower the individuals and families to gain diabetes self-management skills. Diabetes education must be individualized depending on the individual's age, education, family dynamics, and support. In this article, we review the history of diabetes, etiopathogenesis and clinical presentation of both type 1 and type 2 diabetes in children as well as adolescents. We then focus on diabetes management with education methods and materials.
Collapse
Affiliation(s)
- Berrin Ergun-Longmire
- Associate Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| | - Ethel Clemente
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Patricia Vining-Maravolo
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Cheryl Roberts
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Koby Buth
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Donald E Greydanus
- Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI United States
| |
Collapse
|
6
|
Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28:1655-1665. [PMID: 33424258 PMCID: PMC7783104 DOI: 10.1016/j.jsps.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary route of drug delivery has drawn significant attention due to the limitations associated with conventional routes and available treatment options. Drugs administered through pulmonary route has been an important research area that focuses on to developing effective therapeutic interventions for asthma, chronic obstructive pulmonary disease, tuberculosis, lung cancer etc. The intravenous route has been a natural route of delivery of proteins and peptides but associated with several issues including high cost, needle-phobia, pain, sterility issues etc. These issues might be addressed by the pulmonary administration of macromolecules to achieving an effective delivery and efficacious therapeutic impact. Efforts have been made to develop novel drug delivery systems (NDDS) such as nanoparticles, microparticles, liposomes and their engineered versions, polymerosomes, micelles etc to achieving targeted and sustained delivery of drug(s) through pulmonary route. Further, novel approaches such as polymer-drug conjugates, mucoadhesive particles and mucus penetrating particles have attracted significant attention due to their unique features for an effective delivery of drugs. Also, use of semi flourinated alkanes is in use for improvising the pulmonary delivery of lipophilic drugs. Present review focuses on to unravel the mechanism of pulmonary absorption of drugs for major pulmonary diseases. It summarizes the development of interventional approaches using various particulate and vesicular drug delivery systems. In essence, the orchestrated attempt presents an inflammatory narrative on the advancements in the field of pulmonary drug delivery.
Collapse
|
7
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Abstract
Dose is highly important to studies of inhaled agents because there must be an understanding of the dose delivered to humans, the dose delivered to animals in toxicology studies, and an ability to interpret and compare both sets of information relative to safety. Unlike oral or intravenous administrations, total delivered or inhaled dose is not easy to determine following inhalation exposure and is also not necessarily the most important determinant of toxicity. A review of dose distribution throughout the respiratory tract as well as total inhaled dose is provided. The implications of regional deposition for biologics are reviewed and specific examples over a range of different molecular weights are provided. Biologics are generally large enough that absorption from ciliated epithelia is low. Thus, deposition of biologics in head airways and tracheobronchial regions is unlikely to be of high importance unless there are interactions with specific receptors at these sites. Therefore, it is the dose of proteins or biologics deposited in the alveolar region that are generally of most interest.
Collapse
|
9
|
Cunningham SM, Tanner DA. A Review: The Prospect of Inhaled Insulin Therapy via Vibrating Mesh Technology to Treat Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5795. [PMID: 32785196 PMCID: PMC7460322 DOI: 10.3390/ijerph17165795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023]
Abstract
Background: Inhaled insulin has proven to be viable and, in some aspects, a more effective alternative to subcutaneous insulin. Past and present insulin inhaler devices have not found clinical or commercial success. Insulin inhalers create a dry powder or soft mist insulin aerosol, which does not provide the required uniform particle size or aerosol volume for deep lung deposition. Methods: The primary focus of this review is to investigate the potential treatment of diabetes with a wet insulin aerosol. Vibrating mesh nebulisers allow the passive inhalation of a fine wet mist aerosol for the administration of drugs to the pulmonary system in higher volumes than other small-volume nebulisers. Results: At present, there is a significant focus on vibrating mesh nebulisers from the pharmaceutical and biomedical industries for the systemic administration of pharmaceuticals for non-traditional applications such as vaccines or the treatment of diabetes. Systemic drug administration using vibrating mesh nebulisers leads to faster-acting pharmaceuticals with a reduction in drug latency. Conclusions: Systemic conditions such as diabetes, require the innovative development of custom vibrating mesh devices to provide the desired flow rates and droplet size for effective inhaled insulin administration.
Collapse
Affiliation(s)
| | - David A. Tanner
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland;
| |
Collapse
|
10
|
Zaric BL, Obradovic M, Sudar-Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug Delivery Systems for Diabetes Treatment. Curr Pharm Des 2020; 25:166-173. [PMID: 30848184 DOI: 10.2174/1381612825666190306153838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Insulin is essential for the treatment of Type 1 diabetes mellitus (T1DM) and is necessary in numerous cases of Type 2 diabetes mellitus (T2DM). Prolonged administration of anti-diabetic therapy is necessary for the maintenance of the normal glucose levels and thereby preventing vascular complications. A better understanding of the disease per se and the technological progress contribute to the development of new approaches with the aim to achieve better glycemic control. OBJECTIVE Current therapies for DM are faced with some challenges. The purpose of this review is to analyze in detail the current trends for insulin delivery systems for diabetes treatment. RESULTS Contemporary ways have been proposed for the management of both types of diabetes by adequate application of drug via subcutaneous, buccal, oral, ocular, nasal, rectal and pulmonary ways. Development of improved oral administration of insulin is beneficial regarding mimicking physiological pathway of insulin and minimizing the discomfort of the patient. Various nanoparticle carriers for oral and other ways of insulin delivery are currently being developed. Engineered specific properties of nanoparticles (NP): controlling toxicity of NP, stability and drug release, can allow delivery of higher concentration of the drug to the desired location. CONCLUSIONS The successful development of any drug delivery system relies on solving three important issues: toxicity of nanoparticles, stability of nanoparticles, and desired drug release rate at targeted sites. The main goals of future investigations are to improve the existing therapies by pharmacokinetic modifications, development of a fully automatized system to mimic insulin delivery by the pancreas and reduce invasiveness during admission.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Milan Obradovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Jovan Nedeljkovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiation Chemistry and Physics, Belgrade, Serbia
| | - Vesna Lazic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiation Chemistry and Physics, Belgrade, Serbia
| | - Esma R Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
11
|
Artzy-Schnirman A, Zidan H, Elias-Kirma S, Ben-Porat L, Tenenbaum-Katan J, Carius P, Fishler R, Schneider-Daum N, Lehr CM, Sznitman J. Capturing the Onset of Bacterial Pulmonary Infection in Acini-On-Chips. ADVANCED BIOSYSTEMS 2019; 3:e1900026. [PMID: 32648651 PMCID: PMC7611792 DOI: 10.1002/adbi.201900026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Indexed: 12/20/2022]
Abstract
Bacterial invasion of the respiratory system leads to complex immune responses. In the deep alveolar regions, the first line of defense includes foremost the alveolar epithelium, the surfactant-rich liquid lining, and alveolar macrophages. Typical in vitro models come short of mimicking the complexity of the airway environment in the onset of airway infection; among others, they neither capture the relevant anatomical features nor the physiological flows innate of the acinar milieu. Here, novel microfluidic-based acini-on-chips that mimic more closely the native acinar airways at a true scale with an anatomically inspired, multigeneration alveolated tree are presented and an inhalation-like maneuver is delivered. Composed of human alveolar epithelial lentivirus immortalized cells and macrophages-like human THP-1 cells at an air-liquid interface, the models maintain critically an epithelial barrier with immune function. To demonstrate, the usability and versatility of the platforms, a realistic inhalation exposure assay mimicking bacterial infection is recapitulated, whereby the alveolar epithelium is exposed to lipopolysaccharides droplets directly aerosolized and the innate immune response is assessed by monitoring the secretion of IL8 cytokines. These efforts underscore the potential to deliver advanced in vitro biosystems that can provide new insights into drug screening as well as acute and subacute toxicity assays.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hikaia Zidan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shani Elias-Kirma
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lee Ben-Porat
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Janna Tenenbaum-Katan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Ramy Fishler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicole Schneider-Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, 66123 Saarbrücken, Germany
- Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Bovard D, Sandoz A, Luettich K, Frentzel S, Iskandar A, Marescotti D, Trivedi K, Guedj E, Dutertre Q, Peitsch MC, Hoeng J. A lung/liver-on-a-chip platform for acute and chronic toxicity studies. LAB ON A CHIP 2018; 18:3814-3829. [PMID: 30460365 DOI: 10.1039/c8lc01029c] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The merging of three-dimensional in vitro models with multi-organ-on-a-chip (MOC) technology has taken in vitro assessment of chemicals to an unprecedented level. By connecting multiple organotypic models, MOC allows for the crosstalk between different organs to be studied to evaluate a compound's safety and efficacy better than with single cultures. The technology could also improve the toxicological assessment of aerosols that have been implicated in the development of chronic obstructive pulmonary disease, asthma, or lung cancer. Here we report the development of a lung/liver-on-a-chip, connecting in a single circuit, normal human bronchial epithelial (NHBE) cells cultured at the air-liquid interface (ALI), and HepaRG™ liver spheroids. Maintenance of the individual tissues in the chip increased NHBE ALI tissue transepithelial electrical resistance and decreased HepaRG™ spheroid adenosine triphosphate content as well as cytochrome P450 (CYP) 1A1/1B1 inducibility. CYP inducibility was partly restored when HepaRG™ spheroids were cocultured with NHBE ALI tissues. Both tissues remained viable and functional for 28 days when cocultured in the chip. The capacity of the HepaRG™ spheroids to metabolize compounds present in the medium and to modulate their toxicity was proven using aflatoxin B1 (AFB1). AFB1 toxicity in NHBE ALI tissues decreased when HepaRG™ spheroids were present in the same chip circuit, proving that the HepaRG™-mediated detoxification is protecting/decreasing from AFB1-mediated cytotoxicity. The lung/liver-on-a-chip platform presented here offers new opportunities to study the toxicity of inhaled aerosols or to demonstrate the safety and efficacy of new drug candidates targeting the human lung.
Collapse
Affiliation(s)
- David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Micro/nanostructured inhalable formulation based on polysaccharides: Effect of a thermoprotectant on powder properties and protein integrity. Int J Pharm 2018; 551:23-33. [DOI: 10.1016/j.ijpharm.2018.08.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/12/2018] [Accepted: 08/24/2018] [Indexed: 01/16/2023]
|
14
|
Lambert J, Chekroun M, Gilet H, Acquadro C, Arnould B. Assessing patients' acceptance of their medication to reveal unmet needs: results from a large multi-diseases study using a patient online community. Health Qual Life Outcomes 2018; 16:134. [PMID: 29976222 PMCID: PMC6034222 DOI: 10.1186/s12955-018-0962-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/27/2018] [Indexed: 01/12/2023] Open
Abstract
Background Patients with chronic conditions are required to take long-term treatments for their disease itself or to prevent any potential health risks. Measuring patient acceptance of their medication should help to better understand and predict patients’ behavior toward treatment. This study aimed to describe the level of patient acceptance toward various long-term treatments in real life using an online patient community. Methods This was an observational, cross-sectional study conducted through the French Carenity platform. All Carenity patient members were invited to complete an online questionnaire including the 25-item ACCEptance by the Patients of their Treatment (ACCEPT©) questionnaire. ACCEPT© measures patient acceptance toward their medication and includes one general acceptance dimension (Acceptance/General) and six treatment-attribute specific dimensions (scores 0–100; lowest to highest acceptance): Acceptance/Medication Inconvenience, Acceptance/Long-term Treatment, Acceptance/Regimen Constraints, Acceptance/Side effects, Acceptance/Effectiveness, and Acceptance/Numerous Medications. Patients included in the analysis were treated adults experiencing any chronic diseases and who responded to at least one ACCEPT© item. Results Among the 4193 patients included in the analysis, more than 270 chronic diseases were represented, amidst which 19 included more than 30 patients. Mean ACCEPT© Acceptance/General score for those 19 diseases were 61.2 (SD = 31.9) for type 1 diabetes, 59.8 (SD = 32.3) for asthma, 56.3 (SD = 34.3) for hypertension, 52.0 (SD = 32.2) for chronic obstructive pulmonary disease, 51.7 (SD = 27.0) for epilepsy, 50.1 (SD = 33.1) for bipolar disorder, 49.9 (SD = 33.1) for type 2 diabetes, 48.6 (SD = 31.6) for multiple sclerosis, 46.1 (SD = 34.5) for Crohn’s disease/ulcerative colitis, 44.3 (SD = 31.5) for depression, 42.8 (SD = 31.5) for lupus, 42.3 (SD = 33.0) for arthrosis, 41.8 (SD = 32.6) for Parkinson’s disease, 40.5 (SD = 32.2) for rheumatoid arthritis, 38.6 (SD = 31.7) for breast cancer, 36.4 (SD = 36.4) for myocardial infarction, 35.8 (SD = 32.0) for ankylosing spondylitis, 34.1 (SD = 32.3) for psoriasis, and 33.7 (SD = 31.7) for fibromyalgia. Conclusions This first of its kind study enabled ACCEPT© data to be collected in real life for a variety of chronic diseases. These data may help in evaluating and interpreting levels of acceptance in future studies and provide valuable insights about patient priorities and current unmet needs.
Collapse
Affiliation(s)
- Jérémy Lambert
- Mapi, Patient-Centered Outcomes, 27 rue de la Villette, 69003, Lyon, France
| | | | - Hélène Gilet
- Mapi, Patient-Centered Outcomes, 27 rue de la Villette, 69003, Lyon, France.,Now at IQVIA, 151-161 Boulevard Victor Hugo, 93400, Saint Ouen, France
| | | | - Benoit Arnould
- Mapi, Patient-Centered Outcomes, 27 rue de la Villette, 69003, Lyon, France
| |
Collapse
|
15
|
Boghosian JD, Luethy A, Cotten JF. Intravenous and Intratracheal Thyrotropin Releasing Hormone and Its Analog Taltirelin Reverse Opioid-Induced Respiratory Depression in Isoflurane Anesthetized Rats. J Pharmacol Exp Ther 2018; 366:105-112. [PMID: 29674333 PMCID: PMC5987997 DOI: 10.1124/jpet.118.248377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023] Open
Abstract
Thyrotropin releasing hormone (TRH) is a tripeptide hormone and a neurotransmitter widely expressed in the central nervous system that regulates thyroid function and maintains physiologic homeostasis. Following injection in rodents, TRH has multiple effects including increased blood pressure and breathing. We tested the hypothesis that TRH and its long-acting analog, taltirelin, will reverse morphine-induced respiratory depression in anesthetized rats following intravenous or intratracheal (IT) administration. TRH (1 mg/kg plus 5 mg/kg/h, i.v.) and talitrelin (1 mg/kg, i.v.), when administered to rats pretreated with morphine (5 mg/kg, i.v.), increased ventilation from 50% ± 6% to 131% ± 7% and 45% ± 6% to 168% ± 13%, respectively (percent baseline; n = 4 ± S.E.M.), primarily through increased breathing rates (from 76% ± 9% to 260% ± 14% and 66% ± 8% to 318% ± 37%, respectively). By arterial blood gas analysis, morphine caused a hypoxemic respiratory acidosis with decreased oxygen and increased carbon dioxide pressures. TRH decreased morphine effects on arterial carbon dioxide pressure, but failed to impact oxygenation; taltirelin reversed morphine effects on both arterial carbon dioxide and oxygen. Both TRH and talirelin increased mean arterial blood pressure in morphine-treated rats (from 68% ± 5% to 126% ± 12% and 64% ± 7% to 116% ± 8%, respectively; n = 3 to 4). TRH, when initiated prior to morphine (15 mg/kg, i.v.), prevented morphine-induced changes in ventilation; and TRH (2 mg/kg, i.v.) rescued all four rats treated with a lethal dose of morphine (5 mg/kg/min, until apnea). Similar to intravenous administration, both TRH (5 mg/kg, IT) and taltirelin (2 mg/kg, IT) reversed morphine effects on ventilation. TRH or taltirelin may have clinical utility as an intravenous or inhaled agent to antagonize opioid-induced cardiorespiratory depression.
Collapse
Affiliation(s)
- James D Boghosian
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| | - Anita Luethy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (J.D.B., A.L., J.F.C.); and Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.)
| |
Collapse
|
16
|
Hu X, Chen F. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients. Endocr Connect 2018; 7:R47-R55. [PMID: 29233817 PMCID: PMC5776673 DOI: 10.1530/ec-17-0309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/11/2022]
Abstract
Insulin has been used for diabetes therapy and has achieved significant therapeutic effect. In recent years, the use of purified and recombinant human insulin preparations has markedly reduced, but not completely suppressed, the incidence of insulin antibodies (IAs). IAs induced by exogenous insulin in diabetic patients is associated with clinical events, which is named exogenous insulin antibody syndrome (EIAS). The present review is based on our research and summarizes the characterization of IAs, the factors affecting IA development, the clinical significance of IAs and the treatments for EIAS.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of EndocrinologyThe First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Department of EndocrinologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of EndocrinologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
|
18
|
Heinemann L, Baughman R, Boss A, Hompesch M. Pharmacokinetic and Pharmacodynamic Properties of a Novel Inhaled Insulin. J Diabetes Sci Technol 2017; 11:148-156. [PMID: 27378794 PMCID: PMC5375067 DOI: 10.1177/1932296816658055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in insulin treatment options over recent decades have markedly improved the management of diabetes. Despite this, glycemic control remains suboptimal in many people with diabetes. Although postprandial glucose control has been improved with the development of subcutaneously injected rapid-acting insulin analogs, currently available insulins are not able to fully mimic the physiological time-action profile of endogenously secreted insulin after a meal. The delayed onset of metabolic action and prolonged period of effect induce the risk of postprandial hyperglycemia and late postprandial hypoglycemia. A number of alternative routes of insulin administration have been investigated over time in an attempt to overcome the limitations associated with subcutaneous administration and to provide an improved time-action insulin profile more closely simulating physiological prandial insulin release. Among these, pulmonary insulin delivery has shown the most promise. Technosphere® Inhaled Insulin (TI) is a rapid-acting inhaled human insulin recently approved by the FDA for prandial insulin therapy. In this article we discuss the pharmacokinetic and pharmacodynamic properties of TI, and, based on key studies performed during its clinical development, the implications for improved postprandial glucose control.
Collapse
Affiliation(s)
- Lutz Heinemann
- Science & Co, Düsseldorf, Germany
- Lutz Heinemann, PhD, Science & Co, Kehler Str 24, Düsseldorf, D-40468, Germany.
| | | | | | | |
Collapse
|
19
|
McGill JB, Ahn D, Edelman SV, Kilpatrick CR, Santos Cavaiola T. Making Insulin Accessible: Does Inhaled Insulin Fill an Unmet Need? Adv Ther 2016; 33:1267-78. [PMID: 27384191 DOI: 10.1007/s12325-016-0370-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/28/2023]
Abstract
UNLABELLED Glycemic control is fundamental to the management of diabetes. However, studies suggest that a significant proportion of people with diabetes, particularly those using insulin, are not achieving glycemic targets. The reasons for this are likely to be multifactorial. The real and perceived risk of hypoglycemia and the need for multiple daily injections are widely recognized as key barriers to effective insulin therapy. Therefore, there is a clear unmet need for a treatment option which can help mitigate these barriers. Alternative methods of insulin administration have been under investigation for several years, and pulmonary delivery has shown the most promise to date. Inhaled Technosphere(®) Insulin (TI; Afrezza(®); MannKind Corporation) was approved in 2014 for use as prandial insulin in people with diabetes. TI shows a more rapid onset of action and a significantly faster decline in activity than current subcutaneous rapid-acting insulin analogs (RAAs), and TI is more synchronized to the physiologic timing of the postprandial glucose excursion. This results in lower postprandial hypoglycemia with similar glycemic control compared with RAAs, and less weight gain. Together with the ease of use of the TI inhaler and the reduction in the number of daily injections, these findings imply that TI may be useful in helping to overcome patient resistance to insulin, improve adherence and mitigate clinical inertia in health-care providers, with potential beneficial effects on glycemic control. FUNDING Writing and editorial support in the preparation of this publication was funded by Sanofi US, Inc., Bridgewater, New Jersey, USA. Funding for the article processing charges for this publication was provided by MannKind Corporation.
Collapse
Affiliation(s)
- Janet B McGill
- Washington University School of Medicine in St Louis, St Louis, MO, USA.
| | - David Ahn
- University of California San Diego, San Diego, CA, USA
| | | | | | | |
Collapse
|
20
|
Ishikawa AA, Salazar JV, Salinas M, Gaitani CM, Nurkiewicz T, Negrete GR, Garcia CD. Self-Assembled Nanospheres for Encapsulation and Aerosolization of Rifampicin. RSC Adv 2016; 6:12959-12963. [PMID: 26998252 DOI: 10.1039/c5ra25044g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rifampicin (RIF) is a benchmark drug for treatment of tuberculosis, but poor bioavailability, prolonged treatment, and pill burden have been linked to therapeutic failure and the development of multidrug resistant strains. To overcome these limitations, this study investigated a method of rifampicin nanoencapsulation and aerosol delivery using a commercial, hand-held nebulizer modified with a nitrogen stream.
Collapse
Affiliation(s)
- Aline A Ishikawa
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirao Preto, SP, Brazil; Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Jesus V Salazar
- Department of Physics and Astronomy, UT San Antonio, San Antonio, TX, USA
| | - Magaly Salinas
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Cristiane M Gaitani
- School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirao Preto, SP, Brazil
| | - Timothy Nurkiewicz
- Department of Physiology & Pharmacology, Center for Cardiovascular & Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | | | - Carlos D Garcia
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
21
|
Brashier DBS, Khadka A, Anantharamu T, Sharma AK, Gupta AK, Sharma S, Dahiya N. Inhaled insulin: A "puff" than a "shot" before meals. J Pharmacol Pharmacother 2015; 6:126-9. [PMID: 26311994 PMCID: PMC4544132 DOI: 10.4103/0976-500x.162013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/08/2015] [Accepted: 05/15/2015] [Indexed: 12/04/2022] Open
Abstract
Diabetes is a metabolic disorder characterized by relative or absolute deficiency of insulin, resulting in hyperglycemia. The main treatment of diabetes relies on subcutaneous insulin administration by injection or continuous infusion to control glucose levels, besides oral hypoglycemic agents for type 2 diabetes. Novel routes of insulin administration are an area of research in the diabetes field as insulin injection therapy is burdensome and painful for many patients. Inhalational insulin is a potential alternative to subcutaneous insulin in the management of diabetes. The large surface area, good vascularization, immense capacity for solute exchange and ultra-thinness of the alveolar epithelium facilitates systemic delivery of insulin via pulmonary administration. Inhaled insulin has been recently approved by Food and Drug Administration (FDA). It is a novel, rapid-acting inhaled insulin with a pharmacokinetic profile that is different from all other insulin products and comparatively safer than the previous failed inhaled insulin (Exubera).
Collapse
Affiliation(s)
- Dick B S Brashier
- Department of Pharmacology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Anjan Khadka
- Department of Pharmacology, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Tejus Anantharamu
- Department of Pharmacology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Ashok Kumar Sharma
- Department of Pharmacology, Armed Forces Medical College, Pune, Maharashtra, India
| | - A K Gupta
- Department of Pharmacology, Armed Forces Medical College, Pune, Maharashtra, India
| | - Sushil Sharma
- Department of Pharmacology, Armed Forces Medical College, Pune, Maharashtra, India
| | - N Dahiya
- Department of Pharmacology, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
22
|
Al-Tabakha MM. Future prospect of insulin inhalation for diabetic patients: The case of Afrezza versus Exubera. J Control Release 2015. [PMID: 26222134 DOI: 10.1016/j.jconrel.2015.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The current review was designed to compare between the insulin inhalation systems Exubera and Afrezza and to investigate the reasons why Exubera was unsuccessful, when Afrezza maker is expecting their product to be felicitous. In January 2006, Pfizer secured FDA and EC approval for the first of its kind, regular insulin through Exubera inhaler device for the management of types 1 and 2 diabetes mellitus (DM) in adults. The product was no longer available to the market after less than two years from its approval triggering a setback for competitive new inhalable insulins that were already in various clinical development phases. In contrary, MannKind Corporation started developing its ultra-rapid-acting insulin Afrezza in a bold bid, probably by managing the issues in which Exubera was not successful. Afrezza has been marketed since February, 2015 by Sanofi after getting FDA approval in June 2014. The results from this systematic review indicate the effectiveness of insulin inhalation products, particularly for patients initiating insulin therapy. Pharmaceutical companies should capitalize on the information available from insulin inhalation to produce competitive products that are able to match the bioavailability of subcutaneous (SC) insulin injection and to deal with the single insulin unit increments and basal insulin requirements in some diabetic patients or extending the horizon to inhalable drug products with completely different drug entities for other indications.
Collapse
Affiliation(s)
- Moawia M Al-Tabakha
- Pharmaceutical Sciences Unit, College of Pharmacy, Al Ain University of Science and Technology, P.O. Box 64141, Al Ain, United Arab Emirates.
| |
Collapse
|
23
|
Matteucci E, Giampietro O, Covolan V, Giustarini D, Fanti P, Rossi R. Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des Devel Ther 2015; 9:3109-18. [PMID: 26124635 PMCID: PMC4476457 DOI: 10.2147/dddt.s79322] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Insulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients' (and diabetologists') ideal requirements that organic chemistry could meet.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Clinical and Experimental Medicine, University of Pisa, Siena, Italy
| | - Ottavio Giampietro
- Department of Clinical and Experimental Medicine, University of Pisa, Siena, Italy
| | - Vera Covolan
- Department of Chemistry and Industrial Chemistry, University of Pisa, Siena, Italy
| | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy
| | - Paolo Fanti
- Division of Nephrology, University of Texas Health Science Center San Antonio, South Texas Veteran Health Care System, San Antonio, Texas, USA
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, Siena, Italy
| |
Collapse
|
24
|
Chan JGY, Wong J, Zhou QT, Leung SSY, Chan HK. Advances in device and formulation technologies for pulmonary drug delivery. AAPS PharmSciTech 2014; 15:882-97. [PMID: 24728868 DOI: 10.1208/s12249-014-0114-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Inhaled pharmaceuticals are formulated and delivered differently according to the therapeutic indication. However, specific device-formulation coupling is often fickle, and new medications or indications also demand new strategies. The discontinuation of chlorofluorocarbon propellants has seen replacement of older metered dose inhalers with dry powder inhaler formulations. High-dose dry powder inhalers are increasingly seen as an alternative dosage form for nebulised medications. In other cases, new medications have completely bypassed conventional inhalers and been formulated for use with unique inhalers such as the Staccato® device. Among these different devices, integration of software and electronic assistance has become a shared trend. This review covers recent device and formulation advances that are forming the current landscape of inhaled therapeutics.
Collapse
|
25
|
Santos Cavaiola T, Edelman S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin Ther 2014; 36:1275-89. [PMID: 25044021 DOI: 10.1016/j.clinthera.2014.06.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 01/13/2023]
Abstract
PURPOSE Despite many advances in diabetes care over the last century, some elements of insulin therapy remain inadequate for optimal care of the patient with diabetes. There is a need for improved pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues to mimic physiologic insulin secretion. In addition, a major barrier to successful insulin therapy has been patient resistance. Alternative routes of insulin administration, including inhaled insulin, have been under investigation for several years. This review discusses the rationale for pulmonary delivery of insulin, compares previous inhaled insulin products, reviews the literature on the safety and efficacy of a current inhaled insulin formulation under investigation, and compares this product with other prandial insulin products. METHODS English-language studies and reviews of inhaled insulin were searched in MEDLINE, the ClinicalTrials.gov registry (through May 2014), and the US Food and Drug Administration Website. FINDINGS Inhaled insulin has several favorable characteristics due to pulmonary anatomy/physiology and the lack of injections. Pharmacokinetic and pharmacodynamic studies have shown a time-action profile suitable for prandial insulin use. Inhaled insulin seems to be safe and effective compared with other prandial insulin products and may be preferable to subcutaneous rapid-acting insulin analogues in terms of time-action profiles and rates of hypoglycemia. Small decreases in forced expiratory volume in 1 second (FEV1) have been shown with inhaled insulin, although this finding is not progressive over time and reverses with cessation of the medication. IMPLICATIONS Although several inhaled insulin products have been under investigation, only one (Exubera(®) [Nektar Therapeutics, San Carlos, California/Pfizer Inc, New York, New York]) was approved by the US Food and Drug Administration, and it was pulled from the market after only a short period of time. Technosphere(®) insulin (MannKind Corporation, Valencia, California) is currently the only inhaled insulin that remains under investigation. A review of the past and present literature on inhaled insulin is pertinent in understanding the current status of inhaled insulin and its risks and benefits. The current literature suggests that inhaled insulin could be a valuable option for prandial insulin administration, with a favorable risk to benefit ratio in some patients.
Collapse
Affiliation(s)
| | - Steven Edelman
- University of California, San Diego, San Diego, California
| |
Collapse
|
26
|
Abstract
Pulmonary disease has been the primary target of inhaled therapeutics for over 50 years. During that period, increasing interest has arisen in the use of this route of administration to gain access to the systemic circulation for the treatment of a number of diseases beyond the airways. In order to effectively employ this route, the barriers to transport from the lungs following deposition of aerosols must be considered, including the nature of the disease (whether proximal, as in pulmonary hypertension, or distal, as in diabetes). Delivery to the systemic circulation begins with the efficiency of aerosol generation and subsequent deposition in the airways and proceeds to the influence of mechanisms of clearance, including absorption, metabolism, and mucociliary and cell-mediated transport, on the residence time of the drugs in the lungs. The nature of the drug (small or large molecules/low or high molecular weight), susceptibility to degradation and general physicochemical properties play a role in the chemistry of its formulation, physics of aerosol delivery and biology of disposition.
Collapse
Affiliation(s)
- Ninell P. Mortensen
- Systems & Translational Sciences, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| | - Anthony J. Hickey
- Technology for Industry and the Environment, Discovery – Sciences – Technologies Group, RTI International, 3040 East Cornwallis Road, 27709 Research Triangle Park, North Carolina, USA
| |
Collapse
|
27
|
McElroy MC, Kirton C, Gliddon D, Wolff RK. Inhaled biopharmaceutical drug development: nonclinical considerations and case studies. Inhal Toxicol 2013; 25:219-32. [PMID: 23480198 DOI: 10.3109/08958378.2013.769037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biopharmaceuticals are complex molecules often manufactured from living systems and their specificity and novelty holds great promise for the treatment of chronic diseases for which there are currently no cures. The inhalation route of biopharmaceutical drug delivery is attractive because the large surface area of the lung, and close proximity of the alveolar and vascular systems, maximizes the potential for drug delivery to the lung and/or systemic circulation. In addition, costs of delivery to the patient are potentially much reduced, in comparison with parental administration, since inhalation is non-invasive and likely to promote patient compliance. However, in comparison with small molecule drug development, developing an inhaled biopharmaceutical that is effective and safe for human use is associated with many challenges. This review considers some general principles of drug delivery to lung and issues associated with the translation of proof of concept studies to toxicology safety studies (e.g. aerosol generation, species selection, exaggerated pharmacology, and immunogenicity). This review also presents a summary of nonclinical and clinical data from inhaled biopharmaceuticals which are either marketed for human use or in Phase II clinical trials (e.g. DNase, insulin, human growth hormone, vaccines, therapeutic plasmid DNA complexes).
Collapse
Affiliation(s)
- Mary C McElroy
- Charles River Laboratories, Preclinical Services, Edinburgh, UK.
| | | | | | | |
Collapse
|
28
|
Takano M, Horiuchi T, Nagai J, Yumoto R. Effect of cigarette smoke extract on insulin transport in alveolar epithelial cell line A549. Lung 2012; 190:651-9. [PMID: 22960792 DOI: 10.1007/s00408-012-9413-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/21/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND The main purpose of this study was to evaluate the effect of cigarette smoke extract (CSE) on insulin transport in alveolar epithelial cells. METHODS We first examined the effect of CSE pretreatment on cell viability, mRNA expression, and lamellar body structures in A549 cells. Then the effect of CSE pretreatment on FITC-insulin transport was examined. RESULTS When A549 cells were treated with 30 μg/ml of CSE for 48 h, the expression of some mRNAs abundantly expressed in type II alveolar epithelial cells such as surfactant protein B was significantly increased. Lamellar bodylike structures became more evident with CSE treatment. FITC-insulin uptake from the apical side and subsequent efflux to the basal side was enhanced by CSE treatment in A549 cells. The enhancing effect of CSE on FITC-insulin uptake was concentration-dependent and reversible. A concentration-dependent enhancing effect of CSE on FITC-insulin uptake was also observed in normal, primary cultured alveolar type II epithelial cells isolated from rats. CONCLUSIONS Treatment of A549 cells by CSE may direct the cells to a more type II-like phenotype. In accordance with this observation, FITC-insulin uptake was enhanced by CSE treatment. These results may partly explain the higher insulin absorption from the lung in smokers than in nonsmokers.
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | | | | | | |
Collapse
|
29
|
Ramchandani N, Heptulla RA. New technologies for diabetes: a review of the present and the future. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2012; 2012:28. [PMID: 23098076 PMCID: PMC3541087 DOI: 10.1186/1687-9856-2012-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022]
Abstract
This review summarizes the technologies in use and in the pipeline for the management of diabetes. The review focuses on glucose meters, continuous glucose monitoring devices, insulin pumps, and getting clinicians connected to technologies. All information presented can be found in the public domain, and was obtained from journal articles, websites, product review tables in patient publications, and professional conferences. The technology concerns, ongoing development and future trends in this area are also discussed.
Collapse
Affiliation(s)
- Neesha Ramchandani
- The Children's Hospital at Montefiore, Division of Pediatric Endocrinology & Diabetes, 3415 Bainbridge Ave, Bronx, NY, 10467, USA.
| | | |
Collapse
|
30
|
Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv 2012; 2:1575-93. [PMID: 22833983 DOI: 10.4155/tde.11.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The technology has been available more than 25 years that would enable the oral delivery of vaccines, proteins and peptides, thus avoiding the need for injection. To this day, injection is still the mode of delivery, yet not the main mode of choice. This review focuses on several of the potential modes for oral delivery of peptides, proteins and vaccines. Additionally, the review will provide the reader with an insight into the problems and potential solutions for several of these modes of oral delivery of peptides and proteins.
Collapse
|
31
|
Zhao YZ, Li X, Lu CT, Xu YY, Lv HF, Dai DD, Zhang L, Sun CZ, Yang W, Li XK, Zhao YP, Fu HX, Cai L, Lin M, Chen LJ, Zhang M. Experiment on the feasibility of using modified gelatin nanoparticles as insulin pulmonary administration system for diabetes therapy. Acta Diabetol 2012; 49:315-325. [PMID: 22124766 DOI: 10.1007/s00592-011-0356-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/15/2011] [Indexed: 01/15/2023]
Abstract
Polymeric nanoparticles are widely used as targeted carriers for biomacromolecules. In this paper, modified gelatin nanoparticles were prepared and their feasibility as insulin pulmonary administration system was investigated. D: ,L: -glyceraldehyde and poloxamer 188 were used for gelatin nanoparticle preparation. Novel water-in-water emulsion technique was used to prepare insulin-loaded nanoparticles. Morphological examination of insulin-loaded nanoparticles was carried out using scanning electron microscopy (SEM). Intratracheal instillation of insulin-loaded nanoparticles was performed to evaluate animal hypoglycemic effect. With fluorescence labeling of insulin, alveolar deposition and absorption of insulin-loaded nanoparticles were investigated. Histological changes in the lung were also observed to evaluate the safety. From the micromorphology observation, insulin-loaded nanoparticles under gelatin-poloxamer 188 ratio at 1:1 showed smooth and uniform surface, with average particle size 250 nm and Zeta potential -21.1 mV. From animal experiment, insulin-loaded nanoparticles under gelatin-poloxamer 188 ratio at 1:1 promoted insulin pulmonary absorption effectively and showed good relative pharmacological bioavailability. Proved by alveolar deposition result, FITC-insulin-loaded nanoparticle group was characterized by an acute and rapid hypoglycemic effect. In addition, nanoparticles could guarantee the safety of lung by reducing insulin deposition in lung. A transient weak inflammatory response was observed at 1 day after administration. With good physical characterization, high bioavailability, fast and stable hypoglycemic effect, insulin-loaded nanoparticles might be developed as a novel insulin pulmonary system for diabetes therapy.
Collapse
|
32
|
Abstract
INTRODUCTION Although insulin products and treatment strategies have improved significantly, clinical challenges still exist. Meeting glycemic goals while minimizing glucose variability and hypoglycemia is of utmost importance when considering existing insulin therapies and designing investigational insulin treatments. METHODS A PubMed search identified relevant, peer-reviewed articles related to the evolution of insulin development for this nonsystematic review. Search terms included "animal insulin," "synthetic insulin," "regular human insulin," "insulin lispro," "insulin aspart," "insulin glulisine," "insulin glargine," "insulin detemir," "insulin degludec," "biphasic human insulin," "insulin premixes," "ultra-long acting," "oral insulin," and "inhaled insulin." RESULTS While the discovery of animal insulin significantly decreased mortality rates from diabetes, issues with availability and large variability between batches led to difficulty in determining proper doses and, subsequently, challenges in achieving glycemic control and avoiding hypoglycemia. The development of synthetic insulin created a more readily available supply, but hypoglycemia still persisted. Recombinant DNA technology solved insulin production problems and allowed for the development of better retarding agents, but pharmacokinetic/pharmacodynamic profiles still did not mimic natural insulin. Insulin premixes offered improved glycemic control, decreased intrapatient variability versus self-mixing, and required fewer injections per day; however, patient adherence remained a problem due to the need to inject 30-60 minutes before a meal for optimal control. This prompted the development of rapid-acting insulin analogs that could be injected right before a meal and long-acting insulin analogs with flatter time-action profiles. CONCLUSION Despite advances in insulin development, a need to provide more physiologic basal insulin coverage and reduce hypoglycemic risk in patients with diabetes remains. Newer insulin analogs and more convenient routes of insulin delivery have shown promising safety and efficacy results. Many patients with diabetes have not reached glycemic goals on currently available insulins. Additional studies are necessary to tailor optimal insulin delivery strategies to specific subsets of diabetes patients.
Collapse
|
33
|
García-González C, Alnaief M, Smirnova I. Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.066] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Elsayed A, Al-Remawi M, Qinna N, Farouk A, Al-Sou’od KA, Badwan AA. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin. AAPS PharmSciTech 2011; 12:958-64. [PMID: 21761276 DOI: 10.1208/s12249-011-9647-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 06/10/2011] [Indexed: 11/30/2022] Open
Abstract
The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.
Collapse
|